JP2011177278A - Gait disorder automatic analysis system - Google Patents
Gait disorder automatic analysis system Download PDFInfo
- Publication number
- JP2011177278A JP2011177278A JP2010043112A JP2010043112A JP2011177278A JP 2011177278 A JP2011177278 A JP 2011177278A JP 2010043112 A JP2010043112 A JP 2010043112A JP 2010043112 A JP2010043112 A JP 2010043112A JP 2011177278 A JP2011177278 A JP 2011177278A
- Authority
- JP
- Japan
- Prior art keywords
- walking
- gait
- disorder
- degree
- waist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
【課題】簡便に計測を行え、臨床現場で定量的に歩行障害度を評価できる歩行障害自動分析システムを提供する。
【解決手段】本発明の歩行障害自動分析システムは、運動センサー31,32により被験者2の歩行運動を計測する歩行運動計測部3と、歩行運動計測部3で計測された歩行運動から腰軌道を求める歩行運動追跡部4と、歩行運動追跡部4で得られた腰軌道から歩行障害に係る特徴量としての歩行障害特徴量を抽出する歩行障害特徴抽出部5と、歩行障害特徴抽出部5で抽出された歩行障害特徴量に基づいて、被験者2の歩行障害度を判定する歩行障害度判定部6と、歩行障害度が判明している被験者2の歩行障害度を歩行障害特徴量と関連付けて学習データとして歩行障害度判定部6に学習させる歩行障害学習部7とを備え、歩行障害度判定部6は、学習データを参照して判定を行う。
【選択図】 図1The present invention provides an automatic analysis system for gait disturbance that can be easily measured and quantitatively evaluate the degree of gait disturbance in a clinical setting.
A walking obstacle automatic analysis system according to the present invention includes a walking motion measuring unit 3 that measures a walking motion of a subject 2 by motion sensors 31 and 32, and a waist trajectory from the walking motion measured by the walking motion measuring unit 3. The desired walking motion tracking unit 4, the walking obstacle feature extracting unit 5 that extracts the walking obstacle feature amount as the feature amount related to the walking disorder from the waist trajectory obtained by the walking motion tracking unit 4, and the walking obstacle feature extracting unit 5 Based on the extracted walking disorder feature amount, the walking disorder degree determination unit 6 that determines the walking disorder degree of the subject 2 and the walking disorder degree of the subject 2 whose walking disorder degree is known are associated with the walking disorder feature amount. A walking obstacle learning unit 7 that causes the walking obstacle degree determination unit 6 to learn as learning data, and the walking obstacle degree determination unit 6 makes a determination with reference to the learning data.
[Selection] Figure 1
Description
本発明は歩行障害自動分析システムに関する。詳しくは、被験者の腰軌道から歩行障害特徴量を抽出し、抽出された歩行障害特徴量に基づいて歩行障害度を自動分析する歩行障害自動分析システムに関する。 The present invention relates to a gait disorder automatic analysis system. More specifically, the present invention relates to a walking disorder automatic analysis system that extracts a walking disorder feature amount from a waist trajectory of a subject and automatically analyzes a walking disorder degree based on the extracted walking disorder feature quantity.
高齢化社会の進行に伴い、身体障害者数も増加の一途をたどっている。片麻痺等による心身機能障害は日常生活動作(Activities of Daily Living:ADL)に支障を来たし、その結果、患者の情緒的問題や社会的不利を招く。従って、リハビリテーション(以下、リハビリと略す)を介して患者の自立を支援することは、患者とその周囲の人々の生活の質(Quority of Life:QOL)を改善し、健全な社会生活を実現する上で不可欠な要因である。 With the progress of an aging society, the number of physically disabled people is steadily increasing. Psychosomatic dysfunction due to hemiplegia or the like hinders activities of daily living (Activities of Daily Living: ADL), resulting in emotional problems and social disadvantage of the patient. Therefore, supporting the patient's independence through rehabilitation (hereinafter referred to as rehabilitation) improves the quality of life (QOL) of the patient and the surrounding people and realizes a healthy social life. It is an essential factor above.
歩行リハビリは医師や理学療法士による歩行評価とそれに基づいて策定されたリハビリプログラムに沿って行われる。しかし、臨床現場における歩行評価は検査者の目視による主観評価で行われることが多く、検査者の知識、経験への依存性や評価の再現性・一貫性に欠ける点が問題視されている。そのため、歩行を客観的かつ定量的に評価する手法として、電気角度計や床反力計、三次元動作解析装置、筋電図などを用いた手法が提案されてきた。しかし、コストや時間、計測機器使用の困難さといった制約から、臨床ではあまり普及していないのが現状である。臨床現場では定量的に歩行を評価できるだけではなく、簡便に計測を行えるシステムが求められている。 Walking rehabilitation is carried out in accordance with walking evaluation by doctors and physical therapists and rehabilitation programs based on it. However, gait evaluation in the clinical field is often performed by subjective evaluation by the examiner's visual observation, and there is a problem that it depends on the examiner's knowledge and experience and lacks reproducibility and consistency of evaluation. Therefore, methods using an electric angle meter, a floor reaction force meter, a three-dimensional motion analysis device, an electromyogram, etc. have been proposed as a method for objectively and quantitatively evaluating walking. However, due to limitations such as cost, time, and difficulty in using measuring instruments, the current situation is that they are not so popular in clinical practice. In the clinical field, there is a need for a system that can not only quantitatively evaluate gait but also easily measure.
発明者達は、簡便に計測を行えるように、腰部に取り付けた3次元加速度センサーから得られる情報を用いて、歩行中の腰部の変位量を算出する手法を開発し、その時間発展を追跡し可視化した腰軌道を歩行評価に応用する試みを行ってきた。かかる計測手法の利点は、小型軽量でかつ計測が従来の計測機器に比べて簡便でありながら、歩行中の運動学的情報を比較的精度よく計測できる点である。また、計測場所を限定する必要がない点も利点の1つである。(例えば特許文献1参照) The inventors have developed a method to calculate the amount of displacement of the waist during walking using information obtained from a three-dimensional acceleration sensor attached to the waist so that measurement can be easily performed, and track the time evolution. Attempts have been made to apply the visualized waist trajectory to walking evaluation. The advantage of such a measurement method is that it is possible to measure kinematic information during walking with relatively high accuracy while being compact and lightweight and simple in measurement compared to conventional measurement devices. Another advantage is that there is no need to limit the measurement location. (For example, see Patent Document 1)
しかしながら、腰軌道の歩行障害度に関する評価方法については、まだ、検討が不十分であり、その評価指標と評価手法が確立されていない。その評価指標と評価手法が確立されれば、臨床への導入、ひいては在宅でのリハビリにも応用できる可能性がある。 However, the evaluation method regarding the degree of gait disturbance in the waist track has not been sufficiently studied, and its evaluation index and evaluation method have not been established. If the evaluation index and evaluation method are established, there is a possibility that it can be applied to clinical introduction and eventually to rehabilitation at home.
本発明は、簡便に計測を行え、臨床現場で定量的に歩行障害度を評価できる歩行障害自動分析システムを提供することを目的とする。 It is an object of the present invention to provide an automatic gait disorder analysis system that can easily measure and quantitatively evaluate the degree of gait disturbance in a clinical setting.
上記課題を解決するために、本発明の第1の態様に係る歩行障害自動分析システムは、例えば図1及び図2に示すように、運動センサー31,32により被験者2の歩行運動を計測する歩行運動計測部3と、歩行運動計測部3で計測された歩行運動から腰軌道を求める歩行運動追跡部4と、歩行運動追跡部4で求められた腰軌道から歩行障害に係る特徴量としての歩行障害特徴量を抽出する歩行障害特徴抽出部5と、歩行障害特徴抽出部5で抽出された歩行障害特徴量に基づいて、被験者2の歩行障害度を判定する歩行障害度判定部6と、歩行障害度が判明している被験者2の歩行障害度を歩行障害特徴量と関連付けて学習データとして歩行障害度判定部6に学習させる歩行障害学習部7とを備え、歩行障害度判定部6は、学習データを参照して判定を行う。 In order to solve the above-described problem, the walking disorder automatic analysis system according to the first aspect of the present invention is a walking that measures the walking motion of the subject 2 using motion sensors 31 and 32 as shown in FIGS. 1 and 2, for example. The motion measuring unit 3, the walking motion tracking unit 4 for obtaining the waist trajectory from the walking motion measured by the walking motion measuring unit 3, and the walking as the feature amount related to the walking disorder from the waist trajectory obtained by the walking motion tracking unit 4 A walking disorder feature extraction unit 5 that extracts a disorder feature, a walking disorder degree determination unit 6 that determines the degree of walking disorder of the subject 2 based on the walking disorder feature amount extracted by the walking disorder feature extraction unit 5, and a walking A gait obstacle learning unit 7 that causes the gait obstacle degree determination unit 6 to learn the walking obstacle degree of the subject 2 whose degree of obstacle is known as learning data in association with the gait obstacle feature amount, See training data A determination is made as Te.
ここにおいて、運動センサーには腰の位置とその動きを検出するための加速度センサー、位置センサー(位置の時間変化を見れば良い)、脚の着地、離地を検出するためのフットセンサーが含まれる。また、取得すべき特徴量に応じて、例えば加速度センサーとフットセンサーの両者を用いても良く、その一方を用いても良い。また、抽出される歩行障害特徴量は、歩行障害を特徴付けるベクトルで、腰軌道から抽出できるものであれば幾何学的特徴量、時間的特徴量のいずれでも良いが、歩行障害度との相関関係が高いものが望ましい。また、抽出される歩行障害特徴量の数は障害の種類、歩行障害度と歩行障害特徴量との相関関係に応じて変化する。すなわち、相関関係が大きい時は1つでも良く、相関関係が小さい時は複数用いることが望ましい。また、複数用いる場合には、相互の相関関係が小さく、独立性が高いことが好ましい。また、歩行障害度として、客観的な基準が確立されているものを用いるのが望ましいが、通常、片麻痺であれば歩行障害度を示す指標であるBrunnstrom Stage(BS)、パーキンソン病であればヤール(Yahr)の指標が用いられる。また、歩行障害学習部7は歩行障害度判定部6が歩行障害度の判定を行なうためのデータベースとしての機能を有し、歩行障害度判定部6は判定手段として、例えばサポートベクターマシーン等のパターン分類器や主成分分析を用いてデータベースを参照して判定することができる。 Here, the motion sensor includes an acceleration sensor for detecting the position of the waist and its movement, a position sensor (which can be seen by changing the position with time), a foot sensor for detecting landing and takeoff of the leg. . Further, according to the feature amount to be acquired, for example, both an acceleration sensor and a foot sensor may be used, or one of them may be used. In addition, the extracted gait disturbance feature is a vector that characterizes gait disturbance and can be either a geometric feature or a temporal feature as long as it can be extracted from the waist trajectory. A high value is desirable. In addition, the number of extracted gait disturbance feature quantities changes according to the type of obstacle, the correlation between the degree of gait disturbance and the gait disorder feature quantity. That is, one is sufficient when the correlation is large, and it is desirable to use a plurality when the correlation is small. Moreover, when using two or more, it is preferable that mutual correlation is small and independence is high. In addition, it is desirable to use an objective standard established as the degree of gait disturbance, but usually, if hemiplegia, Brunnstrom Stage (BS), which is an indicator of the degree of gait disturbance, is Parkinson's disease. The Yahr index is used. The gait obstacle learning unit 7 has a function as a database for the gait obstacle degree determination unit 6 to determine the gait obstacle degree. The gait obstacle degree determination unit 6 uses, for example, a pattern such as a support vector machine. This can be determined by referring to a database using a classifier or principal component analysis.
本態様のように構成すると、運動センサーとして加速度センサーを用い、腰軌道の追跡、歩行障害特徴量の抽出、歩行障害度の判定にパーソナルコンピュータの演算機能を用いることにより、当該システムを臨床現場に容易に持ち込め、簡便に計測を行うことができる。また、歩行障害度との相関関係が高い判定値を得ることができるので、臨床現場で定量的に歩行障害度を評価できる。したがって、簡便に計測を行え、臨床現場で定量的に歩行障害度を評価できる歩行障害自動分析システムを提供できる。 When configured as in this aspect, an acceleration sensor is used as the motion sensor, and the system is put into clinical practice by using the computing function of a personal computer for tracking of the lower back trajectory, extraction of gait disturbance features, and determination of the degree of gait disturbance. It can be easily brought in and can be measured easily. In addition, since a determination value having a high correlation with the degree of gait disturbance can be obtained, the degree of gait disturbance can be quantitatively evaluated at the clinical site. Therefore, it is possible to provide an automatic gait disorder analysis system that can easily measure and quantitatively evaluate the degree of gait disturbance in the clinical field.
また、本発明の第2の態様に係る歩行障害自動分析システム1は、第1の態様において、例えば図14に示すように、歩行障害度判定部6は多次元空間のベクトルを複数のパターンに分類するパターン分類器を用いて被験者2の歩行障害度を判定する。
ここにおいて、多次元とは2次元以上をいうものとする。また、パターン分類器として、サポートベクターマシーンを用いるのが高い分類精度が得られて好ましいが、線形分類器、Quadratic Classifier、k近似法、ブースティング、決定木、ニューラルネットワーク、ベイジアンネットワーク、隠れマルコフモデル等を使用しても良い。本態様のように構成すると、歩行障害度判定部6はパターン分類器を用いて統計学的にパターンを分類するので、高い精度で歩行障害度を判定できる。
Moreover, the gait disturbance automatic analysis system 1 according to the second aspect of the present invention is the gait disturbance degree determination unit 6 in the first aspect, for example, as shown in FIG. The walking disorder degree of the subject 2 is determined using a pattern classifier to be classified.
Here, multidimensional means two or more dimensions. In addition, it is preferable to use a support vector machine as a pattern classifier because high classification accuracy is obtained, but a linear classifier, quadratic classifier, k approximation method, boosting, decision tree, neural network, Bayesian network, hidden Markov model Etc. may be used. If comprised like this aspect, since the walking disorder degree determination part 6 classify | categorizes a pattern statistically using a pattern classifier, it can determine a walking disorder degree with high precision.
また、本発明の第3の態様に係る歩行障害自動分析システムは、第1の態様において、例えば図17に示すように、歩行障害度判定部6は主成分分析を用いて前記被験者の歩行障害度を判定する。
このように構成すると、歩行障害特徴量を適切に選択し、主成分分析を用いることにより、同じBSの被験者に対して、歩行障害度の経時的な変化を検出可能になる。
In addition, in the gait disorder automatic analysis system according to the third aspect of the present invention, in the first aspect, for example, as shown in FIG. Determine the degree.
If comprised in this way, it will become possible to detect the time-dependent change of a walking disorder degree with respect to the test subject of the same BS by selecting a walking disorder feature-value appropriately and using a principal component analysis.
また、本発明の第4の態様に係る歩行障害自動分析システムは、第1ないし第3のいずれかの態様において、例えば図7ないし図11に示すように、歩行障害特徴量として、腰運動の左右の非対称性に係る幾何学的特徴量を用いる。
このように構成すると、腰運動の左右の非対称性に係る幾何学的特徴量は、例えば片麻痺の歩行障害度と相関関係が高いので、片麻痺に対して、信頼性の高い歩行障害度の判定を得ることができる。
In addition, in the gait disturbance automatic analysis system according to the fourth aspect of the present invention, as shown in FIGS. 7 to 11, for example, as shown in FIGS. Geometric features related to left-right asymmetry are used.
