[go: up one dir, main page]

JP2011245459A - Hydrogen purification apparatus - Google Patents

Hydrogen purification apparatus Download PDF

Info

Publication number
JP2011245459A
JP2011245459A JP2010124334A JP2010124334A JP2011245459A JP 2011245459 A JP2011245459 A JP 2011245459A JP 2010124334 A JP2010124334 A JP 2010124334A JP 2010124334 A JP2010124334 A JP 2010124334A JP 2011245459 A JP2011245459 A JP 2011245459A
Authority
JP
Japan
Prior art keywords
hydrogen
palladium alloy
alloy thin
tube
thin tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010124334A
Other languages
Japanese (ja)
Inventor
Ryoichi Takahashi
良一 高橋
Yasusada Miyano
安定 宮野
Hiromasa Izaki
寛正 伊崎
Toshio Akiyama
敏雄 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2010124334A priority Critical patent/JP2011245459A/en
Publication of JP2011245459A publication Critical patent/JP2011245459A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】 パラジウム合金の薄膜を利用した水素精製において、装置を大きくすることなく、単位時間当たりの精製水素の取出し量を従来よりも大きくできる水素精製装置、さらに水素分離膜の厚みを薄くしても、水素分離膜の機械的強度の低下が少ない水素精製装置を提供する。
【解決手段】 一端が封じられた複数本のパラジウム合金細管と、該細管の開口端部において該細管を支持する管板とによって、セル内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、パラジウム合金細管を透過させて二次側空間から精製水素を取出す水素精製装置であって、パラジウム合金細管が、開口端部、円筒中央部、及び閉口端部からなり、円筒中央部の筒径が開口端部の管板の位置における筒径よりも大きい水素精製装置とする。
【選択図】 図1
PROBLEM TO BE SOLVED: To reduce a hydrogen purifying apparatus capable of increasing the amount of purified hydrogen taken out per unit time as compared with a conventional hydrogen refining apparatus without reducing the apparatus in hydrogen refining using a palladium alloy thin film and further reducing the thickness of the hydrogen separation membrane. In addition, the present invention provides a hydrogen refining apparatus in which the mechanical strength of the hydrogen separation membrane is less reduced.
SOLUTION: The inside of a cell is partitioned into a primary space and a secondary space by a plurality of palladium alloy thin tubes sealed at one end and a tube plate that supports the thin tube at the open end of the thin tube. Is a hydrogen purifier that introduces hydrogen from the primary side space, permeates the palladium alloy thin tube and takes out purified hydrogen from the secondary side space, the palladium alloy thin tube having an open end, a cylindrical center, and a closed end A hydrogen purifier having a cylindrical diameter larger than the cylindrical diameter at the position of the tube plate at the open end.
[Selection] Figure 1

Description

本発明は、パラジウム合金薄膜の水素ガス選択透過性を利用した水素精製装置に関する。   The present invention relates to a hydrogen purifier utilizing the hydrogen gas selective permeability of a palladium alloy thin film.

従来から、半導体製造工程においては、高純度の水素ガスが雰囲気ガスとして多量に使用されている。このような水素ガスは、半導体の集積度の向上により不純物の濃度が極めて低濃度(ppbレベル以下)であることが要求される。
一方、高純度の水素を工業的に多量に製造する方法としては、メタノール、ジメチルエーテル、天然ガス、液化石油ガス等から水蒸気改質反応により得られる改質ガスを、深冷吸着法、圧力スイング法等により、水素と水素以外のガスに分離して水素を得る方法が知られている。
Conventionally, high-purity hydrogen gas has been used in a large amount as an atmospheric gas in a semiconductor manufacturing process. Such a hydrogen gas is required to have an extremely low impurity concentration (ppb level or less) due to an improvement in semiconductor integration.
On the other hand, as a method for industrially producing a large amount of high-purity hydrogen, a reformed gas obtained by a steam reforming reaction from methanol, dimethyl ether, natural gas, liquefied petroleum gas, etc. is subjected to a cryogenic adsorption method or a pressure swing method. For example, a method of obtaining hydrogen by separating it into hydrogen and a gas other than hydrogen is known.

深冷吸着法は、液化窒素を冷媒として極低温化された吸着材が充填された吸着筒に水素含有ガスを流通し、水素以外の不純物を除去する精製方法であり、圧力スイング法は、複数の吸着筒に水素含有ガスを順次流通するとともに、昇圧、不純物の吸着、不純物の脱着、及び吸着材の再生の各操作を繰返して、水素以外の不純物を除去する精製方法である。前記のような改質ガスには、水素のほか、一酸化炭素、二酸化炭素、メタン、窒素、水等が含まれるが、深冷吸着法、圧力スイング法では、これらの不純物を極めて低濃度(ppbレベル以下)になるまで除去することは困難であった。   The cryogenic adsorption method is a purification method in which a hydrogen-containing gas is circulated through an adsorption cylinder filled with an adsorbent that has been cryogenically cooled using liquefied nitrogen as a refrigerant to remove impurities other than hydrogen. This is a purification method in which a hydrogen-containing gas is sequentially circulated through the adsorption cylinder, and impurities other than hydrogen are removed by repeating the operations of pressure increase, impurity adsorption, impurity desorption, and adsorbent regeneration. The reformed gas as described above contains carbon monoxide, carbon dioxide, methane, nitrogen, water, etc. in addition to hydrogen. In the cryogenic adsorption method and the pressure swing method, these impurities are contained at a very low concentration ( It was difficult to remove until the ppb level or lower).

