[go: up one dir, main page]

JP2011113684A - Light emitting device, and lighting system and display device with the same - Google Patents

Light emitting device, and lighting system and display device with the same Download PDF

Info

Publication number
JP2011113684A
JP2011113684A JP2009266836A JP2009266836A JP2011113684A JP 2011113684 A JP2011113684 A JP 2011113684A JP 2009266836 A JP2009266836 A JP 2009266836A JP 2009266836 A JP2009266836 A JP 2009266836A JP 2011113684 A JP2011113684 A JP 2011113684A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
constant current
voltage
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009266836A
Other languages
Japanese (ja)
Inventor
Takeshi Nakazawa
健 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009266836A priority Critical patent/JP2011113684A/en
Publication of JP2011113684A publication Critical patent/JP2011113684A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

【課題】 余計な電力消費が削減され、定電流駆動部での発熱が抑えられたLED発光装置を提供する。
【解決手段】
複数の発光素子部(LED列)101a,101bと、入力電圧Vinを昇圧し、昇圧された電圧Voutを発光素子部の夫々に供給する昇圧回路11と、定電流駆動部23a,23bと、昇圧回路11を制御するための昇圧制御信号を生成する昇圧制御部14と、を備える発光装置であって、発光素子部の各LEDと並列に接続し、各LEDの消灯と点灯を個別に制御するためのバイパススイッチと、当該バイパススイッチのオンオフを制御するバイパススイッチ制御部100を設け、発光素子部の出力端電圧Vda(Vdb)が入力電圧よりも高くなる場合、当該発光素子部と接続する定電流駆動部23a(23b)の出力端(定電流回路26a(26b)の一端)を昇圧回路11の入力側に接続する。
【選択図】 図3
PROBLEM TO BE SOLVED: To provide an LED light emitting device in which unnecessary power consumption is reduced and heat generation in a constant current drive unit is suppressed.
[Solution]
A plurality of light emitting element units (LED arrays) 101a and 101b; a booster circuit 11 that boosts the input voltage Vin and supplies the boosted voltage Vout to each of the light emitting element units; constant current drive units 23a and 23b; And a boost control unit that generates a boost control signal for controlling the circuit 11. The light-emitting device is connected in parallel to each LED of the light-emitting element unit, and individually controls turning off and lighting of each LED. And a bypass switch control unit 100 for controlling on / off of the bypass switch. When the output terminal voltage Vda (Vdb) of the light emitting element unit is higher than the input voltage, the constant value connected to the light emitting element unit is provided. The output terminal of the current driver 23a (23b) (one end of the constant current circuit 26a (26b)) is connected to the input side of the booster circuit 11.
[Selection] Figure 3

Description

本発明は、発光装置、特に、発光素子を駆動する駆動電流の電流調整を行う回路を備え、消費電力が低減される発光装置並びに当該発光装置を備えた照明装置及び表示装置に関する。   The present invention relates to a light-emitting device, and more particularly, to a light-emitting device that includes a circuit that adjusts the current of a drive current that drives a light-emitting element, reduces power consumption, and a lighting device and a display device that include the light-emitting device.

従来、照明装置或いは液晶表示装置等のバックライトユニットでは、蛍光灯又は白熱灯などが光源として使用されている。一方で、従来の光源に比べて寿命が長く、かつ消費電力も少ないという特徴を備えたLED(発光ダイオード)を照明用又は表示用の光源として使用するための技術開発が現在行われている。   Conventionally, in a backlight unit such as an illumination device or a liquid crystal display device, a fluorescent lamp or an incandescent lamp is used as a light source. On the other hand, technological development is currently underway for using LEDs (light emitting diodes), which have features of longer life and lower power consumption than conventional light sources, as illumination or display light sources.

このようなLEDを照明装置等に使用する場合、十分な明るさを確保するために、LEDを多数、直列に接続したLED列を更に並列に複数接続し、LEDの集合体として装置内に配置する。また、LEDの明るさを均一にするために、LED列に流れる電流を一定にする定電流素子(トランジスタ)を備えた発光装置が特許文献1に開示されている。   When such LEDs are used in lighting devices, etc., in order to ensure sufficient brightness, a number of LEDs connected in series and a plurality of LED rows connected in series are further connected in parallel and arranged in the device as an aggregate of LEDs. To do. In addition, Patent Document 1 discloses a light emitting device including a constant current element (transistor) that makes a current flowing in an LED array constant in order to make the brightness of LEDs uniform.

定電流素子としてトランジスタを用いる場合、当該トランジスタのエミッタ・コレクタ間には、LED列のアノード側の電圧からLED列による電圧降下分を差し引いた残りの電圧が印加される。複数のLED列を並列に接続した発光装置において、LED列による電圧降下量についてLED列毎に差が生じると、各トランジスタのエミッタ・コレクタ間に印加される電圧もLED列毎に差が生じ、トランジスタのエミッタ・コレクタ間に高電圧が印加される場合がある。この結果、トランジスタのエミッタ・コレクタ間に印加される電圧とコレクタに流れる電流により生じる電力損失が大きくなり、トランジスタの発熱を如何に放熱するかが問題となる。トランジスタの発熱が大きい場合、トランジスタの劣化を早め、装置の信頼性を損なう虞がある。   When a transistor is used as the constant current element, the remaining voltage obtained by subtracting the voltage drop due to the LED string from the anode voltage of the LED string is applied between the emitter and collector of the transistor. In a light emitting device in which a plurality of LED strings are connected in parallel, when a difference occurs in the amount of voltage drop due to the LED string for each LED string, a voltage applied between the emitter and collector of each transistor also varies for each LED string. A high voltage may be applied between the emitter and collector of the transistor. As a result, the power loss caused by the voltage applied between the emitter and collector of the transistor and the current flowing through the collector increases, and the problem is how to dissipate the heat generated by the transistor. When the heat generation of the transistor is large, there is a risk that the deterioration of the transistor is accelerated and the reliability of the device is impaired.

特許文献2には、LED列に所定の電流を供給する定電流素子で生じる電力損失を減らすため、並列に接続されている各LED列のカソード電圧を時分割でモニタし、駆動対象のLED列毎に、定電流素子に印加される電圧を時分割で切替えることで、定電流駆動部での電力損失が低減される発光装置が開示されている。また、時分割でモニタされる各LED列のカソード電圧は、DC/DCコンバータ(昇圧回路)の入力電圧にフィードバックされることで、各LED列の駆動に必要な電圧にまで昇圧回路の出力を昇圧し、定電流素子を安定に動作させている。   In Patent Document 2, in order to reduce power loss caused by a constant current element that supplies a predetermined current to an LED array, the cathode voltage of each LED array connected in parallel is monitored in a time-sharing manner, and the LED array to be driven A light emitting device is disclosed in which the power loss in the constant current drive unit is reduced by switching the voltage applied to the constant current element in a time-sharing manner every time. In addition, the cathode voltage of each LED string monitored in a time-sharing manner is fed back to the input voltage of the DC / DC converter (boost circuit), so that the output of the booster circuit is increased to the voltage necessary for driving each LED string. The voltage is boosted and the constant current element is operated stably.

特開2007−42758号公報JP 2007-42758 A 特開2007−220855号公報JP 2007-220855 A 特許第4177022号明細書Japanese Patent No. 4177022

特許文献2に示される発光装置は、駆動対象のLED列を時分割で制御しているため、定電流素子に電流が流れるLED列は一時刻に対して1ヶ所だけであり、定電流駆動部での電力損失を低減することができるが、その分LEDの発光量が犠牲になっている。   Since the light-emitting device shown in Patent Document 2 controls the LED row to be driven in a time-sharing manner, there is only one LED row in which a current flows through the constant current element at one time, and the constant current driving unit Power loss can be reduced, but the amount of light emitted by the LED is sacrificed accordingly.

また、特許文献2に示される発光装置では、モニタ対象のLED列は一時刻に対して1ヶ所だけであり、複数のLED列を同時に駆動するため、複数のカソード電圧を同時にモニタし、当該複数のLED列全てを駆動させるのに必要な電圧にまで昇圧回路の出力電圧を昇圧する構成ではない。即ち、特許文献2の構成において、定電流素子のトランジスタのエミッタ・コレクタ間に印加される電圧の時分割切替制御をやめて、同時に複数のLED列に駆動電流を流すことが可能な構成にすると、モニタ対象のLED列のカソード電圧が最も低い(即ち、モニタ対象のLED列による電圧降下が最も大きい)場合には、モニタ対象でないLED列にも駆動に必要な電圧が供給されるので問題は生じないが、そうではない場合、例えば、モニタ対象のLED列のカソード電圧が最も高い(即ち、モニタ対象のLED列による電圧降下が最も小さい)場合に、当該カソード電圧に併せて昇圧回路の出力電圧を制御すると、より高い駆動電圧を必要とする他のLED列において駆動に必要な電圧を供給できなくなる。   Further, in the light emitting device disclosed in Patent Document 2, there is only one LED row to be monitored at one time, and since a plurality of LED rows are driven simultaneously, a plurality of cathode voltages are simultaneously monitored. The output voltage of the booster circuit is not boosted to a voltage necessary to drive all the LED strings. In other words, in the configuration of Patent Document 2, when the time-division switching control of the voltage applied between the emitter and collector of the transistor of the constant current element is stopped, the driving current can be made to flow to a plurality of LED arrays at the same time. When the cathode voltage of the LED row to be monitored is the lowest (that is, the voltage drop due to the LED row to be monitored is the largest), a problem arises because the voltage necessary for driving is supplied to the LED row that is not to be monitored. If not, for example, when the cathode voltage of the LED row to be monitored is the highest (that is, the voltage drop due to the LED row to be monitored is the smallest), the output voltage of the booster circuit is combined with the cathode voltage. If it is controlled, it becomes impossible to supply a voltage necessary for driving in another LED string that requires a higher driving voltage.

上記問題の解決策として、特許文献3に開示されているように、全てのLED列のカソード電圧のうち最も低いカソード電圧を検出し、当該検出された電圧と定電流素子が定電流動作を行うことができる低い電圧(基準電圧)とを比較し、当該検出された電圧に基づいて昇圧回路の出力を制御する方法が挙げられる。しかしながらこの方法では、最も低いカソード電圧を有するLED列以外のLED列のカソード電圧は、定電流駆動部が所定の電流を流す為に必要な最低電圧よりも高く、定電流素子に本来不必要な高電圧が印加されるため、定電流駆動部において余計な電力を損失してしまう。   As a solution to the above problem, as disclosed in Patent Document 3, the lowest cathode voltage among the cathode voltages of all the LED strings is detected, and the detected voltage and the constant current element perform a constant current operation. And a method of comparing a low voltage (reference voltage) that can be controlled and controlling the output of the booster circuit based on the detected voltage. However, in this method, the cathode voltage of the LED strings other than the LED string having the lowest cathode voltage is higher than the minimum voltage required for the constant current driving unit to flow a predetermined current, and is not necessary for the constant current element. Since a high voltage is applied, extra power is lost in the constant current drive unit.

特許文献3に記載の発光装置の構成例を図5に示す。図5では、赤(r)、緑(g)、青(b)に夫々対応するLED列12r,12g,12bのカソード電圧Vdr,Vdg,Vdbのうち最も低いカソード電圧を検出し、当該検出電圧を基準電圧Vrefと比較し、当該比較結果に基づいて、検出電圧が基準電圧Vrefと等しくなるように、昇圧制御部14が昇圧回路11の出力電圧Voutを制御している。ここで、基準電圧Vrefとは定電流駆動部13r,13g,13bの各定電流回路16r,16g,16bが安定に定電流動作をさせるのに必要な電圧である。   FIG. 5 shows a configuration example of the light emitting device described in Patent Document 3. In FIG. 5, the lowest cathode voltage is detected from the cathode voltages Vdr, Vdg, Vdb of the LED rows 12r, 12g, 12b corresponding to red (r), green (g), and blue (b), respectively, and the detected voltage is detected. Is compared with the reference voltage Vref, and based on the comparison result, the boost controller 14 controls the output voltage Vout of the booster circuit 11 so that the detected voltage becomes equal to the reference voltage Vref. Here, the reference voltage Vref is a voltage necessary for the constant current circuits 16r, 16g, and 16b of the constant current drive units 13r, 13g, and 13b to stably operate at a constant current.

例えば、赤色のLED列12rの各LED、緑色のLED列12gの各LED、青色のLED列12bの各LEDについて、所定の輝度で発光させるため、夫々、Ir(=40mA)、Ig(=50mA)、Ib(=35mA)の駆動電流が流れるように定電流駆動部13r,13g,13bにより制御されるとする。また、赤緑青の各LEDの駆動に必要な電圧を、夫々、LED一個につきVfr(=2.3V)、Vfg(=3.5V)、Vfb(=3.6V)とする。このとき、各LED列で発生する電圧降下は、夫々、赤色のLED列の場合Vfr×4=9.2V、緑色のLED列の場合Vfg×4=14V、青色のLED列の場合Vfb×4=14.4Vとなる。この場合、昇圧制御部14の制御対象となるLED列は、電圧降下の最も大きく、結果カソード電圧が最も低くなる青色LED列12bであり、昇圧制御部14は、昇圧回路11の出力電圧Voutから上記青色LED列12bでの電圧降下分(=14.4V)を引いた残りのカソード電圧Vdbが基準電圧Vref(=1V)と等しくなるように昇圧回路の出力電圧Voutを制御する。即ち、昇圧制御部14は、Vout=15.4Vとなるように昇圧回路11を制御する。   For example, each LED of the red LED row 12r, each LED of the green LED row 12g, and each LED of the blue LED row 12b is made to emit light with a predetermined luminance, so that Ir (= 40 mA) and Ig (= 50 mA), respectively. ), And the constant current drive units 13r, 13g, and 13b are controlled so that a drive current of Ib (= 35 mA) flows. Further, the voltages necessary for driving the red, green, and blue LEDs are Vfr (= 2.3 V), Vfg (= 3.5 V), and Vfb (= 3.6 V), respectively, for each LED. At this time, the voltage drop generated in each LED row is Vfr × 4 = 9.2 V for the red LED row, Vfg × 4 = 14 V for the green LED row, and Vfb × 4 for the blue LED row, respectively. = 14.4V. In this case, the LED column to be controlled by the boost control unit 14 is the blue LED column 12b having the largest voltage drop and the lowest cathode voltage as a result. The boost control unit 14 determines from the output voltage Vout of the boost circuit 11. The output voltage Vout of the booster circuit is controlled so that the remaining cathode voltage Vdb obtained by subtracting the voltage drop (= 14.4V) in the blue LED row 12b becomes equal to the reference voltage Vref (= 1V). That is, the boost control unit 14 controls the boost circuit 11 so that Vout = 15.4V.