With this configuration, the geometric feature amount related to the left-right asymmetry of the hip movement has a high correlation with, for example, the hemiplegic walking disorder degree. A determination can be obtained.
また、本発明の第5の態様に係る歩行障害自動分析システムは、第1ないし第3のいずれかの態様において、例えば図18に示すように、歩行障害特徴量として、腰運動の時間的特徴量を用いる。
このように構成すると、例えば腰運動の時間的特徴量のうち歩行周期勾配等はパーキンソン病の歩行障害度と相関関係が高いので、パーキンソン病に対して、信頼性の高い歩行障害度の判定を得ることができる。
In addition, in any one of the first to third aspects, the gait disturbance automatic analysis system according to the fifth aspect of the present invention is characterized by the temporal characteristics of the waist movement as a gait disorder feature amount, for example, as shown in FIG. Use quantity.
With this configuration, for example, the walking period gradient of the temporal feature amount of hip movement has a high correlation with the degree of walking disorder of Parkinson's disease. Obtainable.
また、本発明の第6の態様に係る歩行障害自動分析システムは、第1ないし第5のいずれかの態様において、例えば図2に示すように、運動センサーは、腰椎付近に装着された3次元加速度センサー32である。
このように構成すると、3次元加速度センサーは小型軽量であり、簡便に計測を行え、臨床現場に容易に持ち込める歩行障害自動分析システムを提供できる。
Further, in the gait disorder automatic analysis system according to the sixth aspect of the present invention, in any of the first to fifth aspects, for example, as shown in FIG. 2, the motion sensor is a three-dimensional mounted near the lumbar vertebra. This is an acceleration sensor 32.
If comprised in this way, a three-dimensional acceleration sensor is small and lightweight, can perform a measurement easily, and can provide the gait disorder automatic analysis system which can be easily brought into a clinical field.
本発明によれば、簡便に計測を行え、臨床現場で定量的に歩行障害度を評価できる歩行障害自動分析システムを提供できる。 According to the present invention, it is possible to provide an automatic gait disorder analysis system that can easily measure and quantitatively evaluate the degree of gait disturbance in the clinical field.
以下に図面に基づき本発明の実施の形態について説明する。尚、各図において、互いに同一又は相当する部分には同一符号を付し,重複した説明は省略する。 Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
実施例1では、腰軌道から5つの歩行障害特徴量を抽出し、サポートベクターマシーンを用いて被験者の歩行障害度を判定する例について説明する。 In the first embodiment, an example will be described in which five walking obstacle feature amounts are extracted from the waist trajectory and the walking obstacle degree of the subject is determined using a support vector machine.
[装置構成]
図1に、実施例1による歩行障害自動分析システム1の構成例を示す。図1において、歩行障害自動分析システム1は、歩行運動計測部3、歩行運動追跡部4、歩行障害特徴抽出部5、歩行障害度判定部6及び制御部8により構成される。歩行運動計測部3は運動センサーにより被験者2の歩行運動を計測する。歩行運動追跡部4は歩行運動計測部3で計測された歩行運動から腰軌道を求める。歩行障害特徴抽出部5は歩行運動追跡部4で求められた腰軌道から歩行障害特徴量を抽出する。歩行障害度判定部6は歩行障害特徴抽出部5で抽出された歩行障害特徴量に基づいて、被験者2の歩行障害度を判定する。歩行障害学習部7は歩行障害度が判明している被験者2の歩行障害度を歩行障害特徴量と関連付けて学習データとして歩行障害度判定部6に学習させる。歩行障害度判定部6はこの学習データを参照して歩行障害度を判定する。制御部8は、歩行障害自動分析システム1及びその各部の信号及びデータの流れを制御して、歩行障害自動分析システム1の機能を実現できるようにする。歩行運動追跡部4、歩行障害特徴抽出部5、歩行障害度判定部6及び制御部8は、パーソナルコンピュータ(PC)10で実現可能であり、PC10内に構成される。
[Device configuration]
In FIG. 1, the structural example of the gait disorder automatic analysis system 1 by Example 1 is shown. In FIG. 1, the walking disorder automatic analysis system 1 includes a walking movement measuring unit 3, a walking movement tracking unit 4, a walking disorder feature extracting unit 5, a walking disorder degree determining unit 6, and a control unit 8. The walking motion measuring unit 3 measures the walking motion of the subject 2 using a motion sensor. The walking motion tracking unit 4 obtains the waist trajectory from the walking motion measured by the walking motion measuring unit 3. The walking obstacle feature extraction unit 5 extracts a walking obstacle feature amount from the waist trajectory obtained by the walking movement tracking unit 4. The walking disorder degree determination unit 6 determines the walking disorder degree of the subject 2 based on the walking disorder feature amount extracted by the walking disorder feature extraction unit 5. The gait obstacle learning unit 7 causes the gait obstacle degree determination unit 6 to learn as learning data by associating the gait obstacle degree of the subject 2 whose gait obstacle degree is known with the gait disorder feature amount. The walking disorder degree determination unit 6 determines the walking disorder degree with reference to the learning data. The control unit 8 controls the gait disorder automatic analysis system 1 and the flow of signals and data of each part thereof, so that the function of the gait disorder automatic analysis system 1 can be realized. The walking movement tracking unit 4, the walking obstacle feature extraction unit 5, the walking obstacle degree determination unit 6, and the control unit 8 can be realized by a personal computer (PC) 10 and are configured in the PC 10.
[歩行運動計測部]
歩行運動計測部3は運動センサーにより被験者2の歩行運動を計測する。歩行計測は、足の接地、離地タイミングを検出する足接地タイミング検出装置31と、腰の動きを計測する腰軌道計測装置32によって行われ、歩行運動追跡部4において時間的側面と運動学的側面からの解析が可能になっている。この2つの計測装置は、互いに同期している。
[Walking motion measurement unit]
The walking motion measuring unit 3 measures the walking motion of the subject 2 using a motion sensor. Walking measurement is performed by a foot contact timing detection device 31 that detects the ground contact and takeoff timing, and a waist trajectory measurement device 32 that measures the motion of the waist. Analysis from the side is possible. The two measuring devices are synchronized with each other.
図2に歩行運動計測部3の構成例を示す。足接地タイミング検出装置31はフットセンサーを用いて、歩行中の接地、離地のタイミングを検出する。フットセンサーには、テープ状の圧力センサーが組み込まれており、足底の一部に一定の圧力(例えば220g/cm2)がかかったタイミングを接地、上記一定の圧力まで下がったタイミングを離地として検出する。腰軌道計測装置32は3次元加速度センサーを用いて、腰部の空間的な変位を計測する。腰軌道計測装置32は3次元加速度センサーを、腰部にバンドを用いて固定することで、腰部の加速度変化を計測する。腰部の変位を正確に捉えるために、体の廻旋の影響が少ない腰椎付近に装着した。サンプリング周波数は例えば100Hzである。計測された加速度情報及び脚接地情報は無線通信によりパーソナルコンピュータ10内の歩行運動追跡部4に送信される。歩行運動計測部3は小型軽量でかつ無線通信を使用しているため、歩行場所が限定されず、長距離の連続計測も可能である。 FIG. 2 shows a configuration example of the walking motion measuring unit 3. The foot contact timing detection device 31 uses a foot sensor to detect the timing of ground contact and takeoff during walking. The foot sensor incorporates a tape-shaped pressure sensor. When a certain pressure (for example, 220 g / cm 2 ) is applied to a part of the bottom of the foot, it is grounded, and the timing when the pressure is lowered to the certain pressure is taken off. Detect as. The waist trajectory measuring device 32 measures the spatial displacement of the waist using a three-dimensional acceleration sensor. The waist trajectory measuring device 32 measures the acceleration change of the waist by fixing the three-dimensional acceleration sensor to the waist using a band. In order to accurately capture the displacement of the lumbar region, it was worn near the lumbar vertebra, where there was little influence of body rotation. The sampling frequency is 100 Hz, for example. The measured acceleration information and leg contact information are transmitted to the walking movement tracking unit 4 in the personal computer 10 by wireless communication. Since the walking movement measuring unit 3 is small and light and uses wireless communication, the walking place is not limited, and continuous measurement over a long distance is also possible.
[歩行運動追跡部]
歩行運動追跡部4は歩行運動計測部3で計測された歩行運動から腰軌道を求める。歩行運動計測部3で計測された加速度情報及び脚接地情報を受信して、歩行運動を解析し、腰軌道を求める。加速度情報を二回積分することで、歩行中の腰部の空間的な変位(上下、左右、前後方向)を算出する。
[Walking movement tracking unit]
The walking motion tracking unit 4 obtains the waist trajectory from the walking motion measured by the walking motion measuring unit 3. The acceleration information and the leg contact information measured by the walking motion measuring unit 3 are received, the walking motion is analyzed, and the waist trajectory is obtained. By integrating the acceleration information twice, the spatial displacement (vertical, horizontal, longitudinal) of the waist during walking is calculated.
まず、歩行軌跡算出手法について説明する(特許文献1参照)。腰に取り付けたセンサの空間座標系として左右方向をX(左側を正)、鉛直方向をY、進行方向をZとして3次元方向の加速度をそれぞれ積分し速度、位置情報を求める。しかし、加速度Aから速度Vを求めるにあたり、(式1)のような単純な積分では接地によるオフセット誤差が蓄積してしまう。そこで提案手法として、鉛直、左右方向の歩行運動に関し、両脚の交換による周期的な揺動運動であると仮定し、歩行周期から軌跡の中心となるベースラインを算出、計測値との変位分を積分することで軌跡を求める。 First, a walking trajectory calculation method will be described (see Patent Document 1). As the spatial coordinate system of the sensor attached to the waist, the acceleration in the three-dimensional direction is integrated with X in the left-right direction (positive on the left side), Y in the vertical direction, and Z in the traveling direction to obtain velocity and position information. However, in obtaining the velocity V from the acceleration A, an offset error due to grounding accumulates with a simple integration such as (Equation 1). Therefore, as a proposed method, regarding the walking motion in the vertical and left-right directions, it is assumed that the swing motion is periodic by exchanging both legs, and the baseline that is the center of the trajectory is calculated from the walking cycle, and the displacement from the measured value is calculated. Find the trajectory by integrating.
鉛直方向: 加速度情報を積分するにあたり、誤差を生じさせる要因として重力加速度の影響、脚接地時の衝撃が挙げられ、これは特に鉛直方向の誤差に影響する。しかしここでの歩行運動は水平面上に限定するため、鉛直方向に着目した場合、歩行運動は脚接地における腰の高さが常に等しくなるはずである。そこで(式2)に示すように、ある時点の歩行において前後1秒間という短期的な時間スケールから速度Vyの平均値を求め、歩行運動のゼロ点となるベースラインとして、その平均値からの変位分を速度V’yとして積分することで誤差を排除した位置Yを得る。位置の積分においても同様の計算を行いY’を求める。 Vertical direction: When integrating acceleration information, factors that cause errors include the effect of gravitational acceleration and impact when the legs touch the ground, and this particularly affects the error in the vertical direction. However, since the walking motion here is limited to the horizontal plane, when attention is paid to the vertical direction, the walking motion should always have the same waist height at the leg ground contact. Therefore, as shown in (Equation 2), the average value of the velocity Vy is obtained from a short-term time scale of 1 second before and after walking at a certain time point, and the displacement from the average value is used as a baseline serving as a zero point of walking motion. The position Y from which the error is eliminated is obtained by integrating the minute as the velocity V′y. The same calculation is performed for position integration to obtain Y '.
左右方向: 脚接地時における腰の高さが常に等しい鉛直方向に対し、左右方向に関しては設定したコースに対する歩行軌道の逸脱性が存在する。そのため、左右方向の歩行分析には短期的な一歩ごとの歩行軌跡の変化と、長期的に見たときのコースからの左右方向への逸脱性を別々に分けて評価する必要がある。移動量Xの算出は(式3)のように速度を積分し、速度の算出は(式2)と同様の計算を行う。一歩ごとで中心に揃えた歩行軌跡は、短期的時間スケール(前後1秒間)の平均X1secを用いる(式4)から、コースに対する逸脱性は長期的な時間スケール(前後5秒間)の平均X5secを用いる(式5)から算出する。 Left and right direction: There is a deviation of the walking trajectory with respect to the set course in the left and right direction with respect to the vertical direction where the waist height is always equal when the legs touch the ground. Therefore, it is necessary to separately evaluate the change in walking trajectory for each short-term step and the deviation from the course in the left-right direction when viewed in the long term in the walking analysis in the left-right direction. The movement amount X is calculated by integrating the speed as in (Expression 3), and the speed is calculated in the same manner as in (Expression 2). The walking trajectory centered at each step uses the average X 1 sec of the short-term time scale (1 second before and after) (Equation 4), and the deviation from the course is the average X of the long-term time scale (5 seconds before and after). It is calculated from (Equation 5) using 5 sec .
図3に左右方向の移動量計算結果を示す。縦軸に横方向移動量、横軸に時間を示す。移動の軌跡(実線)と、短期的時間スケール(前後1秒間)の平均X1sec(破線)、長期的な時間スケール(前後5秒間)の平均X5sec(一点鎖線)が示されている。 FIG. 3 shows the calculation result of the movement amount in the left-right direction. The vertical axis indicates the amount of horizontal movement, and the horizontal axis indicates time. Movement locus (solid line), the average X 1 sec short-term time scale (about one second) (dashed line), the average X 5 sec long-term time scale (longitudinal 5 seconds) (dashed line) is shown.
進行方向: 進行方向に関して、まずは鉛直、左右方向同様に、速度Vzの平均を用いてオフセットを除去した速度V’zを求める。しかし鉛直、左右方向とは異なる点として、進行方向は移動距離Zを求めるため、周期的な運動と仮定し等速成分を除去してしまう(式2)の手法では、V’zは歩行中の速度振幅成分のみとなる。そのため次のような歩行速度推定手法を用いる。 Advancing direction: Regarding the advancing direction, first, as in the vertical and left-right directions, the velocity V′z from which the offset is removed is obtained using the average of the velocity Vz. However, as a difference from the vertical and left-right directions, the traveling direction is determined as the movement distance Z. Therefore, in the method of (equation 2) that removes the constant velocity component assuming that the movement is periodic, V′z is during walking. Only the velocity amplitude component of Therefore, the following walking speed estimation method is used.
速度振幅と歩行速度は回帰直線で近似することが可能であるため、(式6)に示すようにV’zの振幅(V’zmax)から定数α倍したものを短時間スケールにおける平均歩行速度として速度振幅成分V’zに加えることで歩行速度V”zを求める。そしてV”zを再び積分することで移動距離Zを得る。振幅と速度の関係は個人によって異なり、αの値は実際の歩行距離と時間から個人ごとに計算し設定する必要がある。 Since the speed amplitude and walking speed can be approximated by a regression line, the average walking speed on a short-time scale is obtained by multiplying the amplitude of V′z (V′zmax) by a constant α as shown in (Equation 6). Is added to the velocity amplitude component V′z to obtain the walking speed V ″ z. The movement distance Z is obtained by integrating V ″ z again. The relationship between amplitude and speed varies from individual to individual, and the value of α needs to be calculated and set for each individual from the actual walking distance and time.
