[go: up one dir, main page]

JP2011255370A - Wet type flue gas desulfurization apparatus using three-way spray nozzle - Google Patents

Wet type flue gas desulfurization apparatus using three-way spray nozzle Download PDF

Info

Publication number
JP2011255370A
JP2011255370A JP2011108766A JP2011108766A JP2011255370A JP 2011255370 A JP2011255370 A JP 2011255370A JP 2011108766 A JP2011108766 A JP 2011108766A JP 2011108766 A JP2011108766 A JP 2011108766A JP 2011255370 A JP2011255370 A JP 2011255370A
Authority
JP
Japan
Prior art keywords
spray nozzle
flow rate
spray
injection flow
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011108766A
Other languages
Japanese (ja)
Other versions
JP5648576B2 (en
Inventor
Takayoshi Harimoto
崇良 張本
Yoichi Morita
陽一 森田
Katsuo Oikawa
克夫 及川
Yongsiri Chaturong
ヨンシリ チャトロン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Kasui Corp
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Fujikasui Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp, Fujikasui Engineering Co Ltd filed Critical Toda Kogyo Corp
Priority to JP2011108766A priority Critical patent/JP5648576B2/en
Publication of JP2011255370A publication Critical patent/JP2011255370A/en
Application granted granted Critical
Publication of JP5648576B2 publication Critical patent/JP5648576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wet-type flue gas desulfurization apparatus including an absorption tower capable of acquiring a high desulfurization rate by improving a gas-liquid contact state in a spray tower system by using a three-way spray nozzle.SOLUTION: In this wet-type flue gas desulfurization apparatus, exhaust gas discharged from a combustion device such as a boiler is introduced into the absorption tower, and an absorbing solution 6 sucked by an absorbing solution circulation pump 7 is injected from spray nozzles 10 disposed on spray headers 9 disposed in multiple stages in the direction of the flow of exhaust gas flowing from the bottom to the top, and the solution 6 is subjected to gas-liquid contact with the exhaust gas. In the wet-type flue gas desulfurization apparatus, the spray nozzles 10 disposed on each stage spray header 9 disposed in multiple stages excepting the uppermost stage are three-way spray nozzles having an upward direction, a downward direction, and a sideward direction, and the ratio of the injection flow rate of the absorbing solution from each spray nozzle port of the three-way spray nozzle (the upward injection flow rate: the downward injection flow rate: the sideward injection flow rate) is in the range of 0.2-1:1:0.05-0.4.

Description

本発明は、石炭や重油など硫黄化合物を含有する燃料を利用するボイラなどの燃焼装置から排出される排ガス中の二酸化硫黄(SO)を除去する湿式排煙脱硫装置に係わり、特に、三方向スプレーノズルを用いた吸収塔を備えた湿式排煙脱硫装置に関するものである。 The present invention relates to a wet flue gas desulfurization apparatus that removes sulfur dioxide (SO 2 ) in exhaust gas discharged from a combustion apparatus such as a boiler that uses a fuel containing a sulfur compound such as coal and heavy oil, and in particular, three-way. The present invention relates to a wet flue gas desulfurization apparatus provided with an absorption tower using a spray nozzle.

従来技術のスプレー方式を採用した湿式排煙脱硫装置の公知例(特開2004−237258号公報など)として、脱硫装置を構成する吸収塔の側面図を図8に示す。この湿式
排煙脱硫装置は、主に吸収塔本体1、撹拌機3、空気供給管4、空気気泡5、吸収液循環ポンプ7、抜き液管8、スプレーヘッダー9、双方向スプレーノズル13、ミストエリミネータ11等から構成される。2は排ガス、12は処理後ガス、6は吸収液を示す。
FIG. 8 shows a side view of an absorption tower constituting the desulfurization device as a known example of a wet flue gas desulfurization device employing a conventional spray system (Japanese Patent Laid-Open No. 2004-237258, etc.). This wet flue gas desulfurization apparatus is mainly composed of an absorption tower body 1, a stirrer 3, an air supply pipe 4, an air bubble 5, an absorbing liquid circulation pump 7, a draining liquid pipe 8, a spray header 9, a bidirectional spray nozzle 13, a mist. It consists of an eliminator 11 and the like. 2 indicates exhaust gas, 12 indicates a gas after treatment, and 6 indicates an absorbing solution.

ボイラから排出される排ガス2は吸収塔本体1の下部に導入され、設置した複数段のスプレーヘッダーに配置した複数の双方向スプレーノズル13による噴射した液流と接触し、この気液吸収ゾーンを経て、処理された後塔頂部から排出される。吸収液循環ポンプ7から送られる炭酸カルシウムを含んだ吸収液6は上述の双方向スプレーノズル13から噴射される。   The exhaust gas 2 discharged from the boiler is introduced into the lower part of the absorption tower main body 1 and comes into contact with the liquid flow ejected by a plurality of bidirectional spray nozzles 13 arranged in a plurality of installed spray headers. Then, after being processed, it is discharged from the top of the tower. The absorbent 6 containing calcium carbonate sent from the absorbent circulating pump 7 is ejected from the bidirectional spray nozzle 13 described above.