しかしながらこの場合、昇圧制御部14の制御対象でない赤及び緑色のLED列12r,12gに接続する定電流回路には、夫々、Vout−Vfr×4=6.2V、Vout−Vfg×4=1.4Vの電圧が印加され、本来不必要な高電圧が印加されることになるため、余計な電力消費の原因となる。   However, in this case, the constant current circuits connected to the red and green LED strings 12r and 12g that are not controlled by the boost control unit 14 have Vout−Vfr × 4 = 6.2V and Vout−Vfg × 4 = 1. Since a voltage of 4V is applied and an originally unnecessary high voltage is applied, it causes unnecessary power consumption.

上記問題の解決策として、図6に示されるように、モニタされるLED列のカソード電圧Vdr,Vdg,Vdb毎に、昇圧制御部14r,14g,14b、及びLED列のアノード側に与える昇圧回路11r,11g,11bを1つずつ備えることで、各LED列に対し独立にLED列のアノード側に印加する電圧VoutR,VoutG,VoutBを制御することが考えられるが、これでは昇圧回路がLED列の数だけ必要になり、製造コストが高くなってしまう。   As a solution to the above problem, as shown in FIG. 6, for each cathode voltage Vdr, Vdg, Vdb of the monitored LED string, a booster controller 14r, 14g, 14b and a booster circuit to be applied to the anode side of the LED string By providing 11r, 11g, and 11b one by one, it is conceivable to control the voltages VoutR, VoutG, and VoutB applied to the anode side of each LED row independently for each LED row. As many as these are required, which increases the manufacturing cost.

本発明は上記従来技術に係る問題点を鑑みてなされたものであり、その目的は、複数のLED列を有し、当該複数のLED列のうち最も低いカソード電圧に基づいて昇圧回路の出力電圧を制御する発光装置において、最も低いカソード電圧を有するLED列以外のLED列の定電流駆動部における余計な電力消費を削減し、定電流駆動部での発熱が抑えられた発光装置を提供すること、及び、当該発光装置を備える低消費電力の照明装置及び表示装置を提供することである。   The present invention has been made in view of the problems associated with the above-described prior art, and an object thereof is to have a plurality of LED strings and output voltage of a booster circuit based on the lowest cathode voltage among the plurality of LED strings. A light-emitting device that controls heat generation in the constant-current drive unit is reduced by reducing unnecessary power consumption in the constant-current drive unit of LED columns other than the LED column having the lowest cathode voltage. And a low power consumption lighting device and display device including the light emitting device.

上記目的を達成するための本発明に係る発光装置は、夫々が一の発光素子、又は直列に接続された複数の発光素子を有する複数の発光素子部と、入力電圧を昇圧し、昇圧された電圧を前記複数の発光素子部の夫々に供給する昇圧回路と、前記複数の発光素子部の夫々と各別に接続し、前記発光素子部の前記発光素子に駆動電流を供給する前記発光素子部と同数の定電流駆動部と、前記発光素子部の出力端の電圧のうち最も低い第1電圧を検出し、前記第1電圧を基準電圧と比較し、その比較結果に基づいて前記昇圧回路を制御するための昇圧制御信号を生成する昇圧制御部と、前記発光素子部のうち、複数の前記発光素子が直列に接続された少なくとも一つの第1発光素子部の前記発光素子毎に設けられる、一の前記発光素子と並列に接続し、当該発光素子に流れる電流をバイパスさせるバイパススイッチと、前記バイパススイッチのオンオフを制御することで前記第1発光素子部の前記発光素子の消灯と点灯を前記発光素子毎に制御するバイパススイッチ制御部と、を備え、前記昇圧回路の出力端は前記複数の発光素子部の夫々の入力端に接続され、前記発光素子部の出力端は夫々対応する前記定電流駆動部の入力端に接続され、個々の前記第1発光素子部内の前記バイパススイッチのオンオフの状態から導出される前記各第1発光素子部の前記発光素子の点灯数に基づき前記各第1発光素子部における電圧降下量を算出することで、前記各第1発光素子部の出力端の電圧を算出し、前記第1発光素子部と接続する前記定電流駆動部の少なくとも一つは、前記第1発光素子部の出力端の電圧が前記入力電圧よりも前記基準電圧以上高い場合、当該定電流駆動部により供給される前記駆動電流の少なくとも一部が前記昇圧回路の入力側に流れる電流経路を形成し、前記第1発光素子部の出力端の電圧が前記入力電圧よりも前記基準電圧以上高くない場合、当該定電流駆動部により供給される前記駆動電流の少なくとも一部が、前記入力電圧よりも低い所定の固定電位に流れる電流経路を形成するように構成された第1定電流駆動部であることを第1の特徴とする。   In order to achieve the above object, a light-emitting device according to the present invention includes a plurality of light-emitting element portions each having one light-emitting element or a plurality of light-emitting elements connected in series, and the input voltage is boosted and boosted. A step-up circuit that supplies a voltage to each of the plurality of light emitting element units; and the light emitting element unit that is connected to each of the plurality of light emitting element units and supplies a drive current to the light emitting element of the light emitting element unit; Detect the lowest first voltage among the same number of constant current drive units and the output terminal voltage of the light emitting element unit, compare the first voltage with a reference voltage, and control the booster circuit based on the comparison result A boosting control unit that generates a boosting control signal for performing, and among the light emitting element units, provided for each of the light emitting elements of at least one first light emitting element unit in which a plurality of the light emitting elements are connected in series, Connected in parallel with the light emitting element A bypass switch that bypasses a current flowing through the light emitting element, and a bypass switch control unit that controls on / off of the light emitting element of the first light emitting element unit for each light emitting element by controlling on / off of the bypass switch; And the output terminal of the booster circuit is connected to the input terminal of each of the plurality of light emitting element units, and the output terminal of the light emitting element unit is connected to the input terminal of the corresponding constant current driving unit. Calculating a voltage drop amount in each first light emitting element unit based on the number of lighting of the light emitting elements in each first light emitting element unit derived from the on / off state of the bypass switch in the first light emitting element unit. Then, the voltage at the output terminal of each of the first light emitting element units is calculated, and at least one of the constant current driving units connected to the first light emitting element unit is an output of the first light emitting element unit. When the voltage at the end is higher than the input voltage by the reference voltage or more, a current path is formed in which at least a part of the drive current supplied by the constant current drive unit flows to the input side of the booster circuit, and When the voltage at the output terminal of the light emitting element unit is not higher than the reference voltage than the input voltage, at least a part of the driving current supplied by the constant current driving unit is a predetermined fixed potential lower than the input voltage The first feature is that the first constant current driving unit is configured to form a current path flowing through the first constant current driving unit.

更に、本発明に係る発光装置は、上記第1の特徴に加えて、前記バイパススイッチ制御部は、前記各第1発光素子部の前記発光素子の点灯数に基づき前記各第1発光素子部における電圧降下量を算出することで、前記各第1発光素子部の出力端の電圧を算出し、前記算出された前記各第1発光素子部の出力端の電圧を前記入力電圧と比較し、前記第1発光素子部と接続する前記第1定電流駆動部により供給される前記駆動電流の前記昇圧回路の入力側に流れる電流経路の形成、及び、前記第1発光素子部と接続する前記第1定電流駆動部により供給される前記駆動電流の前記固定電位に流れる電流経路の形成を制御するための切替制御信号を生成することを第2の特徴とする。   Furthermore, in the light emitting device according to the present invention, in addition to the first feature described above, the bypass switch control unit is configured so that each of the first light emitting element units includes a light emitting element. By calculating the voltage drop amount, the voltage at the output terminal of each first light emitting element unit is calculated, the calculated voltage at the output terminal of each first light emitting element unit is compared with the input voltage, Forming a current path that flows to the input side of the booster circuit of the driving current supplied by the first constant current driving unit connected to the first light emitting element unit, and the first connecting to the first light emitting element unit A second feature is that a switching control signal for controlling formation of a current path that flows in the fixed potential of the driving current supplied by a constant current driving unit is generated.

更に、本発明に係る発光装置は、上記第1又は第2の特徴に加えて、前記第1定電流駆動部は、前記第1定電流駆動部と接続する前記第1発光素子部の出力端の電圧が前記入力電圧よりも前記基準電圧以上高い場合、当該第1定電流駆動部により供給される前記駆動電流の全部が前記昇圧回路の入力側に流れる電流経路を形成することを第3の特徴とする。   Further, in the light emitting device according to the present invention, in addition to the first or second feature, the first constant current driving unit is connected to the first constant current driving unit. A voltage path is higher than the input voltage by the reference voltage or more, a third current path forms a current path through which all of the drive current supplied by the first constant current drive unit flows to the input side of the booster circuit. Features.

更に、本発明に係る発光装置は、上記第1乃至第3の何れかの特徴に加えて、前記第1定電流駆動部は、前記第1定電流駆動部と接続する前記第1発光素子部の出力端の電圧が前記入力電圧よりも低い場合、当該第1定電流駆動部により供給される前記駆動電流の全部が前記固定電位に流れる電流経路を形成することを第4の特徴とする。   Furthermore, in the light emitting device according to the present invention, in addition to any of the first to third features, the first constant current driving unit is connected to the first constant current driving unit. When the output terminal voltage is lower than the input voltage, a fourth feature is that a current path is formed in which all of the drive current supplied by the first constant current drive unit flows to the fixed potential.

更に、本発明に係る発光装置は、上記第1乃至第4の何れかの特徴に加えて、前記第1発光素子部の出力端の電圧と前記入力電圧との比較を、前記各第1発光素子部の前記発光素子の点灯数に基づき算出される当該第1発光素子部の出力端の電圧を前記入力電圧と比較するのと併せて、当該第1発光素子部の実際の出力端の電圧と実際の前記入力電圧とを参照して行うことを第5の特徴とする。   Furthermore, in addition to any of the first to fourth features, the light emitting device according to the present invention compares the voltage of the output terminal of the first light emitting element section with the input voltage, by comparing each of the first light emitting devices. In addition to comparing the voltage at the output end of the first light emitting element unit calculated based on the number of lighting of the light emitting elements in the element unit with the input voltage, the voltage at the actual output end of the first light emitting element unit And the actual input voltage is referred to as a fifth feature.

更に、本発明に係る発光装置は、上記第1乃至第5の何れかの特徴に加えて、前記第1定電流駆動部は、複数の前記定電流回路と、前記複数の定電流回路の一端の夫々と各別に接続する前記定電流回路と同数の出力端を有し、入力端が前記複数の定電流回路の他端の夫々と接続され、少なくとも一つの前記出力端が前記昇圧回路の入力側に接続され、前記昇圧回路の入力側に接続されない前記出力端は前記固定電位に接続され、前記第1定電流駆動部に接続する前記第1発光素子部の出力端の電圧が前記入力電圧よりも高い場合、当該第1定電流駆動部の前記定電流回路のうち、一端が前記昇圧回路の入力側に接続し、他端が当該第1発光素子部の出力端と接続する前記定電流回路を活性化し、当該第1発光素子部の出力端の電圧と前記入力電圧との差に基づき、夫々の前記定電流回路に流れる前記駆動電流量が制御されることを第6の特徴とする。   Furthermore, in the light emitting device according to the present invention, in addition to any of the first to fifth features, the first constant current driving unit includes a plurality of constant current circuits and one end of the plurality of constant current circuits. Each of the constant current circuits connected to each of the plurality of constant current circuits, the input terminals being connected to the other ends of the plurality of constant current circuits, and at least one of the output terminals being an input of the booster circuit. The output terminal not connected to the input side of the booster circuit is connected to the fixed potential, and the voltage at the output terminal of the first light emitting element unit connected to the first constant current drive unit is the input voltage. Higher than the constant current circuit, the constant current circuit has one end connected to the input side of the booster circuit and the other end connected to the output end of the first light emitting element unit. Activating the circuit, the voltage of the output terminal of the first light emitting element unit and the input Based on the difference between the pressure, the sixth feature of said drive current amount flowing to the constant current circuit of each is controlled.

更に、本発明に係る発光装置は、上記第6の特徴に加えて、記第1定電流駆動部に接続する前記第1発光素子部の出力端の電圧が前記入力電圧より前記基準電圧以上高い場合、当該第1定電流駆動部の前記定電流回路のうち、一端が前記昇圧回路の入力側に接続されていない全ての前記定電流回路が不活性化されることを第7の特徴とする。   Further, in the light emitting device according to the present invention, in addition to the sixth feature, the voltage at the output terminal of the first light emitting element connected to the first constant current driver is higher than the reference voltage by the reference voltage. The seventh characteristic is that all of the constant current circuits whose one ends are not connected to the input side of the booster circuit among the constant current circuits of the first constant current drive unit are inactivated. .

更に、本発明に係る発光装置は、上記第1乃至第7の何れかの特徴に加えて、前記複数の発光素子部のうち、前記昇圧制御部が前記第1電圧を検出した当該発光素子部と接続する前記定電流駆動部が前記第1定電流駆動部の場合、当該第1定電流駆動部により供給される前記駆動電流の全部が前記固定電位に流れる電流経路が形成されることを第8の特徴とする。   Furthermore, in addition to any of the first to seventh features, the light-emitting device according to the present invention includes the light-emitting element unit in which the boost control unit detects the first voltage among the plurality of light-emitting element units. When the constant current driver connected to the first constant current driver is the first constant current driver, a current path is formed in which all of the drive current supplied by the first constant current driver flows to the fixed potential. Eight features.

更に、本発明に係る発光装置は、上記第1乃至第8の何れかの特徴に加えて、前記バイパススイッチ制御部は、前記バイパススイッチのオンオフを当該バイパス対象の前記発光素子の目標輝度に併せてPWM制御することを第9の特徴とする。   Furthermore, in the light emitting device according to the present invention, in addition to any one of the first to eighth features, the bypass switch control unit combines on / off of the bypass switch with a target luminance of the light emitting element to be bypassed. The ninth feature is that the PWM control is performed.

本発明に係る照明装置は、上記第1乃至第9の何れかの特徴の発光装置を備えることを特徴とする。   An illumination device according to the present invention includes the light emitting device having any one of the first to ninth characteristics.

本発明に係る表示装置は、上記第1乃至第9の何れかの特徴の発光装置を備えることを特徴とする。   A display device according to the present invention includes the light emitting device having any one of the first to ninth characteristics.

本発明の発光装置に依れば、定電流駆動部のうち、少なくとも一つの第1定電流駆動部が、自身の入力端と接続する発光素子部(LED列)の出力端の電圧(カソード電圧)が昇圧回路の入力電圧Vinよりも基準電圧以上高電圧となる場合、自身の出力端を昇圧回路の入力側に接続可能に構成されている。これにより、昇圧回路から発光素子部(LED列)、及び第1定電流駆動部を経て昇圧回路の入力側に戻る駆動電流の電流経路が形成される。これにより、第1定電流駆動部の定電流回路に印加される電圧が抑えられるため、定電流回路で消費される電力が削減され、定電流駆動部での発熱が抑えられた発光装置を提供することができる。更に、発光素子部のLEDの駆動電流の一部を昇圧回路の入力電流として回収することにより消費電力を低減することができる。また、図6に示される構成例のように複数の昇圧回路を設ける必要が無いため、製造コストを増加させること無く消費電力削減の効果が得られる。   According to the light emitting device of the present invention, at least one first constant current driving unit among the constant current driving units has a voltage (cathode voltage) at the output end of the light emitting element unit (LED array) connected to its own input end. ) Is higher than the input voltage Vin of the booster circuit by a reference voltage or higher, the output terminal of itself is connected to the input side of the booster circuit. Thereby, a current path of a drive current that returns from the booster circuit to the input side of the booster circuit through the light emitting element unit (LED array) and the first constant current driver unit is formed. As a result, since the voltage applied to the constant current circuit of the first constant current drive unit is suppressed, the power consumed by the constant current circuit is reduced, and a light emitting device in which heat generation in the constant current drive unit is suppressed is provided. can do. Furthermore, the power consumption can be reduced by collecting a part of the driving current of the LED of the light emitting element portion as the input current of the booster circuit. In addition, since there is no need to provide a plurality of booster circuits as in the configuration example shown in FIG. 6, the effect of reducing power consumption can be obtained without increasing the manufacturing cost.