図4は腰軌道データを説明するための図である。図4(a)は縦軸を上下方向、横軸を左右方向の変位として、健常者の前額面を後方から観測した場合の腰軌道を示す。図4(b)には歩行運動における下肢の役割の違いに着目し、1歩行周期を4つの相に分割する方法を示す。また、図4(c)には、歩行運動と腰軌跡の関係を立体的に示す。図4(a)〜(c)中のマーカーは、それぞれ以下の情報に対応している。また、図4(d)に符号の説明を示す。
● 左足接地(Left Initial Contact:LIC)
□ 右足離地(Right Initial Swing:RISw)
■ 右足接地(Right Initial Contact:RIC)
○ 左足離地(Left Initial Swing:LISw)
FIG. 4 is a diagram for explaining waist trajectory data. FIG. 4A shows a waist trajectory when the frontal surface of a healthy person is observed from the rear, with the vertical axis representing the vertical direction and the horizontal axis representing the horizontal displacement. FIG. 4B shows a method of dividing one walking cycle into four phases, focusing on the difference in the role of the lower limbs in walking motion. FIG. 4C shows a three-dimensional relationship between the walking motion and the waist locus. The markers in FIGS. 4A to 4C correspond to the following information, respectively. FIG. 4 (d) shows the reference numerals.
● Left foot contact (LIC)
□ Right Initial Swing (RISw)
■ Right foot contact (RIC)
○ Left foot swing (LISW)
これら4つの接地、離地情報を用いて歩行周期の分割を行う。具体的には、以下の4相である。
相1:LICからRISwまでの荷重応答期(Loading Response:LRL)
相2:RISwからRICまでの左脚単脚支持期(Left Single Limb Support:LSLS)
相2:LSLS時の右脚は遊脚期(Swing:足が地面から離れ、振り出しによって脚を前に運んでいる時期、RSw)
相3:RICからLISwまでの荷重応答期(LRR)
相4:LISwからLICまでの右脚単脚支持期(Right Single Limb Support:RSLS)
相4:RSLS時の左脚は遊脚期(LSw)
The walking cycle is divided using these four ground contact and takeoff information. Specifically, there are the following four phases.
Phase 1: Load Response Period from LIC to RISW (Loading Response : LRL)
Phase 2: Left single leg support period from RISw to RIC (Left Single Limb Support: LSLS)
Phase 2: The right leg at the time of LSLS is the swing phase (Swing: the time when the foot is away from the ground and the leg is carried forward by swinging, RSw)
Phase 3: Load response period (LRR) from RIC to LISW
Phase 4: Right single leg support period from LISW to LIC (Right Single Limb Support: RSLS)
Phase 4: Left leg during RSLS is the swing phase (LSw)
図5に、健常者の腰軌道データの例を示す。図5(a)は縦軸を上下方向の変位とし、その時間変動をプロットしたグラフである。図5(b)は縦軸を左右方向の変位とし、その時間変動をプロットしたグラフである。正は身体の右側方向、負は左側方向への変位である。図5(c)は縦軸を上下方向、横軸を左右方向の変位として、前額面を後方から観測した場合の腰軌道を示している。 FIG. 5 shows an example of waist trajectory data of a healthy person. FIG. 5A is a graph in which the vertical axis is the displacement in the vertical direction and the time variation is plotted. FIG. 5B is a graph in which the vertical axis is the displacement in the left-right direction and the time variation is plotted. Positive is the displacement in the right direction of the body, and negative is the displacement in the left direction. FIG. 5C shows a waist trajectory when the frontal plane is observed from the rear with the vertical axis as the vertical direction and the horizontal axis as the horizontal displacement.
歩行中の健常者の第3腰椎は、1歩行周期中に上下方向に2回、左右方向に1回のサインカーブの軌跡を描いている。また、上下方向では、立脚中期(Mid Stance:MSt、単脚支持期に含まれる、左脚立脚中期をLMSt、右脚立脚中期をRMStとする)で最高点(図5(a)の第1,3,5番目の●)、荷重応答期LR(LRL及びLRR)で最下点(図5(a)の第2,4番目の●)を通る。その変化量は平均4.5cmであると言われている。左右方向では、左右脚それぞれのMStで各方向への最大の移動(図5(b)の第1,3,5番目の●)が生じる。その振幅の平均値も4.5cmであると言われている。また、図5(c)によれば、後方から見た健常者の腰軌道パターンは、左右対称で、V字型又は∞字型を示している。なお、図5(b)の3重の環は、外側から腰周り、体の中軸部、足裏を表わすものである。 The third lumbar vertebra of a healthy person who is walking draws a locus of a sine curve twice in the vertical direction and once in the left-right direction during one walking cycle. Also, in the vertical direction, the highest point (the first stage of FIG. 5 (a)) is the middle point of stance (Mid Stance: MSt, included in the single leg support period, LMSt is the middle stage of the left leg, and RMSt is the middle stage of the right leg). , 3 and 5), and passes through the lowest point (the 2nd and 4th circles in FIG. 5A) in the load response period LR (LRL and LRR). The amount of change is said to be an average of 4.5 cm. In the left-right direction, the maximum movement in each direction (first, third, fifth ● in FIG. 5B) occurs in the MSt of each of the left and right legs. It is said that the average value of the amplitude is 4.5 cm. Moreover, according to FIG.5 (c), the waist track pattern of the healthy person seen from back is bilaterally symmetrical, and has shown V shape or infinity shape. In addition, the triple ring of FIG.5 (b) represents the waist circumference from the outer side, the center axial part of a body, and a sole.
図6に、片麻痺患者の腰軌道データの例を示す。図6(a)は縦軸を上下方向の変位とし、その時間変動をプロットしたグラフである。図6(b)は縦軸を左右方向の変位とし、その時間変動をプロットしたグラフである。正は身体の右側方向、負は左側方向への変位である。図6(c)は縦軸を上下方向、横軸を左右方向の変位として、前額面を後方から観測した場合の腰軌道を示している。片麻痺とは、脳血管障害や筋骨格系の障害等によって左右いずれかの半身に運動障害が現れる場合である。図6(a)〜(c)では、腰の動きに片麻痺による特異性が見られる。例えば歩幅が非対称(健常側支持脚時の歩幅が長く、麻痺側支持脚時の歩幅が短い)になっている。また、LRLとLRRでの上下位置が異なり、このため、上下方向及び左右方向のサインカーブの軌跡が崩れている。また、後方から見た腰軌道パターンは、左右非対称で、楕円型を示している。 FIG. 6 shows an example of waist trajectory data of a hemiplegic patient. FIG. 6A is a graph in which the vertical axis is the displacement in the vertical direction and the time variation is plotted. FIG. 6B is a graph in which the vertical axis is the displacement in the left-right direction and the time variation is plotted. Positive is the displacement in the right direction of the body, and negative is the displacement in the left direction. FIG. 6C shows a waist trajectory when the frontal plane is observed from the rear with the vertical axis as the vertical direction and the horizontal axis as the horizontal direction displacement. Hemiplegia is a case where a movement disorder appears in either the left or right body due to a cerebrovascular disorder or a musculoskeletal disorder. 6 (a) to 6 (c), peculiarities due to hemiplegia are seen in the movement of the waist. For example, the stride is asymmetric (the stride on the healthy support leg is long and the stride on the paralysis support leg is short). In addition, the vertical positions of LRL and LRR are different, so that the locus of the sine curve in the vertical direction and the horizontal direction is broken. Further, the waist trajectory pattern viewed from the rear is asymmetrical and shows an elliptical shape.
表1に被験者の属性を示す。被験者2は、片麻痺患者32名と健常者10名であった。被験者は、BSと関連付けて分類した。BSは、片麻痺の回復過程の臨床的観察を基に、弛緩状態(体を全く動かせない状態)から共同運動(例えば腕だけを動かそうとすると肘も動いてしまい、腕だけを独立に動かせない)が発生し、分離運動(例えば腕だけを独立に動かせる)に至るまでの回復過程をBS.IからBS.VIまでの6段階に順序付けた歩行障害度を示す指標であり、臨床でよく用いられる評価指標の1つである。また、BSは上肢、手指、下肢でそれぞれ別々に評価が行われるが、ここでは、主に下肢BSを指す。BS.Iが最も症状が重く、BS.VIが最も軽いと評価され、共同運動が可能となるBS.III程度から歩行運動が可能であることが多い。被験者はBS.IIIが3名、BS.IVが9名、BS.Vが10名、BS.VIが10名であり、全ての被験者が介助なしで被験者単独の歩行が可能であった。なお、表中の(f)は女性を示す。被験者には事前に歩行実験の概要を説明し、同意を得た上で実験を実施した。被験者には、計測装置を装着した状態で、直線状の30mの歩行路を自由な速度で歩行する課題を課した。ただし、30mの歩行が困難な患者に関しては、距離を20mとして計測を行った。また、歩行の際に杖の使用は制限した。実験において、30mの歩行を2回実施し、1回目の試行をトレーニング試行、2回目の試行を本試行とし、本試行で得られたデータを解析の対象とした。 Table 1 shows the attributes of the subjects. Test subject 2 was 32 hemiplegic patients and 10 healthy subjects. Subjects were classified in association with BS. Based on clinical observations of the hemiplegic recovery process, the BS moves from a relaxed state (a state in which the body cannot be moved at all) to a joint movement (for example, trying to move only the arm moves the elbow and moves the arm independently). The recovery process until the separation movement (for example, only the arm can be moved independently) occurs. I to BS. This is an index indicating the degree of gait disorder ordered in six stages up to VI, and is one of the evaluation indexes often used in clinical practice. In addition, BS is evaluated separately for the upper limbs, fingers, and lower limbs, but here, mainly refers to the lower limb BS. BS. I is the most severe and BS. BS., Which is evaluated as the lightest VI and enables joint exercise. Walking movement is often possible from about III. The subject was BS. III is 3, BS. IV is 9 people, BS. V is 10 people, BS. There were 10 VIs, and all subjects were able to walk alone without assistance. In addition, (f) in a table | surface shows a woman. The subjects were given an outline of the walking experiment in advance, and the experiment was conducted after obtaining consent. The subject was challenged to walk at a free speed on a straight 30 m walkway with the measuring device attached. However, for a patient who is difficult to walk for 30 m, the distance was set to 20 m. In addition, the use of walking sticks was restricted during walking. In the experiment, 30m walk was performed twice, the first trial was the training trial, the second trial was the main trial, and the data obtained in this trial was the subject of analysis.
歩行分析は、歩き始めと歩き終わりの過渡期を除いた定常歩行を対象として行う。歩き始めの3周期と歩き終わりの4周期を過渡期として除外し、解析範囲はLICを基準とした10歩行周期とし、連続した10周期分の歩行周期の変動係数が最小となる範囲を解析対象とした。 The gait analysis is performed on a steady walk excluding the transition period at the beginning and end of walking. 3 cycles at the beginning of walking and 4 cycles at the end of walking are excluded as transition periods, and the analysis range is 10 walking cycles based on LIC, and the range in which the coefficient of variation of walking cycles for 10 consecutive cycles is minimized It was.
図7に、健常者及び片麻痺患者について前額面を後方から観測した場合の腰軌道の例を比較して示す。図7(a)、(b)は健常者の腰軌道パターン、図7(c)〜(h)は片麻痺患者の腰軌道パターンの例を示している。健常者では、(a)のような∞字型やV字型の形状を示すことが多く、上下左右各方向への変位は約2cm〜2.5cmの範囲内に収まると言われている。また、上下左右各方向への変位はほぼ対称となる。健常者のパターンと片麻痺患者のパターンを比較した場合、(h)は比較的健常者のパターンに類似しているが、その他のパターンは明らかに健常者のパターンから逸脱している。これより、この幾何学的特徴としての腰軌道の特異性が、片麻痺歩行の特徴である歩容の非対称性と関連していることが予測される。 FIG. 7 shows a comparison of examples of waist trajectories when the front face is observed from the rear for healthy subjects and hemiplegic patients. FIGS. 7 (a) and 7 (b) show examples of hip trajectory patterns of healthy persons, and FIGS. 7 (c) to 7 (h) show examples of hip trajectory patterns of hemiplegic patients. A healthy person often shows an ∞-shaped or V-shaped shape as shown in (a), and it is said that the displacement in the vertical and horizontal directions falls within a range of about 2 cm to 2.5 cm. Further, the displacement in each of the up, down, left and right directions is substantially symmetrical. When comparing the pattern of a healthy person with the pattern of a hemiplegic patient, (h) is relatively similar to the pattern of a healthy person, but the other patterns clearly deviate from the pattern of the healthy person. From this, it is predicted that the peculiarity of the waist trajectory as a geometric feature is related to the asymmetry of the gait, which is a feature of hemiplegic walking.
[歩行障害特徴抽出部]
歩行障害特徴抽出部5は歩行運動追跡部4で求められた腰軌道から歩行障害特徴量を抽出する。片麻痺歩行の腰軌道パターンから、腰軌道の特異性を定量的に示すための5つの特徴量(上下方向で3つの特徴量、水平方向で2つの特徴量)に注目し、歩行障害特徴量を定義した。次に歩行障害特徴量について説明する。
[Walking disorder feature extraction unit]
The walking obstacle feature extraction unit 5 extracts a walking obstacle feature amount from the waist trajectory obtained by the walking movement tracking unit 4. Pay attention to five feature values (three feature values in the vertical direction and two feature values in the horizontal direction) to quantitatively indicate the peculiarities of the waist trajectory from the hip trajectory pattern of hemiplegic walking. Defined. Next, the walking obstacle feature amount will be described.
[(1)荷重応答期の上下差(LRdif)]
図8は荷重応答期の上下差を説明するための図である。図8(a)に健常者と左片麻痺患者の背側前額面から捉えた腰軌道を、図8(b)、(c)に健常者と左片麻痺患者各々の上下方向の時間変動を、図8(d)に荷重応答期の上下差(LRdif)の定義式、図8(e)に評価方法を示す。ここでは、図8(b)、(c)におけるLRLとLRRの最下点に着目する。LRは歩行運動中に腰が最も低い位置を通る相であり、健常者では図8(b)に示すようにLRLとLRRはほぼ同じ高さを通るため、その差分はほぼ0となる。しかし、左片麻痺患者の場合では、図8(c)に示すようにLRRの方がLRLよりも高い位置を通っており、上下の差分が生じている。これには、片麻痺歩行の特徴である歩幅の非対称性が関連していることが予測される。歩幅が広くなれば、それに伴って重心が通る最下点は低くなり、逆に狭くなれば高くなることは、直感的に理解できる。そのため、片麻痺によって歩幅が非対称になることで、LRRとLRLの高さに差分が生じていると考えられる。このような歩幅の非対称性が生じる要因としては、麻痺側の筋力低下や痙性による支持性の低下あるいはそれを補うための代償運動である膝の過度の伸展が生じることによって、麻痺側支持時に健常側を十分に振り出すことができないためである。また、歩行では重心が落下する力を足関節や膝関節、股関節とそれらに付随する筋肉の連動によって推進力に変換しているため、各部位の協調性の低下も歩幅の非対称性に関連していると考えられる。
[(1) Vertical difference in load response period (LRdif)]
FIG. 8 is a diagram for explaining the vertical difference in the load response period. Fig. 8 (a) shows the waist trajectory captured from the dorsal frontal face of a healthy person and a left hemiplegic patient, and Figs. 8 (b) and 8 (c) show the time fluctuations in the vertical direction of the healthy person and left hemiplegic patient. FIG. 8 (d) shows the definition formula of the vertical difference (LRdif) in the load response period, and FIG. 8 (e) shows the evaluation method. Here, attention is focused on the lowest points of LRL and LRR in FIGS. 8B and 8C. LR is a phase in which the waist passes through the lowest position during walking movement. In a healthy person, as shown in FIG. 8B, LRL and LRR pass through almost the same height, so the difference between them is almost zero. However, in the case of a left hemiplegic patient, as shown in FIG. 8C, the LRR passes through a position higher than the LRL, and a vertical difference is generated. This is predicted to be related to the asymmetry of the stride that is characteristic of hemiplegic walking. It can be intuitively understood that if the stride becomes wider, the lowest point through which the center of gravity passes is lowered, and conversely, if the stride becomes narrower, it becomes higher. Therefore, it is considered that a difference occurs in the heights of LRR and LRL because the stride becomes asymmetric due to hemiplegia. The cause of this asymmetry in stride is that the muscle strength on the paralyzed side, the lowering of supportability due to spasticity, or the excessive extension of the knee, which is a compensatory exercise to compensate for it, occurs normally during support on the paralyzed side. This is because the side cannot be swung out sufficiently. In walking, the force of dropping the center of gravity is converted into propulsive force by interlocking the ankle, knee, and hip joints with the accompanying muscles. It is thought that.