これに対して、極めて高純度の水素ガスを、比較的に少量で得る方法として、水素含有ガスを、パラジウム合金の薄膜からなる水素分離膜に供給し、水素ガスの選択透過性を利用して水素のみを透過させて取出す方法が知られている。
このような水素精製のための装置は、水素含有ガスの導入口、精製水素の取出口、及び該導入口と該取出口の間のガス流路中にパラジウム合金の薄膜を備えてなる水素精製装置であり、例えば図4に示すように、一端が封じられた複数本のパラジウム合金細管が、開口端部で管板に支持されてセル内に収納され、このパラジウム合金細管及び管板によってセル内が一次側空間(水素含有ガスの供給側空間)及び二次側空間(精製水素の取出し側空間)の二つの空間に仕切られた構成を有する水素精製装置である。
On the other hand, as a method for obtaining extremely high-purity hydrogen gas in a relatively small amount, a hydrogen-containing gas is supplied to a hydrogen separation membrane made of a palladium alloy thin film, and the selective permeability of hydrogen gas is utilized. A method is known in which only hydrogen is extracted by permeation.
Such an apparatus for purifying hydrogen includes a hydrogen-containing gas inlet, a purified hydrogen outlet, and a palladium alloy thin film in a gas flow path between the inlet and the outlet. For example, as shown in FIG. 4, a plurality of palladium alloy capillaries sealed at one end are supported by a tube plate at the open end and stored in the cell, and the cell is formed by the palladium alloy capillaries and the tube plate. This is a hydrogen purifier having a structure that is partitioned into two spaces, a primary space (hydrogen-containing gas supply space) and a secondary space (purified hydrogen extraction space).

特開昭62−128903号公報JP-A-62-128903 特開平1−145302号公報JP-A-1-145302 特開平1−145303号公報JP-A-1-145303 特開平6−345409号公報JP-A-6-345409

パラジウム合金の薄膜からなる水素分離膜を利用した水素精製方法は、深冷吸着法、圧力スイング法と比較して、前述のように高純度の水素ガスが得られるほか、装置を小型化、簡素化できるという長所がある。しかし、分離膜の材料が高価であるという短所、単位時間当たりの精製水素の取出し量が少ないという短所がある。
尚、水素分離膜の単位面積当りの水素透過量Qは、Q=At−1(P 1/2−P 1/2)で表される。(式中、Aは分離膜の種類、操作条件等による数値、tは膜厚、Pは一次側の水素分圧、Pは二次側の水素分圧を表す。)
Compared with the cryogenic adsorption method and the pressure swing method, the hydrogen purification method using a hydrogen separation membrane made of a palladium alloy thin film can produce high-purity hydrogen gas as described above, and the equipment can be downsized and simplified. There is an advantage that can be made. However, there are a disadvantage that the material of the separation membrane is expensive and a small amount of purified hydrogen taken out per unit time.
The hydrogen permeation amount Q per unit area of the hydrogen separation membrane is expressed by Q = At −1 (P 1 1/2 −P 2 1/2 ). (In the formula, A is a numerical value depending on the type of separation membrane, operating conditions, t is a film thickness, P 1 is a primary hydrogen partial pressure, and P 2 is a secondary hydrogen partial pressure.)

前記の水素透過量の式により、特に膜厚tを小さくすることができれば、材料費の低減、精製水素の取出し量の増加を同時に図ることが可能である。しかしながら、膜厚を小さくすると、機械的強度が低下するとともに水素分離膜に微小なピンホール(通常は直径1〜10μm)が発生しやすくなるという不都合があった。このようなピンホールが発生すると一次側の原料(水素含有ガス)が二次側に漏れやすくなるため、取出された精製水素に不純物が混入してしまうとともに、さらに水素分離膜の機械的強度が低下し、やがて水素分離膜が破壊してしまうという問題が発生した。また、このような問題点があるため、一次側の水素分圧と二次側の水素分圧の差を大きくして精製水素の取出し量の増加を図ることもできなかった。   If the film thickness t can be particularly reduced by the hydrogen permeation amount equation, it is possible to simultaneously reduce the material cost and increase the amount of purified hydrogen taken out. However, when the film thickness is reduced, the mechanical strength is lowered, and there are inconveniences that minute pinholes (usually 1 to 10 μm in diameter) are likely to be generated in the hydrogen separation membrane. When such a pinhole occurs, the primary side material (hydrogen-containing gas) easily leaks to the secondary side, so impurities are mixed into the extracted purified hydrogen, and the mechanical strength of the hydrogen separation membrane is further increased. The problem was that the hydrogen separation membrane would eventually be destroyed. In addition, due to such problems, it has been impossible to increase the amount of purified hydrogen taken out by increasing the difference between the hydrogen partial pressure on the primary side and the hydrogen partial pressure on the secondary side.