更に、本発明の発光装置は、第1定電流駆動部により駆動される発光素子部のうち、少なくとも一つの第1発光素子部の発光素子の夫々について、発光素子と並列に接続し、当該発光素子に流れる電流をバイパスさせるバイパススイッチを設け、バイパススイッチ制御部が、当該バイパススイッチのオンオフを制御することで各発光素子の消灯と点灯を発光素子毎に制御する構成である。このような構成とすることで、必要とされる目標輝度に併せて、発光素子毎に点灯・消灯の制御を行うことができるとともに、各第1発光素子部の発光素子の点灯数に基づき、各第1発光素子部における電圧降下量の差を算出し、各第1発光素子部の出力端の電圧を算出することができ、以て各発光素子部の出力端の電圧と入力電圧Vinとの差を求めることができる。これにより、バイパススイッチ制御部からの切替制御信号を利用して、昇圧回路の入力側に接続されるべき第1定電流駆動部の出力端を切り替えることが可能になる。   Furthermore, the light-emitting device of the present invention is configured such that, among the light-emitting element units driven by the first constant current driving unit, each of the light-emitting elements of at least one first light-emitting element unit is connected in parallel with the light-emitting element. A bypass switch for bypassing a current flowing through the element is provided, and the bypass switch control unit controls turning on and off of each light emitting element for each light emitting element by controlling on / off of the bypass switch. With such a configuration, it is possible to control lighting / extinguishing for each light emitting element in accordance with the required target luminance, and based on the number of lighting of the light emitting elements of each first light emitting element unit, The difference of the voltage drop amount in each first light emitting element part can be calculated, and the voltage at the output terminal of each first light emitting element part can be calculated. Thus, the voltage at the output terminal of each light emitting element part and the input voltage Vin Can be obtained. Thus, it is possible to switch the output terminal of the first constant current driving unit to be connected to the input side of the booster circuit using the switching control signal from the bypass switch control unit.

従って、上記本発明の発光装置を照明装置、又は、表示装置に備えることで、低消費電力の照明装置および表示装置を実現することができる。   Therefore, by providing the light-emitting device of the present invention in a lighting device or a display device, a lighting device and a display device with low power consumption can be realized.

本発明の第1実施形態に係る発光装置の回路構成図。The circuit block diagram of the light-emitting device which concerns on 1st Embodiment of this invention. バイパススイッチを備える発光素子部の回路構成、並びに駆動制御方法について示す図。The figure which shows the circuit structure of a light emitting element part provided with a bypass switch, and a drive control method. 本発明の第2実施形態に係る発光装置の回路構成図。The circuit block diagram of the light-emitting device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る発光装置の回路構成図。The circuit block diagram of the light-emitting device which concerns on 3rd Embodiment of this invention. 従来技術に係る発光装置の回路構成図。The circuit block diagram of the light-emitting device which concerns on a prior art. 従来技術に係る発光装置の回路構成図。The circuit block diagram of the light-emitting device which concerns on a prior art.

〈第1実施形態〉
本発明の一実施形態に係る発光装置1(以降、適宜「本発明装置1」と称す)の構成例を図1に示す。図1の回路構成図に示されるように、本発明装置1は、昇圧回路11、バイパススイッチ制御部100、発光素子部101a,101b、定電流駆動部13a,13b、昇圧制御部14、及び、判定回路(比較部)18a,18bから構成されている。
<First Embodiment>
FIG. 1 shows a configuration example of a light emitting device 1 according to an embodiment of the present invention (hereinafter, referred to as “the present device 1” as appropriate). As shown in the circuit configuration diagram of FIG. 1, the device 1 of the present invention includes a booster circuit 11, a bypass switch control unit 100, light emitting element units 101a and 101b, constant current drive units 13a and 13b, a boost control unit 14, and It consists of determination circuits (comparison units) 18a and 18b.

昇圧回路11は、電源10からの入力電圧Vin(ここでは、5V)を昇圧制御部14からの制御信号41に基づき昇圧し、昇圧後の電圧Voutと出力負荷電流Ioutを、発光素子部101a,101bの夫々に供給する。発光素子部101a,101bに流れる駆動電流を夫々、Ia及びIbとすると、Iout=Ia+Ibの関係が成り立つ。昇圧回路11の入力端に流れる電流をIinとすると、入力電力Pinは、Pin=Vin×Iin、出力電力Poutは、Pout=Vout×Ioutである。昇圧回路の効率αは、α=Pout/Pinで表される。   The booster circuit 11 boosts the input voltage Vin (here, 5 V) from the power supply 10 based on the control signal 41 from the boost control unit 14, and the boosted voltage Vout and the output load current Iout are converted into the light emitting element units 101a, 101a, It supplies to each of 101b. If the drive currents flowing through the light emitting element portions 101a and 101b are Ia and Ib, respectively, the relationship of Iout = Ia + Ib is established. Assuming that the current flowing through the input terminal of the booster circuit 11 is Iin, the input power Pin is Pin = Vin × Iin, and the output power Pout is Pout = Vout × Iout. The efficiency α of the booster circuit is expressed by α = Pout / Pin.

第1発光素子部である発光素子部101a及び101bは、夫々、一以上の発光素子(ここでは、白色のLEDが4個)を直列に接続したLED列から構成され、各LED列のアノード側入力端には、昇圧回路11の出力端が接続されることで、夫々、昇圧後の出力電圧Voutが供給されている。一方、各LED列のカソード側出力端は、夫々、対応する定電流駆動部(13aと13bのうち何れか一方)の入力端に接続されている。ここで、定電流駆動部13a又は13bと接続する各LED列のカソード側の出力端電圧を、夫々、Vda,Vdbとする。   The light emitting element portions 101a and 101b, which are the first light emitting element portions, are each composed of an LED array in which one or more light emitting elements (here, four white LEDs) are connected in series, and the anode side of each LED array Since the output terminal of the booster circuit 11 is connected to the input terminal, the boosted output voltage Vout is supplied to each of the input terminals. On the other hand, the cathode side output end of each LED row is connected to the input end of the corresponding constant current drive unit (any one of 13a and 13b). Here, the output terminal voltages on the cathode side of each LED row connected to the constant current drive unit 13a or 13b are set to Vda and Vdb, respectively.

また、発光素子部101a及び101bは、更に、当該発光素子部の発光素子と並列に接続し、当該発光素子に流れる電流をバイパスさせるためのバイパススイッチをその内部に備えており、当該バイパススイッチのオンオフが発光素子毎に制御されることで、各発光素子の消灯と点灯が、夫々の必要とされる目標輝度に併せて、発光素子毎に制御される。バイパススイッチ制御部100が、当該バイパススイッチのオンオフを発光素子毎に制御するための制御信号48a,48bを生成する。   The light emitting element portions 101a and 101b are further connected in parallel with the light emitting element of the light emitting element portion, and are provided with a bypass switch for bypassing the current flowing through the light emitting element. By controlling on / off for each light emitting element, the light emission and lighting of each light emitting element are controlled for each light emitting element together with the required target luminance. The bypass switch control unit 100 generates control signals 48a and 48b for controlling on / off of the bypass switch for each light emitting element.

以下に、図2を参照して、バイパススイッチを備える発光素子部の具体的な回路構成、及び、バイパススイッチ制御部の動作について説明する。   Below, with reference to FIG. 2, the specific circuit structure of a light emitting element part provided with a bypass switch and operation | movement of a bypass switch control part are demonstrated.

バイパススイッチ制御部100は、第1発光素子部(ここでは、101a)内において直列接続されている発光素子LED01〜LED04の点灯及び消灯を、必要とされる目標輝度に併せて制御するためのPWM信号48aを生成し、バイパススイッチSW1〜SW4への入力信号とすることで、バイパススイッチSW1〜SW4のオンオフを切り替える。バイパススイッチがオン状態の場合、当該バイパススイッチに並列に接続するLEDに流れる電流はバイパスされ、LEDは消灯される。一方、バイパススイッチがオフ状態の場合、当該バイパススイッチに並列に接続するLEDは点灯される。   The bypass switch control unit 100 is a PWM for controlling lighting and extinguishing of the light emitting elements LED01 to LED04 connected in series in the first light emitting element unit (here, 101a) in accordance with required target luminance. The signal 48a is generated and used as an input signal to the bypass switches SW1 to SW4, thereby switching the bypass switches SW1 to SW4 on and off. When the bypass switch is on, the current flowing through the LED connected in parallel to the bypass switch is bypassed and the LED is turned off. On the other hand, when the bypass switch is in the OFF state, the LEDs connected in parallel to the bypass switch are lit.

図2(a)に、バイパススイッチ制御部100からのバイパススイッチへの入力信号48aのタイミングチャートの一例を示す。尚、本実施形態では、入力信号48aが高レベルの時に対応するバイパススイッチがオフする構成となっている。この場合、ある時刻t1においては、バイパススイッチSW1,SW3がオン状態であり、バイパススイッチSW2,SW4がオフ状態であるので、図2(b)に示されるように、LED01とLED03は消灯、LED02とLED04が点灯となり、発光素子部のアノード側入力端から、バイパススイッチSW1,LED02、バイパススイッチSW3,LED04を経由してカソード側出力端へと流れる電流経路が形成される。   FIG. 2A shows an example of a timing chart of the input signal 48a from the bypass switch control unit 100 to the bypass switch. In the present embodiment, the corresponding bypass switch is turned off when the input signal 48a is at a high level. In this case, since the bypass switches SW1 and SW3 are in the on state and the bypass switches SW2 and SW4 are in the off state at a certain time t1, as shown in FIG. 2B, the LED 01 and the LED 03 are turned off, and the LED 02 LED04 is turned on, and a current path is formed which flows from the anode side input end of the light emitting element portion to the cathode side output end via the bypass switches SW1, LED02, bypass switches SW3, LED04.

時刻t1においては、第1発光素子部101a内で点灯している発光素子の個数はLED02とLED04の2個である。バイパススイッチ制御部100は、各第1発光素子部の発光素子と並列に接続するバイパススイッチのオンオフを制御すると同時に、各第1発光素子部の発光素子の点灯数の情報を利用し、各第1発光素子部の発光素子の点灯による電圧降下量を算出することで、昇圧回路の入力側に戻る電流経路の切替を行うための切替制御信号47aと47bを生成し、夫々、判定回路18a,18bに出力する。   At time t1, the number of light-emitting elements that are lit in the first light-emitting element unit 101a is two, LED02 and LED04. The bypass switch control unit 100 controls on / off of the bypass switch connected in parallel with the light emitting element of each first light emitting element unit, and at the same time uses information on the number of lighting of the light emitting elements of each first light emitting element unit. By calculating the amount of voltage drop due to lighting of the light emitting element of one light emitting element unit, switching control signals 47a and 47b for switching the current path returning to the input side of the booster circuit are generated. To 18b.

定電流駆動部13aは定電流回路16aと切替スイッチ17aから、定電流駆動部13bは定電流回路16bと切替スイッチ17aから構成される第1定電流駆動部であり、夫々、対応する発光素子部101a,101bの何れかに発光素子の駆動に必要な駆動電流を供給する。定電流回路16aの一端は切替スイッチ17aに接続し、他端は発光素子部101aのLED列のカソード側出力端と接続している。一方、定電流回路16bの一端は切替スイッチ17bに接続し、他端は発光素子部101bのLED列のカソード側出力端と接続している。   The constant current driving unit 13a is a first constant current driving unit including a constant current circuit 16a and a changeover switch 17a, and the constant current driving unit 13b is a first constant current driving unit including a constant current circuit 16b and a changeover switch 17a. A drive current necessary for driving the light emitting element is supplied to either 101a or 101b. One end of the constant current circuit 16a is connected to the changeover switch 17a, and the other end is connected to the cathode side output terminal of the LED row of the light emitting element portion 101a. On the other hand, one end of the constant current circuit 16b is connected to the changeover switch 17b, and the other end is connected to the cathode side output terminal of the LED row of the light emitting element portion 101b.

切替スイッチ17a及び17bは、夫々、一端が定電流回路の一端と接続し、他端の接続先を、後述する判定回路18a或いは18bからの制御信号46a,46bに基づき、所定の固定電位(ここでは、GND)と昇圧回路11の入力側の何れか一方に切り替え可能である。切替スイッチ17aの他端が昇圧回路11の入力側に接続されることで、昇圧回路11から、発光素子部101a及び定電流駆動部13aを経由して昇圧回路11の入力側に戻る駆動電流の電流経路が、又は、切替スイッチ17bの他端が昇圧回路11の入力側に接続されることで、昇圧回路11から、発光素子部101b及び定電流駆動部13bを経由して昇圧回路11の入力側に戻る駆動電流の電流経路が、夫々形成される。ここで、定電流回路16aにより駆動される電流をIa、定電流回路16bにより駆動される電流をIbとする。   Each of the changeover switches 17a and 17b has one end connected to one end of a constant current circuit, and the other end connected to a predetermined fixed potential (here, based on control signals 46a and 46b from a determination circuit 18a or 18b described later). Then, it can be switched to either one of the input side of GND and the booster circuit 11. By connecting the other end of the changeover switch 17a to the input side of the booster circuit 11, the drive current returning from the booster circuit 11 to the input side of the booster circuit 11 via the light emitting element unit 101a and the constant current driver unit 13a. The current path or the other end of the changeover switch 17b is connected to the input side of the booster circuit 11, so that the input of the booster circuit 11 from the booster circuit 11 via the light emitting element unit 101b and the constant current drive unit 13b. A current path of the drive current returning to the side is formed. Here, the current driven by the constant current circuit 16a is Ia, and the current driven by the constant current circuit 16b is Ib.