従って、このLRにおける上下差が片麻痺歩行を特徴付ける指標であると捉え、(式7)に示すように荷重応答期の上下差(LRdif)を定義する(図8(d)参照)。
LRdif=min(LRL)−min(LRR)・・・(式7)
なお、(式7)中のmin( )は、LRLまたはLRRにおける最下点(変位量の最小値)を示す。LRdifは値が0に近いほど、正常パターンに近いと評価する。
Therefore, the vertical difference in the LR is regarded as an index characterizing hemiplegic walking, and the vertical difference (LRdif) in the load response period is defined as shown in (Expression 7) (see FIG. 8D).
LRdif = min (LRL) −min (LRR) (Expression 7)
Note that min () in (Expression 7) indicates the lowest point (minimum displacement amount) in LRL or LRR. LRdif is evaluated to be closer to a normal pattern as the value is closer to zero.
[(2)腰の持ち上げ幅の非対称性(VUasym)]
図9は腰の持ち上げ幅の非対称性を説明するための図である。図9(a)に健常者と右片麻痺患者の背側前額面から捉えた腰軌道を、図9(b)、(c)に健常者と右片麻痺患者各々の上下方向の時間変動を、図9(d)に腰の持ち上げ幅の非対称性(VUasym)の定義式、図9(e)に評価方法を示す。ここでは、図9(b)、(c)に上向きの矢印で示した腰の持ち上げ幅に着目する。左脚の持ち上げ幅VULは、LIC後からLMStまでに含まれる最下点(変位量の最小値)から最高点(変位量の最大値)までの幅(差分)、右脚の持ち上げ幅VURは、RIC後からRMStまでに含まれる最下点から最高点までの幅である。図9(b)、(c)では、健常者ではVULとVURはほぼ同じ幅となるが、右片麻痺患者の場合ではVULの方がVURよりも大きくなっており、腰の持ち上げ幅に非対称性が生じている。歩行には、効率的に身体を前進させるために重心の移動を必要最小限に留める仕組みが備わっており、健常者の歩行では、足関節や膝関節、股関節がそれぞれ適切なタイミングで背屈と屈曲を行うことで、最大で9.5cmにもなりうる上下変動を2cm〜2:5cmまで抑えている。しかし、片麻痺歩行では、このような調節機能の低下により、麻痺側での支持期に過剰な上下動を生じることが予測される。また、片麻痺歩行では、麻痺側の足関節が過度の底屈を伴う場合や膝関節を十分に屈曲することができない場合などに、麻痺側を引きずりながら歩行することがある。このような引きずりを回避するために、片麻痺患者は健常側での支持期に過度に腰を持ち上げることがある。これは、踵挙上や骨盤挙上といった片麻痺歩行に見られる代償運動の一種である。図9(c)に示した右片麻痺患者は後者の傾向を示しており、そのため健常側での腰の持ち上げ幅が非常に大きくなっていると考えられる。
[(2) Waist lift width asymmetry (VUAsym)]
FIG. 9 is a diagram for explaining the asymmetry of the lifting width of the waist. Fig. 9 (a) shows the waist trajectory captured from the dorsal frontal face of the healthy subject and the right hemiplegic patient, and Figs. 9 (b) and 9 (c) show the time variations in the vertical direction of the healthy subject and the right hemiplegic patient. FIG. 9D shows the definition of the asymmetry (VUasym) of the waist lifting width, and FIG. 9E shows the evaluation method. Here, attention is paid to the lifting width of the waist indicated by the upward arrows in FIGS. The left leg lift width VUL is the width (difference) from the lowest point (minimum displacement amount) to the highest point (maximum displacement amount) included after LIC to LMSt, and the right leg lift width VUR is , The width from the lowest point to the highest point included from RMS to RMSt. In FIGS. 9B and 9C, VUL and VUR are approximately the same width in healthy subjects, but in the case of a right hemiplegic patient, VUL is larger than VUR and is asymmetric to the waist lifting width. Sex has arisen. Walking is equipped with a mechanism that keeps the movement of the center of gravity to the minimum necessary in order to advance the body efficiently.In normal walking, the ankle joint, knee joint, and hip joint are dorsiflexed at the appropriate timing. By bending, the vertical fluctuation that can be up to 9.5 cm is suppressed to 2 cm to 2: 5 cm. However, in hemiplegic walking, it is predicted that excessive vertical movement will occur during the support period on the paralyzed side due to such a decrease in the adjustment function. In hemiplegic walking, when the ankle joint on the paralyzed side is excessively bent or when the knee joint cannot be bent sufficiently, the user may walk while dragging the paralyzed side. In order to avoid such dragging, hemiplegic patients may lift their hips excessively during the support phase on the healthy side. This is a kind of compensatory movement seen in hemiplegic walking such as lifting and pelvic elevation. The right hemiplegic patient shown in FIG. 9 (c) shows the latter tendency, and it is considered that the hip lifting width on the healthy side is very large.
このような特徴から、腰の持ち上げ幅の非対称性は、片麻痺歩行を評価する上で重要な要因であると捉え、(式8)に示すように腰の持ち上げ幅の非対称性(VUasym)を定義する(図9(d)参照)。
VUasym=(VUL−VUR)/(VUL+VUR)・・・(式8)
VUasymは、値が0に近いほど健常者の歩行パターンに近いことを示す。
From these characteristics, the asymmetry of the hip lifting width is regarded as an important factor in evaluating hemiplegic walking, and the asymmetry (VUasym) of the hip lifting width is expressed as shown in (Equation 8). Define (see FIG. 9D).
VUasym = (VUL−VUR) / (VUL + VUR) (Equation 8)
VUasym indicates that the closer the value is to 0, the closer it is to a healthy person's walking pattern.
[(3)腰の持ち下げ幅の非対称性(VDasym)]
図10は腰の持ち下げ幅の非対称性を説明するための図である。図10(a)に健常者と左片麻痺患者の背側前額面から捉えた腰軌道を、図10(b)、(c)に健常者と左片麻痺患者各々の上下方向の時間変動を、図10(d)に腰の持ち下げ幅の非対称性(VDasym)の定義式、図10(e)に評価方法を示す。ここでは、図10(b)、(c)に下向きの矢印で示した腰の持ち下げ幅に着目する。持ち下げ幅は、左脚の持ち下げ幅VDLは、LMStからLISwまでに含まれる最高点(変位量の最大値)から最下点(変位量の最小値地)までの幅(差分)、右脚の持ち下げ幅VDRは、RMStからRISwまでに含まれる最高点から最下点までの幅である。図10(b)、(c)では、健常者ではVDLとVDRはほぼ同じ幅となるが、左片麻痺患者の場合ではVDRの方がVDLよりも大きくなっており、腰の持ち下げ幅に非対称性が生じている。腰を十分に持ち下げることは、十分な推進力を得るためには不可欠な要因であるが、持ち下げに関しては、とりわけ足関節が担う役割が大きい。足関節の適切な背屈と屈曲は、重心が落下する力を推進力に変換するための起点であり、足関節の運動が十分でない場合は膝関節や股関節の運動がある程度可能であっても、十分な推進力を得ることは困難であると考えられている。また、運動麻痺の回復は手足のような末端に行くほど遅いと言われており、BSによる評価においても足関節の分離運動はBS.VやBS.VIといった麻痺が軽度の場合に発現すると考えられている。このことから、足関節の障害に起因する持ち下げ幅の減少は、概ね片麻痺歩行に共通した要因であると予測される。
[(3) Asymmetry of lowering width of waist (VDasym)]
FIG. 10 is a diagram for explaining the asymmetry of the lowering width of the waist. Fig. 10 (a) shows the waist trajectory captured from the dorsal frontal face of the healthy subject and the left hemiplegic patient, and Figs. 10 (b) and 10 (c) show the time variations in the vertical direction of the healthy subject and the left hemiplegic patient. FIG. 10 (d) shows the definition of the asymmetry (VDasym) of the lowering width of the waist, and FIG. 10 (e) shows the evaluation method. Here, attention is focused on the lowering width of the waist indicated by the downward arrows in FIGS. Lifting width is the left leg lifting width VDL is the width (difference) from the highest point (maximum displacement amount) to the lowest point (minimum displacement amount) included in LMSt to LISw, right The leg lifting width VDR is a width from the highest point to the lowest point included from RMSt to RISw. In FIGS. 10 (b) and 10 (c), VDL and VDR are almost the same width in healthy subjects, but in the case of a left hemiplegic patient, VDR is larger than VDL. Asymmetry has occurred. Sufficiently lowering the waist is an indispensable factor for obtaining sufficient propulsive force, but the role of the ankle joint is particularly important for lifting. Appropriate dorsiflexion and flexion of the ankle joint is the starting point for converting the force of dropping the center of gravity into propulsive force, and even if the movement of the knee joint and hip joint is possible to some extent if the movement of the ankle joint is insufficient It is considered difficult to obtain sufficient driving force. In addition, recovery of motor paralysis is said to be slow as it goes to the end like a limb, and separation of the ankle joint is also BS. V and BS. It is thought to occur when paralysis such as VI is mild. From this, it is predicted that the decrease in the lifting width due to the ankle joint failure is a common factor in hemiplegic walking.
以上の点から、腰を持ち下げる幅の非対称性は、片麻痺歩行を評価する上で重要な要因であると捉え、(式9)に示すように腰の持ち下げ幅の非対称性(VDasym)を定義する(図10(d)参照)。
VDasym=(VDL−VDR)/(VDL+VDR)・・・(式9)
VDasymは、値が0に近いほど健常者の歩行パターンに近いことを示す。
From the above points, the asymmetry of the width to lower the waist is considered to be an important factor in evaluating hemiplegic walking, and as shown in (Equation 9), the asymmetry of the lowering width of the waist (VDasym) Is defined (see FIG. 10D).
VDasym = (VDL−VDR) / (VDL + VDR) (Equation 9)
VDasym indicates that the closer the value is to 0, the closer it is to a healthy person's walking pattern.
[(4)左右振幅の非対称性(Hasym)]
図11は左右振幅の非対称性を説明するための図である。図11(a)に健常者と右片麻痺患者の背側前額面から捉えた腰軌道を、図11(b)、(c)に健常者と右片麻痺患者各々の左右方向の時間変動を、図11(d)に左右振幅の非対称性(Hasym)の定義式、図11(e)に評価方法を示す。ここでは、図11(b)、(c)に矢印で示した左あるいは右方向への振幅に着目する。左方向への振幅HALはLICから左側への最大振幅を指し、右方向への振幅HARは、RICから右側への最大振幅を指す。図11(b)、(c)では、健常者ではHALとHARはほぼ同じ幅となるが、右片麻痺患者の腰軌道パターンにおいてHALとHARが非対称になっているのは、麻痺側の支持性の低下に伴い、バランス支持の割合が健常側に大きく偏ったためであると予測される。従来の歩行リハビリでは、健常側で麻痺側の機能を代償する歩行訓練が主体であったため、このような偏りが生じることは必然的であるとも言える。
[(4) Left-right amplitude asymmetry (Hasym)]
FIG. 11 is a diagram for explaining the left-right amplitude asymmetry. Fig. 11 (a) shows the waist trajectory captured from the dorsal frontal face of a healthy person and a right hemiplegic patient, and Figs. FIG. 11 (d) shows the definition of the left-right amplitude asymmetry (Hasym), and FIG. 11 (e) shows the evaluation method. Here, attention is paid to the amplitude in the left or right direction indicated by the arrows in FIGS. The amplitude HAL in the left direction indicates the maximum amplitude from the LIC to the left side, and the amplitude HAR in the right direction indicates the maximum amplitude from the RIC to the right side. In FIGS. 11 (b) and 11 (c), HAL and HAR are almost the same width in healthy subjects, but the HAL and HAR are asymmetric in the hip trajectory pattern of the right hemiplegic patient. It is predicted that the balance support ratio is largely biased toward the healthy side with the decline in sex. In conventional walking rehabilitation, it was inevitable that such a bias was inevitable, since walking training compensated for the function of the paralyzed side on the healthy side.
このような特徴から、左右振幅の非対称性は片麻痺歩行を評価するうえで重要な要因であると捉え、(式10)に示すように左右振幅の非対称性(Hasym)を定義する(図11(d)参照)。
Hasym=(HAL−HAR)/(HAL+HAR)・・・(式10)
Hasymは、0が最も対称性が高く、値が1に近づくほど対称性が低いことを示している。
From such characteristics, the left-right amplitude asymmetry is regarded as an important factor in evaluating hemiplegic walking, and the left-right amplitude asymmetry (Hasym) is defined as shown in (Equation 10) (FIG. 11). (See (d)).
Hasym = (HAL−HAR) / (HAL + HAR) (Equation 10)
Hasym indicates that 0 is the highest symmetry, and the closer the value is to 1, the lower the symmetry.
[(5)左右方向の振幅(HA)]
図12は左右方向の振幅を説明するための図である。図12(a)に健常者と左片麻痺患者の背側前額面から捉えた腰軌道を示す。麻痺が重くなるにつれて左右の振れ幅が大きくなる傾向を示している。また、図12(b)に左右方向の振幅(HA)の定義式、図12(c)に評価方法を示す。ここでは、図12(a)の歩行中に腰が左右方向にどれぐらい振れるかに着目する。HAは腰が最も左側に寄った位置THLから最も右側に寄った位置THRまでの移動距離として定義する。片麻痺患者では、HAが健常者に比べて有意に大きくなり、また振幅の大きさと歩行速度に相関があるといわれている。
[(5) Left-right amplitude (HA)]
FIG. 12 is a diagram for explaining the amplitude in the left-right direction. FIG. 12 (a) shows a waist trajectory captured from the dorsal frontal face of a healthy person and a left hemiplegic patient. As the paralysis becomes heavier, the left and right swing width tends to increase. FIG. 12B shows a definition formula of the amplitude (HA) in the horizontal direction, and FIG. 12C shows an evaluation method. Here, attention is paid to how much the waist swings in the left-right direction during walking in FIG. HA is defined as the movement distance from the position THL where the waist is closest to the left side to the position THR where the waist is closest to the right side. In hemiplegic patients, HA is significantly higher than that of healthy individuals, and it is said that there is a correlation between amplitude and walking speed.