従って、本発明が解決しようとする課題は、パラジウム合金の薄膜を利用した水素精製において、装置を大きくすることなく、単位時間当たりの精製水素の取出し量を従来よりも大きくできる水素精製装置、さらに水素分離膜の厚みを薄くしても、水素分離膜の機械的強度の低下が少ない水素精製装置を提供することである。   Therefore, the problem to be solved by the present invention is to provide a hydrogen purifier capable of increasing the amount of purified hydrogen taken out per unit time in a hydrogen refining process using a palladium alloy thin film, without increasing the apparatus. An object of the present invention is to provide a hydrogen purification apparatus in which the mechanical strength of the hydrogen separation membrane is reduced little even if the thickness of the hydrogen separation membrane is reduced.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、水素分離膜として、一端が封じられた複数本のパラジウム合金細管を用いた水素精製装置において、パラジウム合金細管の中央部の筒径を、開口端部の管板の位置における筒径よりも大きく設定することにより、パラジウム合金細管の開口端部を管板に支持する際に不都合を生じることなく、パラジウム合金細管1本当たりの水素分離膜面積を大きくできること、さらに前記のようなパラジウム合金細管の中央部の筒径を、互いに隣接する他の細管の中央部に接触する程度の大きさにすれば、複数本の該細管の中央部を束ねて機械的強度の向上が図れ得ることを見出し、本発明の水素精製装置に到達した。   As a result of diligent studies to solve these problems, the present inventors have found that a hydrogen purification apparatus using a plurality of palladium alloy thin tubes sealed at one end as a hydrogen separation membrane, the tube at the center of the palladium alloy thin tube By setting the diameter to be larger than the tube diameter at the position of the tube plate at the open end portion, there is no inconvenience when supporting the open end portion of the palladium alloy thin tube on the tube plate, so that per palladium alloy thin tube can be obtained. If the area of the hydrogen separation membrane can be increased and the diameter of the central portion of the palladium alloy thin tube as described above is made large enough to be in contact with the central portion of another thin tube adjacent to each other, a plurality of the thin tubes It was found that the mechanical strength can be improved by bundling the central portion, and the hydrogen purifier of the present invention has been reached.

すなわち本発明は、一端が封じられた複数本のパラジウム合金細管と、該細管の開口端部において該細管を支持する管板とによって、セル内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、パラジウム合金細管を透過させて二次側空間から精製水素を取出す水素精製装置であって、パラジウム合金細管が、開口端部、円筒中央部、及び閉口端部からなり、円筒中央部の筒径が開口端部の管板の位置における筒径よりも大きいことを特徴とする水素精製装置である。   That is, in the present invention, the inside of the cell is partitioned into a primary side space and a secondary side space by a plurality of palladium alloy thin tubes sealed at one end and a tube plate that supports the thin tube at the open end of the thin tube, A hydrogen refining device that introduces hydrogen containing impurities from the primary side space, permeates the palladium alloy thin tube and takes out purified hydrogen from the secondary side space, and the palladium alloy thin tube has an open end, a cylindrical center, and a closed port. The hydrogen purifier is characterized in that it comprises an end, and the cylinder diameter at the center of the cylinder is larger than the cylinder diameter at the position of the tube plate at the open end.

本発明の水素精製装置は、中央部の筒径が開口端の管板における筒径よりも大きいパラジウム合金細管を用いるので、パラジウム合金細管の中央部において水素分離膜面積が大きくなり、従来の平坦なパラジウム合金細管と比較して、単位時間当たりの精製水素の取出し量を増加させることができる。また、複数のパラジウム合金細管をその中央部において最密に束ねた場合、パラジウム合金細管(水素分離膜)の機械的強度の向上、あるいはパラジウム合金細管(水素分離膜)の薄膜化を図ることができる。   The hydrogen purification apparatus of the present invention uses a palladium alloy thin tube having a tube diameter at the center that is larger than the tube diameter of the tube plate at the open end. Compared with a palladium alloy thin tube, it is possible to increase the amount of purified hydrogen taken out per unit time. In addition, when a plurality of palladium alloy capillaries are bundled together at the center, the mechanical strength of the palladium alloy capillaries (hydrogen separation membrane) can be improved, or the palladium alloy capillaries (hydrogen separation membrane) can be made thin. it can.

本発明の水素精製装置は、一端が封じられたパラジウム合金細管と該細管の開口端を支持する管板によってセル内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、パラジウム合金細管を透過させて二次側空間から精製水素を取出す方式の水素精製装置に適用される。また、本発明の水素精製装置に適用される原料(水素含有ガス)としては、メタノール、ジメチルエーテル、天然ガス、液化石油ガス等から水蒸気改質反応により得られる改質ガス、あるいは工業用としてボンベ等に充填されている比較的に高純度の水素等が挙げられる。本発明により得られる極めて高純度の精製水素は、例えば半導体製造工程における雰囲気ガス(キャリアガス)として使用される。   The hydrogen purifying apparatus of the present invention is configured such that the inside of a cell is partitioned into a primary side space and a secondary side space by a palladium alloy thin tube sealed at one end and a tube plate that supports the open end of the thin tube, and hydrogen containing impurities is separated into the primary side. It is applied to a hydrogen refining apparatus that introduces purified hydrogen from the secondary side space through a palladium alloy capillary tube. Moreover, as a raw material (hydrogen-containing gas) applied to the hydrogen purification apparatus of the present invention, a reformed gas obtained by a steam reforming reaction from methanol, dimethyl ether, natural gas, liquefied petroleum gas or the like, or an industrial cylinder or the like Relatively high-purity hydrogen or the like filled in The extremely high purity purified hydrogen obtained by the present invention is used as, for example, an atmospheric gas (carrier gas) in a semiconductor manufacturing process.

以下、本発明の水素精製装置を、図1〜図4に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。尚、図1は、本発明の水素精製装置の鉛直方向の断面の一例を示す構成図、図2は、本発明の水素精製装置の管板の位置における水平方向の断面の一例を示す構成図、図3は、本発明の水素精製装置のパラジウム合金細管の円筒中央部の位置における水平方向の断面の一例を示す構成図、図4は、従来の水素精製装置の鉛直方向の断面の一例を示す構成図である。   Hereinafter, although the hydrogen purification apparatus of this invention is demonstrated in detail based on FIGS. 1-4, this invention is not limited by these. 1 is a block diagram showing an example of a vertical section of the hydrogen purifier of the present invention, and FIG. 2 is a block diagram showing an example of a horizontal section at the position of the tube plate of the hydrogen purifier of the present invention. FIG. 3 is a configuration diagram showing an example of a horizontal section at the position of the cylindrical central portion of the palladium alloy thin tube of the hydrogen purification apparatus of the present invention, and FIG. 4 is an example of a vertical section of a conventional hydrogen purification apparatus. FIG.