昇圧制御部14は、定電流駆動部13aと接続する発光素子部101aのLED列のカソード側の出力端電圧Vda、及び、定電流駆動部13bと接続する発光素子部101bのLED列のカソード側の出力端電圧Vdbを入力として、VdaとVdbのうちどちらか最も低い電圧(第1電圧)を検出して、当該第1電圧を基準電圧Vrefとを比較し、当該比較結果に基づいて、昇圧回路11の出力電圧Voutを制御するための制御信号41を生成する。ここで、基準電圧Vrefは定電流回路16a及び16bが安定に定電流動作をさせるのに必要な電圧であり、ここでは1Vである。基準電圧Vrefは、定電流回路の構成により異なるが、安定に定電流動作をさせることができる限りにおいて、できるだけ低電圧を設定することが望ましい。更に、昇圧制御部14は、当該第1電圧が検出された発光素子部と接続する定電流駆動部13aと13bの何れかについて、昇圧回路11の入力側へ戻る駆動電流の電流経路が形成されないようにする制御信号44a,44bを、夫々、判定回路18a,18bに出力する。   The step-up control unit 14 includes an output voltage Vda on the cathode side of the LED row of the light emitting element unit 101a connected to the constant current driving unit 13a, and a cathode side of the LED row of the light emitting element unit 101b connected to the constant current driving unit 13b. Output terminal voltage Vdb as an input, detects the lowest voltage (first voltage) of Vda and Vdb, compares the first voltage with the reference voltage Vref, and boosts the voltage based on the comparison result. A control signal 41 for controlling the output voltage Vout of the circuit 11 is generated. Here, the reference voltage Vref is a voltage necessary for the constant current circuits 16a and 16b to stably operate at a constant current, and is 1 V here. Although the reference voltage Vref varies depending on the configuration of the constant current circuit, it is desirable to set the reference voltage Vref as low as possible as long as the constant current operation can be stably performed. Further, the boost control unit 14 does not form a current path of the drive current that returns to the input side of the boost circuit 11 for any one of the constant current drive units 13a and 13b connected to the light emitting element unit in which the first voltage is detected. Control signals 44a and 44b to be output are output to determination circuits 18a and 18b, respectively.

判定回路18a及び18bは、夫々、各発光素子部101a,101bのLED列のカソード側の出力端電圧Vda,Vdbと入力電圧Vinの電圧の高低の関係を判定し、VdaとVdbのうち何れかが入力電圧Vinよりも基準電圧Vref以上高い場合、当該入力電圧Vinよりも基準電圧以上高い出力端電圧が検出された発光素子部と接続する第1定電流駆動部に対して、当該第1定電流駆動部内部の定電流回路の接続先を昇圧回路11の入力側に切り替えるための制御信号46a,46bを、切替スイッチ17a,17bに出力する。   The determination circuits 18a and 18b determine the relationship between the output terminal voltages Vda and Vdb on the cathode side of the LED rows of the light emitting element portions 101a and 101b and the voltage of the input voltage Vin, respectively, and either Vda or Vdb. Is higher than the input voltage Vin by the reference voltage Vref or higher, the first constant current driving unit connected to the light emitting element unit in which the output terminal voltage higher than the input voltage Vin is detected by the reference voltage is used. Control signals 46a and 46b for switching the connection destination of the constant current circuit in the current driver to the input side of the booster circuit 11 are output to the changeover switches 17a and 17b.

ここで、カソード側の出力端電圧Vda,Vdbと入力電圧Vinとの比較には、バイパススイッチ制御部100からの各第1発光素子部の発光素子の点灯数の情報を利用することができる。各第1発光素子部の発光素子に印加される電圧Vfは既知であるから、各第1発光素子部の発光素子の点灯数に基づき、各第1発光素子部のLED列で生じる電圧降下を算出することができる。一方、バイパススイッチを備えない発光素子部のLED列で生じる電圧降下も既知であり、更に、最も低電圧の第1電圧が検出されたLED列のカソード側の出力端については、当該出力端電圧が固定電位(GND)と基準電圧Vrefとの和と等しくなるように昇圧制御部14により制御されるので、これにより、各第1発光素子部のLED列のカソード側の出力端電圧を算出できる。バイパススイッチ制御部100は、例えば、各第1発光素子部のLED列のカソード側の出力端電圧と入力電圧Vinの差電圧を算出し、切替制御信号47a,47bとして、夫々、判定回路18a及び18bへ出力する。   Here, for comparison between the cathode-side output terminal voltages Vda and Vdb and the input voltage Vin, information on the number of light-emitting elements of each first light-emitting element unit from the bypass switch control unit 100 can be used. Since the voltage Vf applied to the light emitting element of each first light emitting element unit is known, the voltage drop generated in the LED row of each first light emitting element unit is calculated based on the number of lighting of the light emitting elements of each first light emitting element unit. Can be calculated. On the other hand, the voltage drop that occurs in the LED string of the light emitting element unit that does not include the bypass switch is also known, and the output voltage on the cathode side of the LED string in which the lowest first voltage is detected is the output terminal voltage. Is controlled by the step-up control unit 14 so as to be equal to the sum of the fixed potential (GND) and the reference voltage Vref, whereby the output terminal voltage on the cathode side of the LED row of each first light emitting element unit can be calculated. . The bypass switch control unit 100 calculates, for example, a difference voltage between the cathode side output terminal voltage and the input voltage Vin of the LED row of each first light emitting element unit, and uses the determination circuit 18a and the switching control signals 47a and 47b, respectively. To 18b.

具体的には、判定回路18aは、第1発光素子部101aの出力端電圧Vdaと入力電圧Vinの高低を切替制御信号47aに基づき判定し、VdaがVinより基準電圧Vref以上高く、かつ第1電圧に該当しない場合に、定電流回路16aの一端の接続先を昇圧回路11の入力側に切り替えるための制御信号46aを、切替スイッチ17aに出力する。また、判定回路18aは、昇圧制御部からの制御信号44aを受け、Vdaが第1電圧に該当する場合には、定電流回路16aの一端の接続先を固定電位(GND)に切り替えるための制御信号46aを、切替スイッチ17aに出力する。   Specifically, the determination circuit 18a determines whether the output terminal voltage Vda and the input voltage Vin of the first light emitting element unit 101a are high or low based on the switching control signal 47a, Vda is higher than Vin by the reference voltage Vref, and the first When the voltage does not correspond to the voltage, a control signal 46a for switching the connection destination of one end of the constant current circuit 16a to the input side of the booster circuit 11 is output to the changeover switch 17a. Further, the determination circuit 18a receives a control signal 44a from the boost control unit, and when Vda corresponds to the first voltage, control for switching the connection destination of one end of the constant current circuit 16a to a fixed potential (GND). The signal 46a is output to the changeover switch 17a.

同様に、判定回路18bは、第1発光素子部101bの出力端電圧Vdbと入力電圧Vinの大小を切替制御信号47bに基づき判定し、VdbがVinより基準電圧以上高く、かつ第1電圧に該当しない場合に、定電流回路16bの一端の接続先を昇圧回路11の入力側に切り替えるための制御信号46bを、切替スイッチ17bに出力する。また、判定回路18bは、昇圧制御部からの制御信号44bを受け、Vdbが第1電圧に該当する場合には、定電流回路16bの一端の接続先を固定電位(GND)に切り替えるための制御信号46bを、切替スイッチ17bに出力する。   Similarly, the determination circuit 18b determines the magnitude of the output terminal voltage Vdb and the input voltage Vin of the first light emitting element unit 101b based on the switching control signal 47b, and Vdb is higher than Vin by the reference voltage and corresponds to the first voltage. If not, a control signal 46b for switching the connection destination of one end of the constant current circuit 16b to the input side of the booster circuit 11 is output to the changeover switch 17b. In addition, the determination circuit 18b receives a control signal 44b from the boost control unit, and when Vdb corresponds to the first voltage, control for switching the connection destination of one end of the constant current circuit 16b to a fixed potential (GND). The signal 46b is output to the changeover switch 17b.

ここで、例として、発光素子部101aの各発光素子、及び、発光素子部101bの各発光素子について、点灯時に所定の発光量を得るために、夫々、規定の電流Ia(=20mA),Ib(=20mA)の駆動電流が流れるように第1定電流駆動部である定電流駆動部13a、13bにより制御され、発光素子部101aの各発光素子および発光素子部101bの各発光素子の駆動に必要な電圧Vfが、例えば、夫々、発光素子一個につき約3.6Vであるとする。また、各バイパススイッチのオン状態における電圧降下を1Vとする。   Here, as an example, for each light emitting element of the light emitting element unit 101a and each light emitting element of the light emitting element unit 101b, prescribed currents Ia (= 20 mA) and Ib are obtained in order to obtain a predetermined light emission amount at the time of lighting. (= 20 mA) is controlled by the constant current drive units 13a and 13b, which are first constant current drive units, so that a drive current flows, to drive each light emitting element of the light emitting element unit 101a and each light emitting element of the light emitting element unit 101b. For example, it is assumed that the necessary voltage Vf is about 3.6 V for each light emitting element. Further, the voltage drop in the ON state of each bypass switch is 1V.

ある時刻t1において、発光素子部101aのバイパススイッチが2個オンされ、2つの発光素子が点灯し、発光素子部101bのバイパススイッチは全てオフ状態であり、4つの発光素子が点灯しているとすると、各LED列で発生する電圧降下は、夫々、発光素子部101bの場合3.6V×4=14.4V、発光素子部101aの場合3.6V×2+1.0V×2=9.2Vとなる。従って、昇圧制御部14が検出する第1電圧は、LED列で発生する電圧降下が最も大きく、結果カソード電圧が最も低くなる発光素子部101bのLED列のカソード側の電圧Vdbである。従って発光素子部101bが昇圧制御の対象となり、昇圧制御部14は、昇圧回路の出力電圧Voutから発光素子部101bにおける電圧降下分(=14.4V)を差し引いた残りの電圧Vdbが、固定電位(GND)と基準電圧Vref(=1V)との和と等しくなるように昇圧回路11の出力電圧Voutを制御する。即ち、昇圧制御部14は、Voutが上記電圧降下分に基準電圧を加えた15.4Vとなるように、昇圧回路11に昇圧のための制御信号41を出力する。この結果、各発光素子部101a,101bのLED列のカソード側の出力端電圧は、Vda=15.4V−9.2V=6.2V、Vdb=1.0V(=Vref)となる。   At a certain time t1, when two bypass switches of the light emitting element unit 101a are turned on, two light emitting elements are lit, all bypass switches of the light emitting element unit 101b are off, and four light emitting elements are lit. Then, the voltage drop generated in each LED row is 3.6V × 4 = 14.4V in the case of the light emitting element portion 101b and 3.6V × 2 + 1.0V × 2 = 9.2V in the case of the light emitting element portion 101a, respectively. Become. Therefore, the first voltage detected by the boost control unit 14 is the voltage Vdb on the cathode side of the LED column of the light emitting element unit 101b in which the voltage drop generated in the LED column is the largest and as a result the cathode voltage is the lowest. Therefore, the light emitting element portion 101b is subjected to boost control, and the boost control portion 14 determines that the remaining voltage Vdb obtained by subtracting the voltage drop (= 14.4V) in the light emitting element portion 101b from the output voltage Vout of the booster circuit is a fixed potential. The output voltage Vout of the booster circuit 11 is controlled to be equal to the sum of (GND) and the reference voltage Vref (= 1V). In other words, the boost control unit 14 outputs the control signal 41 for boosting to the booster circuit 11 so that Vout becomes 15.4 V obtained by adding the reference voltage to the voltage drop. As a result, the output terminal voltages on the cathode side of the LED rows of the respective light emitting element portions 101a and 101b are Vda = 15.4V−9.2V = 6.2V and Vdb = 1.0V (= Vref).

これにより判定回路18aは、バイパススイッチ制御部100からの切替制御信号47aと昇圧制御部からの制御信号44aを受け、VdaがVinよりも基準電圧以上高く、かつ第1電圧に該当しないので、定電流駆動部13aの定電流回路16aの接続先を昇圧回路11の入力側に切り替えるための制御信号46aを、切替スイッチ17aに出力する。一方、判定回路18bは、バイパススイッチ制御部100からの切替制御信号47b、及び、昇圧制御部からの制御信号44bに基づき、Vdbが第1電圧に該当するので、定電流駆動部13bの定電流回路16bの接続先を固定電位(GND)に切り替えるための制御信号46bを、切替スイッチ17bに出力する。   Thus, the determination circuit 18a receives the switching control signal 47a from the bypass switch control unit 100 and the control signal 44a from the boost control unit, and Vda is higher than the reference voltage by more than Vin and does not correspond to the first voltage. A control signal 46a for switching the connection destination of the constant current circuit 16a of the current driver 13a to the input side of the booster circuit 11 is output to the changeover switch 17a. On the other hand, the determination circuit 18b is based on the switching control signal 47b from the bypass switch control unit 100 and the control signal 44b from the boost control unit, and Vdb corresponds to the first voltage. A control signal 46b for switching the connection destination of the circuit 16b to a fixed potential (GND) is output to the changeover switch 17b.

これにより、定電流駆動部13aにより供給される駆動電流の全部が昇圧回路11の入力側に流れ、昇圧回路11から、発光素子部101a及び定電流駆動部13aを経て昇圧回路11の入力側に戻る電流経路が形成される。ここで、Vin=5Vであるので、Vdr−Vin>Vrefであり、定電流回路16aの定電流性は保たれている。   As a result, all of the drive current supplied by the constant current drive unit 13a flows to the input side of the booster circuit 11, and from the booster circuit 11 to the input side of the booster circuit 11 through the light emitting element unit 101a and the constant current drive unit 13a. A return current path is formed. Here, since Vin = 5V, Vdr−Vin> Vref, and the constant current characteristic of the constant current circuit 16a is maintained.

また、定電流駆動部13aを昇圧回路11の入力側に接続したことにより、定電流回路16aの入出力端間に印加される電圧が6.2Vから1.2Vに大幅に低下し、定電流回路16aでの電力消費が削減され、定電流駆動部13aでの発熱が抑えられている。   Further, by connecting the constant current driving unit 13a to the input side of the booster circuit 11, the voltage applied between the input and output terminals of the constant current circuit 16a is greatly reduced from 6.2V to 1.2V, and the constant current Power consumption in the circuit 16a is reduced, and heat generation in the constant current drive unit 13a is suppressed.

ここで、計算を簡単にするために昇圧回路の効率をα=1.0(100%)とすると、昇圧回路11の出力電力Poutは、Pout=Vout×Iout=Vout×(Ia+Ib)=15.4V×(20mA+20mA)=616mWとなる。一方、昇圧回路11の入力電力Pinは、Pin×α=Poutであるから、昇圧回路11の入力電流Iinは、Iin=Pout/Vin=123mAとなるが、定電流回路16aから電流Iaが供給されるので、電源10はIin−Ia=103mAの入力電流を供給するだけで済む。   Here, in order to simplify the calculation, assuming that the efficiency of the booster circuit is α = 1.0 (100%), the output power Pout of the booster circuit 11 is Pout = Vout × Iout = Vout × (Ia + Ib) = 15. 4V × (20 mA + 20 mA) = 616 mW. On the other hand, since the input power Pin of the booster circuit 11 is Pin × α = Pout, the input current Iin of the booster circuit 11 is Iin = Pout / Vin = 123 mA, but the current Ia is supplied from the constant current circuit 16a. Therefore, the power supply 10 only needs to supply an input current of Iin−Ia = 103 mA.