左右方向の振幅(HA)は、片麻痺歩行を評価する上で重要な要因であると捉え、(式11)に示すように左右方向の振幅(HA)を定義する(図12(b)参照)。
HA=HAL−ALR・・・(式11)
HAの評価基準は、4.5cmを標準値とし、標準値に近いほど正常パターンに近い。
The left-right amplitude (HA) is regarded as an important factor in evaluating hemiplegic walking, and the left-right amplitude (HA) is defined as shown in (Equation 11) (see FIG. 12B). ).
HA = HAL-ALR (Formula 11)
The HA evaluation standard is 4.5 cm as a standard value, and the closer to the standard value, the closer to the normal pattern.
[歩行障害特徴量抽出結果]
BS毎に被験者をグルーピングし、比較を行うに当り、次のように前処理を行なった。麻痺側の違いによる特徴量の符号の影響を取り除くため、前処理として、以下の手順に従って被験者毎に代表値を算出し、以降の解析で用いた。
処理1 解析用の10歩行周期を抽出
処理2 1歩行周期毎に各歩行障害特徴量を1サンプル算出
処理3 得られた10サンプルの中央値を算出
処理4 中央値の絶対値を代表値とする
以上の手順により、特徴量毎に片麻痺患者32名と健常者10名からそれぞれ1サンプルずつ、合計42サンプルを得た。
[Extraction result of gait disturbance features]
In grouping subjects for each BS and performing comparison, pre-processing was performed as follows. In order to remove the influence of the sign of the feature value due to the difference on the paralyzed side, as a preprocessing, a representative value was calculated for each subject according to the following procedure and used in the subsequent analysis.
Process 1 Extract 10 gait cycles for analysis 2 Process 1 feature calculation for each gait feature for each gait cycle 3 Calculate median of 10 samples obtained 4 Process the absolute value of median as a representative value According to the above procedure, a total of 42 samples were obtained, one sample each from 32 hemiplegic patients and 10 healthy individuals for each feature quantity.
図13に各歩行障害特徴量とBSとの関係性を例示する。5つの歩行障害特徴量に関して、それぞれBS.III〜BS.VI、健常者の5グループごとに箱髭図を用いてプロットした。図13(a)にLRdif、(b)にHasym、(c)にVUasym、(d)にVDasym、(e)HAの例を示す。長方形の中央線は中央値、上辺は第3四分位数、下辺は第1四分位数を示しており、上辺と下辺はデータのばらつきに対応している。歩行障害特徴量毎に、グループ間での有意差をクラスカル・ウォリス検定とSteel−Dwassの多重比較を用いて検定した。 FIG. 13 illustrates the relationship between each gait feature amount and the BS. BS. III-BS. VI, plots were made using a box chart for each group of 5 healthy subjects. FIG. 13A shows an example of LRdif, FIG. 13B shows Hasym, FIG. 13C shows VUasym, FIG. 13D shows VDasym, and FIG. The center line of the rectangle indicates the median value, the upper side indicates the third quartile, the lower side indicates the first quartile, and the upper side and the lower side correspond to data variations. For each gait disorder feature, a significant difference between groups was tested using a Kruskal-Wallis test and Steel-Dwass multiple comparison.
LRdifでは、BS.IV−Healthy(健常者)、BS.V−Healthy間で有意差が見られ(p<.05)、BS.III−BS.VI、BS.III−Healthy、BS.V−BS.VI間で有意傾向が見られた(p<.10)。
Hasymでは、BS.IV−Healthy間で有意差が見られ(p<.05)、BS.III−BS.V、BS.III−BS.VI、BS.III−Healthy間で有意傾向が見られた(p<.10)。
VUasymでは、BS.IV−BS.VI(p<.05)、BS.IV−Healthy(p<.01)間で有意差が見られ、BS.III−Healthy、BS.I−VBS.V、BS.V−Healthy間で有意傾向が見られた(p<.10)。
VDasymでは、BS.IV−BS.VI、BS.IV−Healthy(p<.01)、BS.V−BS.VI、BS.V−Healthy(p<.05)で有意差が見られ、BS.III−BS.V、BS.III−BS.VI、BS.III−Healthy間で有意傾向が見られた(p<.10)。
HAでは、BS.V−Healthy、BS.IV−Healtny(p<.05)、BS.IV−BS.VI(p<.01)間で有意差が見られ、BS.III−BS.V、BS.III−BS.VI、BS.III−Healthy間で有意傾向が見られた(p<.10)。
ここに、pは比較している2者間又は多者間に差があることを統計的に示す基準値である。
In LRdif, BS. IV-Healthy (healthy person), BS. A significant difference was found between V-Healty (p <0.05) and BS. III-BS. VI, BS. III-Healthy, BS. V-BS. There was a significant trend between VIs (p <.10).
In Hasym, BS. There is a significant difference between IV and Health (p <0.05), BS. III-BS. V, BS. III-BS. VI, BS. There was a significant trend between III and Health (p <.10.).
In VUasym, BS. IV-BS. VI (p <0.05), BS. There is a significant difference between IV-Healty (p <0.01), and BS. III-Healthy, BS. I-VBS. V, BS. There was a significant trend between V-Healthy (p <.10).
In VDasym, BS. IV-BS. VI, BS. IV-Healthy (p <0.01), BS. V-BS. VI, BS. A significant difference was observed in V-Healthy (p <0.05). III-BS. V, BS. III-BS. VI, BS. There was a significant trend between III and Health (p <.10.).
In HA, BS. V-Healthy, BS. IV-Healty (p <0.05), BS. IV-BS. There is a significant difference between VI (p <.01) and BS. III-BS. V, BS. III-BS. VI, BS. There was a significant trend between III and Health (p <.10.).
Here, p is a reference value that statistically indicates that there is a difference between two or more people being compared.
全ての歩行障害特徴量で共通してみられるのは、麻痺の程度が重いBS.IIIから健常者に向かうにつれて、右肩下がりの傾向を示している点である。このように、各歩行障害特徴量1つだけをBSと対応付けた場合には、BSとの関係性が示唆されるものの、BS間に有意傾向が見られないものも生じている。 A common feature of all gait features is BS with severe paralysis. It is the point which shows the tendency of the lowering of a right shoulder as it goes to a healthy person from III. As described above, when only one gait disturbance feature amount is associated with a BS, a relationship with the BS is suggested, but there is a case where no significant tendency is observed between the BSs.
[歩行障害学習部]
歩行障害学習部7は歩行障害度が判明している被験者2の歩行障害度を歩行障害特徴量と関連付けて学習データとして歩行障害度判定部6に学習させる。
歩行障害学習部7は前述の被験者(片麻痺患者)32名について、歩行障害度BSを歩行障害特徴抽出部5で抽出された5つの歩行障害特徴量と関係付けて学習データとしてデータベースに記憶し、歩行障害度判定部6に学習させた。
[Walking disorder learning part]
The gait obstacle learning unit 7 causes the gait obstacle degree determination unit 6 to learn as learning data by associating the gait obstacle degree of the subject 2 whose gait obstacle degree is known with the gait disorder feature amount.
The gait disorder learning unit 7 stores the gait disorder degree BS in the database as learning data in association with the five gait disorder feature amounts extracted by the gait disorder feature extraction unit 5 for the 32 subjects (hemiplegic patients) described above. The gait disturbance degree determination unit 6 was made to learn.
[歩行障害度判定部]
歩行障害度判定部6は歩行障害特徴抽出部5で抽出された歩行障害特徴量に基づいて、被験者2の歩行障害度を判定する。また、歩行障害度判定部6は歩行障害学習部7の学習データを参照して歩行障害度を判定する。
本実施例では、歩行障害度BSの判定には、サポートベクターマシン(Support Vector Machine:SVM)を複数組み合わせ、多値分類器を構成する手法を採用した。その手法として、One−against−all法やOne−against−one法が一般的であるが、本実施例ではBSの順序性に着目し、二分木を用いて多値分類器を構成する手法を用いた。その利点として、計算コストの削減とそれに伴う学習の効率化が期待される点が挙げられる。ここでは、特徴量を多次元空間において多次元ベクトルで記述し(5つの歩行障害特徴量を5次元ベクトルで表現し)、パターン分類器として複数SVMと二分木を組み合わせて用いる例を説明するが、線形分類器、Quadratic Classifier、k近似法、ブースティング、決定木、ニューラルネットワーク、ベイジアンネットワーク、隠れマルコフモデル等他のパターン分類器を用いても良い。なお、多次元とは2次元以上をいうものとする。
[Walking disorder degree determination unit]
The walking disorder degree determination unit 6 determines the walking disorder degree of the subject 2 based on the walking disorder feature amount extracted by the walking disorder feature extraction unit 5. Further, the walking obstacle degree determination unit 6 determines the walking obstacle degree with reference to the learning data of the walking obstacle learning unit 7.
In the present embodiment, a method of configuring a multi-value classifier by combining a plurality of support vector machines (SVM) is adopted for determining the walking disorder degree BS. As the technique, the One-against-all method and the One-against-one method are common, but in this embodiment, paying attention to the order of BS, a method of constructing a multi-value classifier using a binary tree is used. Using. As an advantage, it is expected to reduce the calculation cost and increase the efficiency of learning. Here, an example will be described in which feature quantities are described as multidimensional vectors in a multidimensional space (five gait disturbance feature quantities are represented as five-dimensional vectors), and a plurality of SVMs and binary trees are used in combination as a pattern classifier. Other pattern classifiers such as a linear classifier, quadratic classifier, k approximation method, boosting, decision tree, neural network, Bayesian network, and hidden Markov model may be used. Multidimensional means two or more dimensions.
図14に、本実施例におけるSVMのアルゴリズムの概要を示す。本手法では、BS.IIIvsOthers、BS.IVvsOthers(BS.IIIを除く)、BS.VvsBS.VI(BS.III、BS.IVを除く)の3つの2値分類器を訓練した。
データベクターxiと対応するラベルyiの順序対を
(x1,y1)・・・(xl,yl)∈RN×{−1,1}
とする。ここで、l(エル)は訓練データのサイズである。識別器は、ある意味で適切な最適化基準に基づいた超平面を決定する。テストフェイズでは、新規のデータベクターのラベルを、
f(x)=ω・x+b・・・(式12)
の符号により決定する。超平面は、マージン最大化基準によって、一意に決められる。また、この最適超平面は、サポートベクターと呼ばれるマージン上のベクトルのみによって記述することができる。この超平面を求める問題は、スラック変数ξiを導入し(ソフトマージン)、以下の最適化問題として定式化できる。
Cの大きさは、拘束条件に反した場合のペナルティの大きさに対応する。この問題を解くのに、ラグランジュ乗数αiを用いて以下の様に書き直すことができる。
FIG. 14 shows an outline of the SVM algorithm in this embodiment. In this method, BS. III vs Others, BS. IV vs Others (excluding BS.III), BS. VvsBS. Three binary classifiers of VI (except BS.III, BS.IV) were trained.
An ordered pair of data vector x i and corresponding label y i
(X 1 , y 1 )... (X 1 , y 1 ) εR N × {−1, 1}
And Here, l is the size of the training data. The discriminator determines a hyperplane based in some sense on an appropriate optimization criterion. In the test phase, a new data vector label
f (x) = ω · x + b (Equation 12)
It is determined by the sign of The hyperplane is uniquely determined by the margin maximization criterion. The optimum hyperplane can be described only by a vector on a margin called a support vector. The problem of obtaining the hyperplane can be formulated as the following optimization problem by introducing a slack variable ξ i (soft margin).
The size of C corresponds to the size of the penalty when the constraint condition is violated. To solve this problem, the Lagrange multiplier α i can be rewritten as follows.
ただし、NSはサポートベクターの数である。(式15)、(式16)より(式17)が導かれる。(式12)のωを(式17)で置き換えると、
ここで、内積x・xiを対称なカーネル関数K(x,xi)と置き換える。この置き換えは、データ空間から特徴空間への暗黙的な変換をすることに等しい。その結果、以下のような非線形識別関数が構成される。
本実施例では、カーネル関数としてガウシアンカーネルを用いた。
Here, NS is the number of support vectors. (Expression 17) is derived from (Expression 15) and (Expression 16). When ω in (Expression 12) is replaced with (Expression 17),
Here, replacing the inner product x · x i symmetric kernel function K (x, x i) and. This replacement is equivalent to an implicit conversion from data space to feature space. As a result, the following nonlinear discriminant function is constructed.
In this embodiment, a Gaussian kernel is used as the kernel function.
データセットとして、片麻痺患者32名の歩行データから5つの特徴量を次元とする特徴ベクトルを被験者毎に10サンプル抽出し、全320サンプルをSVMの訓練と評価に用いた。また、前処理として各特徴量を[0〜1]に正規化した。学習パラメータCとガウシアンカーネルのパラメータσの値は適切な値を選択する必要がある。最適パラメータは、10−foldクロスバリデーションを用いて、システマティックに決定した。 As a data set, 10 samples of feature vectors having five feature values as dimensions were extracted from walking data of 32 hemiplegic patients, and all 320 samples were used for training and evaluation of SVM. Moreover, each feature-value was normalized to [0-1] as preprocessing. It is necessary to select appropriate values for the learning parameter C and the Gaussian kernel parameter σ. Optimal parameters were determined systematically using 10-fold cross validation.
表2に歩行障害度判定部6によるBS判定の結果を示す。片麻痺患者32名の歩行データから得られる320サンプルを用いて、10−foldクロスバリデーションによる予測誤差推定を行った。データセットを2つに分割し、一方で訓練を行い、もう一方でテストを行った結果の一例を示す。その結果、予測誤差は11.37%であり、約88%の精度でBSを推定出来ていることが確認された。BS.Vの正解率が83.7%と若干低い結果となったが、その他のグループでは正解率は85%を超え、全体でも88:96%という良好な分類が実現できている。以上の結果は、腰軌道から得られる歩行障害特徴量が片麻痺歩行を定量的に評価する上で有効であることを示すと共に、臨床で運動麻痺の評価指標としてよく用いられているBSと同程度の評価能力を備えていることを示すものである。 Table 2 shows the result of BS determination by the walking disorder degree determination unit 6. Prediction error estimation by 10-fold cross validation was performed using 320 samples obtained from walking data of 32 hemiplegic patients. An example of the results of splitting the data set in two, training on one hand and testing on the other is shown. As a result, the prediction error was 11.37%, and it was confirmed that the BS could be estimated with an accuracy of about 88%. BS. The correct answer rate of V was 83.7%, which was slightly low, but the correct answer rate exceeded 85% in the other groups, and a good classification of 88: 96% was achieved as a whole. The above results indicate that the gait disturbance features obtained from the waist trajectory are effective in quantitatively evaluating hemiplegic walking, and are the same as BS that is often used as an evaluation index for motor paralysis in clinical practice. It shows that it has a degree of evaluation ability.