本発明の水素精製装置は、図1に示すように、一端が封じられた複数本のパラジウム合金細管1と、該細管の開口端部2において該細管を支持する管板5とによって、セル内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、パラジウム合金細管1を透過させて二次側空間から精製水素を取出す水素精製装置であって、パラジウム合金細管1が、開口端部2、円筒中央部3、及び閉口端部4からなり、円筒中央部3の筒径が開口端部2の管板の位置における筒径よりも大きいことを特徴とする水素精製装置である。   As shown in FIG. 1, the hydrogen purifier of the present invention comprises a plurality of palladium alloy capillaries 1 sealed at one end, and a tube plate 5 that supports the capillaries at the open end 2 of the capillaries. Is a hydrogen purification apparatus that is partitioned into a primary side space and a secondary side space, introduces hydrogen containing impurities from the primary side space, permeates the palladium alloy thin tube 1 and takes out purified hydrogen from the secondary side space, The alloy thin tube 1 is composed of an open end 2, a cylindrical central portion 3, and a closed end 4, and the cylindrical diameter of the cylindrical central portion 3 is larger than the cylindrical diameter at the position of the tube plate of the open end 2. This is a hydrogen purifier.

本発明の水素精製装置において、管板の位置における水平方向の断面は、図2に示す通りであり、管板5がセルの側面壁9に間隙なく接触して設けられ、複数本のパラジウム合金細管1が、開口端部2において管板5に支持される。このようなパラジウム合金細管1の管板5における配置は、従来からの水素精製装置と同様である。パラジウム合金細管の開口端部の管板の位置における筒径aは、大きすぎるとパラジウム合金細管の円筒中央部における筒径も大きくなり、この部分の機械的強度が低下し、小さすぎるとパラジウム合金細管の製造加工が困難になることから、通常は1.0〜2.0mmとされる。また、隣接するパラジウム合金細管同士の間隔bは、大きすぎるとパラジウム合金細管の本数が少なくなるため、単位時間当たりの精製水素の取出し量が減少し、小さすぎるとパラジウム合金細管の管板への取付けが困難となり、また支持固定が脆弱となることから、通常は1.0〜2.5mmとされる。   In the hydrogen purification apparatus of the present invention, the horizontal cross section at the position of the tube sheet is as shown in FIG. The thin tube 1 is supported by the tube plate 5 at the open end 2. The arrangement of the palladium alloy thin tubes 1 in the tube plate 5 is the same as that of a conventional hydrogen purifier. If the tube diameter a at the position of the tube plate at the opening end of the palladium alloy thin tube is too large, the tube diameter at the center of the cylinder of the palladium alloy thin tube also increases, and the mechanical strength of this portion decreases. Since it becomes difficult to manufacture and process the thin tube, it is usually set to 1.0 to 2.0 mm. Also, if the interval b between adjacent palladium alloy capillaries is too large, the number of palladium alloy capillaries decreases, so the amount of purified hydrogen taken out per unit time decreases, and if it is too small, the distance to the tube plate of the palladium alloy capillaries is reduced. Since attachment becomes difficult and support fixation becomes weak, it is usually set to 1.0 to 2.5 mm.

本発明の水素精製装置は、管板の位置における隣接するパラジウム合金細管同士の間隔bを比較的に大きく設定してパラジウム合金細管の管板への取付けを容易かつ強固にするとともに、パラジウム合金細管1の円筒中央部3の筒径を大きく設定して、単位時間当たりの精製水素の取出し量の増加を図ったものである。パラジウム合金細管(水素分離膜)1の厚みは、通常は70μm以下、好ましくは20〜70μmであり、円筒中央部3の筒径(平均値)は、通常は該細管の開口端部の管板の位置における筒径の1.05〜2.0倍である。また、管板の位置におけるパラジウム合金細管同士の間隔は、好ましくは1.2〜2.5mmである。尚、パラジウム合金細管の長さは、通常は200〜2000mmであり、パラジウム合金細管1の円筒中央部3(筒径が一定である部分)は、通常は全長の70%以上、好ましくは90%以上とされる。また、管板の厚みは、通常は5〜50mmである。   The hydrogen purification apparatus of the present invention sets the interval b between adjacent palladium alloy capillaries at the position of the tubeplate to be relatively large so that the palladium alloy capillaries can be easily and firmly attached to the tubeplate, and the palladium alloy capillaries The cylinder diameter of one cylindrical central portion 3 is set to be large so as to increase the amount of purified hydrogen taken out per unit time. The thickness of the palladium alloy thin tube (hydrogen separation membrane) 1 is usually 70 μm or less, preferably 20 to 70 μm, and the tube diameter (average value) of the cylindrical central portion 3 is usually the tube plate at the open end of the thin tube. It is 1.05 to 2.0 times the cylinder diameter at the position. Moreover, the space | interval of the palladium alloy thin tubes in the position of a tube sheet becomes like this. Preferably it is 1.2-2.5 mm. The length of the palladium alloy thin tube is usually 200 to 2000 mm, and the cylindrical central portion 3 (portion where the tube diameter is constant) of the palladium alloy thin tube 1 is usually 70% or more, preferably 90% of the total length. It is said above. Moreover, the thickness of a tube sheet is 5-50 mm normally.