従って、電源10から見た入力電力は、Pin’=Vin×(Iin−Ia)=515mWとなり、全ての定電流回路が固定電位GNDに接続される従来技術の構成と比較すると、Pin’/Pin=515mW/616mW=0.836となり、従来技術と比較して約16%の電力低減効果が得られる。   Therefore, the input power viewed from the power source 10 is Pin ′ = Vin × (Iin−Ia) = 515 mW, which is Pin ′ / Pin as compared with the configuration of the related art in which all constant current circuits are connected to the fixed potential GND. = 515 mW / 616 mW = 0.836, and a power reduction effect of about 16% is obtained as compared with the prior art.

〈第2実施形態〉
本発明の一実施形態に係る発光装置2(以降、適宜「本発明装置2」と称す)の構成例を図3に示す。図3の回路構成図に示されるように、本発明装置2は、昇圧回路11、バイパススイッチ制御部100、第1発光素子部である発光素子部101a,101b、定電流駆動部23a,23b、昇圧制御部14、及び、判定回路(比較部)28a,28bから構成されている。本発明装置2は、定電流駆動部の構成が本発明装置1とは異なる。即ち、各定電流駆動部23a,23bは、夫々、内部に接続先の異なる複数(2個)の定電流回路を有しており、判定回路28a,28bからの切替信号に基づき当該複数の定電流回路の夫々に流れる駆動電流量を制御可能に構成された第1定電流駆動部である。昇圧回路11、バイパススイッチ制御部100、発光素子部101a,101b、及び、昇圧制御部14の構成については、第1実施形態に係る本発明装置1と同様であるので説明を割愛する。
Second Embodiment
FIG. 3 shows a configuration example of a light emitting device 2 according to an embodiment of the present invention (hereinafter referred to as “the present device 2” as appropriate). As shown in the circuit configuration diagram of FIG. 3, the device 2 of the present invention includes a booster circuit 11, a bypass switch control unit 100, light emitting element units 101 a and 101 b that are first light emitting element units, constant current driving units 23 a and 23 b, The boosting control unit 14 and determination circuits (comparing units) 28a and 28b are configured. The device 2 of the present invention is different from the device 1 of the present invention in the configuration of the constant current drive unit. That is, each of the constant current driving units 23a and 23b has a plurality (two) of constant current circuits with different connection destinations therein, and the plurality of constant current drivers 23a and 23b are based on switching signals from the determination circuits 28a and 28b. This is a first constant current drive unit configured to be able to control the amount of drive current flowing in each of the current circuits. The configurations of the booster circuit 11, the bypass switch control unit 100, the light emitting element units 101a and 101b, and the boost control unit 14 are the same as those of the device 1 of the present invention according to the first embodiment, and thus description thereof is omitted.

定電流駆動部23aは定電流回路26aと27aから、定電流駆動部23bは定電流回路26bと27bから構成されており、夫々、2個の定電流回路を有している。定電流回路26aと26bの一端は昇圧回路11の入力側に、定電流回路27aと27bの一端は所定の固定電位(ここでは、GND)に接続されている。一方、定電流回路26aと27aの他端は発光素子部101aのLED列のカソード側出力端と、定電流回路26bと27bの他端は発光素子部101bのLED列のカソード側出力端と、夫々、並列に接続している。これにより、昇圧回路11から発光素子部101aと定電流駆動部23aの定電流回路26aを経て昇圧回路11の入力側に戻る駆動電流の電流経路、及び、昇圧回路11から発光素子部101bと定電流駆動部23bの定電流回路26bを経て昇圧回路11の入力側に戻る駆動電流の電流経路が形成可能である。   The constant current driving unit 23a includes constant current circuits 26a and 27a, and the constant current driving unit 23b includes constant current circuits 26b and 27b, each having two constant current circuits. One ends of the constant current circuits 26a and 26b are connected to the input side of the booster circuit 11, and one ends of the constant current circuits 27a and 27b are connected to a predetermined fixed potential (here, GND). On the other hand, the other ends of the constant current circuits 26a and 27a are the cathode side output ends of the LED rows of the light emitting element portion 101a, and the other ends of the constant current circuits 26b and 27b are the cathode side output ends of the LED rows of the light emitting element portion 101b. Each is connected in parallel. As a result, the current path of the drive current returning from the booster circuit 11 to the input side of the booster circuit 11 through the light emitting element unit 101a and the constant current circuit 26a of the constant current driver unit 23a, and the constant current circuit from the booster circuit 11 to the light emitting element unit 101b. It is possible to form a current path of a drive current that returns to the input side of the booster circuit 11 through the constant current circuit 26b of the current driver 23b.

更に、定電流駆動部23aは、後述する判定回路28aからの制御信号42a,43aを受けることで、定電流駆動部23aの定電流回路26aと27aに流れる電流量が制御される。同様に、定電流駆動部23bは、後述する判定回路28bからの制御信号42b,43bを受けることで、定電流駆動部23bの定電流回路26bと27bに流れる電流量が制御される。ここで、定電流回路26aにより駆動される電流をIa1、定電流回路27aにより駆動される電流をIa2、定電流回路26bにより駆動される電流をIb1、定電流回路27bにより駆動される電流をIb2とすると、発光素子部101aに流れる駆動電流Iaは、Ia=Ia1+Ia2、発光素子部101bに流れる駆動電流Ibは、Ib=Ib1+Ib2であり、定電流回路26aと27aに流れる電流の合計Ia、及び定電流回路26bと27bに流れる電流の合計Ibが、夫々、安定状態では一定になるように、個々の定電流回路26a,26b,27a,27bにより駆動される電流Ia1,Ib1,Ia2,Ib2が制御される。   Furthermore, the constant current drive unit 23a receives control signals 42a and 43a from a determination circuit 28a described later, thereby controlling the amount of current flowing through the constant current circuits 26a and 27a of the constant current drive unit 23a. Similarly, the constant current drive unit 23b receives control signals 42b and 43b from a determination circuit 28b described later, thereby controlling the amount of current flowing through the constant current circuits 26b and 27b of the constant current drive unit 23b. Here, the current driven by the constant current circuit 26a is Ia1, the current driven by the constant current circuit 27a is Ia2, the current driven by the constant current circuit 26b is Ib1, and the current driven by the constant current circuit 27b is Ib2. Then, the drive current Ia flowing through the light emitting element portion 101a is Ia = Ia1 + Ia2, the drive current Ib flowing through the light emitting element portion 101b is Ib = Ib1 + Ib2, and the total current Ia flowing through the constant current circuits 26a and 27a is constant and constant. The currents Ia1, Ib1, Ia2, and Ib2 driven by the individual constant current circuits 26a, 26b, 27a, and 27b are controlled so that the total current Ib flowing through the current circuits 26b and 27b is constant in the stable state. Is done.

判定回路28a及び28bは、各第1発光素子部101a,101bのLED列のカソード側の出力端電圧Vda,Vdbと入力電圧Vinとの電圧の高低の関係を判定し、VdaとVdbのうち何れかが入力電圧Vinよりも高い場合、当該入力電圧Vinよりも高い出力端電圧が検出された第1発光素子部と接続する第1定電流駆動部に対して、当該第1定電流駆動部内部の定電流回路のうち、一端が昇圧回路11の入力側と接続する定電流回路を利用可能とする制御信号を出力する。   The determination circuits 28a and 28b determine the relationship between the output terminal voltages Vda and Vdb on the cathode side of the LED rows of the first light emitting element portions 101a and 101b and the input voltage Vin, and any of Vda and Vdb is determined. Is higher than the input voltage Vin, the first constant current drive unit is connected to the first constant current drive unit connected to the first light emitting element unit in which the output voltage higher than the input voltage Vin is detected. Among the constant current circuits, a control signal is output that enables use of a constant current circuit having one end connected to the input side of the booster circuit 11.

具体的には、判定回路28aは、第1発光素子部101aの出力端電圧Vdaと入力電圧Vinの高低をバイパススイッチ制御部100からの切替制御信号47aに基づき判定し、昇圧制御部14からの制御信号44aとの演算により、VdaがVinより高く、かつ第1電圧に該当しない場合に、第1定電流駆動部である定電流駆動部23aの定電流回路26aを利用可能とする制御信号42aを、定電流駆動部23aに出力する。更に、VdaがVinより高く、かつ第1電圧に該当しないが、VdaがVinよりも基準電圧以上高くない場合には、定電流回路26aのみでは発光素子部101aの駆動に必要な電流を供給できないため、不足する駆動電流を定電流回路27aを使用して補うための制御信号43aを定電流駆動部23aに出力し、定電流回路26aと27aとで駆動に必要な定電流を供給するようにする。一方で、判定回路28aは、VdaがVinよりも低い場合には定電流回路26aを利用不可能とする制御信号42aを定電流駆動部23aに出力し、固定電位に接続されている定電流回路27aのみを用いて駆動に必要な定電流を供給するようにする。また、判定回路28aは、昇圧制御部14からの制御信号44aを受け、Vdaが第1電圧に該当する場合には、定電流駆動部23aの定電流回路26aを不活性化し、定電流回路27aのみを利用する制御信号42a及び43aを、定電流駆動部23aに出力する。   Specifically, the determination circuit 28 a determines whether the output terminal voltage Vda and the input voltage Vin of the first light emitting element unit 101 a are high or low based on the switching control signal 47 a from the bypass switch control unit 100, and outputs from the boost control unit 14. Control signal 42a that enables use of constant current circuit 26a of constant current drive unit 23a, which is the first constant current drive unit, when Vda is higher than Vin and does not correspond to the first voltage by calculation with control signal 44a. Is output to the constant current drive unit 23a. Further, when Vda is higher than Vin and does not correspond to the first voltage, but Vda is not higher than Vin by a reference voltage or higher, the constant current circuit 26a alone cannot supply a current necessary for driving the light emitting element portion 101a. Therefore, the control signal 43a for compensating for the insufficient drive current using the constant current circuit 27a is output to the constant current drive unit 23a, and the constant current required for driving is supplied by the constant current circuits 26a and 27a. To do. On the other hand, when Vda is lower than Vin, the determination circuit 28a outputs a control signal 42a that disables the constant current circuit 26a to the constant current driving unit 23a, and is connected to a fixed potential. A constant current required for driving is supplied using only 27a. Further, the determination circuit 28a receives the control signal 44a from the boost control unit 14, and when Vda corresponds to the first voltage, the determination circuit 28a inactivates the constant current circuit 26a of the constant current drive unit 23a, and constant current circuit 27a. The control signals 42a and 43a using only the current are output to the constant current drive unit 23a.

同様に、判定回路28bは、第1発光素子部101bの出力端電圧Vdbと入力電圧Vinの大小をバイパススイッチ制御部100からの切替制御信号47bに基づき判定し、昇圧制御部14からの制御信号44bとの演算により、VdbがVinより高く、かつ第1電圧に該当しない場合に、第1定電流駆動部である定電流駆動部23bの定電流回路26bを利用可能とする制御信号42bを、定電流駆動部23bに出力する。更に、VdbがVinより高く、かつ第1電圧に該当しないが、VdbがVinよりも基準電圧以上高くない場合には、定電流回路26bのみでは発光素子部101bの駆動に必要な電流を供給できないため、不足する駆動電流を定電流回路27bを使用して補うための制御信号43bを定電流駆動部23bに出力し、定電流回路26bと27bとで駆動に必要な定電流を供給するようにする。一方で、判定回路28bは、VdbがVinよりも低い場合には定電流回路26bを利用不可能とする制御信号42bを定電流駆動部23bに出力し、固定電位に接続されている定電流回路27bのみを用いて駆動に必要な定電流を供給するようにする。また、判定回路28bは、昇圧制御部14からの制御信号44bを受け、Vdbが第1電圧に該当する場合には、定電流駆動部23bの定電流回路26bを不活性化し、定電流回路27bのみを利用する制御信号42b及び43bを、定電流駆動部23bに出力する。   Similarly, the determination circuit 28b determines the magnitude of the output terminal voltage Vdb and the input voltage Vin of the first light emitting element unit 101b based on the switching control signal 47b from the bypass switch control unit 100, and the control signal from the boost control unit 14 44b, when Vdb is higher than Vin and does not correspond to the first voltage, a control signal 42b for making the constant current circuit 26b of the constant current drive unit 23b, which is the first constant current drive unit, available. It outputs to the constant current drive part 23b. Further, when Vdb is higher than Vin and does not correspond to the first voltage, but Vdb is not higher than Vin by a reference voltage or higher, the constant current circuit 26b alone cannot supply a current necessary for driving the light emitting element portion 101b. Therefore, the control signal 43b for compensating for the insufficient driving current using the constant current circuit 27b is output to the constant current driving unit 23b, and the constant current required for driving is supplied by the constant current circuits 26b and 27b. To do. On the other hand, when Vdb is lower than Vin, the determination circuit 28b outputs a control signal 42b that disables the constant current circuit 26b to the constant current driving unit 23b, and is connected to a fixed potential. A constant current required for driving is supplied using only 27b. In addition, the determination circuit 28b receives the control signal 44b from the boost control unit 14, and when Vdb corresponds to the first voltage, the determination circuit 28b inactivates the constant current circuit 26b of the constant current drive unit 23b, and constant current circuit 27b. The control signals 42b and 43b using only the current are output to the constant current driving unit 23b.

これにより、VdaがVinより高く、かつ第1電圧に該当しない場合には、昇圧回路11から発光素子部101aと定電流駆動部23aの定電流回路26aを経て昇圧回路11の入力側に戻る駆動電流の電流経路が、或いは、VdbがVinより高く、かつ第1電圧に該当しない場合には、昇圧回路11から発光素子部101bと定電流駆動部23bの定電流回路26bを経て昇圧回路11の入力側に戻る駆動電流の電流経路が、夫々形成される。   Thus, when Vda is higher than Vin and does not correspond to the first voltage, the drive returns from the booster circuit 11 to the input side of the booster circuit 11 through the light emitting element unit 101a and the constant current circuit 26a of the constant current drive unit 23a. When the current path of the current or Vdb is higher than Vin and does not correspond to the first voltage, the booster circuit 11 passes through the light emitting element unit 101b and the constant current circuit 26b of the constant current drive unit 23b. Current paths for driving currents returning to the input side are formed.