図15に本実施の形態による歩行障害自動分析の処理フロー例を示す。まず、歩行運動計測部3にて、被験者2の歩行運動を計測する(歩行運動計測工程:S001)。次に、歩行運動追跡部4にて、歩行運動計測工程(S001)で計測された歩行運動から腰軌道を求める(歩行運動追跡工程:S002)。次に、歩行障害特徴抽出部5にて、歩行運動追跡工程4(S001)で求められた腰軌道から歩行障害に係る特徴量としての歩行障害特徴量を抽出する(歩行障害特徴抽出工程:S003)。他方、歩行障害学習部7にて、歩行障害度が判明している被験者2の歩行障害度を歩行障害特徴量と関連付けて学習データとして歩行障害度判定部6に学習させる(歩行障害学習工程:S004)。そして、歩行障害度判定部6にて、歩行障害特徴抽出部5で抽出された歩行障害特徴量に基づいて、かつ学習データを参照して、被験者2の歩行障害度を判定する(歩行障害判定工程:S005)。 FIG. 15 shows an example of a processing flow of walking obstacle automatic analysis according to this embodiment. First, the walking motion measurement unit 3 measures the walking motion of the subject 2 (walking motion measurement step: S001). Next, the walking motion tracking unit 4 obtains a waist trajectory from the walking motion measured in the walking motion measurement step (S001) (walking motion tracking step: S002). Next, the gait disorder feature extraction unit 5 extracts the gait disorder feature quantity as the feature quantity related to the gait disorder from the waist trajectory obtained in the walking movement tracking process 4 (S001) (gait disorder feature extraction process: S003). ). On the other hand, the gait obstacle learning unit 7 causes the gait obstacle degree determination unit 6 to learn the gait disorder degree of the subject 2 whose gait obstacle degree is known as the learning data in association with the gait disorder feature amount (gait disorder learning step: S004). Then, the walking disorder degree determination unit 6 determines the walking disorder degree of the subject 2 based on the walking disorder feature amount extracted by the walking disorder feature extraction unit 5 and with reference to the learning data (walking disorder determination). Step: S005).
以上説明したように、本実施例に係る歩行障害自動分析システムによれば、簡便に計測を行え、臨床現場で定量的に歩行障害度を評価することができる。 As described above, according to the gait disorder automatic analysis system according to the present embodiment, it is possible to easily perform measurement and quantitatively evaluate the degree of gait disorder at the clinical site.
実施例2では、歩行障害度判定部6は、腰軌道から5つの歩行障害特徴量を抽出し、主成分分析を用いて被験者2の歩行障害度を判定する例について説明する。実施例1との差異点を主として説明し、重複した説明を省略する。
実施例2における、歩行障害自動分析システム1A(図示しない)の構成は実施例1と同様に図1で示される。ただし、歩行障害度判定部6は、実施例1のサポートベクターマシーンによる分析に代えて主成分分析を行なう点が相違する。また、歩行障害自動分析の処理フロー例も実施例1と同様に図15で示される。ただし、歩行障害判定工程(S005)では、実施例1のサポートベクターマシーンによる分析に代えて主成分分析を行なう点が相違する。
In the second embodiment, an example will be described in which the walking disorder degree determination unit 6 extracts five walking disorder feature quantities from the waist trajectory and determines the walking disorder degree of the subject 2 using principal component analysis. Differences from the first embodiment will be mainly described, and redundant description will be omitted.
The configuration of the gait disturbance automatic analysis system 1A (not shown) in the second embodiment is shown in FIG. However, the walking obstacle degree determination unit 6 is different in that the principal component analysis is performed instead of the analysis by the support vector machine of the first embodiment. Further, a processing flow example of the gait disturbance automatic analysis is also shown in FIG. However, the walking obstacle determination step (S005) is different in that principal component analysis is performed instead of analysis by the support vector machine of the first embodiment.
BSは運動麻痺の回復過程の規則性に着目し、その最も基本的な分類を提案した点において非常に高い評価を受けているが、一方では、その分類が観察による定性的なものであるため、患者の回復過程を評価するための分解能が低いことが問題視されている。また、BSに変化が認められなかった場合においても、患側の筋力や歩行能力の改善が見られることが報告されている。したがって、BSの離散的な分類の枠組みを超え、日々連続的に変化する患者の状態をより詳細に評価できる指標が望まれている。そこで、本実施例では、実施例1で歩行障害の評価指標としての有効性が示された5つの歩行障害特徴量を用いて、実施例1での実験期間内にBSに変化が見られなかった片麻痺患者に対して一定期間の継続した歩行計測を実施し、患者の歩行機能の経時変化を定量的に捉えることを試みた。 BS focuses on the regularity of the recovery process of motor paralysis, and has received very high evaluation in terms of proposing its most basic classification, but on the other hand, because the classification is qualitative by observation The low resolution for evaluating the patient's recovery process is regarded as a problem. Moreover, it has been reported that even when no change is observed in the BS, the muscle strength and walking ability on the affected side are improved. Therefore, there is a demand for an index that can exceed the discrete classification framework of the BS and can evaluate the patient condition that changes continuously every day in more detail. Therefore, in this example, no change was observed in the BS during the experiment period in Example 1 using the five gait disorder features that were shown to be effective as evaluation indices for gait impairment in Example 1. We performed continuous gait measurement for a certain hemiplegic patient for a certain period and tried to quantitatively grasp the temporal change of the gait function of the patient.
表3に被験者2の属性を示す。被験者2として、実施例1の片麻痺患者の内、入院中であり、かつ理学療法士の所見により、リハビリ介入による歩行機能の回復が期待される患者を対象とした。参加した被験者は7名であり、全ての被験者が介助なしでの歩行が可能であったが、被験者の安全を確保するため、理学療法士の立ち会いの下で計測を実施した。また、全ての被験者が、理学療法士の所見ではBSに変化が見られなかった者である。被験者には事前に実験の概要を説明し、同意を得た上で実験を実施した。 Table 3 shows the attributes of the subject 2. The subject 2 was a hemiplegic patient of Example 1 who was hospitalized and expected to recover walking function by rehabilitation intervention based on the findings of a physical therapist. Seven subjects participated, and all subjects were able to walk without assistance, but in order to ensure the safety of the subjects, measurements were performed in the presence of a physical therapist. In addition, all subjects were those who had no change in BS according to the findings of the physical therapist. The subject was given an outline of the experiment in advance and the experiment was conducted after obtaining consent.
図16に歩行障害特徴量毎の経時変化を例示する。被験者B(BS.III)の結果を示す。図16(a)にLRdif、(b)にHasym、(c)にVUasym、(d)にVDasym、(e)HAの例を示す。各特徴量の変化の優位性は、フリードマン検定とScheffeの対比較を用いて検定した。その結果、全ての歩行障害特徴量において有意な変化が見られた(P<.01)。しかしながら、変化の傾向は一様ではない。なお、理学療法士の所見によれば、実験期間内にBSの変化は生じなかったが、歩行の変化は明らかであった。また、サポートベクターマシーンによる分析の結果からは、BSの変化は認められなかった。 FIG. 16 exemplifies a change with time for each walking disorder feature amount. The result of subject B (BS.III) is shown. FIG. 16A shows an example of LRdif, FIG. 16B shows Hasym, FIG. 16C shows VUasym, FIG. 16D shows VDasym, and FIG. 16E shows an example of HA. The superiority of the change in each feature amount was tested using Friedman's test and Scheffe's paired comparison. As a result, a significant change was observed in all gait disturbance features (P <.01). However, the trend of change is not uniform. According to the findings of the physical therapist, no change in BS occurred during the experimental period, but the change in walking was clear. Moreover, the change of BS was not recognized from the result of the analysis by the support vector machine.
本実施例では主成分分析を用いて5つの歩行障害特徴量を主成分へと縮約し、歩行の変化を定量的に評価する指標として用いることとした。主成分分析は多数の変数が持つ情報を縮約し、少数の情報で全体像を把握するために用いられる手法として有効であり、臨床研究においても、多変数を統合的に評価するための手法として用いられている。
実施例1で用いた320サンプルに、新たに参加した7名の被験者の計測日毎のデータから10サンプルずつを新たに抽出し計470サンプルとし、さらに、実施例1での健常者10名から抽出した100サンプルを加えた計570サンプルに対して主成分分析を行い、主成分の抽出を試みた。なお、前処理として特徴量毎に平均0、標準偏差が1となる
ように標準化した。
In this embodiment, the principal component analysis is used to reduce the five gait disturbance feature amounts to the principal components and use them as an index for quantitatively evaluating walking changes. Principal component analysis is effective as a method used to reduce the information held by a large number of variables and grasp the whole picture with a small number of information. In clinical research, it is a method for evaluating multiple variables in an integrated manner. It is used as.
Ten samples were newly extracted from the data for each measurement date of the seven subjects who newly participated in the 320 samples used in Example 1 to obtain a total of 470 samples, and further extracted from the 10 healthy subjects in Example 1 The principal component analysis was performed on a total of 570 samples including the 100 samples, and extraction of the principal components was attempted. Note that, as preprocessing, standardization was performed so that an average of 0 and a standard deviation of 1 were obtained for each feature amount.
表4に、主成分分析の結果得られた各主成分の固有値、寄与率及び累積寄与率を示す。慣例では、固有値が1以上の主成分を意味のある主成分とし、表4で固有値が1以上の主成分は第1主成分のみなので、以下では第1主成分に着目する。第1主成分の各歩行障害特徴量に対する因子負荷量は、LRdifが0.852、Hasymが0.532、VUasymが0.762、VDasymが0.891、HAが0.855であり、Hasymとの相関が低いものの、その他の特徴量との相関は強いため、第1主成分を5つの特徴量をある程度統合的に評価できる尺度として用いることができる。 Table 4 shows the eigenvalue, contribution rate, and cumulative contribution rate of each principal component obtained as a result of the principal component analysis. Conventionally, a principal component having an eigenvalue of 1 or more is a meaningful principal component, and the principal component having an eigenvalue of 1 or more in Table 4 is only the first principal component. The factor loadings for each gait feature amount of the first principal component are: LRdif is 0.852, Hasym is 0.532, VUasym is 0.762, VDasym is 0.891, HA is 0.855, and Hasym However, since the correlation with other feature quantities is strong, the first principal component can be used as a scale that can evaluate the five feature quantities in an integrated manner to some extent.
図17は、第1主成分とBSとの関係性を例示する図である。被験者毎に第1主成分の代表値として中央値を算出し、それぞれBS.III〜BS.VI、健常者の5グループごとに箱髭図をプロットしたものである。BS.III〜BS.VIと健常者のカテゴリーは運動麻痺の程度という尺度から見れば、順序尺度と見なすことができるため、BS.IIIに1、BS.IVに2、BS.Vに3、BS.VIに4、健常者に5をそれぞれ割り当て、第1主成分との相関の有無をスピアマンの順位相関係数を用いて検定した。その結果、BS.IV−BS.VI、BS.IV−Healthy、BS.V−Healthyで有意な相関が見られ(p<.01)、BS.III−BS.V、BS.III−BS.VI、BS.III−Healthy間で有意傾向が見られた(p<.10)。相関係数も−0.888と強い負の相関が見られた。そのため、第1主成分は被験者の変化を統合的に捉える上で有効であると判断できる。 FIG. 17 is a diagram illustrating the relationship between the first principal component and the BS. The median value is calculated as the representative value of the first principal component for each subject, and the BS. III-BS. VI, a box plot for every 5 groups of healthy subjects. BS. III-BS. Since the categories of VI and healthy subjects can be regarded as ordinal scales from the scale of the degree of motor paralysis, BS. III to 1, BS. IV to 2, BS. V to 3, BS. 4 was assigned to VI and 5 were assigned to healthy subjects, and the presence or absence of correlation with the first principal component was tested using Spearman's rank correlation coefficient. As a result, BS. IV-BS. VI, BS. IV-Healthy, BS. A significant correlation was observed with V-Healty (p <0.01), and BS. III-BS. V, BS. III-BS. VI, BS. There was a significant trend between III and Health (p <.10.). The correlation coefficient was -0.888, indicating a strong negative correlation. Therefore, it can be judged that the first principal component is effective in capturing the subject's changes in an integrated manner.
図18は、被験者毎に第1主成分の経時変化をプロットした図である。各点は、計測日毎に得られる10サンプルの第1主成分から抽出した中央値を示している。健常者では、第1主成分がおおむね−2の近傍に分布していることから、評価方法として、−2への接近を改善、−2からの離反を悪化として定義した。
図18より、前記の実験期間中にBSに変化が見られなかった被験者においても、第1主成分ではその変化の傾向を定量的に観察することが可能である。被験者A、C、Dは一旦悪化の方向に変化した後、改善の方向にシフトするという点においては共通であり、被験者F、Gにおいても2回の計測期間の間に改善の方向に変化していることが分かる。被験者Eではあまり顕著な変化が見られなかったが、被験者Bでは悪化と改善を繰り返すという他の患者とは異なる変化の傾向が見られた。このように、BSが同一の場合でも、患者の歩行機能の経時変化を定量的に捉えることができたのは、腰軌道の解析が、計測箇所である腰椎付近が身体重心に近く、それほど誤差が含まれていないと予測される点が挙げられる。身体重心は両方の股関節の中央に位置しており、歩行運動の目的は身体重心を効率よく運搬することにあり、下肢はこの目的を遂行するために、各関節や筋肉の複雑かつ繊細な制御を必要とする。身体重心と下肢が密接に関わり合っていることから、身体重心の動きの解析に相当する腰軌道の解析が、結果として下肢の障害評価に有効であった。
FIG. 18 is a diagram in which changes with time of the first main component are plotted for each subject. Each point shows the median value extracted from the 10 primary sample principal components obtained for each measurement date. In healthy persons, the first principal component is distributed almost in the vicinity of -2, and therefore, as an evaluation method, the approach to -2 was improved, and the separation from -2 was defined as deterioration.
From FIG. 18, it is possible to quantitatively observe the tendency of the change in the first principal component even in the test subject whose BS did not change during the experimental period. Subjects A, C, and D are common in that they change once in the direction of deterioration and then shift in the direction of improvement, and subjects F and G also change in the direction of improvement during the two measurement periods. I understand that Subject E showed little noticeable change, but Subject B showed a trend of change that was different from other patients, with repeated deterioration and improvement. In this way, even when the BS was the same, the temporal change in the walking function of the patient could be quantitatively analyzed because the analysis of the waist trajectory was close to the center of gravity of the body near the lumbar spine, which was the measurement location. The point that is predicted not to be included. The body's center of gravity is located in the center of both hip joints, and the purpose of walking is to efficiently carry the body's center of gravity, and the lower limbs perform complex and delicate control of each joint and muscle to accomplish this purpose. Need. Since the center of gravity of the body and the lower limb are closely related, the analysis of the waist trajectory, which is equivalent to the analysis of the movement of the body centroid, was effective in evaluating the lower limb disorders.
このように、BSが同一の場合でも、腰軌道から適切な複数の歩行障害特徴量を抽出し、主成分分析によって縮約することにより、BSが評価対象としてきた歩行障害度を定量的に評価できることが示されると共に、日々連続的に変化する患者の歩行機能の経時変化を定量的に評価できることが見出された。
また、本実施例に係る歩行障害自動分析システムによれば、簡便に計測を行え、臨床現場で定量的に歩行障害度を評価することができる。
In this way, even when the BS is the same, a plurality of appropriate gait disorder features are extracted from the waist trajectory and contracted by principal component analysis to quantitatively evaluate the degree of gait disturbance that the BS has evaluated. It has been shown that this can be done, and it has been found that it is possible to quantitatively evaluate the temporal changes in the gait function of patients who change continuously every day.
Moreover, according to the walking disorder automatic analysis system which concerns on a present Example, it can measure simply and can evaluate a walking disorder degree quantitatively in a clinical field.