また、本発明の水素精製装置においては、図3に示すように、パラジウム合金細管の円筒中央部の筒径を、互いに隣接する他の細管の円筒中央部に接触する程度に設定し、このようなパラジウム合金細管を3本以上用いて周囲を束ねることにより、パラジウム合金細管の機械的強度の向上を図ることができる。このような構成とすることにより、パラジウム合金細管の厚みをさらに薄くし、単位時間当たりの精製水素の取出し量を増加させることも可能である。パラジウム合金細管を束ねた場合、パラジウム合金細管を束ねない場合と比較して、パラジウム合金細管の厚みを30%程度薄くすることができる。
尚、本発明においては、通常は1台の水素精製装置に、3〜1000本のパラジウム合金細管が使用される。円筒中央部の筒径が開口端部の管板の位置における筒径よりも大きいパラジウム合金細管が1本であっても、その水素精製装置は本発明の水素精製装置に含まれるものである。
Further, in the hydrogen purification apparatus of the present invention, as shown in FIG. 3, the cylinder diameter of the cylindrical central portion of the palladium alloy thin tube is set to such an extent that it contacts the cylindrical central portion of the other adjacent thin tubes. The mechanical strength of the palladium alloy thin tube can be improved by using three or more palladium alloy thin tubes and bundling the periphery. By adopting such a configuration, it is possible to further reduce the thickness of the palladium alloy thin tube and increase the amount of purified hydrogen taken out per unit time. When the palladium alloy thin tubes are bundled, the thickness of the palladium alloy thin tubes can be reduced by about 30% as compared with the case where the palladium alloy thin tubes are not bundled.
In the present invention, usually 3 to 1000 palladium alloy capillaries are used in one hydrogen purifier. Even if there is one palladium alloy thin tube whose cylindrical diameter at the center of the cylinder is larger than the cylindrical diameter at the position of the tube plate at the open end, the hydrogen purification apparatus is included in the hydrogen purification apparatus of the present invention.

本発明に用いられるパラジウム合金の構成成分としては、パラジウムと銅を主成分とする合金、パラジウムと銀を主成分とする合金、パラジウムと銀と金を主成分とする合金を例示することができる。これらの合金を用いる場合、パラジウム50〜70wt%と銅30〜50wt%との合金、パラジウム60〜90wt%と銀10〜40wt%との合金、パラジウム60〜80wt%と銀10〜37wt%と金3〜10wt%の合金が好ましい。パラジウム合金はその他の金属を含んでいてもよいが、前記の金属は、通常は95wt%以上、好ましくは99wt%以上含有される。   Examples of the constituent component of the palladium alloy used in the present invention include an alloy mainly composed of palladium and copper, an alloy mainly composed of palladium and silver, and an alloy mainly composed of palladium, silver and gold. . When these alloys are used, an alloy of palladium 50 to 70 wt% and copper 30 to 50 wt%, an alloy of palladium 60 to 90 wt% and silver 10 to 40 wt%, palladium 60 to 80 wt%, silver 10 to 37 wt% and gold A 3-10 wt% alloy is preferred. The palladium alloy may contain other metals, but the metal is usually contained in an amount of 95 wt% or more, preferably 99 wt% or more.

尚、本発明において、パラジウム合金細管の開口端部と円筒中央部に関連する加工方法には特に制限されることはないが、例えば、内径が互いに異なる2個の細長い円柱形を中心軸が一致するように連続して刳り貫いた形状を有する耐熱性の成型装置を使用し、平坦なパラジウム合金細管を、前記の成型装置の刳り貫き部に、加熱された状態で挿入して成型することにより所望の形状に加工することができる。あるいは、本発明における所望の形状のパラジウム合金細管の外形状に刳り貫いた形状を有する耐熱性の成型装置を使用し、従来から使用されている一端が封じられたパラジウム合金細管を、前記の成型装置の刳り貫き部に挿入した後、加熱された状態でパラジウム合金細管に高圧ガスを吹き込むことにより所望の形状に加工することができる。このような加工においては、パラジウム合金細管の厚みを最大で50%程度薄くすることができる。   In the present invention, the processing method related to the open end of the palladium alloy thin tube and the central portion of the cylinder is not particularly limited. For example, the central axes of two elongated cylindrical shapes having different inner diameters are the same. By using a heat-resistant molding device having a continuous and continuous shape, a flat palladium alloy thin tube is inserted into the punched portion of the molding device in a heated state and molded. It can be processed into a desired shape. Alternatively, a heat-resistant molding device having a shape that penetrates the outer shape of the palladium alloy capillary having a desired shape in the present invention is used, and the palladium alloy capillary that has been sealed at one end is used for the above molding. After being inserted into the punched-out portion of the apparatus, it can be processed into a desired shape by blowing high pressure gas into the palladium alloy thin tube in a heated state. In such processing, the thickness of the palladium alloy thin tube can be reduced by up to about 50%.

本発明の水素精製装置を用いて水素の精製を行なう際には、原料ガス(水素含有ガス)が導入口6からヒータ10により加熱されたセルの一次側に供給される。原料ガスはパラジウム合金細管の水素分離膜と接触し、水素のみがセルの二次側に透過され、精製水素の取出口7から回収される。また、パラジウム合金細管の水素分離膜を透過しないガスは水素以外のガスの取出口8から回収される。セル一次側とセル二次側の水素分圧の差が大きいほど単位時間当たりの水素透過量が大きくなる。そのため、本発明においては、通常は原料ガス(水素含有ガス)を大気圧より大きな圧力で供給し、セル二次側の圧力が大気圧以下になるようにされる。   When purifying hydrogen using the hydrogen purifier of the present invention, a raw material gas (hydrogen-containing gas) is supplied from the inlet 6 to the primary side of the cell heated by the heater 10. The source gas comes into contact with the hydrogen separation membrane of the palladium alloy capillary tube, and only hydrogen is permeated to the secondary side of the cell and recovered from the purified hydrogen outlet 7. Further, the gas that does not permeate the hydrogen separation membrane of the palladium alloy thin tube is collected from the gas outlet 8 for a gas other than hydrogen. The larger the difference in hydrogen partial pressure between the cell primary side and the cell secondary side, the larger the hydrogen permeation amount per unit time. Therefore, in the present invention, the raw material gas (hydrogen-containing gas) is usually supplied at a pressure higher than atmospheric pressure so that the pressure on the cell secondary side becomes lower than atmospheric pressure.