ここで、第1実施形態と同様、例として、発光素子部101aの各LED、及び、発光素子部101bの各LEDについて、点灯時に所定の発光量を得るために、夫々、規定の電流Ia(=20mA),Ib(=20mA)の駆動電流が流れるように定電流駆動部13a、13bにより制御され、発光素子部101aの各LED、及び、発光素子部101bの各LEDの駆動に必要な電圧Vfが、例えば、夫々、LED一個につき約3.6Vであるとする。また、各バイパススイッチのオン状態における電圧降下量を1Vとする。ある時刻t1において、発光素子部101aのバイパススイッチが2個オンされ、2つの発光素子が点灯し、発光素子部101bのバイパススイッチは全てオフ状態であり、4つの発光素子が点灯しているとすると、各LED列で発生する電圧降下は、夫々、発光素子部101bの場合3.6V×4=14.4V、発光素子部101aの場合3.6V×2+1.0V×2=9.2Vとなる。従って、発光素子部101bが昇圧制御の対象となり、昇圧制御部14は、昇圧回路の出力電圧Voutから発光素子部101bにおける電圧降下分(=14.4V)を差し引いた残りの電圧Vdbが、固定電位(GND)と基準電圧Vref(=1V)との和と等しくなるように昇圧回路11の出力電圧Voutを制御する。即ち、昇圧制御部14は、Vout=15.4Vとなるように、昇圧回路11に昇圧のための制御信号41を出力する。この結果、各発光素子部101a,101bのLED列のカソード側の出力端電圧は、Vda=15.4V−9.2V=6.2V、Vdb=1.0V(=Vref)となる。   Here, as in the first embodiment, as an example, for each LED of the light emitting element unit 101a and each LED of the light emitting element unit 101b, a predetermined current Ia ( = 20 mA) and Ib (= 20 mA) are controlled by the constant current driving units 13a and 13b so that the driving current flows, and the voltages necessary for driving the LEDs of the light emitting element unit 101a and the LEDs of the light emitting element unit 101b Assume that Vf is about 3.6 V per LED, for example. Further, the voltage drop amount in the ON state of each bypass switch is set to 1V. At a certain time t1, when two bypass switches of the light emitting element unit 101a are turned on, two light emitting elements are lit, all bypass switches of the light emitting element unit 101b are off, and four light emitting elements are lit. Then, the voltage drop generated in each LED row is 3.6V × 4 = 14.4V in the case of the light emitting element portion 101b and 3.6V × 2 + 1.0V × 2 = 9.2V in the case of the light emitting element portion 101a, respectively. Become. Therefore, the light emitting element unit 101b is subjected to boost control, and the boosting control unit 14 fixes the remaining voltage Vdb obtained by subtracting the voltage drop (= 14.4V) in the light emitting element unit 101b from the output voltage Vout of the booster circuit. The output voltage Vout of the booster circuit 11 is controlled so as to be equal to the sum of the potential (GND) and the reference voltage Vref (= 1V). That is, the boost control unit 14 outputs the control signal 41 for boosting to the booster circuit 11 so that Vout = 15.4V. As a result, the output terminal voltages on the cathode side of the LED rows of the respective light emitting element portions 101a and 101b are Vda = 15.4V−9.2V = 6.2V and Vdb = 1.0V (= Vref).

この場合、判定回路28aは、バイパススイッチ制御部からの切替制御信号47aと昇圧制御部からの制御信号44aを受け、VdaがVinより高く、かつ第1電圧に該当しないので、定電流駆動部23aの定電流回路26aを利用可能とする制御信号42aを、定電流駆動部23aに出力する。一方、判定回路28bは、バイパススイッチ制御部からの切替制御信号47bと昇圧制御部からの制御信号44bを受け、Vdbが第1電圧に該当するので、定電流駆動部23bの定電流回路26bを不活性化し、定電流回路27bのみを利用する制御信号42bと43bを、定電流駆動部23bに出力する。   In this case, the determination circuit 28a receives the switching control signal 47a from the bypass switch control unit and the control signal 44a from the boost control unit, and since Vda is higher than Vin and does not correspond to the first voltage, the constant current driving unit 23a The control signal 42a for enabling the constant current circuit 26a is output to the constant current drive unit 23a. On the other hand, the determination circuit 28b receives the switching control signal 47b from the bypass switch control unit and the control signal 44b from the boost control unit, and Vdb corresponds to the first voltage, so that the constant current circuit 26b of the constant current drive unit 23b is changed. The control signals 42b and 43b that are deactivated and use only the constant current circuit 27b are output to the constant current drive unit 23b.

これにより、定電流駆動部23aにより供給される駆動電流の少なくとも一部が昇圧回路11の入力側に流れ、昇圧回路11から、発光素子部101a及び定電流駆動部23aの定電流回路26aを経て昇圧回路11の入力側に戻る電流経路が形成される。   As a result, at least a part of the drive current supplied by the constant current drive unit 23a flows to the input side of the booster circuit 11, and from the booster circuit 11 through the light emitting element unit 101a and the constant current circuit 26a of the constant current drive unit 23a. A current path returning to the input side of the booster circuit 11 is formed.

このとき、定電流回路26aにより駆動される電流Ia1と定電流回路27aにより駆動される電流Ia2の合計が、Ia1+Ia2=20mA(=Ia)となるように、定電流回路27aにより駆動される電流が制御信号43aにより制御される。今、Vin=5Vであるので、Vda−Vin>Vrefであり、固定電位(GND)に接続する定電流回路27aは使用せず、不活性化し、昇圧回路11の入力側に接続する定電流回路26aのみ使用しても、定電流回路26aの定電流性を保つことができる。このため、判定回路28aは、定電流駆動部23aの定電流回路27aを不活性化するための制御信号43aを、定電流駆動部23aに出力する。   At this time, the current driven by the constant current circuit 27a is such that the sum of the current Ia1 driven by the constant current circuit 26a and the current Ia2 driven by the constant current circuit 27a is Ia1 + Ia2 = 20 mA (= Ia). It is controlled by the control signal 43a. Now, since Vin = 5V, Vda−Vin> Vref, the constant current circuit 27a connected to the fixed potential (GND) is not used, is deactivated, and is connected to the input side of the booster circuit 11 Even if only 26a is used, the constant current characteristic of the constant current circuit 26a can be maintained. For this reason, the determination circuit 28a outputs a control signal 43a for inactivating the constant current circuit 27a of the constant current drive unit 23a to the constant current drive unit 23a.

この結果、定電流駆動部23aの定電流回路26aを昇圧回路11の入力側に接続するとともに、定電流回路27aを不活性化することにより、定電流回路26aに印加される電圧が6.2Vから1.2Vに大幅に低下し、定電流駆動部23aでの電力消費が削減され、発熱が抑えられる。   As a result, the constant current circuit 26a of the constant current drive unit 23a is connected to the input side of the booster circuit 11, and the constant current circuit 27a is deactivated so that the voltage applied to the constant current circuit 26a is 6.2V. To 1.2V, the power consumption in the constant current drive unit 23a is reduced, and heat generation is suppressed.

更に、発光素子の駆動に必要な電流の一部(ここでは、Ia1(=Ia))を昇圧回路11の入力側に戻し、昇圧回路11の入力電流Iinの一部として利用することで、電源10から見た入力電力が低減され、第1実施形態に係る本発明装置1と同様、全ての定電流回路がGNDに接続される従来技術の構成と比較して約16%の電力低減効果が得られる。   Further, a part of the current necessary for driving the light emitting element (here, Ia1 (= Ia)) is returned to the input side of the booster circuit 11 and used as a part of the input current Iin of the booster circuit 11, thereby providing a power source. The input power viewed from 10 is reduced, and as in the inventive device 1 according to the first embodiment, a power reduction effect of about 16% is achieved as compared with the configuration of the prior art in which all constant current circuits are connected to GND. can get.

更に、上記実施形態に係る本発明装置2は、定電流駆動部23a,23bの夫々につき、一端が固定電位に接続する定電流回路と、一端が昇圧回路の入力側に接続する定電流回路とを有し、制御信号により夫々の定電流回路により駆動される電流量が制御される構成である。このようにすることで、各定電流回路の一端の電位は常に固定電位或いは入力電圧の何れか一定値が維持される。これにより、定電流駆動部毎に一の定電流回路の一端の出力先を切り替えて制御する本発明装置1と比較して、定電流回路をソースフォロワ回路で構成した場合に問題となる、定電流回路の一端の出力先の切替に伴うソース電位の変動を回避し、定電流駆動部が安定的な定電流動作を行うことができる。   Furthermore, the device 2 of the present invention according to the above embodiment includes a constant current circuit having one end connected to the fixed potential and a constant current circuit having one end connected to the input side of the booster circuit for each of the constant current driving units 23a and 23b. And the amount of current driven by each constant current circuit is controlled by a control signal. By doing so, the potential at one end of each constant current circuit is always maintained at a constant value of either the fixed potential or the input voltage. As a result, the constant current circuit becomes a problem when the constant current circuit is configured as a source follower circuit, as compared with the device 1 of the present invention that switches and controls the output destination of one end of one constant current circuit for each constant current drive unit. It is possible to avoid fluctuations in the source potential accompanying switching of the output destination at one end of the current circuit, and the constant current driving unit can perform stable constant current operation.

〈第3実施形態〉
本発明の一実施形態に係る発光装置3(以降、適宜「本発明装置3」と称す)の構成例を図4に示す。図4の回路構成図に示されるように、本発明装置3は、昇圧回路11、バイパススイッチ制御部100、第1発光素子部である発光素子部101a,101b、第1定電流駆動部である定電流駆動部23a,23b、昇圧制御部14、及び、夫々が判定回路と比較器からなる比較部35a,35bから構成されている。本発明装置3は、第2実施形態に係る本発明装置2の特徴に加えて、各発光素子部101a,101bのLED列のカソード側の実際の出力端電圧を実際の入力電圧Vinと比較する比較器39a,39bを、更に備えている。
<Third Embodiment>
FIG. 4 shows a configuration example of a light emitting device 3 according to an embodiment of the present invention (hereinafter, appropriately referred to as “present invention device 3”). As shown in the circuit configuration diagram of FIG. 4, the device 3 of the present invention includes a booster circuit 11, a bypass switch control unit 100, light emitting element units 101a and 101b that are first light emitting element units, and a first constant current driving unit. The constant current drive units 23a and 23b, the boost control unit 14, and the comparison units 35a and 35b each including a determination circuit and a comparator. In addition to the features of the inventive device 2 according to the second embodiment, the inventive device 3 compares the actual output terminal voltage on the cathode side of the LED columns of the light emitting element portions 101a and 101b with the actual input voltage Vin. Comparators 39a and 39b are further provided.

比較部35a及び35bは、夫々、判定回路38aと比較器39a、判定回路38bと比較器39bからなり、各発光素子部101a,101bのLED列のカソード側の出力端電圧Vda,Vdbと入力電圧Vinとの電圧の高低の関係を判定し、VdaとVdbのうち何れかが入力電圧Vinよりも高い場合、当該入力電圧Vinよりも高い出力端電圧が検出された発光素子部と接続する定電流駆動部に対して、当該定電流駆動部内部の定電流回路のうち、一端が昇圧回路11の入力側と接続する定電流回路を利用可能とする制御信号を出力する。   The comparison units 35a and 35b are each composed of a determination circuit 38a and a comparator 39a, a determination circuit 38b and a comparator 39b, and output terminal voltages Vda and Vdb and input voltages on the cathode side of the LED rows of the respective light emitting element portions 101a and 101b. A constant current connected to the light emitting element portion in which an output terminal voltage higher than the input voltage Vin is detected is determined when the voltage relationship with Vin is determined and either Vda or Vdb is higher than the input voltage Vin. A control signal that enables use of a constant current circuit having one end connected to the input side of the booster circuit 11 among the constant current circuits in the constant current drive unit is output to the drive unit.

具体的には、比較器39aは、第1発光素子部101aのLED列のカソード側の実際の出力端電圧と実際の入力電圧Vinを参照して、VdaがVinより高い場合には定電流回路26aを利用可能とする制御信号45aを判定回路38aに出力する。そして、判定回路38aは、比較器39aからの制御信号45a、バイパススイッチ制御部からの切替制御信号47a、及び昇圧制御部14からの制御信号44aとの演算により、VdaがVinより高く、かつ第1電圧に該当しない場合に、定電流駆動部23aの定電流回路26aを利用可能とする制御信号42aを、定電流駆動部23aに出力する。また、VdaがVinより高く、かつ第1電圧に該当しないが、VdaがVinよりも基準電圧以上高くない場合には、判定回路38aは、定電流回路26aのみでは発光素子部101aの駆動に必要な電流を供給できないため、不足する駆動電流を定電流回路27aを使用して補うための制御信号43aを定電流駆動部23aに出力し、定電流回路26aと27aとで駆動に必要な定電流を供給するようにする。一方で、判定回路38aは、VdaがVinよりも低い場合には定電流回路26aを利用不可能とする制御信号42aを定電流駆動部23aに出力し、固定電位に接続されている定電流回路27aのみを用いて駆動に必要な定電流を供給するようにする。更に、Vdaが第1電圧に該当する場合には、判定回路38aは、定電流駆動部23aの定電流回路26aを不活性化し、定電流回路27aのみを利用する制御信号42a及び43aを、定電流駆動部23aに出力する。   Specifically, the comparator 39a refers to the actual output terminal voltage on the cathode side of the LED array of the first light emitting element unit 101a and the actual input voltage Vin. When Vda is higher than Vin, the comparator 39a is a constant current circuit. A control signal 45a enabling the use of 26a is output to the determination circuit 38a. Then, the determination circuit 38a calculates Vda higher than Vin by calculation of the control signal 45a from the comparator 39a, the switching control signal 47a from the bypass switch control unit, and the control signal 44a from the boost control unit 14. When the voltage does not correspond to one voltage, the control signal 42a for enabling the constant current circuit 26a of the constant current drive unit 23a is output to the constant current drive unit 23a. When Vda is higher than Vin and does not correspond to the first voltage, but Vda is not higher than Vin by a reference voltage or more, the determination circuit 38a is necessary for driving the light emitting element portion 101a only by the constant current circuit 26a. Since a constant current cannot be supplied, a control signal 43a for compensating for an insufficient drive current using the constant current circuit 27a is output to the constant current drive unit 23a, and the constant current required for driving by the constant current circuits 26a and 27a is output. To supply. On the other hand, the determination circuit 38a outputs a control signal 42a that disables the use of the constant current circuit 26a to the constant current drive unit 23a when Vda is lower than Vin, and is connected to a fixed potential. A constant current required for driving is supplied using only 27a. Further, when Vda corresponds to the first voltage, the determination circuit 38a deactivates the constant current circuit 26a of the constant current drive unit 23a and sets the control signals 42a and 43a using only the constant current circuit 27a to the constant current circuit 27a. It outputs to the current drive part 23a.

同様に、比較器39bは、第1発光素子部101bのLED列のカソード側の実際の出力端電圧と実際の入力電圧Vinを参照して、VdbがVinより高い場合には定電流回路26bを利用可能とする制御信号45bを判定回路38bに出力する。そして、判定回路38bは、比較器39bからの制御信号45b、バイパススイッチ制御部からの切替制御信号47b、及び昇圧制御部14からの制御信号44bとの演算により、VdbがVinより高く、かつ第1電圧に該当しない場合に、定電流駆動部23bの定電流回路26bを利用可能とする制御信号42bを、定電流駆動部23bに出力する。また、VdbがVinより高く、かつ第1電圧に該当しないが、VdbがVinよりも基準電圧以上高くない場合には、判定回路38bは、定電流回路26bのみでは発光素子部101bの駆動に必要な電流を供給できないため、不足する駆動電流を定電流回路27bを使用して補うための制御信号43bを定電流駆動部23bに出力し、定電流回路26bと27bとで駆動に必要な定電流を供給するようにする。一方で、判定回路38bは、VdbがVinよりも低い場合には定電流回路26bを利用不可能とする制御信号42bを定電流駆動部23bに出力し、固定電位に接続されている定電流回路27bのみを用いて駆動に必要な定電流を供給するようにする。更に、Vdbが第1電圧に該当する場合には、判定回路38bは、定電流駆動部23bの定電流回路26bを不活性化し、定電流回路27bのみを利用する制御信号42b及び43bを、定電流駆動部23bに出力する。   Similarly, the comparator 39b refers to the actual output terminal voltage on the cathode side of the LED row of the first light emitting element unit 101b and the actual input voltage Vin. When Vdb is higher than Vin, the comparator 39b sets the constant current circuit 26b. A control signal 45b that can be used is output to the determination circuit 38b. Then, the determination circuit 38b calculates Vdb higher than Vin by calculation of the control signal 45b from the comparator 39b, the switching control signal 47b from the bypass switch control unit, and the control signal 44b from the boost control unit 14, and When the voltage does not correspond to one voltage, the control signal 42b for enabling the constant current circuit 26b of the constant current drive unit 23b is output to the constant current drive unit 23b. Further, when Vdb is higher than Vin and does not correspond to the first voltage, but Vdb is not higher than Vin by a reference voltage or more, the determination circuit 38b is necessary for driving the light emitting element unit 101b only by the constant current circuit 26b. A constant current required for driving by the constant current circuits 26b and 27b is output to the constant current drive unit 23b by supplying a control signal 43b for compensating for the insufficient drive current using the constant current circuit 27b. To supply. On the other hand, when Vdb is lower than Vin, the determination circuit 38b outputs a control signal 42b that disables the constant current circuit 26b to the constant current drive unit 23b, and is connected to a fixed potential. A constant current required for driving is supplied using only 27b. Further, when Vdb corresponds to the first voltage, the determination circuit 38b deactivates the constant current circuit 26b of the constant current drive unit 23b, and sets the control signals 42b and 43b using only the constant current circuit 27b. It outputs to the current drive part 23b.

他の昇圧回路11、バイパススイッチ制御部100、発光素子部101a,101b、定電流駆動部23a,23b、定電流駆動部内の定電流回路26a,26b,27a,27b、及び、昇圧制御部14の構成については、上述の第2実施形態に係る本発明装置2と同様であるので説明を割愛する。   Other booster circuit 11, bypass switch control unit 100, light emitting element units 101a and 101b, constant current drive units 23a and 23b, constant current circuits 26a, 26b, 27a and 27b in the constant current drive unit, and boost control unit 14 Since the configuration is the same as that of the device 2 of the present invention according to the second embodiment described above, the description thereof is omitted.

上述の通り、カソード側の出力端電圧Vda,Vdbは、バイパススイッチ制御部100からの切替制御信号47a,47bにより、各第1発光素子部の発光素子の点灯数から算出することができる。しかしながら、各発光素子に印加される電圧Vfは、製造時における特性ばらつきを有しており、また、温度による特性変化や劣化等により変動するため、バイパススイッチ制御部からの切替制御信号のみを用いると、入力電圧Vinとの電圧比較を正しく行うことができない場合がある。   As described above, the cathode-side output terminal voltages Vda and Vdb can be calculated from the number of lighting of the light emitting elements of the first light emitting element units by the switching control signals 47a and 47b from the bypass switch control unit 100. However, the voltage Vf applied to each light-emitting element has a characteristic variation at the time of manufacture, and also fluctuates due to a characteristic change or deterioration due to temperature. Therefore, only the switching control signal from the bypass switch control unit is used. And voltage comparison with the input voltage Vin may not be performed correctly.

本発明装置3では、バイパススイッチがオンオフされる結果、第1発光素子部101a及び101bの発光素子の点灯数の差が減少し、各LED列のカソード側の出力端の電圧差が減少する場合に、比較器39a,39bによる実際のカソード側の出力端の電圧Vda或いはVdbと実際の昇圧回路の入力電圧Vinとの電圧比較結果を利用し、比較器39aからの制御信号45a及び比較器39bからの制御信号45bを利用して、定電流駆動部23a,23bの制御を行う。これにより、各LEDの順方向電圧Vfに特性ばらつきを有し、或いは、温度による特性変化や劣化等により順方向電圧Vfが変動する場合であっても、安定的に定電流回路の切替判定を行うことができる。   In the device 3 of the present invention, as a result of turning on and off the bypass switch, the difference in the number of light emitting elements of the first light emitting element portions 101a and 101b decreases, and the voltage difference between the output terminals on the cathode side of each LED row decreases. In addition, a voltage comparison result between the actual output voltage Vda or Vdb on the cathode side and the input voltage Vin of the actual booster circuit by the comparators 39a and 39b is used to control the control signal 45a from the comparator 39a and the comparator 39b. The constant current drive units 23a and 23b are controlled using the control signal 45b from As a result, even if the forward voltage Vf of each LED has a characteristic variation, or the forward voltage Vf fluctuates due to a characteristic change or deterioration due to temperature, the switching determination of the constant current circuit is stably performed. It can be carried out.

一方、第1発光素子部101a及び101bの発光素子の点灯数の差が増加し、各LED列のカソード側の出力端の電圧差が増加する場合等、当該出力端の電圧の高低の関係が入れ替わらないことが明らかな場合には、実際のカソード側の出力端の電圧Vda或いはVdb、及び実際の昇圧回路の入力電圧Vinを参照することなく、バイパススイッチ制御部100からの切替制御信号47a,47bのみに基づいて定電流回路の切替判定を行うことができる。   On the other hand, when the difference in the number of lighting of the light emitting elements of the first light emitting element portions 101a and 101b increases and the voltage difference between the cathode side output terminals of each LED row increases, there is a relationship between the voltage levels of the output terminals. When it is clear that the switching is not performed, the switching control signal 47a from the bypass switch control unit 100 is referred to without referring to the actual output voltage Vda or Vdb on the cathode side and the input voltage Vin of the actual booster circuit. , 47b only, switching determination of the constant current circuit can be performed.

従って、本発明装置3は、製造時における発光素子部101aと101b内の各LEDの順方向電圧Vfの特性ばらつき、及び、温度による特性変化や劣化等による順方向電圧Vfの変動、及び、昇圧回路の入力電圧Vinの変動を考慮して、安定的に定電流回路の切替を行うことができ、LEDの特性等を選別するコストを削減することができる。   Therefore, the device 3 of the present invention has the characteristic variation of the forward voltage Vf of each LED in the light emitting element portions 101a and 101b at the time of manufacture, the fluctuation of the forward voltage Vf due to the characteristic change or deterioration due to the temperature, and the boosting. The constant current circuit can be switched stably in consideration of the fluctuation of the input voltage Vin of the circuit, and the cost for selecting the characteristics of the LED can be reduced.

尚、上述の実施形態は本発明の好適な実施形態の一例である。本発明の実施形態はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形実施が可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention. The embodiment of the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.

〈1〉上述の第1〜第3実施形態では、白色の発光素子を4個直列に接続した発光素子部(LED列)101a及び101bを2個、並列に接続した構成を例として説明したが、昇圧回路11の出力端と並列に接続される発光素子部の数、並びに、各発光素子部における発光素子の個数や発光色は、一例であって、2並列、4個直列接続、白色LEDの本構成に限定されるものではない。例えば、図5に示されているような、赤色の発光素子を複数直列に接続した発光素子部12r、緑色の発光素子を複数直列に接続した発光素子部12g、及び、青色の発光素子を複数直列に接続した発光素子部12bが、昇圧回路11の出力端と並列に接続される構成に対して、本発明を適用し、電力消費が削減された発光装置を実現することができる。   <1> In the first to third embodiments described above, the configuration in which two light emitting element portions (LED arrays) 101a and 101b in which four white light emitting elements are connected in series is connected in parallel has been described as an example. The number of light emitting element units connected in parallel with the output terminal of the booster circuit 11, and the number and color of light emitting elements in each light emitting element unit are only examples, and two parallel, four series connected, white LEDs It is not limited to this configuration. For example, as shown in FIG. 5, a plurality of light emitting element portions 12r in which a plurality of red light emitting elements are connected in series, a light emitting element portion 12g in which a plurality of green light emitting elements are connected in series, and a plurality of blue light emitting elements. The present invention is applied to a configuration in which the light emitting element portions 12b connected in series are connected in parallel to the output terminal of the booster circuit 11, and a light emitting device with reduced power consumption can be realized.

〈2〉また、上述の第1〜第3実施形態では、昇圧回路11の出力端に並列に接続される第1発光素子部が101aと101bの2個であるため、昇圧回路11の入力側に接続可能な第1定電流駆動部は、各第1発光素子部の出力端電圧がVda,Vdbのうち何れか高い方の電圧を有する第1発光素子部と接続する一の定電流駆動部のみであるが、昇圧回路11の出力端と並列に接続される第1発光素子部が3個以上ある場合には、当該第1発光素子部の出力端電圧がVinよりも高く、かつ最も低い第1電圧に該当しなければ、当該第1発光素子部に接続する複数の定電流駆動部の出力端を、夫々、昇圧回路11の入力側に接続することで、更なる電力削減効果を望める。   <2> In the first to third embodiments described above, since the first light emitting element portion connected in parallel to the output terminal of the booster circuit 11 is two, 101a and 101b, the input side of the booster circuit 11 The first constant current driver that can be connected to the first light emitting element is connected to the first light emitting element having the higher output voltage of Vda and Vdb. However, when there are three or more first light emitting element units connected in parallel with the output terminal of the booster circuit 11, the output terminal voltage of the first light emitting element unit is higher than Vin and lowest. If the voltage does not correspond to the first voltage, further power reduction effect can be expected by connecting the output terminals of the plurality of constant current driving units connected to the first light emitting element unit to the input side of the booster circuit 11 respectively. .

〈3〉上述の第3実施形態において、比較器39a及び39bを用いて実際のカソード側の出力端の電圧Vda或いはVdbと実際の昇圧回路の入力電圧Vinを参照し、バイパススイッチ制御部100からの切替制御信号47a,47bと併せて定電流回路の切替判定を行う構成を開示したが、同様の構成は第1実施形態に係る本発明装置1についても可能である。即ち、判定回路18a及び18bは、実際のカソード側の出力端の電圧Vda或いはVdbと実際の昇圧回路の入力電圧Vinとの電圧比較結果を切替判定のための制御信号として受けることで、各LEDの順方向電圧Vfに特性ばらつきを有し、或いは、温度による特性変化や劣化等により順方向電圧Vfが変動する場合であっても、安定的に定電流回路の切替判定を行うことができる。   <3> In the third embodiment described above, the comparator 39a and 39b are used to refer to the actual output voltage Vda or Vdb on the cathode side and the input voltage Vin of the actual booster circuit, and from the bypass switch control unit 100 Although the configuration for performing the switching determination of the constant current circuit is disclosed together with the switching control signals 47a and 47b, the same configuration is also possible for the inventive device 1 according to the first embodiment. That is, the determination circuits 18a and 18b receive the voltage comparison result between the actual cathode-side output terminal voltage Vda or Vdb and the actual booster circuit input voltage Vin as a control signal for switching determination. Even when the forward voltage Vf has a characteristic variation or the forward voltage Vf fluctuates due to a characteristic change or deterioration due to temperature, the switching determination of the constant current circuit can be performed stably.

〈4〉上述の第1〜第3実施形態では、バイパススイッチ制御部100が各第1発光素子部の発光素子の点灯数に基づき各第1発光素子部における電圧降下量を算出するとともに、各第1発光素子部の出力端の電圧を算出し、入力電圧との差電圧を切替制御信号として出力する構成を例示したが、バイパススイッチ制御部100が各第1発光素子部の発光素子の点灯数の情報を切替制御信号として出力し、判定回路等の他の回路が、各第1発光素子部の出力端の電圧を算出し、入力電圧との電圧の高低を判定する構成も可能である。   <4> In the first to third embodiments described above, the bypass switch control unit 100 calculates the voltage drop amount in each first light emitting element unit based on the number of lighting of the light emitting elements in each first light emitting element unit, and The configuration of calculating the voltage at the output terminal of the first light emitting element unit and outputting the difference voltage from the input voltage as the switching control signal is illustrated. However, the bypass switch control unit 100 turns on the light emitting element of each first light emitting element unit. It is also possible to output the number information as a switching control signal, and another circuit such as a determination circuit calculates the voltage at the output terminal of each first light emitting element unit and determines the level of the voltage with respect to the input voltage. .

本発明は、複数のLEDを光源として使用する発光装置に利用可能であり、当該発光装置を備えた照明装置及び表示装置に利用することができる。   The present invention can be used for a light-emitting device using a plurality of LEDs as a light source, and can be used for an illumination device and a display device including the light-emitting device.