実施例1及び実施例2では、腰軌道から幾何学的な歩行障害特徴量を抽出して、歩行障害度判定を行なう例を説明したが、実施例3では、腰軌道から時間的な歩行障害特徴量を抽出して、歩行障害度判定を行なう例を説明する。
実施例1及び実施例2では、歩行障害自動分析システムを片麻痺による歩行障害に適用する例を説明したが、実施例3ではパーキンソン病による歩行障害に適用する例を説明する。パーキンソン病とは、大脳基底核系の障害であり、歩行運動のリズム生成に問題を生じている。特に、歩き始めの「すくみ足」や、一旦歩き始めると止まれなくなる「加速歩行」などが歩行介助の観点からは重要である。
In the first and second embodiments, the example in which the geometric walking obstacle feature amount is extracted from the waist trajectory and the walking obstacle degree is determined has been described. In the third embodiment, the temporal walking obstacle from the waist trajectory is described. An example will be described in which a feature amount is extracted and a walking obstacle degree is determined.
In Example 1 and Example 2, although the example which applies a gait disorder automatic analysis system to the gait disorder by hemiplegia was demonstrated, Example 3 demonstrates the example applied to the gait disorder by Parkinson's disease. Parkinson's disease is a disorder of the basal ganglia system, causing problems in the rhythm generation of walking movements. In particular, from the viewpoint of walking assistance, “smooth legs” at the beginning of walking and “accelerated walking” that cannot be stopped once walking starts.
実施例3における、歩行障害自動分析システム1B(図示しない)の構成は実施例1と同様に図1で示される。ただし、歩行障害特徴抽出部5は、歩行障害特徴量として実施例1での腰軌道から幾何学的な特徴である5つの特徴量を抽出するのに代えて、時間的な特徴である歩行周期勾配を抽出する点が相違する。また、歩行障害自動分析の処理フロー例も実施例1と同様に図15で示される。ただし、歩行障害特徴抽出工程(S003)では、実施例1での腰軌道から幾何学的な特徴である5つの特徴量を抽出するのに代えて、時間的な特徴である歩行周期勾配等を抽出する点が相違する。 The configuration of the gait disorder automatic analysis system 1B (not shown) in the third embodiment is shown in FIG. However, the gait disturbance feature extraction unit 5 instead of extracting the five feature quantities that are geometric features from the waist trajectory in the first embodiment as the gait disturbance feature quantities, instead of extracting five feature quantities that are temporal features. The difference is that the gradient is extracted. Further, a processing flow example of the gait disturbance automatic analysis is also shown in FIG. However, in the gait obstacle feature extraction step (S003), instead of extracting the five feature quantities that are geometric features from the waist trajectory in the first embodiment, a gait period gradient that is a temporal feature is used. The point of extraction is different.
発明者達は、歩行リズムの相互同調に基づいて歩行運動を安定化させる、歩行介助システムWalk−Mateをパーキンソン病患者に適用した(特許文献1参照)。このWalk−Mateは、PC上に構成した仮想ロボットと人間の歩行リズムが、足接地タイミングに対応するリズム音を交換することで相互に引き込み、歩行リズムの相互同調と運動の動的安定化を実現するシステムである。人間の歩行リズムと介助システムの歩行リズムの間での相互適応過程によって、両者の歩行リズムの位相関係を制御できる。脚接地よりも先行する位相で音刺激が加えられることで歩行運動が促進され、その逆の位相で音刺激が加えられることで歩行運動が抑制されると考えられる。これによって、すくみ足状態への運動促進や加速歩行状態への運動抑制が可能になる。 The inventors applied a walking assistance system Walk-Mate, which stabilizes walking movement based on mutual synchronization of walking rhythms, to Parkinson's disease patients (see Patent Document 1). This Walk-Mate is a virtual robot configured on a PC and a human walking rhythm that draws each other by exchanging the rhythm sound corresponding to the foot contact timing, and the mutual synchronization of the walking rhythm and dynamic stabilization of the movement It is a system to realize. The phase relationship between the two walking rhythms can be controlled by the mutual adaptation process between the walking rhythm of the human and the walking rhythm of the assistance system. It is considered that the walking motion is promoted by applying a sound stimulus at a phase preceding the leg contact, and the walking motion is suppressed by applying a sound stimulus at the opposite phase. As a result, it is possible to promote the movement to the slack leg state and to suppress the movement to the accelerated walking state.
図19に歩行介助システムによる加速歩行の緩和効果の例を示す。縦軸に歩行周期を、横軸に時間を示す。歩行制御に用いたアルゴリズムは同調時のタイミングのズレを制御するアルゴリズムであり、介助装置側のリズムが患者側よりも少し遅れて同調するように制御した。歩行介助システムの使用前には、歩行周期の揺らぎが大きいと共に、歩行周期が徐々に減少する加速歩行が見られ、介助システムとの協調歩行を開始した時刻(図中使用開始矢印で示す)から1分程度でほぼ一定の周期に安定化すると共に、揺らぎも小さくなることが見られる。なお、別の測定では、歩行介助システムの使用を止めても安定した状態がしばらく持続するが確認されている。このことは、本歩行介助システムの使用がパーキンソン病の加速歩行の防止に有効であることを示している。 FIG. 19 shows an example of the relaxation effect of accelerated walking by the walking assistance system. The vertical axis represents the walking cycle, and the horizontal axis represents time. The algorithm used for the gait control is an algorithm for controlling the timing shift at the time of synchronization, and the control device is controlled so that the rhythm on the assisting device side is synchronized slightly later than the patient side. Before the use of the walking assistance system, there is an accelerated walking in which the walking cycle fluctuates and the walking cycle gradually decreases. From the time when the cooperative walking with the assistance system is started (indicated by the use start arrow in the figure) It can be seen that the fluctuation stabilizes in about one minute and the fluctuation becomes small. In another measurement, it has been confirmed that a stable state continues for a while even if the use of the walking assistance system is stopped. This indicates that the use of this walking assistance system is effective in preventing accelerated walking in Parkinson's disease.
このことはまた、パーキンソン病の特徴的な歩行障害特徴量として加速歩行に係る特徴量を抽出できることを意味している。さらに加速歩行を歩行周期の減少プロセスと捉え、その時間変化の勾配を算出し、歩行周期勾配を歩行障害特徴量として抽出できる。また、周期ゆらぎや腰軌道の左右非対称性等を歩行障害特徴量として抽出できる。それ故、腰軌道から時間的な特徴である歩行周期勾配や周期ゆらぎを歩行障害特徴量として抽出し、歩行障害度として用いられているヤールの指標と対応付けて学習データとし、かかる学習データを用いて歩行障害度判定を行なうことができる。歩行障害度の判定には、実施例1又は実施例2と同様にサポートベクターマシーンを用いても良く、主成分分析を用いても良い。又はサポートベクターマシーン以外のパターン分類器を用いても良い。 This also means that a feature amount related to accelerated walking can be extracted as a characteristic gait disorder feature amount of Parkinson's disease. Furthermore, acceleration walking can be regarded as a process of decreasing the walking cycle, the gradient of the time change can be calculated, and the walking cycle gradient can be extracted as a walking disorder feature quantity. In addition, periodic fluctuations, left-right asymmetry of the waist trajectory, and the like can be extracted as gait disturbance feature values. Therefore, walking period gradients and fluctuations that are temporal features from the waist trajectory are extracted as gait disturbance feature values, and are associated with Yar's indices used as the degree of gait disturbance, as learning data. It can be used to determine the degree of gait disturbance. For the determination of the degree of gait disturbance, a support vector machine may be used as in the first embodiment or the second embodiment, and principal component analysis may be used. Alternatively, a pattern classifier other than the support vector machine may be used.
このように構成すると、腰軌道の幾何学的特徴だけでなく、時間的特徴についても歩行障害特徴量を抽出して、簡便に計測を行え、臨床現場で定量的に歩行障害度を評価することができる。 When configured in this way, it is possible to extract gait disturbance features not only for the geometric characteristics of the waist trajectory but also for the temporal characteristics, make it easy to measure, and quantitatively evaluate the degree of gait disturbance in the clinical setting. Can do.
以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、実施の形態に種々変更を加えられることは明白である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it is obvious that various modifications can be made to the embodiments.
例えば、以上の実施の形態では、本発明を片麻痺及びパーキンソン病に適用する例について説明したが、変形性膝関節症、リューマチ、脚部骨折等その他の疾患に係る歩行障害にも適用可能性がある。また、以上の実施の形態では、運動センサーとして3次元加速度センサーを用いる例を説明したが、GPSを利用した位置センサーを用いても良い。また、以上の実施の形態では、歩行運動追跡部をパーソナルコンピュータ内に設ける構成を説明したが、歩行運動追跡部を運動センサー側に取り付けたマイクロコンピュータで腰軌道を求め、パーソナルコンピュータに無線送信する構成としても良い。また、以上の実施の形態では、歩行障害特徴量として腰軌道から抽出した上下方向、水平方向の幾何学的特徴量、時間的特徴量を抽出する例を説明したが、例えば進行方向に係る幾何学的特徴量である左右歩幅の差等を抽出しても良い。また、抽出される歩行障害特徴量の数は5つ又は1つに限られず、歩行障害度との相関度に応じて変更可能である。また、歩行障害学習部は、学習データを一括して歩行障害度判定部に学習させる例を説明したが、新たに理学療法士による歩行障害度の認定がされれば、歩行障害特徴量を新たに抽出して学習データに追加可能である。また、以上の実施の形態では、歩行障害度判定にサポートベクターマシーンや主成分分析を用いる例を説明したが、線形分類器等のパターン分類器を用いても良い。その他、データ取得のサンプリング周期数、データ取得の周期数、学習データ数、カーネル等を種々変更可能である。 For example, in the above embodiment, the example in which the present invention is applied to hemiplegia and Parkinson's disease has been described. However, the present invention is also applicable to gait disorders related to other diseases such as knee osteoarthritis, rheumatism, and leg fracture. There is. Moreover, although the above embodiment demonstrated the example which uses a three-dimensional acceleration sensor as a motion sensor, you may use the position sensor using GPS. In the above embodiment, the configuration in which the walking motion tracking unit is provided in the personal computer has been described. However, the waist trajectory is obtained by a microcomputer in which the walking motion tracking unit is attached to the motion sensor, and wirelessly transmitted to the personal computer. It is good also as a structure. Further, in the above embodiment, the example of extracting the vertical and horizontal geometric feature values and temporal feature values extracted from the waist trajectory as walking obstacle feature values has been described. A difference between left and right stride that is a scientific feature amount may be extracted. Also, the number of extracted walking obstacle feature quantities is not limited to five or one, and can be changed according to the degree of correlation with the degree of walking obstacles. In addition, the walking disorder learning unit explained an example in which the learning data is collectively learned by the walking disorder degree determination unit. However, if the physical therapist newly recognizes the walking disorder degree, the walking disorder feature amount is newly added. Can be extracted and added to the learning data. Moreover, although the above embodiment demonstrated the example which uses a support vector machine and a principal component analysis for a walking disorder degree determination, you may use pattern classifiers, such as a linear classifier. In addition, the number of sampling cycles for data acquisition, the number of data acquisition cycles, the number of learning data, the kernel, and the like can be variously changed.
本発明は、歩行障害度の分析に利用される。 The present invention is used for analyzing the degree of gait disturbance.
1 歩行障害自動分析システム
2 被験者
3 歩行運動計測部
4 歩行運動追跡部
5 歩行障害特徴抽出部
6 歩行障害度判定部
7 歩行障害学習部
8 制御部
10 パーソナルコンピュータ
31 腰軌道計測装置
32 足接地タイミング検出装置
DESCRIPTION OF SYMBOLS 1 Walking obstacle automatic analysis system 2 Test subject 3 Walking movement measurement part 4 Walking movement tracking part 5 Walking obstacle feature extraction part 6 Walking obstacle degree determination part 7 Walking obstacle learning part 8 Control part 10 Personal computer 31 Lumbar trajectory measuring device 32 Foot contact timing Detection device
Claims (6)
前記歩行運動計測部で計測された歩行運動から腰軌道を求める歩行運動追跡部と;
前記歩行運動追跡部で得られた腰軌道から歩行障害に係る特徴量としての歩行障害特徴量を抽出する歩行障害特徴抽出部と;
前記歩行障害特徴抽出部で抽出された歩行障害特徴量に基づいて、前記被験者の歩行障害度を判定する歩行障害度判定部と;
歩行障害度が判明している被験者の歩行障害度を前記歩行障害特徴量と関連付けて学習データとして前記歩行障害度判定部に学習させる歩行障害学習部とを備え;
前記歩行障害度判定部は、前記学習データを参照して前記判定を行う;
歩行障害自動分析システム。 A walking motion measuring unit that measures the walking motion of the subject by means of a motion sensor;
A walking motion tracking unit for obtaining a waist trajectory from the walking motion measured by the walking motion measuring unit;
A gait disorder feature extraction unit that extracts a gait disorder feature quantity as a feature quantity related to a gait disorder from the waist trajectory obtained by the walking movement tracking unit;
A gait disorder determination unit that determines the gait disorder degree of the subject based on the gait disorder feature amount extracted by the gait disorder feature extraction unit;
A gait disorder learning unit that causes the gait disorder degree determination unit to learn the gait disorder degree of a subject whose degree of gait disorder is known as learning data in association with the gait feature amount;
The gait disturbance degree determination unit performs the determination with reference to the learning data;
Gait disorder automatic analysis system.
請求項1に記載の歩行障害自動分析システム。 The gait impairment determination unit determines the gait impairment of the subject using a pattern classifier that classifies a vector in a multidimensional space into a plurality of patterns;
The gait disorder automatic analysis system according to claim 1.
請求項1に記載の歩行障害自動分析システム。 The gait disturbance determination unit determines the gait disturbance of the subject using principal component analysis;
The gait disorder automatic analysis system according to claim 1.
請求項1ないし請求項3のいずれか1項に記載の歩行障害自動分析システム。 As the gait obstacle feature amount, a geometric feature amount related to the left-right asymmetry of the waist movement is used;
The gait disorder automatic analysis system according to any one of claims 1 to 3.
請求項1ないし請求項3のいずれか1項に記載の歩行障害自動分析システム。 As the gait disorder feature amount, a temporal feature amount of hip exercise is used;
The gait disorder automatic analysis system according to any one of claims 1 to 3.