また、本発明において、水素精製の際の水素分離膜は、温度が高いほど単位時間当たりの水素透過量が大きくなるが、耐熱温度の点で制約される。温度が低い場合は水素分離膜が水素を多量に吸収し、膨張変形によって装置の破損を生じる虞がある。そのため、水素精製の際の水素分離膜の温度は、通常は250〜500℃、好ましくは300〜450℃である。尚、予め予熱器等により原料ガス(水素含有ガス)を前記の温度程度に加熱してから、本発明の水素精製装置に導入することが好ましい。   In the present invention, the hydrogen separation membrane during hydrogen purification has a higher hydrogen permeation amount per unit time as the temperature is higher, but is limited in terms of heat-resistant temperature. When the temperature is low, the hydrogen separation membrane absorbs a large amount of hydrogen, which may cause damage to the device due to expansion and deformation. Therefore, the temperature of the hydrogen separation membrane at the time of hydrogen purification is usually 250 to 500 ° C, preferably 300 to 450 ° C. In addition, it is preferable to heat the raw material gas (hydrogen-containing gas) to the above temperature in advance by a preheater or the like and then introduce it into the hydrogen purifier of the present invention.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(実施例1)
(パラジウム合金細管の製作)
外径1.61mm、長さ20mmの円柱形の刳り貫き部、及び外径1.81mm、長さ100mmの円柱形の刳り貫き部を、緩やかに傾斜した円柱台の刳り貫き部を介して、これらの中心軸が一致するように連続して接続された構成を有する耐熱性の成型装置を製作した。また、従来から使用されている一端が封じられた平坦なパラジウム合金細管(外径1.8mm、厚さ70μm、パラジウム、金、及び銀の3元合金)の他の一端を加熱して、その先端が1.6mmよりも細くなるように加工した。
Example 1
(Production of palladium alloy thin tubes)
A cylindrical punching portion with an outer diameter of 1.61 mm and a length of 20 mm and a cylindrical punching portion with an outer diameter of 1.81 mm and a length of 100 mm are passed through a punching portion of a gently inclined column base, A heat-resistant molding apparatus having a configuration in which these central axes are continuously connected so as to coincide with each other was manufactured. In addition, the other end of a flat palladium alloy thin tube (outer diameter 1.8 mm, thickness 70 μm, palladium, gold, and silver ternary alloy) that has been sealed at one end is heated. The tip was processed so as to be thinner than 1.6 mm.

次に、成型装置の刳り貫き部を所定の温度に昇温した後、このパラジウム合金細管を、加熱するとともに、該細管の先端部から成型装置の大きな径の刳り貫き部に挿入し、小さな径の刳り貫き部の出口から一部を引っ張り出して成型した。その結果、外径1.6mm、長さ20mmの開口端部、外径1.8mm、長さ278mm、厚さ70μmの円筒中央部(径が1.6mm〜1.8mm、長さ10mmの傾斜部を含む)、及び長さ2mmの閉口端部からなるパラジウム合金細管が得られた。   Next, after raising the punched-out portion of the molding apparatus to a predetermined temperature, this palladium alloy thin tube is heated and inserted into the large-diameter punched-out portion of the molding device from the tip of the thin tube, and the small diameter A part was pulled out from the exit of the punched-in part and molded. As a result, an opening end portion having an outer diameter of 1.6 mm and a length of 20 mm, an outer diameter of 1.8 mm, a length of 278 mm, and a central portion of a cylinder having a thickness of 70 μm (inclination having a diameter of 1.6 mm to 1.8 mm and a length of 10 mm) And a palladium alloy capillary having a closed end with a length of 2 mm was obtained.

(水素精製装置の製作)
直径25mm、厚さ15mmの円盤状のSUS316L製管板に、前記のようにして製作したパラジウム合金細管35本を、複数の同心円上に溶接した後、内径25mm、高さ400mmのSUS316L製セルに収納して、図1、図2に示すような形態の水素精製装置を製作した。尚、管板の位置における隣接するパラジウム合金細管同士の間隔は、1.2mm〜1.5mmであった。また、円筒中央部におけるパラジウム合金細管同士の間隔は、0.8mm〜1.1mmであった。
(Production of hydrogen purification equipment)
After welding 35 palladium alloy capillaries manufactured as described above to a disc-shaped SUS316L tube plate having a diameter of 25 mm and a thickness of 15 mm on a plurality of concentric circles, an SUS316L cell having an inner diameter of 25 mm and a height of 400 mm is formed. The hydrogen purifier having the configuration as shown in FIGS. 1 and 2 was produced. In addition, the space | interval of adjacent palladium alloy thin tubes in the position of a tube sheet was 1.2 mm-1.5 mm. Moreover, the space | interval of palladium alloy thin tubes in a cylindrical center part was 0.8 mm-1.1 mm.

(水素精製試験)
セル内の温度を600℃に昇温するとともに水素を導入して、10時間加熱処理を行なった。続いて420℃まで温度を低下させ、一次側空間と二次側空間の差圧が1.0MPaとなるように制御しながら、不純物(窒素、酸素、二酸化炭素等)を約500ppm含む水素を一次側空間から導入し、水素の精製を行なった。その結果、1時間の処理で850L(リットル)の精製水素が得られた。
(Hydrogen purification test)
The temperature in the cell was raised to 600 ° C. and hydrogen was introduced, and heat treatment was performed for 10 hours. Subsequently, the temperature is lowered to 420 ° C., and hydrogen containing about 500 ppm of impurities (nitrogen, oxygen, carbon dioxide, etc.) is primary while controlling the differential pressure between the primary side space and the secondary side space to be 1.0 MPa. Hydrogen was purified by introducing from the side space. As a result, 850 L (liter) of purified hydrogen was obtained after treatment for 1 hour.

(実施例2)
実施例1と同様の材質のパラジウム合金細管の加工を繰返して行なうことにより、外径1.6mm、長さ20mmの開口端部、外径2.8mm、長さ278mm、厚さ50μmの円筒中央部(径が1.6mm〜1.8mm、長さ20mmの傾斜部を含む)、及び長さ2mmの閉口端部からなるパラジウム合金細管を得た。
実施例1と同様の管板に、前記のようにして製作したパラジウム合金細管37本を、該細管の円筒中央部において最密に束ねるとともに溶接した後、内径25mm、高さ400mmのSUS316L製セルに収納して、パラジウム合金細管の円筒中央部の位置における水平方向の断面が、図3に示すような形態の水素精製装置を製作した。尚、管板の位置における隣接するパラジウム合金細管同士の間隔は、1.2mmであった。
続いて、実施例1と同様にして水素精製試験を行なった結果、1時間の処理で2000L(リットル)の精製水素が得られた。
(Example 2)
By repeatedly processing a palladium alloy thin tube made of the same material as in Example 1, an open end with an outer diameter of 1.6 mm, a length of 20 mm, an outer diameter of 2.8 mm, a length of 278 mm, and a thickness of 50 μm in the center of the cylinder A palladium alloy thin tube comprising a part (including an inclined part having a diameter of 1.6 mm to 1.8 mm and a length of 20 mm) and a closed end part having a length of 2 mm was obtained.
A 37 SUS316L cell having an inner diameter of 25 mm and a height of 400 mm was formed by closely bonding and welding 37 palladium alloy thin tubes manufactured as described above to the same tube plate as in Example 1 at the center of the cylinder of the thin tube. The hydrogen purifier having a horizontal cross section at the position of the cylindrical central portion of the palladium alloy thin tube as shown in FIG. 3 was manufactured. In addition, the space | interval of adjacent palladium alloy thin tubes in the position of a tube sheet was 1.2 mm.
Subsequently, a hydrogen purification test was conducted in the same manner as in Example 1. As a result, 2000 L (liter) of purified hydrogen was obtained after 1 hour of treatment.

(比較例1)
従来から使用されている一端が封じられた平坦なパラジウム合金細管(外径1.6mm、全長300mm、厚さ70μm、パラジウム、金、及び銀の3元合金)35本を用いたほかは、実施例1と同様にして、図4に示すような形態の水素精製装置を製作した。尚、管板の位置における隣接するパラジウム合金細管同士の間隔は、1.2mm〜1.5mmであり、円筒中央部におけるパラジウム合金細管同士の間隔も、1.2mm〜1.5mmであった。
続いて、実施例1と同様にして水素精製試験を行なった結果、1時間の処理で770L(リットル)の精製水素が得られた。
(Comparative Example 1)
Other than using 35 conventional flat palladium alloy capillaries (outer diameter 1.6mm, total length 300mm, thickness 70μm, palladium, gold, and silver ternary alloy) sealed at one end In the same manner as in Example 1, a hydrogen purification apparatus having a configuration as shown in FIG. 4 was produced. In addition, the space | interval of adjacent palladium alloy thin tubes in the position of a tube sheet was 1.2 mm-1.5 mm, and the space | interval of palladium alloy thin tubes in a cylindrical center part was also 1.2 mm-1.5 mm.
Subsequently, a hydrogen purification test was performed in the same manner as in Example 1. As a result, 770 L (liter) of purified hydrogen was obtained after 1 hour of treatment.

以上のように、本発明の水素精製装置は、パラジウム合金細管の中央部において水素分離膜面積が大きく、従来の平坦なパラジウム合金細管と比較して、単位時間当たりの精製水素の取出し量を増加させることができる。また、複数のパラジウム合金細管をその中央部において最密に束ねることにより、機械的強度が向上し、パラジウム合金細管(水素分離膜)の薄膜化を図ることができる。   As described above, the hydrogen purification apparatus of the present invention has a large hydrogen separation membrane area at the center of the palladium alloy thin tube, and the amount of purified hydrogen taken out per unit time is increased compared to the conventional flat palladium alloy thin tube. Can be made. In addition, by mechanically bundling a plurality of palladium alloy capillaries at the center thereof, the mechanical strength is improved, and the palladium alloy capillaries (hydrogen separation membrane) can be made thinner.

本発明の水素精製装置の鉛直方向の断面の一例を示す構成図The block diagram which shows an example of the cross section of the perpendicular direction of the hydrogen purification apparatus of this invention 本発明の水素精製装置の管板の位置における水平方向の断面の一例を示す構成図The block diagram which shows an example of the cross section of the horizontal direction in the position of the tube sheet of the hydrogen purification apparatus of this invention 本発明の水素精製装置のパラジウム合金細管の円筒中央部の位置における水平方向の断面の一例を示す構成図The block diagram which shows an example of the cross section of the horizontal direction in the position of the cylindrical center part of the palladium alloy thin tube of the hydrogen purification apparatus of this invention 従来の水素精製装置の鉛直方向の断面の一例を示す構成図The block diagram which shows an example of the cross section of the perpendicular direction of the conventional hydrogen purification apparatus

1 パラジウム合金細管
2 開口端部
3 円筒中央部
4 閉口端部
5 管板
6 原料ガスの導入口
7 精製水素の取出口
8 水素以外のガスの取出口
9 セルの側面壁
10 ヒータ
DESCRIPTION OF SYMBOLS 1 Palladium alloy thin tube 2 Open end part 3 Cylindrical center part 4 Closed end part 5 Tube plate 6 Raw material gas inlet 7 Purified hydrogen outlet 8 Non-hydrogen gas outlet 9 Cell side wall 10 Heater

Claims (5)

一端が封じられた複数本のパラジウム合金細管と、該細管の開口端部において該細管を支持する管板とによって、セル内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、パラジウム合金細管を透過させて二次側空間から精製水素を取出す水素精製装置であって、パラジウム合金細管が、開口端部、円筒中央部、及び閉口端部からなり、円筒中央部の筒径が開口端部の管板の位置における筒径よりも大きいことを特徴とする水素精製装置。   The inside of the cell is partitioned into a primary side space and a secondary side space by a plurality of palladium alloy capillaries sealed at one end and a tube plate supporting the capillaries at the open end of the capillaries. A hydrogen purification apparatus that introduces from the primary side space, permeates the palladium alloy thin tube and takes out purified hydrogen from the secondary side space, the palladium alloy thin tube comprising an open end, a cylindrical central portion, and a closed end, A hydrogen purifier characterized in that the cylinder diameter at the center of the cylinder is larger than the cylinder diameter at the position of the tube plate at the open end. パラジウム合金細管の円筒中央部の筒径が、開口端部の管板の位置における筒径の1.05〜2.0倍である請求項1に記載の水素精製装置。   2. The hydrogen purifier according to claim 1, wherein the cylindrical diameter of the central portion of the palladium alloy thin tube is 1.05 to 2.0 times the cylindrical diameter at the position of the tube plate at the open end. パラジウム合金細管が3本以上用いられ、該細管の円筒中央部において最密に束ねられた請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein three or more palladium alloy thin tubes are used and are bundled most closely in a cylindrical central portion of the thin tube. 一次側空間がパラジウム合金細管の外側である請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the primary space is outside the palladium alloy thin tube. パラジウム合金細管の合金膜の厚みが、70μm以下である請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the alloy film of the palladium alloy thin tube has a thickness of 70 μm or less.
JP2010124334A 2010-05-31 2010-05-31 Hydrogen purification apparatus Pending JP2011245459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010124334A JP2011245459A (en) 2010-05-31 2010-05-31 Hydrogen purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124334A JP2011245459A (en) 2010-05-31 2010-05-31 Hydrogen purification apparatus

Publications (1)

Publication Number Publication Date
JP2011245459A true JP2011245459A (en) 2011-12-08

Family

ID=45411375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124334A Pending JP2011245459A (en) 2010-05-31 2010-05-31 Hydrogen purification apparatus

Country Status (1)

Country Link
JP (1) JP2011245459A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080308A (en) * 2012-10-15 2014-05-08 Japan Pionics Co Ltd Method for recovering ammonia and hydrogen
JP2015174815A (en) * 2014-03-18 2015-10-05 日本パイオニクス株式会社 Hydrogen purification apparatus and hydrogen purification system using the same
CN105126636A (en) * 2015-09-06 2015-12-09 中国船舶重工集团公司第七一二研究所 Preparation method for support-type tubular palladium membrane or palladium alloy membrane
CN108910821A (en) * 2018-08-20 2018-11-30 宋开泉 A hydrogen generator for preparing deuterium-free water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080308A (en) * 2012-10-15 2014-05-08 Japan Pionics Co Ltd Method for recovering ammonia and hydrogen
JP2015174815A (en) * 2014-03-18 2015-10-05 日本パイオニクス株式会社 Hydrogen purification apparatus and hydrogen purification system using the same
TWI554469B (en) * 2014-03-18 2016-10-21 Japan Pionics A hydrogen purifying apparatus and a hydrogen purifying system using the same
CN105126636A (en) * 2015-09-06 2015-12-09 中国船舶重工集团公司第七一二研究所 Preparation method for support-type tubular palladium membrane or palladium alloy membrane
CN108910821A (en) * 2018-08-20 2018-11-30 宋开泉 A hydrogen generator for preparing deuterium-free water

Similar Documents

Publication Publication Date Title
US8992669B2 (en) Hydrogen separation membrane module and hydrogen separation method using same
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
KR101678285B1 (en) Palladium alloy membrane unit, storage structure thereof, and method of purifying hydrogen by using the same
WO2013131778A2 (en) Apparatus for production of high purity carbon monoxide
JP2011245459A (en) Hydrogen purification apparatus
US9764277B2 (en) Synthesis gas separation and reforming process
JP2012106210A (en) Manufacturing method of palladium-alloy seamless capillary
JP6355944B2 (en) Hydrogen purification apparatus and hydrogen purification system using the same
JP2014084250A (en) Hydrogen purifier
US9260304B2 (en) Hydrogen separation device and method for operating same
KR102012010B1 (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
JP2005256899A (en) Hydrogen storage and/or derivation device
US9809454B2 (en) Method for refining hydrogen
JP2016097320A (en) Hydrogen purification method
JP2016084252A (en) Method for purifying hydrogen
JP2002308605A (en) Hydrogen gas purification method
JP4853617B2 (en) Hydrogen purification module
JP2008194629A (en) Hydrogen permeable alloy membrane
JPH0816005B2 (en) Method for producing high-purity argon
JPH04182301A (en) Hydrogen production method