1〜3: 本発明に係る発光装置
10: 電源
11,11r,11g,11b: 昇圧回路
12r,12g,12b,101a,101b: 発光素子部(LED列)
13r,13g,13b,13a,23a,23b: 定電流駆動部
14,14r,14g,14b: 昇圧制御部
16r,16g,16b,26a,26b,27a,27b: 定電流回路
17a,17b: 切替スイッチ
18a,18b,28a,28b,38a,38b: 判定回路
35a,35b: 比較部
39a,39b: 比較器
41,42a,42b,43a,43b,44a,44b,45a,45b,46a,46b:制御信号
47a,47b: バイパススイッチ制御部からの切替制御信号
48a,48b: 制御信号(PWM信号)
100: バイパススイッチ制御部
Iin: 昇圧回路の入力電流
Iout: 昇圧回路の出力電流
Ir,Ig,Ib,Ia,Ia1,Ia2,Ib1,Ib2: LED駆動電流
SW1〜SW4: バイパススイッチ
Vdr,Vdg,Vdb,Vda: LED列のカソード側の電圧
Vin: 昇圧回路の入力電圧
Vout,VoutR,VoutG,VoutB: 昇圧回路の出力電圧
1-3: Light-emitting device 10 according to the present invention: Power supply 11, 11r, 11g, 11b: Booster circuit 12r, 12g, 12b, 101a, 101b: Light-emitting element unit (LED array)
13r, 13g, 13b, 13a, 23a, 23b: constant current drive units 14, 14r, 14g, 14b: boost control units 16r, 16g, 16b, 26a, 26b, 27a, 27b: constant current circuits 17a, 17b: changeover switches 18a, 18b, 28a, 28b, 38a, 38b: determination circuits 35a, 35b: comparison units 39a, 39b: comparators 41, 42a, 42b, 43a, 43b, 44a, 44b, 45a, 45b, 46a, 46b: control signals 47a, 47b: switching control signals 48a, 48b from the bypass switch control unit: control signals (PWM signals)
100: Bypass switch control unit Iin: Input current Iout of the booster circuit: Output currents Ir, Ig, Ib, Ia, Ia1, Ia2, Ib1, Ib2: LED drive currents SW1 to SW4: Bypass switches Vdr, Vdg, Vdb , Vda: Voltage on the cathode side of the LED string Vin: Input voltages Vout, VoutR, VoutG, VoutB of the booster circuit: Output voltage of the booster circuit

Claims (11)

夫々が一の発光素子、又は直列に接続された複数の発光素子を有する複数の発光素子部と、
入力電圧を昇圧し、昇圧された電圧を前記複数の発光素子部の夫々に供給する昇圧回路と、
前記複数の発光素子部の夫々と各別に接続し、前記発光素子部の前記発光素子に駆動電流を供給する前記発光素子部と同数の定電流駆動部と、
前記発光素子部の出力端の電圧のうち最も低い第1電圧を検出し、前記第1電圧を基準電圧と比較し、その比較結果に基づいて前記昇圧回路を制御するための昇圧制御信号を生成する昇圧制御部と、
前記発光素子部のうち、複数の前記発光素子が直列に接続された少なくとも一つの第1発光素子部の前記発光素子毎に設けられる、一の前記発光素子と並列に接続し、当該発光素子に流れる電流をバイパスさせるバイパススイッチと、
前記バイパススイッチのオンオフを制御することで前記第1発光素子部の前記発光素子の消灯と点灯を前記発光素子毎に制御するバイパススイッチ制御部と、を備え、
前記昇圧回路の出力端は前記複数の発光素子部の夫々の入力端に接続され、
前記発光素子部の出力端は夫々対応する前記定電流駆動部の入力端に接続され、
個々の前記第1発光素子部内の前記バイパススイッチのオンオフの状態から導出される前記各第1発光素子部の前記発光素子の点灯数に基づき前記各第1発光素子部における電圧降下量を算出することで、前記各第1発光素子部の出力端の電圧を算出し、
前記第1発光素子部と接続する前記定電流駆動部の少なくとも一つは、
前記第1発光素子部の出力端の電圧が前記入力電圧よりも前記基準電圧以上高い場合、当該定電流駆動部により供給される前記駆動電流の少なくとも一部が前記昇圧回路の入力側に流れる電流経路を形成し、
前記第1発光素子部の出力端の電圧が前記入力電圧よりも前記基準電圧以上高くない場合、当該定電流駆動部により供給される前記駆動電流の少なくとも一部が、前記入力電圧よりも低い所定の固定電位に流れる電流経路を形成するように構成された第1定電流駆動部であることを特徴とする発光装置。
A plurality of light emitting element units each having one light emitting element or a plurality of light emitting elements connected in series;
A boosting circuit that boosts an input voltage and supplies the boosted voltage to each of the plurality of light emitting element units;
A plurality of light emitting element units connected to each of the light emitting element units, and the same number of constant current driving units as the light emitting element units for supplying a driving current to the light emitting elements of the light emitting element units;
The lowest first voltage among the voltages at the output terminals of the light emitting element part is detected, the first voltage is compared with a reference voltage, and a boost control signal for controlling the booster circuit is generated based on the comparison result A boost control unit that
Among the light emitting element units, a plurality of the light emitting elements are provided for each light emitting element of at least one first light emitting element unit connected in series, and connected in parallel with one light emitting element, A bypass switch for bypassing the flowing current;
A bypass switch control unit that controls on / off of the light emitting element of the first light emitting element unit for each light emitting element by controlling on / off of the bypass switch;
An output terminal of the booster circuit is connected to each input terminal of the plurality of light emitting element units,
The output ends of the light emitting element portions are connected to the input ends of the corresponding constant current drive portions, respectively.
A voltage drop amount in each first light emitting element unit is calculated based on the number of lighting of the light emitting elements of each first light emitting element unit derived from the on / off state of the bypass switch in each of the first light emitting element units. Thus, the voltage at the output terminal of each first light emitting element unit is calculated,
At least one of the constant current driving units connected to the first light emitting element unit is:
When the voltage at the output terminal of the first light emitting element unit is higher than the input voltage by the reference voltage or more, at least a part of the driving current supplied by the constant current driving unit flows to the input side of the booster circuit Form a pathway,
When the voltage at the output terminal of the first light emitting element unit is not higher than the reference voltage than the input voltage, at least a part of the driving current supplied by the constant current driving unit is lower than the input voltage. A light-emitting device, wherein the light-emitting device is a first constant-current drive unit configured to form a current path that flows to a fixed potential.
前記バイパススイッチ制御部は、
前記各第1発光素子部の前記発光素子の点灯数に基づき前記各第1発光素子部における電圧降下量を算出することで、前記各第1発光素子部の出力端の電圧を算出し、
前記算出された前記各第1発光素子部の出力端の電圧を前記入力電圧と比較し、
前記第1発光素子部と接続する前記第1定電流駆動部により供給される前記駆動電流の前記昇圧回路の入力側に流れる電流経路の形成、及び、前記第1発光素子部と接続する前記第1定電流駆動部により供給される前記駆動電流の前記固定電位に流れる電流経路の形成を制御するための切替制御信号を生成することを特徴とする請求項1に記載の発光装置。
The bypass switch control unit
By calculating the voltage drop amount in each first light emitting element unit based on the number of lighting of the light emitting elements in each first light emitting element unit, the voltage at the output terminal of each first light emitting element unit is calculated,
Comparing the calculated voltage of the output terminal of each first light emitting element unit with the input voltage;
Forming a current path that flows to the input side of the booster circuit of the drive current supplied by the first constant current driver connected to the first light emitting element, and the first connected to the first light emitting element. The light-emitting device according to claim 1, wherein a switching control signal for controlling formation of a current path that flows in the fixed potential of the driving current supplied by one constant current driving unit is generated.
前記第1定電流駆動部は、
前記第1定電流駆動部と接続する前記第1発光素子部の出力端の電圧が前記入力電圧よりも前記基準電圧以上高い場合、当該第1定電流駆動部により供給される前記駆動電流の全部が前記昇圧回路の入力側に流れる電流経路を形成することを特徴とする請求項1又は2に記載の発光装置。
The first constant current driving unit includes:
When the voltage at the output terminal of the first light emitting element connected to the first constant current driver is higher than the input voltage by the reference voltage or more, all of the drive current supplied by the first constant current driver The light emitting device according to claim 1, wherein a current path that flows to an input side of the booster circuit is formed.
前記第1定電流駆動部は、
前記第1定電流駆動部と接続する前記第1発光素子部の出力端の電圧が前記入力電圧よりも低い場合、当該第1定電流駆動部により供給される前記駆動電流の全部が前記固定電位に流れる電流経路を形成することを特徴とする請求項1〜3の何れか一項に記載の発光装置。
The first constant current driving unit includes:
When the voltage at the output terminal of the first light emitting element connected to the first constant current driver is lower than the input voltage, all of the drive current supplied by the first constant current driver is the fixed potential. The light-emitting device according to any one of claims 1 to 3, wherein a current path that flows through the current path is formed.
前記第1発光素子部の出力端の電圧と前記入力電圧との比較を、前記各第1発光素子部の前記発光素子の点灯数に基づき算出される当該第1発光素子部の出力端の電圧を前記入力電圧と比較するのと併せて、当該第1発光素子部の実際の出力端の電圧と実際の前記入力電圧とを参照して行うことを特徴とする請求項1〜4の何れか一項に記載の発光装置。   The voltage of the output terminal of the first light emitting element unit calculated by comparing the voltage of the output terminal of the first light emitting element unit and the input voltage based on the number of lighting of the light emitting element of each first light emitting element unit. 5 is performed with reference to the actual output voltage and the actual input voltage of the first light-emitting element section together with the comparison with the input voltage. The light emitting device according to one item. 前記第1定電流駆動部は、
複数の前記定電流回路と、前記複数の定電流回路の一端の夫々と各別に接続する前記定電流回路と同数の出力端を有し、
入力端が前記複数の定電流回路の他端の夫々と接続され、
少なくとも一つの前記出力端が前記昇圧回路の入力側に接続され、
前記昇圧回路の入力側に接続されない前記出力端は前記固定電位に接続され、
前記第1定電流駆動部に接続する前記第1発光素子部の出力端の電圧が前記入力電圧よりも高い場合、
当該第1定電流駆動部の前記定電流回路のうち、一端が前記昇圧回路の入力側に接続し、他端が当該第1発光素子部の出力端と接続する前記定電流回路を活性化し、
当該第1発光素子部の出力端の電圧と前記入力電圧との差に基づき、夫々の前記定電流回路に流れる前記駆動電流量が制御されることを特徴とする請求項1〜5の何れか一項に記載の発光装置。
The first constant current driving unit includes:
A plurality of constant current circuits, and the same number of output terminals as the constant current circuits respectively connected to one end of each of the plurality of constant current circuits,
An input end is connected to each of the other ends of the plurality of constant current circuits,
At least one of the output terminals is connected to an input side of the booster circuit;
The output terminal not connected to the input side of the booster circuit is connected to the fixed potential,
When the voltage at the output terminal of the first light emitting element connected to the first constant current driving unit is higher than the input voltage,
Among the constant current circuits of the first constant current driving unit, one end is connected to the input side of the booster circuit, and the other end is activated to the constant current circuit connected to the output end of the first light emitting element unit,
6. The drive current amount flowing through each of the constant current circuits is controlled based on a difference between an output terminal voltage of the first light emitting element unit and the input voltage. The light emitting device according to one item.
前記第1定電流駆動部に接続する前記第1発光素子部の出力端の電圧が前記入力電圧より前記基準電圧以上高い場合、
当該第1定電流駆動部の前記定電流回路のうち、一端が前記昇圧回路の入力側に接続されていない全ての前記定電流回路が不活性化されることを特徴とする請求項6に記載の発光装置。
When the voltage of the output terminal of the first light emitting element unit connected to the first constant current driving unit is higher than the reference voltage than the input voltage,
7. The constant current circuit of the first constant current drive unit is deactivated for all the constant current circuits whose one ends are not connected to the input side of the booster circuit. Light-emitting device.
前記複数の発光素子部のうち、前記昇圧制御部が前記第1電圧を検出した当該発光素子部と接続する前記定電流駆動部が前記第1定電流駆動部の場合、当該第1定電流駆動部により供給される前記駆動電流の全部が前記固定電位に流れる電流経路が形成されることを特徴とする請求項1〜7の何れか一項に記載の発光装置。   Among the plurality of light emitting element units, when the constant current driving unit connected to the light emitting element unit in which the boosting control unit detects the first voltage is the first constant current driving unit, the first constant current driving is performed. The light emitting device according to claim 1, wherein a current path in which all of the driving current supplied by the unit flows to the fixed potential is formed. 前記バイパススイッチ制御部は、前記バイパススイッチのオンオフを当該バイパス対象の前記発光素子の目標輝度に併せてPWM制御することを特徴とする請求項1〜8の何れか一項に記載の発光装置。   The light-emitting device according to any one of claims 1 to 8, wherein the bypass switch control unit performs PWM control on and off of the bypass switch in accordance with a target luminance of the light-emitting element to be bypassed. 請求項1〜9の何れか一項に記載の発光装置を備えたことを特徴とする照明装置。   An illuminating device comprising the light emitting device according to claim 1. 請求項1〜9の何れか一項に記載の発光装置を備えたことを特徴とする表示装置。   A display device comprising the light-emitting device according to claim 1.
JP2009266836A 2009-11-24 2009-11-24 Light emitting device, and lighting system and display device with the same Withdrawn JP2011113684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009266836A JP2011113684A (en) 2009-11-24 2009-11-24 Light emitting device, and lighting system and display device with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266836A JP2011113684A (en) 2009-11-24 2009-11-24 Light emitting device, and lighting system and display device with the same

Publications (1)

Publication Number Publication Date
JP2011113684A true JP2011113684A (en) 2011-06-09

Family

ID=44235892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266836A Withdrawn JP2011113684A (en) 2009-11-24 2009-11-24 Light emitting device, and lighting system and display device with the same

Country Status (1)

Country Link
JP (1) JP2011113684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170880A (en) * 2013-03-05 2014-09-18 Stanley Electric Co Ltd Light-emitting element switch-on device and light source device
WO2016159533A1 (en) * 2015-03-30 2016-10-06 주식회사 실리콘웍스 Lighting device and control circuit thereof
JP2016197711A (en) * 2015-04-06 2016-11-24 株式会社小糸製作所 Drive circuit, vehicle lamp
CN115804247A (en) * 2020-06-12 2023-03-14 株式会社小糸制作所 Light source module and lighting circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170880A (en) * 2013-03-05 2014-09-18 Stanley Electric Co Ltd Light-emitting element switch-on device and light source device
WO2016159533A1 (en) * 2015-03-30 2016-10-06 주식회사 실리콘웍스 Lighting device and control circuit thereof
JP2016197711A (en) * 2015-04-06 2016-11-24 株式会社小糸製作所 Drive circuit, vehicle lamp
CN115804247A (en) * 2020-06-12 2023-03-14 株式会社小糸制作所 Light source module and lighting circuit

Similar Documents

Publication Publication Date Title
US7893661B2 (en) Driver circuit arrangement
US8081199B2 (en) Light emitting element drive apparatus, planar illumination apparatus, and liquid crystal display apparatus
JP5175034B2 (en) Controller circuit for light emitting diode
US8373346B2 (en) Solid state lighting system and a driver integrated circuit for driving light emitting semiconductor devices
JP6002699B2 (en) Color temperature adjustment in dimmable LED lighting systems
JP6635689B2 (en) Illumination device, control circuit thereof, control method, and display device using the same
US10390405B2 (en) Systems and methods of LED color overlap
JP2011108799A (en) Light emitting device, and lighting system and display device equipped with light emitting device
JP2008258428A (en) WHITE LED DRIVE CIRCUIT FOR LIGHTING AND LIGHTING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
WO2010150444A1 (en) Light-emitting element drive device, flat illumination device, and liquid crystal display device
KR101952635B1 (en) Light Emitting Diode Driving Circuit
JP2011216663A (en) Led control device and liquid crystal display device with the device
JP2011199220A (en) Light emitting element driving device
JP2010021008A (en) Led lighting device
JP2011113684A (en) Light emitting device, and lighting system and display device with the same
JP5203320B2 (en) LIGHT EMITTING ELEMENT DRIVE DEVICE AND SHEET LIGHTING DEVICE OR DISPLAY DEVICE EQUIPPED WITH THE SAME
JP5366221B2 (en) LED light source device and control method of LED light source device
WO2012081222A1 (en) Power supply circuit and display device using same
US8779672B2 (en) Driver circuit for light-emitting diodes and method
WO2014087874A1 (en) Illumination device
JP2013110918A (en) Led driving device and illuminating device using the same
US20230397312A1 (en) Light arrangement
KR102730896B1 (en) Apparatus of driving a light source and method thereof
KR20050097162A (en) Light-emitting diode display
US11229100B2 (en) Light source driving device and method therefor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205