請求項1ないし請求項5のいずれか1項に記載の歩行障害自動分析システム。 The motion sensor is a three-dimensional acceleration sensor mounted near the lumbar spine;
The gait disorder automatic analysis system according to any one of claims 1 to 5.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010043112A JP5607952B2 (en) | 2010-02-26 | 2010-02-26 | Gait disorder automatic analysis system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010043112A JP5607952B2 (en) | 2010-02-26 | 2010-02-26 | Gait disorder automatic analysis system |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2011177278A true JP2011177278A (en) | 2011-09-15 |
| JP2011177278A5 JP2011177278A5 (en) | 2013-03-28 |
| JP5607952B2 JP5607952B2 (en) | 2014-10-15 |
Family
ID=44689506
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2010043112A Active JP5607952B2 (en) | 2010-02-26 | 2010-02-26 | Gait disorder automatic analysis system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5607952B2 (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014103305A1 (en) * | 2012-12-28 | 2014-07-03 | 国立大学法人東京工業大学 | Walking assistance device and walking assistance method |
| WO2014181606A1 (en) * | 2013-05-10 | 2014-11-13 | オムロンヘルスケア株式会社 | Walking posture meter and program |
| JP2015100529A (en) * | 2013-11-25 | 2015-06-04 | トヨタ自動車株式会社 | Gait balance evaluation device |
| JP2016144635A (en) * | 2015-02-03 | 2016-08-12 | アニマ株式会社 | Center of gravity fluctuation analyzer |
| JP2017000199A (en) * | 2015-06-04 | 2017-01-05 | マイクロストーン株式会社 | Walking evaluation method and walking evaluation system |
| JP2018000871A (en) * | 2016-07-08 | 2018-01-11 | 国立大学法人岩手大学 | Living body movement identification system and living body movement identification method |
| WO2018051583A1 (en) * | 2016-09-16 | 2018-03-22 | 住友電気工業株式会社 | Movement capability evaluation device, movement capability evaluation system, movement capability evaluation program, and movement capability evaluation method |
| WO2018097621A1 (en) * | 2016-11-25 | 2018-05-31 | 알바이오텍 주식회사 | Walking analysis system and method, and computer-readable recording medium |
| JPWO2017065241A1 (en) * | 2015-10-14 | 2018-08-09 | 国立大学法人東京工業大学 | Automatic diagnostic equipment |
| JP2018528044A (en) * | 2015-08-06 | 2018-09-27 | ユニヴェルシテ パリ デカルトUniversite Paris Descartes | How to characterize walking |
| WO2018211713A1 (en) * | 2017-05-19 | 2018-11-22 | 富士通株式会社 | Information processing device, information processing system, and information processing method |
| WO2018211550A1 (en) | 2017-05-15 | 2018-11-22 | 富士通株式会社 | Information processing device, information processing system, and information processing method |
| JP2019047952A (en) * | 2017-09-11 | 2019-03-28 | 国立研究開発法人国立精神・神経医療研究センター | Clinical evaluation device, clinical evaluation method and clinical evaluation program |
| KR20190108016A (en) * | 2018-03-13 | 2019-09-23 | 서울대학교병원 | Method for Prediction Frailty Using Triple Axis Motion Meter, Prediction Frailty System using Triple Axis Motion Meter and Wearable Prediction Frailty Device |
| WO2019181483A1 (en) * | 2018-03-23 | 2019-09-26 | パナソニックIpマネジメント株式会社 | Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method and program |
| CN110430853A (en) * | 2017-03-22 | 2019-11-08 | 本田技研工业株式会社 | Walking support system, walking support method and program |
| JP2020160950A (en) * | 2019-03-27 | 2020-10-01 | 富士通株式会社 | Patient search support program, patient search system and patient search support method |
| JP2021003489A (en) * | 2019-06-27 | 2021-01-14 | トヨタ自動車株式会社 | Rehabilitation assistance system, estimation device, learning device, method, program, and learned model |
| CN112842722A (en) * | 2021-01-20 | 2021-05-28 | 何经健 | Electric wheelchair convenient for going upstairs and downstairs |
| JP2021121323A (en) * | 2015-01-06 | 2021-08-26 | バートン,デイビット | Devices for determining and monitoring neurological or muscular disorders, and methods for determining motor disorders |
| JP2022019929A (en) * | 2018-01-10 | 2022-01-27 | トヨタ自動車株式会社 | Walking training system |
| EP4046570A1 (en) * | 2021-01-08 | 2022-08-24 | Fujitsu Limited | Gait state determination system, gait state determination method, and gait state determination program |
| WO2022233138A1 (en) * | 2021-05-07 | 2022-11-10 | 深圳先进技术研究院 | Gait analysis system |
| JP2023017652A (en) * | 2021-07-26 | 2023-02-07 | 公立大学法人大阪 | Walking ability determination device, walking ability determination method, walking ability determination program, model generation device, model generation method, and model generation program |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10113343A (en) * | 1996-07-03 | 1998-05-06 | Hitachi Ltd | Method and apparatus and system for recognizing actions and actions |
| JP2001218754A (en) * | 2000-02-14 | 2001-08-14 | Nippon Telegr & Teleph Corp <Ntt> | Walking judgment device |
| JP2003097912A (en) * | 2001-09-20 | 2003-04-03 | Akira Watanabe | System and method for quantitatively evaluating walking motion |
| JP2003204953A (en) * | 2002-01-16 | 2003-07-22 | Nippon Telegr & Teleph Corp <Ntt> | Gait pattern classification display device |
| JP2006102156A (en) * | 2004-10-05 | 2006-04-20 | Rikogaku Shinkokai | Walking assistance system |
| JP2009039466A (en) * | 2007-08-13 | 2009-02-26 | Advanced Telecommunication Research Institute International | Action identification device, action identification system, and action identification method |
-
2010
- 2010-02-26 JP JP2010043112A patent/JP5607952B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10113343A (en) * | 1996-07-03 | 1998-05-06 | Hitachi Ltd | Method and apparatus and system for recognizing actions and actions |
| JP2001218754A (en) * | 2000-02-14 | 2001-08-14 | Nippon Telegr & Teleph Corp <Ntt> | Walking judgment device |
| JP2003097912A (en) * | 2001-09-20 | 2003-04-03 | Akira Watanabe | System and method for quantitatively evaluating walking motion |
| JP2003204953A (en) * | 2002-01-16 | 2003-07-22 | Nippon Telegr & Teleph Corp <Ntt> | Gait pattern classification display device |
| JP2006102156A (en) * | 2004-10-05 | 2006-04-20 | Rikogaku Shinkokai | Walking assistance system |
| JP2009039466A (en) * | 2007-08-13 | 2009-02-26 | Advanced Telecommunication Research Institute International | Action identification device, action identification system, and action identification method |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014103305A1 (en) * | 2012-12-28 | 2014-07-03 | 国立大学法人東京工業大学 | Walking assistance device and walking assistance method |
| CN104902862A (en) * | 2012-12-28 | 2015-09-09 | 国立大学法人东京工业大学 | Walking assistance device and walking assistance mehtod |
| US9833375B2 (en) | 2012-12-28 | 2017-12-05 | Tokyo Institute Of Technology | Walking support apparatus and walking support method |
| WO2014181606A1 (en) * | 2013-05-10 | 2014-11-13 | オムロンヘルスケア株式会社 | Walking posture meter and program |
| JP2014217696A (en) * | 2013-05-10 | 2014-11-20 | オムロンヘルスケア株式会社 | Walking posture meter and program |
| JP2015100529A (en) * | 2013-11-25 | 2015-06-04 | トヨタ自動車株式会社 | Gait balance evaluation device |
| JP2021121323A (en) * | 2015-01-06 | 2021-08-26 | バートン,デイビット | Devices for determining and monitoring neurological or muscular disorders, and methods for determining motor disorders |
| JP7685867B2 (en) | 2015-01-06 | 2025-05-30 | バートン,デイビット | Apparatus for determining and monitoring neurological or muscular disorders and method for determining movement disorders - Patents.com |
| JP2016144635A (en) * | 2015-02-03 | 2016-08-12 | アニマ株式会社 | Center of gravity fluctuation analyzer |
| JP2017000199A (en) * | 2015-06-04 | 2017-01-05 | マイクロストーン株式会社 | Walking evaluation method and walking evaluation system |
| CN108778120A (en) * | 2015-08-06 | 2018-11-09 | 巴黎笛卡尔大学 | Method for characterizing gait |
| JP2018528044A (en) * | 2015-08-06 | 2018-09-27 | ユニヴェルシテ パリ デカルトUniversite Paris Descartes | How to characterize walking |
| CN108778120B (en) * | 2015-08-06 | 2021-03-16 | 巴黎笛卡尔大学 | Methods for Characterizing Gait |
| JPWO2017065241A1 (en) * | 2015-10-14 | 2018-08-09 | 国立大学法人東京工業大学 | Automatic diagnostic equipment |
| JP2018000871A (en) * | 2016-07-08 | 2018-01-11 | 国立大学法人岩手大学 | Living body movement identification system and living body movement identification method |
| JP6332574B1 (en) * | 2016-09-16 | 2018-05-30 | 住友電気工業株式会社 | Movement ability evaluation apparatus, movement ability evaluation system, movement ability evaluation program, and movement ability evaluation method |
| WO2018051583A1 (en) * | 2016-09-16 | 2018-03-22 | 住友電気工業株式会社 | Movement capability evaluation device, movement capability evaluation system, movement capability evaluation program, and movement capability evaluation method |
| GB2568015B (en) * | 2016-09-16 | 2020-01-01 | Sumitomo Electric Industries | Movement ability evaluation using an acceleration sensor attached to the waist of a subject |
| GB2577192B (en) * | 2016-09-16 | 2020-11-04 | Sumitomo Electric Industries | Movement capability evaluation device, movement capability evaluation system, movement capability evaluation program and movement capability evaluation method |
| GB2568015A (en) * | 2016-09-16 | 2019-05-01 | Sumitomo Electric Industries | Movement capability evaluation device, movement capability evaluation system, movement capability evaluation program, and movement capability evaluation |
| GB2577192A (en) * | 2016-09-16 | 2020-03-18 | Sumitomo Electric Industries | Movement capability evaluation device, movement capability evaluation system, movement capability evaluation program and movement capability evaluation method |
| WO2018097621A1 (en) * | 2016-11-25 | 2018-05-31 | 알바이오텍 주식회사 | Walking analysis system and method, and computer-readable recording medium |
| KR20180058999A (en) * | 2016-11-25 | 2018-06-04 | 알바이오텍 주식회사 | System and method for gait analyzing and computer readable record medium thereof |
| US11484765B2 (en) | 2017-03-22 | 2022-11-01 | Honda Motor Co., Ltd. | Walking support system, walking support method, and program |
| CN110430853B (en) * | 2017-03-22 | 2021-10-22 | 本田技研工业株式会社 | Walking support system, walking support method and program |
| CN110430853A (en) * | 2017-03-22 | 2019-11-08 | 本田技研工业株式会社 | Walking support system, walking support method and program |
| WO2018211550A1 (en) | 2017-05-15 | 2018-11-22 | 富士通株式会社 | Information processing device, information processing system, and information processing method |
| JPWO2018211550A1 (en) * | 2017-05-15 | 2020-05-14 | 富士通株式会社 | Information processing apparatus, information processing system, and information processing method |
| WO2018211713A1 (en) * | 2017-05-19 | 2018-11-22 | 富士通株式会社 | Information processing device, information processing system, and information processing method |
| JP2019047952A (en) * | 2017-09-11 | 2019-03-28 | 国立研究開発法人国立精神・神経医療研究センター | Clinical evaluation device, clinical evaluation method and clinical evaluation program |
| JP2022019929A (en) * | 2018-01-10 | 2022-01-27 | トヨタ自動車株式会社 | Walking training system |
| JP7115622B2 (en) | 2018-01-10 | 2022-08-09 | トヨタ自動車株式会社 | Gait training system |
| KR20190108016A (en) * | 2018-03-13 | 2019-09-23 | 서울대학교병원 | Method for Prediction Frailty Using Triple Axis Motion Meter, Prediction Frailty System using Triple Axis Motion Meter and Wearable Prediction Frailty Device |
| KR102107379B1 (en) * | 2018-03-13 | 2020-05-07 | 서울대학교병원 | Method for Prediction Frailty Using Triple Axis Motion Meter, Prediction Frailty System using Triple Axis Motion Meter and Wearable Prediction Frailty Device |
| WO2019181483A1 (en) * | 2018-03-23 | 2019-09-26 | パナソニックIpマネジメント株式会社 | Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method and program |
| JPWO2019181483A1 (en) * | 2018-03-23 | 2020-12-03 | パナソニックIpマネジメント株式会社 | Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method, and program |
| US11779259B2 (en) | 2018-03-23 | 2023-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method, and recording medium |
| JP7180496B2 (en) | 2019-03-27 | 2022-11-30 | 富士通株式会社 | Patient search support program, patient search support system, and patient search support method |
| JP2020160950A (en) * | 2019-03-27 | 2020-10-01 | 富士通株式会社 | Patient search support program, patient search system and patient search support method |
| JP7255392B2 (en) | 2019-06-27 | 2023-04-11 | トヨタ自動車株式会社 | Rehabilitation support system, estimation device, learning device, method, program, and learned model |
| JP2021003489A (en) * | 2019-06-27 | 2021-01-14 | トヨタ自動車株式会社 | Rehabilitation assistance system, estimation device, learning device, method, program, and learned model |
| EP4046570A1 (en) * | 2021-01-08 | 2022-08-24 | Fujitsu Limited | Gait state determination system, gait state determination method, and gait state determination program |
| CN112842722B (en) * | 2021-01-20 | 2023-09-08 | 祐樘(南京)软件科技有限公司 | Electric wheelchair convenient to go up and down stairs |
| CN112842722A (en) * | 2021-01-20 | 2021-05-28 | 何经健 | Electric wheelchair convenient for going upstairs and downstairs |
| WO2022233138A1 (en) * | 2021-05-07 | 2022-11-10 | 深圳先进技术研究院 | Gait analysis system |
| JP2023017652A (en) * | 2021-07-26 | 2023-02-07 | 公立大学法人大阪 | Walking ability determination device, walking ability determination method, walking ability determination program, model generation device, model generation method, and model generation program |
| JP7723403B2 (en) | 2021-07-26 | 2025-08-14 | 公立大学法人大阪 | Walking ability determination device, walking ability determination method, walking ability determination program, model generation device, model generation method, and model generation program |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5607952B2 (en) | 2014-10-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5607952B2 (en) | Gait disorder automatic analysis system | |
| Ardestani et al. | From normal to fast walking: impact of cadence and stride length on lower extremity joint moments | |
| Rast et al. | Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments | |
| Liu et al. | Intent pattern recognition of lower-limb motion based on mechanical sensors | |
| Hanley et al. | Gait variability and symmetry remain consistent during high-intensity 10,000 m treadmill running | |
| KR102107379B1 (en) | Method for Prediction Frailty Using Triple Axis Motion Meter, Prediction Frailty System using Triple Axis Motion Meter and Wearable Prediction Frailty Device | |
| Zhao et al. | Flexible and wearable EMG and PSD sensors enabled locomotion mode recognition for IoHT-based in-home rehabilitation | |
| Hossain et al. | Deepbbwae-net: A cnn-rnn based deep superlearner for estimating lower extremity sagittal plane joint kinematics using shoe-mounted imu sensors in daily living | |
| Wu et al. | Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis | |
| Fang et al. | Reference values of gait using APDM movement monitoring inertial sensor system | |
| Choi et al. | Machine learning approach to predict center of pressure trajectories in a complete gait cycle: a feedforward neural network vs. LSTM network | |
| JP7038403B2 (en) | Walking motion evaluation device and program | |
| Malik et al. | An intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG features | |
| Ryu et al. | sEMG-signal and IMU sensor-based gait sub-phase detection and prediction using a user-adaptive classifier | |
| Zhang et al. | Transductive learning models for accurate ambulatory gait analysis in elderly residents of assisted living facilities | |
| Jiang et al. | Exploration of gait parameters affecting the accuracy of force myography-based gait phase detection | |
| Jung et al. | The influence of water depth on kinematic and spatiotemporal gait parameters during aquatic treadmill walking | |
| Gittoes et al. | Intralimb joint coordination patterns of the lower extremity in maximal velocity phase sprint running | |
| Díaz et al. | Step length and step width estimation using wearable sensors | |
| Greene et al. | Body-worn sensor based surrogates of minimum ground clearance in elderly fallers and controls | |
| Burnfield et al. | Examination of gait | |
| Benocci et al. | Wearable assistant for load monitoring: Recognition of on—Body load placement from gait alterations | |
| Weng et al. | A gait stability evaluation method based on wearable acceleration sensors. | |
| D'Arco et al. | Smart insoles-based gait symmetry detection for people with lower-limb amputation | |
| Amitrano et al. | The impact of ankle-foot orthosis on walking features of drop foot patients |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130205 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130827 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130830 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131025 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140804 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140819 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140829 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5607952 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |