JP2011139548A - Spherical generator - Google Patents
Spherical generator Download PDFInfo
- Publication number
- JP2011139548A JP2011139548A JP2009284196A JP2009284196A JP2011139548A JP 2011139548 A JP2011139548 A JP 2011139548A JP 2009284196 A JP2009284196 A JP 2009284196A JP 2009284196 A JP2009284196 A JP 2009284196A JP 2011139548 A JP2011139548 A JP 2011139548A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- generator
- spherical
- energy
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
本発明は、入力の回転軸に制限がなく、全方向の運動エネルギーを電気エネルギーに変換可能な発電機に関するものである。 The present invention relates to a generator capable of converting kinetic energy in all directions into electric energy without any limitation on an input rotation axis.
現在、一般的に使用されている発電機は、単方向の回転運動を電気エネルギーに変換している。しかし、その軸方向以外の回転からは電気エネルギーを得ることができない。様々な方向の回転をもとに発電したい場合は使用できない。 Currently, commonly used generators convert unidirectional rotational motion into electrical energy. However, electric energy cannot be obtained from rotations other than the axial direction. It cannot be used when generating power based on rotation in various directions.
単方向以外の運動から電気エネルギーを得られる発電機として、半球面発電機(特許文献1)がある。この発電機は、半球面状の可動子ヨーク6の表面には永久磁石5が取り付けられており、支持用ポール7を介してケース8と連結されている。振動によって可動子ヨーク6が、支持用ポール7がケース8と連結されている点を中心に様々な方向に回転することで半球状のコイル3に起電力を発生させ、発電するものである。この発電機では、どこか1点が外部と繋がっておらねばならず、支持用ポール7が邪魔となり可動子ヨーク6が回転することはできない。また、入力は多方向の振動に限られる。 There is a hemispherical generator (Patent Document 1) as a generator that can obtain electric energy from a motion other than a single direction. In this generator, a permanent magnet 5 is attached to the surface of a hemispherical mover yoke 6 and is connected to a case 8 via a support pole 7. The mover yoke 6 generates electromotive force in the hemispherical coil 3 to generate electric power by rotating in various directions around the point where the support pole 7 is connected to the case 8 by vibration. In this generator, one point must be connected to the outside, and the support pole 7 becomes an obstacle, and the mover yoke 6 cannot rotate. Input is limited to multidirectional vibration.
現在一般的に使用されている発電機では、1軸、または複数軸での回転運動によって得られる運動エネルギーを電磁誘導により電気エネルギーとして取り出している。しかし、回転させる軸が1軸、または複数軸であると、その軸周りに回転させることのできる外力の方向が固定、または制限されてしまうので、効率的に電気エネルギーとして取り出すことができない。 In a generator that is currently used in general, kinetic energy obtained by rotational motion on one axis or a plurality of axes is taken out as electric energy by electromagnetic induction. However, if the axis to be rotated is one axis or a plurality of axes, the direction of the external force that can be rotated around the axis is fixed or limited, and therefore cannot be efficiently extracted as electric energy.
特許文献1の発電機では、固定子ヨーク4と可動子ヨーク6が支持用ポール7とケース8を介して連結されているため、ケース8が等速運動している場合では発電することができない。また、可動子ヨーク6が回転することもできないため、入力が多方向の振動エネルギーのみに制限される。そのため、振動が発生する場面でしか発電することができない。 In the generator disclosed in Patent Document 1, since the stator yoke 4 and the mover yoke 6 are connected via the support pole 7 and the case 8, power cannot be generated when the case 8 is moving at a constant speed. . Further, since the mover yoke 6 cannot be rotated, the input is limited to only multi-directional vibration energy. For this reason, it is possible to generate electric power only when vibration occurs.
本発明の手段は、上記従来の事情に鑑みて案出されたものであり、第一発明では回転子に取り付ける永久磁石の位置を多面体の頂点位置に配置する。第二発明では回転子を球状とする。第三発明では回転子を球状にして、さらに永久磁石を多面体の頂点の位置に配置する。第四発明では第三発明の回転子を使用し、固定子を半球状にして、電磁石を多面体の頂点に配置する。これらの手段を用いることで回転子の回転軸方向の制限を回避したものである。第五発明では、回転子に配置する永久磁石を正20面体と正12面体を組み合わせた頂点位置に配置し、半球状の固定子の半球面に対して格子状に電磁石を配置することで回転子の回転軸方向の制限を回避したものである。 The means of the present invention has been devised in view of the above-described conventional circumstances. In the first invention, the position of the permanent magnet attached to the rotor is arranged at the apex position of the polyhedron. In the second invention, the rotor is spherical. In the third invention, the rotor is made spherical, and the permanent magnet is arranged at the position of the vertex of the polyhedron. In the fourth invention, the rotor of the third invention is used, the stator is hemispherical, and the electromagnet is arranged at the apex of the polyhedron. By using these means, the limitation in the rotation axis direction of the rotor is avoided. In the fifth invention, the permanent magnet to be arranged on the rotor is arranged at the apex position where the regular icosahedron and the regular dodecahedron are combined, and the electromagnet is arranged in a lattice shape with respect to the hemispherical surface of the hemispherical stator This avoids the restriction in the rotation axis direction of the child.
第一、第二、第三、第四、第五発明により、回転軸の制約を回避することができ、単一方向、多方向を問わず、全方向の運動エネルギーを電気エネルギーに変換できる。 According to the first, second, third, fourth, and fifth inventions, restrictions on the rotation axis can be avoided, and kinetic energy in all directions can be converted into electric energy regardless of single direction or multiple directions.
球状発電機を実施するためには、発電機の回転子を球状にするとともに、内部に取り付ける永久磁石の配置を球表面に均一に配置する。永久磁石の極は、実施形態に応じて変更する。また、発電機の固定子に取り付ける電磁石に関しても、どの方向に回転子が回転しても電気エネルギーを取り出せるように球表面に均一に配置する必要がある。しかし、回転子に外力を与えるためのスペースが必要であるため、固定子を球状にせず半球状とする。以下では、球状発電機の1例を説明する。 In order to implement a spherical generator, the rotor of the generator is made spherical, and the permanent magnets mounted inside are uniformly arranged on the surface of the sphere. The pole of the permanent magnet is changed according to the embodiment. Further, regarding the electromagnet attached to the stator of the generator, it is necessary to uniformly arrange the electromagnet on the surface of the sphere so that electric energy can be taken out no matter which direction the rotor rotates. However, since a space for applying an external force to the rotor is necessary, the stator is not spherical but hemispherical. Hereinafter, an example of a spherical generator will be described.
図1が実施例の球状発電機1の全体構造である。実施例の球状発電機1は球状の回転子20と半球状の固定子30で構成される。球状の回転子20の内側に取り付ける永久磁石21は、すべてN極が回転子の外側向きになるように取り付けている。また、永久磁石の配置位置は、図2で示すように正多面体である正一二面体22と正二十面体23を組み合わせ、各頂点が同一球面上になるように調整した図形24の頂点に永久磁石を配置している。この配置方法が特許請求範囲の永久磁石を多面体の頂点位置に配置する項目に相当する。実施例での永久磁石の数は32個である。図3は実施例の平面図であり、小さい黒丸が電磁石31の位置、複数の灰色の円が永久磁石21の位置を表している。実施例での固定子30に取り付ける電磁石31の位置は、半球面に対して格子状に配置している。実施例では半球をx方向とy方向それぞれ13等分して格子を作り、その格子点に電磁石を配置している。実施例での電磁石の数は84個である。この配置方法が特許請求範囲の電磁石を半球状に配置する項目に相当する。 FIG. 1 shows the overall structure of the spherical generator 1 of the embodiment. The spherical generator 1 according to the embodiment includes a spherical rotor 20 and a hemispherical stator 30. The permanent magnets 21 attached to the inside of the spherical rotor 20 are all attached so that the north pole faces the outside of the rotor. In addition, as shown in FIG. 2, the permanent magnets are arranged at the vertices of the figure 24 adjusted by combining regular icosahedrons 22 and icosahedrons 23, which are regular polyhedrons, so that each vertex is on the same spherical surface. Permanent magnets are arranged. This arrangement method corresponds to the item of arranging the permanent magnets in the claims at the apex position of the polyhedron. The number of permanent magnets in the embodiment is 32. FIG. 3 is a plan view of the embodiment. A small black circle represents the position of the electromagnet 31 and a plurality of gray circles represents the position of the permanent magnet 21. The positions of the electromagnets 31 attached to the stator 30 in the embodiment are arranged in a lattice pattern with respect to the hemispherical surface. In this embodiment, the hemisphere is divided into 13 equal parts in the x and y directions to form a lattice, and an electromagnet is disposed at the lattice point. The number of electromagnets in the example is 84. This arrangement method corresponds to the item of arranging the electromagnets in the claims in a hemispherical shape.
実施例における発電を図4を基に説明する。図4は、回転子が図の右方向に移動した時の移動前の永久磁石位置25と、移動後の永久磁石位置26を表している。このように電磁石上を永久磁石が通過することで、電磁石の鎖交磁束が変化し、起電力Eq1、Eq2、・・・が生じる。実施例では、永久磁石の数32個に対して電磁石の数は84個あり、永久磁石に対して電磁石の密度が大きいため、この起電力は回転子がどの方向に回転しても、永久磁石位置に近い電磁石に生じる。その結果、回転子の回転方向に制約を受けずに電気エネルギーを得ることができる。 The power generation in the embodiment will be described with reference to FIG. FIG. 4 shows a permanent magnet position 25 before movement and a permanent magnet position 26 after movement when the rotor moves to the right in the figure. As the permanent magnet passes through the electromagnet in this way, the interlinkage magnetic flux of the electromagnet changes to generate electromotive forces Eq1, Eq2,. In the embodiment, the number of electromagnets is 84 with respect to the number of permanent magnets of 32, and the density of the electromagnets is larger than that of the permanent magnets. Occurs in electromagnets close to position. As a result, electric energy can be obtained without being restricted by the rotation direction of the rotor.
10 実施例の球状発電機
20 球状回転子
21 永久磁石
22 正十二面体
23 正二十面体
24 正十二面体と正二十面体を組み合わせ調整した図形
25 移動前の永久磁石位置
26 移動後の永久磁石位置
30 半球状固定子
31 電磁石
DESCRIPTION OF SYMBOLS 10 Spherical generator 20 of Example 20 Spherical rotor 21 Permanent magnet 22 Regular dodecahedron 23 Regular icosahedron 24 The figure 25 which combined and adjusted the regular dodecahedron and regular icosahedron 26 Permanent magnet position 26 before movement Permanent magnet position 30 Hemispherical stator 31 Electromagnet
Claims (5)
A generator having a permanent magnet disposed on the surface of the rotor and the stator having the electromagnet disposed thereon
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009284196A JP2011139548A (en) | 2009-12-15 | 2009-12-15 | Spherical generator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009284196A JP2011139548A (en) | 2009-12-15 | 2009-12-15 | Spherical generator |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2011139548A true JP2011139548A (en) | 2011-07-14 |
Family
ID=44350405
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009284196A Pending JP2011139548A (en) | 2009-12-15 | 2009-12-15 | Spherical generator |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2011139548A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011247193A (en) * | 2010-05-27 | 2011-12-08 | Linear Circuit:Kk | Power generator |
| CN113405709A (en) * | 2021-06-28 | 2021-09-17 | 北京理工大学 | Spherical rotor chassis dynamometer for automobile steering condition simulation |
| CN113532709A (en) * | 2021-06-28 | 2021-10-22 | 北京理工大学 | Permanent Magnet Spherical Rotor Chassis Dynamometer for Simulation of Vehicle Steering Conditions |
| CN114865873A (en) * | 2022-05-25 | 2022-08-05 | 北京交通大学 | Spherical array type permanent magnet vibration energy collector |
-
2009
- 2009-12-15 JP JP2009284196A patent/JP2011139548A/en active Pending
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011247193A (en) * | 2010-05-27 | 2011-12-08 | Linear Circuit:Kk | Power generator |
| CN113405709A (en) * | 2021-06-28 | 2021-09-17 | 北京理工大学 | Spherical rotor chassis dynamometer for automobile steering condition simulation |
| CN113532709A (en) * | 2021-06-28 | 2021-10-22 | 北京理工大学 | Permanent Magnet Spherical Rotor Chassis Dynamometer for Simulation of Vehicle Steering Conditions |
| CN113532709B (en) * | 2021-06-28 | 2022-04-05 | 北京理工大学 | Permanent magnet spherical rotor chassis dynamometer for automobile steering condition simulation |
| CN114865873A (en) * | 2022-05-25 | 2022-08-05 | 北京交通大学 | Spherical array type permanent magnet vibration energy collector |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2012017781A1 (en) | Multiple pole spherical stepping motor and multiple pole spherical ac servomotor | |
| CN104836408B (en) | A kind of six degree of freedom permanent-magnet synchronous magnetic suspension spherical motor | |
| TWI441425B (en) | Electric power generator with ferrofluid bearings and wind collection apparatus using the same | |
| CN101282070A (en) | A Three Degrees of Freedom Halbach Array Permanent Magnet Spherical Synchronous Motor | |
| Xia et al. | Research on torque calculation method of permanent-magnet spherical motor based on the finite-element method | |
| Yan et al. | Magnetic field modeling and analysis of spherical actuator with two-dimensional longitudinal camber Halbach array | |
| CN111181346A (en) | An electromagnetic vibration energy harvesting device for marine robots | |
| JP2011139548A (en) | Spherical generator | |
| CN202395532U (en) | a motor | |
| JP2018130009A (en) | Three degree-of-freedom electromagnetic machine controlling system and method | |
| JP5252532B2 (en) | Hemispherical generator | |
| Zhang et al. | A survey on design of reaction spheres and associated speed and orientation measurement technologies | |
| JP4941986B2 (en) | Spherical stepping motor and spherical AC servo motor | |
| CN109450218B (en) | Spherical motor based on magnetic resistance minimum principle | |
| JP3172207U (en) | High efficiency and high power density power generator | |
| Qian et al. | Torque modeling and control algorithm of a permanent magnetic spherical motor | |
| JP4831682B2 (en) | Spherical stepping motor | |
| CN108448867A (en) | A permanent magnet spherical motor with an outer rotor structure | |
| CN112186910A (en) | Spherical electromagnetic machine with two unconstrained rotational degrees of freedom | |
| CN105553148B (en) | A kind of rotating shaft gauche form magneto | |
| KR20190130472A (en) | Motor maximization application generating set | |
| JP2009296864A (en) | Omnidirectional rotary spherical motor and method for controlling its rotation | |
| JP2014204644A (en) | Generator of monopole configuration | |
| CN113348612B (en) | Power generation system | |
| CN103280910B (en) | Magnetoelectric micro electric generator of axial magnetic field |