双方向スプレーノズル13から噴射された液流は、気液接触により排ガス中のSOを吸収し、Ca(HSOを生成する吸収液6となる。空気供給管4から供給される空気気泡5中の酸素により吸収液6中のCa(HSOが酸化され、硫酸カルシウム(CaSO)が生成される。この硫酸カルシウムと常時供給される炭酸カルシウムを含むスラリー状の吸収液は再び吸収液循環ポンプ7によって吸込まれて双方向スプレーノズル13から噴射される。また、必要な場合には排液は抜き液管8を経由して吸収塔から排出される。 The liquid flow ejected from the bidirectional spray nozzle 13 absorbs SO 2 in the exhaust gas by gas-liquid contact, and becomes an absorbing liquid 6 that generates Ca (HSO 3 ) 2 . Ca (HSO 3 ) 2 in the absorbing liquid 6 is oxidized by oxygen in the air bubbles 5 supplied from the air supply pipe 4 to generate calcium sulfate (CaSO 4 ). The slurry-like absorption liquid containing calcium sulfate and calcium carbonate that is always supplied is again sucked by the absorption liquid circulation pump 7 and sprayed from the bidirectional spray nozzle 13. If necessary, the drainage is discharged from the absorption tower via the drainage pipe 8.

特開2004−237258号公報JP 2004-237258 A

スプレー方式の従来技術では、シングル方向或いは双方向のいずれの場合においても、ノズルによる噴射ゾーン以外の空間は気液接触のデッドスペースが存在する問題が指摘されている。   In the conventional spray method, it has been pointed out that there is a gas-liquid contact dead space in the space other than the jetting zone by the nozzle in both cases of single direction and bidirectional direction.

例えば、図2の左図は従来の双方向スプレーノズルを用いて噴射した模様の側面図を示し、数字の1と2は上下向きの噴射エリアーを表すものである。立体的に上の段のノズル及び近隣のノズルからの噴射流量を加算しても、気液接触密度の不均一さがかなり大きく、それ故、ガスの乱れが生じ、そして吸収効率が低くなる問題があった。   For example, the left figure of FIG. 2 shows the side view of the pattern sprayed using the conventional bidirectional spray nozzle, and the numbers 1 and 2 represent the vertical spray areas. Even if the injection flow from the upper stage nozzle and the neighboring nozzles is added three-dimensionally, the non-uniformity of the gas-liquid contact density is considerably large, and therefore gas turbulence occurs and the absorption efficiency is low. was there.

本発明の課題は、ノズルの噴射ゾーンを立体的に均一化させ、排ガス流れの乱れを抑え、気液接触密度の均一化ができて、高脱硫率を得られ、よりコンパクト化が可能な吸収塔を備えた湿式排煙脱硫装置を得ることである。   The object of the present invention is to make the injection zone of the nozzle three-dimensionally uniform, suppress the disturbance of the exhaust gas flow, make the gas-liquid contact density uniform, obtain a high desulfurization rate, and make the absorption more compact It is to obtain a wet flue gas desulfurization apparatus equipped with a tower.

本発明の上記課題は次の解決手段により達成される。   The above object of the present invention is achieved by the following means.

請求項1記載の発明は、吸収液を吸収液循環ポンプによって、吸収塔上部に設置する多段のスプレーヘッダーのスプレーノズルを経て噴射して、吸収塔下部から導入した排ガスと気液接触させる吸収塔を設けた湿式排煙脱硫装置において、前記多段のスプレーヘッダーの最上段を除く各段に設置したスプレーノズルが、上向きと下向きと横向きとを有する三方向スプレーノズルであり、当該三方向スプレーノズルの上向きスプレーノズルからの吸収液噴射流量と下向きスプレーノズルからの吸収液噴射流量と横向きスプレーノズルからの吸収液噴射流量の比(上向き噴射流量:下向き噴射流量:横向き噴射流量)が0.2〜1:1:0.05〜0.4の範囲内であることを特徴とする湿式排煙脱硫装置である。   The invention according to claim 1 is an absorption tower in which an absorption liquid is injected by an absorption liquid circulation pump through a spray nozzle of a multi-stage spray header installed in the upper part of the absorption tower, and brought into gas-liquid contact with exhaust gas introduced from the lower part of the absorption tower. In the wet flue gas desulfurization apparatus, the spray nozzles installed in each stage excluding the uppermost stage of the multi-stage spray header are three-way spray nozzles having an upward direction, a downward direction, and a horizontal direction, The ratio of the absorption liquid injection flow rate from the upward spray nozzle to the absorption liquid injection flow rate from the downward spray nozzle and the absorption liquid injection flow rate from the horizontal spray nozzle (upward injection flow rate: downward injection flow rate: horizontal injection flow rate) is 0.2 to 1. 1: It is the wet flue gas desulfurization apparatus characterized by being in the range of 0.05-0.4.

請求項2記載の発明は、請求項1に記載の湿式排煙脱硫装置において、三方向スプレーノズルの上向き、下向き、横向き三方向のスプレーノズルの吸収液噴射角度をそれぞれ75〜135度、75〜150度、横向きの円錐噴射ゾーンの縦角度90度以下、横向きの円錐噴射ゾーンの水平角度160度以下の範囲内とする構成である。   The invention according to claim 2 is the wet flue gas desulfurization apparatus according to claim 1, wherein the three-direction spray nozzle upward, downward, and lateral three-direction spray nozzles have an injection angle of 75 to 135 degrees and 75 to The vertical angle of the horizontal cone injection zone is 150 degrees or less, and the horizontal angle of the horizontal cone injection zone is 160 degrees or less.

請求項3記載の発明は、請求項1又は2に記載の湿式排煙脱硫装置において、前記多段のスプレーヘッダーの最上段に設置したスプレーノズルを、下向きのみのスプレーノズルとする構成である。   The invention according to claim 3 is the wet flue gas desulfurization apparatus according to claim 1 or 2, wherein the spray nozzle installed at the uppermost stage of the multi-stage spray header is a spray nozzle only facing downward.

本発明によれば、吸収塔内での気液接触ゾーンの均一化によって、排ガスの偏流防止、液滴不均一散布が改善され、脱硫率を向上する効果が達成できる。さらに、三方向スプレーノズルから上下と横三方向に吸収液を噴射するため、従来の気液接触が十分発揮できなかった区間を無くし、実質的に気液接触面積が増加でき、スプレーノズル個数の低減が可能である。それ故、従来技術より低コストで、かつ小型・高性能な湿式排煙脱硫装置が得られる。   According to the present invention, by making the gas-liquid contact zone uniform in the absorption tower, it is possible to improve the prevention of uneven flow of exhaust gas and non-uniform dispersion of liquid droplets, and to improve the desulfurization rate. Furthermore, since the absorbing liquid is jetted from the three-way spray nozzle in the top and bottom and side three directions, there is no section where the conventional gas-liquid contact could not be sufficiently exerted, the gas-liquid contact area can be substantially increased, and the number of spray nozzles can be increased. Reduction is possible. Therefore, a low-cost and high-performance wet flue gas desulfurization apparatus can be obtained at a lower cost than the prior art.

本発明により、実施例の三方向スプレーノズルを用いる吸収塔の構成を示す断面図である。It is sectional drawing which shows the structure of the absorption tower using the three-way spray nozzle of an Example by this invention. 単独のスプレーノズルの噴射ゾーンにおける本発明に用いる三方向スプレーノズルと従来の双方向スプレーノズルとの側面図の比較。(左:双方向スプレーノズル;右:三方向スプレーノズル)Comparison of side views of the three-way spray nozzle used in the present invention and a conventional two-way spray nozzle in the spray zone of a single spray nozzle. (Left: Two-way spray nozzle; Right: Three-way spray nozzle) 単独のスプレーノズルの横方向噴射ゾーンにおける本発明に用いる三方向スプレーノズルと従来の双方向スプレーノズルとの平面図の比較。(左:双方向スプレーノズル;右:三方向スプレーノズル)Comparison of plan views of a three-way spray nozzle used in the present invention and a conventional two-way spray nozzle in a lateral spray zone of a single spray nozzle. (Left: Two-way spray nozzle; Right: Three-way spray nozzle) 同一段において、スプレーノズル三方向噴射ゾーンにおける本発明に用いる三方向スプレーノズルと従来の双方向スプレーノズルとの側面図の比較。(上:双方向スプレーノズル;下:三方向スプレーノズル)Comparison of side views of the three-way spray nozzle used in the present invention and the conventional two-way spray nozzle in the spray nozzle three-way spray zone in the same stage. (Upper: Two-way spray nozzle; Lower: Three-way spray nozzle) 相隣の上下段において、本発明に用いる三方向スプレーノズルの噴射ゾーンの側面図。The side view of the injection zone of the three-way spray nozzle used for this invention in the up-and-down stage adjacent to each other. 本発明により、実施例の三方向スプレーノズルと従来の双方向ノズルにおける噴射流量と脱硫率の関係を示す。According to the present invention, the relationship between the injection flow rate and the desulfurization rate in the three-way spray nozzle of the example and the conventional bidirectional nozzle is shown. 本発明により、実施例の三方向スプレーノズルの横噴射流量対総噴射流量の比と脱硫率の関係を示す。The present invention shows the relationship between the ratio of the lateral injection flow rate to the total injection flow rate and the desulfurization rate of the three-way spray nozzle of the example. 従来技術による吸収塔の構成を示す側面図である。It is a side view which shows the structure of the absorption tower by a prior art. 本発明による吸収塔内複数段のノズルの配置を示す平面図である。It is a top view which shows arrangement | positioning of the nozzle of the multistage in the absorption tower by this invention.

以下に本発明の実施形態について実施例を用いて説明する。   Embodiments of the present invention will be described below using examples.

図1は本発明による実施例の湿式排煙脱硫装置の吸収塔の側面図を示す。符号の説明により、番号1は吸収塔本体、2は排ガス、3は撹拌機、4は空気供給管、5は空気気泡、6は吸収液、7は吸収液循環ポンプ、8は抜き液管、9はスプレーヘッダー、10は三方向スプレーノズル、11はミストエリミネータ、12は処理ガスである。   FIG. 1 shows a side view of an absorption tower of a wet flue gas desulfurization apparatus according to an embodiment of the present invention. By reference to the reference numerals, reference numeral 1 is an absorption tower body, 2 is exhaust gas, 3 is a stirrer, 4 is an air supply pipe, 5 is an air bubble, 6 is an absorption liquid, 7 is an absorption liquid circulation pump, 8 is a drainage pipe, 9 is a spray header, 10 is a three-way spray nozzle, 11 is a mist eliminator, and 12 is a process gas.

そして、ボイラから排出される排ガス2は、吸収塔本体1の下部に導入され、多段かつ段毎に配置された複数の三方向スプレーノズルによる噴射した液流と接触し、この気液吸収ゾーンを経て、脱硫処理された後、塔頂部から排出される。吸収液循環ポンプ7から送られる炭酸カルシウムを含んだ吸収液6は上述の三方向スプレーノズル10から噴射され
る。
And the exhaust gas 2 discharged | emitted from a boiler is introduce | transduced into the lower part of the absorption tower main body 1, and contacts with the liquid flow injected by the several three-way spray nozzle arrange | positioned in multistage and every stage, this gas-liquid absorption zone is made into Then, after being desulfurized, it is discharged from the top of the column. The absorption liquid 6 containing calcium carbonate sent from the absorption liquid circulation pump 7 is sprayed from the above-described three-way spray nozzle 10.

三方向スプレーノズル10から噴射された液流は、気液接触により排ガス中のSOを吸収し、Ca(HSOを生成する吸収液6となる。空気供給管4から供給される空気気泡5中の酸素により吸収液6中のCa(HSOが酸化され、硫酸カルシウム(CaSO)が生成される。この硫酸カルシウムと常時供給される炭酸カルシウムを含むスラリー状の吸収液を再び吸収液循環ポンプ7によって吸込まれて三方向スプレーノズル10から噴射される。また、必要な場合には排液は抜き液管8を経由して吸収塔から排出
される。
The liquid flow ejected from the three-way spray nozzle 10 absorbs SO 2 in the exhaust gas by gas-liquid contact, and becomes an absorbing liquid 6 that generates Ca (HSO 3 ) 2 . Ca (HSO 3 ) 2 in the absorbing liquid 6 is oxidized by oxygen in the air bubbles 5 supplied from the air supply pipe 4 to generate calcium sulfate (CaSO 4 ). The slurry-like absorption liquid containing calcium sulfate and calcium carbonate that is always supplied is again sucked by the absorption liquid circulation pump 7 and sprayed from the three-way spray nozzle 10. If necessary, the drainage is discharged from the absorption tower via the drainage pipe 8.

上記本実施例の吸収塔は、三方向スプレーノズル10は、上方向と下方向と横方向の三方向に吸収液を噴射できるという特徴を有し、また、最上段を除く各段に配置した吸収塔壁に最近隣の三方向スプレーノズルは、上向きスプレーノズルからの吸収液噴射流量と下向きスプレーノズルからの吸収液噴射流量と横向きスプレーノズルからの吸収液噴射流量の比(上向き噴射流量:下向き噴射流量:横向き噴射流量)を0.2〜1:1:0.05〜0.4の範囲内とする。また、三方向スプレーノズルの上、下、横三方向のスプレーノズルの吸収液噴射角度をそれぞれ75〜135度、75〜150度、横向きの円錐噴射ゾーンの縦角度90度以下、横向きの円錐噴射ゾーンの水平角度160度以下とする。さらに、最上段には下向きのみのスプレーノズルを使うように設計されている。   The absorption tower of the present embodiment has the feature that the three-way spray nozzle 10 can inject the absorbing liquid in the three directions of the upward direction, the downward direction, and the lateral direction, and is arranged in each stage except the uppermost stage. The three-way spray nozzle closest to the absorption tower wall is the ratio of the absorption liquid injection flow rate from the upward spray nozzle, the absorption liquid injection flow rate from the downward spray nozzle, and the absorption liquid injection flow rate from the horizontal spray nozzle (upward injection flow rate: downward (Injection flow rate: lateral injection flow rate) is set in the range of 0.2 to 1: 1: 0.05 to 0.4. Further, the absorption liquid injection angles of the upper, lower, and horizontal spray nozzles of the three-way spray nozzle are 75 to 135 degrees and 75 to 150 degrees, respectively, and the longitudinal angle of the horizontal cone spray zone is 90 degrees or less. The horizontal angle of the zone is 160 degrees or less. In addition, the top row is designed to use only a downward spray nozzle.

実験例において、三方向スプレーノズル10を用いて、従来の双方向スプレーノズルとの比較を行い、排ガス量を一定量に固定し、同量の噴射流量で実施したものである。噴射流量による脱硫率への影響を図6に示す。三方向スプレーノズルと双方向スプレーノズルのいずれにも、噴射流量の増加に従って脱硫率は向上するが、同じ流量での脱硫率は三方向スプレーノズルを使った場合には、双方向より高い値が得られる傾向がある。これは、双方向スプレーノズルより三方向スプレーノズルによる横向きの吸収液の噴射が、気液接触ゾーンをより均一化することにより、脱硫率の増加に寄与するからである。図6の実験例の三方向スプレーノズルの場合、上向き噴射流量:下向き噴射流量:横向き噴射流量の割合を1:1:0.2で実施し、双方向スプレーノズルにおいては上向き噴射流量:下向き噴射流量の割合を1:1で実施した。   In the experimental example, the three-way spray nozzle 10 was used to compare with a conventional bidirectional spray nozzle, the exhaust gas amount was fixed to a constant amount, and the injection flow rate was the same. The influence of the injection flow rate on the desulfurization rate is shown in FIG. Both the three-way spray nozzle and the two-way spray nozzle improve the desulfurization rate as the injection flow rate increases. However, when the three-way spray nozzle is used, the desulfurization rate at the same flow rate is higher than the two-way spray nozzle. There is a tendency to be obtained. This is because the injection of the lateral absorption liquid by the three-way spray nozzle rather than the bidirectional spray nozzle contributes to an increase in the desulfurization rate by making the gas-liquid contact zone more uniform. In the case of the three-way spray nozzle of the experimental example of FIG. 6, the ratio of upward spray flow rate: downward spray flow rate: lateral spray flow rate is 1: 1: 0.2, and upward spray flow rate: downward spray in the bidirectional spray nozzle. The flow rate ratio was 1: 1.

また、実験例において、三方向スプレーノズル10を用いて、横向き吸収液の噴射流量対上下横三方向噴射総流量の比による脱硫率への影響を図7に示す。総噴射流量を一定に固定し、横噴射流量対総流量の比は0の時の脱硫率を基準として実施したものである。図7より、横噴射流量対総流量の比の増加に従って脱硫率は向上するが、上向き噴射量対下向き噴射量の比を1:1に固定する場合には、横噴射流量対総噴射流量の比が0.07〜0.1の範囲を超えると、脱硫率がふたたび下がる傾向がある。さらに、横噴射流量対総噴射流量の比が0.17を超えると、横噴射流量0の時の脱硫率より下がる。これは、横向きの吸収液の噴射流量が増加することにより、一定の範囲内で気液接触ゾーンが均一化され、更なる横向きの噴射流量を増加すると均一化が悪化する方向に転化するためである。図7の実験例において、上向き噴射流量:下向き噴射流量:横向き噴射流量の比が1:1:0の場合は脱硫率90%、1:1:0.118の場合は脱硫率92.5%、1:1:0.195の場合は脱硫率93.3%、1:1:0.338の場合は脱硫率91.8%、1:1:0.466の場合は脱硫率88.2%であった。   Further, in the experimental example, using the three-way spray nozzle 10, the influence on the desulfurization rate by the ratio of the injection flow rate of the lateral absorption liquid to the total vertical and horizontal three-way injection flow rate is shown in FIG. 7. The total injection flow rate is fixed, and the ratio of the lateral injection flow rate to the total flow rate is carried out based on the desulfurization rate when it is zero. From FIG. 7, the desulfurization rate improves as the ratio of the lateral injection flow rate to the total flow rate increases. However, when the ratio of the upward injection amount to the downward injection amount is fixed to 1: 1, the lateral injection flow rate to the total injection flow rate When the ratio exceeds the range of 0.07 to 0.1, the desulfurization rate tends to decrease again. Furthermore, when the ratio of the lateral injection flow rate to the total injection flow rate exceeds 0.17, the desulfurization rate when the lateral injection flow rate is 0 is lowered. This is because the gas-liquid contact zone is made uniform within a certain range by increasing the injection flow rate of the absorbent liquid in the horizontal direction, and when the horizontal injection flow rate is further increased, the uniformity is deteriorated. is there. In the experimental example of FIG. 7, the desulfurization rate is 90% when the ratio of the upward injection flow rate: the downward injection flow rate: the lateral injection flow rate is 1: 1: 0, and the desulfurization rate is 92.5% when 1: 1: 0.118. In the case of 1: 1: 0.195, the desulfurization rate is 93.3%, in the case of 1: 1: 0.338, the desulfurization rate is 91.8%, and in the case of 1: 1: 0.466, the desulfurization rate is 88.2. %Met.

脱硫率は脱硫処理前後の排ガス中の二酸化硫黄の測定結果から計算した。排ガス中の二酸化硫黄の測定はJIS B7981(2002)に準じた。以下、同様である。   The desulfurization rate was calculated from the measurement results of sulfur dioxide in the exhaust gas before and after the desulfurization treatment. The measurement of sulfur dioxide in the exhaust gas was based on JIS B7981 (2002). The same applies hereinafter.

図6と図7に示す実験結果より、三方向スプレーノズルの上向きスプレーノズルからの吸収液噴射流量と下向きスプレーノズルからの吸収液噴射流量と横向きスプレーノズルからの吸収液噴射流量の比(上向き噴射流量:下向き噴射流量:横向き噴射流量)を0.2〜1:1:0.05〜0.4の範囲内とするのが望ましいものである。上向き噴射と下向き噴射の衝突によって液滴の微小化が促進され、脱硫率が上がる傾向がある。逆に上向き噴射量と下向き噴射量の比があまり大きくなると、スプレーノズルからの噴射の多くがガスの流れの方向と同一方向となるため、脱硫率が下がる傾向がある。したがって、上述の上向き噴射量と下向き噴射量の比を0.2〜1:1の範囲内とするのが望ましいものである。   From the experimental results shown in FIGS. 6 and 7, the ratio of the absorption liquid injection flow rate from the upward spray nozzle, the absorption liquid injection flow rate from the downward spray nozzle, and the absorption liquid injection flow rate from the horizontal spray nozzle (upward injection). It is desirable that the flow rate: downward injection flow rate: lateral injection flow rate) be in the range of 0.2 to 1: 1: 0.05 to 0.4. The collision of the upward injection and the downward injection promotes the miniaturization of the droplets and tends to increase the desulfurization rate. Conversely, if the ratio of the upward injection amount and the downward injection amount becomes too large, most of the injection from the spray nozzle is in the same direction as the gas flow direction, and the desulfurization rate tends to decrease. Therefore, it is desirable to set the ratio of the upward injection amount and the downward injection amount within the range of 0.2 to 1: 1.

図2の右図は、三方向スプレーノズルの噴射模様を示している。数字1と2は上下向きの噴射エリアーを示し、数字3は横向き噴射のエリアーを示す側面図である。   The right figure of FIG. 2 shows the spray pattern of the three-way spray nozzle. Numbers 1 and 2 are vertical injection areas, and number 3 is a side view showing a horizontal injection area.

図3は、スプレーノズル所在平面を上から見たスプレーノズル噴射模様の平面図である。左図は従来の双方向スプレーノズルを用いて噴射した模様の平面図を示し、右図の数字の3は横向き噴射のエリアーを示す平面図である。図3の左図より、従来の双方向スプレーノズルにおいてはスプレーノズル所在平面上にはスプレーノズル噴射ゾーンは存在しないことは言うまでもなく、右図より、三方向スプレーノズルの横噴射による、従来空白のスプレーゾーンがなくなることが分かる。   FIG. 3 is a plan view of a spray nozzle spray pattern in which the spray nozzle location plane is viewed from above. The left figure shows a plan view of a pattern sprayed by using a conventional bidirectional spray nozzle, and the numeral 3 in the right figure is a plan view showing an area for lateral injection. From the left figure of FIG. 3, it is obvious that there is no spray nozzle spray zone on the spray nozzle location plane in the conventional bidirectional spray nozzle. You can see that the spray zone is gone.

図4は、複数の最近隣ノズルの噴射模様の側面図である。図4の上図は従来の双方向スプレーノズルを用いて噴射した模様の側面図を示し、数字の1と2はそれぞれ上下向きの噴射エリアーを表すものである。図4の下図は、三方向スプレーノズルの噴射模様を示している。数字1と2はそれぞれ上下向きの噴射エリアーを示し、数字3は横向き噴射のエリアーを示す側面図である。   FIG. 4 is a side view of a spray pattern of a plurality of nearest neighbor nozzles. The upper part of FIG. 4 shows a side view of a pattern sprayed using a conventional bidirectional spray nozzle, and the numerals 1 and 2 represent vertical spray areas, respectively. The lower part of FIG. 4 shows the spray pattern of the three-way spray nozzle. Numbers 1 and 2 are respectively vertical side injection areas, and number 3 is a side view showing a sideways injection area.

図5は、最近隣上下2段における複数の三方向スプレーノズルを用いる最近隣ノズルの噴射模様の側面図である。数字1と2と3はそれぞれ上下横向きの噴射エリアーを示す。   FIG. 5 is a side view of the spray pattern of the nearest nozzle using a plurality of three-way spray nozzles in the nearest upper and lower two stages. Numbers 1, 2, and 3 indicate vertical and horizontal injection areas, respectively.

図2、図3、図4と図5から、従来の双方向スプレーノズルと比べ、三方向スプレーノズルの噴射エリアーはより均一化できることがわかる。   2, 3, 4, and 5, it can be seen that the spray area of the three-way spray nozzle can be made more uniform than the conventional bidirectional spray nozzle.

一方、本発明では、スプレーノズルからの噴射全流量を一定割合で上向き、下向きと横向き三方向に噴射できるスプレーノズルを用いることにより上下横三方向に吸収液を噴射する構成を利用して、さらに、段毎に千鳥式でノズルをできるだけ最大なオーバーラップを図るように配置して、吸収塔内気液吸収ゾーンをできるだけ均一化をさせ、高い脱硫率が得られる。図9は、本発明技術による吸収塔内複数段のノズルの配置を示す平面図である。ここで示した各段は、同じ配置を有するが、各段の間に20〜60度をずらして組み合わせることによって、ノズル噴射エリアーの最大なオーバーラップが実現でき、施工、製造にも簡素化ができる(なお、図9では一例として30度ずらした場合の実施態様を示す)。   On the other hand, in the present invention, using a spray nozzle capable of spraying the total flow rate of spray from the spray nozzle at a fixed rate upward, downward and laterally in three directions, a configuration in which the absorbing liquid is sprayed in three directions, up and down, and further, The nozzles are arranged in a staggered manner for each stage so that the maximum overlap is possible as much as possible, and the gas-liquid absorption zone in the absorption tower is made uniform as much as possible to obtain a high desulfurization rate. FIG. 9 is a plan view showing the arrangement of nozzles in a plurality of stages in the absorption tower according to the technique of the present invention. Although each stage shown here has the same arrangement, the maximum overlap of the nozzle injection area can be realized by shifting 20-60 degrees between each stage, and the construction and manufacturing can be simplified. (Note that FIG. 9 shows an embodiment in the case of shifting by 30 degrees as an example).

一方、最上段に設置したスプレーノズルに関しては、下向きのみのスプレーノズルを用いることにより、ガス流れ方向に沿った上向きの噴射量はゼロであるので、従来の双方向スプレーノズルを使用した排煙脱硫装置において上向き噴射液流がガスに乗ってミストエリミネータを通過するような現象を大きく抑制できる。   On the other hand, for the spray nozzle installed at the uppermost stage, by using only the downward spray nozzle, the upward injection amount along the gas flow direction is zero, so the flue gas desulfurization using the conventional bidirectional spray nozzle In the apparatus, it is possible to greatly suppress a phenomenon in which the upward jet liquid flow rides on the gas and passes through the mist eliminator.

1 吸収塔本体
2 排ガス
3 撹拌機
4 空気供給管
5 空気気泡
6 吸収液
7 吸収液循環ポンプ
8 抜き液管
9 スプレーヘッダー
10 三方向スプレーノズル
11 ミストエリミネータ
12 処理ガス
13 双方向スプレーノズル
DESCRIPTION OF SYMBOLS 1 Absorption tower body 2 Exhaust gas 3 Stirrer 4 Air supply pipe 5 Air bubble 6 Absorbing liquid 7 Absorbing liquid circulation pump 8 Draining liquid pipe 9 Spray header 10 Three-way spray nozzle 11 Mist eliminator 12 Process gas 13 Two-way spray nozzle

Claims (3)

吸収液を吸収液循環ポンプによって、吸収塔上部に設置する多段のスプレーヘッダーのスプレーノズルを経て噴射して、吸収塔下部から導入した排ガスと気液接触させる吸収塔を設けた湿式排煙脱硫装置において、前記多段のスプレーヘッダーの最上段を除く各段に設置したスプレーノズルが、上向きと下向きと横向きとを有する三方向スプレーノズルであり、当該三方向スプレーノズルの上向きスプレーノズルからの吸収液噴射流量と下向きスプレーノズルからの吸収液噴射流量と横向きスプレーノズルからの吸収液噴射流量の比(上向き噴射流量:下向き噴射流量:横向き噴射流量)が0.2〜1:1:0.05〜0.4の範囲内であることを特徴とする湿式排煙脱硫装置。   Wet flue gas desulfurization equipment provided with an absorption tower in which the absorption liquid is injected through the spray nozzle of a multi-stage spray header installed at the upper part of the absorption tower by an absorption liquid circulation pump and brought into gas-liquid contact with the exhaust gas introduced from the lower part of the absorption tower The spray nozzles installed in each stage except the uppermost stage of the multi-stage spray header are three-way spray nozzles having an upward direction, a downward direction, and a horizontal direction, and the absorbing liquid is ejected from the upward spray nozzle of the three-way spray nozzle. The ratio of the flow rate and the absorption liquid injection flow rate from the downward spray nozzle to the absorption liquid injection flow rate from the horizontal spray nozzle (upward injection flow rate: downward injection flow rate: horizontal injection flow rate) is 0.2-1: 1: 0.05-0. A wet flue gas desulfurization apparatus characterized by being within a range of .4. 三方向スプレーノズルの上向き、下向き、横向き三方向のスプレーノズルの吸収液噴射角度が、それぞれ75〜135度、75〜150度、横向きの円錐噴射ゾーンの縦角度90度以下、横向きの円錐噴射ゾーンの水平角度160度以下の範囲内である請求項1に記載の湿式排煙脱硫装置。   The three-way spray nozzle upward, downward, and sideways spray nozzles have absorption liquid injection angles of 75 to 135 degrees and 75 to 150 degrees, respectively. The wet flue gas desulfurization apparatus according to claim 1, wherein the horizontal angle is within a range of 160 degrees or less. 前記多段のスプレーヘッダーの最上段に設置したスプレーノズルが、下向きのみのスプレーノズルである請求項1又は2に記載の湿式排煙脱硫装置。
The wet flue gas desulfurization device according to claim 1 or 2, wherein the spray nozzle installed at the uppermost stage of the multi-stage spray header is a spray nozzle only facing downward.
JP2011108766A 2010-05-13 2011-05-13 Wet flue gas desulfurization equipment using a three-way spray nozzle. Active JP5648576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108766A JP5648576B2 (en) 2010-05-13 2011-05-13 Wet flue gas desulfurization equipment using a three-way spray nozzle.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010110768 2010-05-13
JP2010110768 2010-05-13
JP2011108766A JP5648576B2 (en) 2010-05-13 2011-05-13 Wet flue gas desulfurization equipment using a three-way spray nozzle.

Publications (2)

Publication Number Publication Date
JP2011255370A true JP2011255370A (en) 2011-12-22
JP5648576B2 JP5648576B2 (en) 2015-01-07

Family

ID=44914457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108766A Active JP5648576B2 (en) 2010-05-13 2011-05-13 Wet flue gas desulfurization equipment using a three-way spray nozzle.

Country Status (3)

Country Link
JP (1) JP5648576B2 (en)
TW (1) TWI507240B (en)
WO (1) WO2011142405A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041682A (en) * 2012-10-02 2013-04-17 云南云天化国际化工股份有限公司 Application method of fine desulfurization in sulfuric acid exhaust absorption
CN103801185A (en) * 2012-11-08 2014-05-21 江苏佳世达环保工程有限公司 Metal flue gas processing and purifying system
CN104190244A (en) * 2014-09-12 2014-12-10 北京国电清新环保技术股份有限公司 Multi-stage suspension type flue gas desulfurization device for granular active coke and flue gas desulfurization method thereof
JP2015042389A (en) * 2013-08-26 2015-03-05 株式会社Ihi Exhaust gas desulfurizer
EP2859935A1 (en) * 2013-10-11 2015-04-15 Alstom Technology Ltd Method and apparatus for wet desulfurization spray towers
CN105413443A (en) * 2015-12-17 2016-03-23 江苏鲲鹏环保工程技术有限公司 Device for enhancing flue gas desulfurization effect
CN110935290A (en) * 2018-12-27 2020-03-31 久保田化水株式会社 Wet flue gas desulfurization device and wet flue gas desulfurization method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157357A (en) * 2011-12-08 2013-06-19 江苏东大热能机械制造有限公司 Novel desulfurization-denitrification integrated device
CN102716656A (en) * 2012-03-23 2012-10-10 北京东旭宏业科技有限公司 Smoke washing device
CN106390691A (en) * 2016-09-20 2017-02-15 大唐环境产业集团股份有限公司 Efficient oxidation air spray gun
CN107413185A (en) * 2017-08-25 2017-12-01 衡阳旭光锌锗科技有限公司 Electrolytic zinc acid mist treatment device
KR102564381B1 (en) * 2021-11-02 2023-08-07 고등기술연구원연구조합 Large Capacity Solvent Spraying Device for Removal of Hydrogen Sulfide Contained in Huge Amount of Gases
CN114345113A (en) * 2022-03-21 2022-04-15 浙江浩普环保工程有限公司 Strong mass transfer self-adaptation absorption tower

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151337A (en) * 1986-12-16 1988-06-23 Babcock Hitachi Kk Desulfurization equipment
JPH06198121A (en) * 1993-01-06 1994-07-19 Babcock Hitachi Kk Wet flue gas desulfurizer equipped with adsorption tower
JP2009018290A (en) * 2007-07-13 2009-01-29 Ebara Corp Exhaust gas washing device
JP2009131836A (en) * 2007-11-09 2009-06-18 Espo Chemical Corp Air cleaning apparatus and air cleaning method using the apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179144A (en) * 1997-12-22 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd Spray desulfurization equipment
CA2453912C (en) * 2002-12-23 2011-03-15 Eric B. Rosen Emission control device and method of operation thereof
JP4861031B2 (en) * 2006-03-27 2012-01-25 大阪ガスエンジニアリング株式会社 Nozzle device
GB0709502D0 (en) * 2007-05-18 2007-06-27 Boc Group Plc Apparatus for treating gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151337A (en) * 1986-12-16 1988-06-23 Babcock Hitachi Kk Desulfurization equipment
JPH06198121A (en) * 1993-01-06 1994-07-19 Babcock Hitachi Kk Wet flue gas desulfurizer equipped with adsorption tower
JP2009018290A (en) * 2007-07-13 2009-01-29 Ebara Corp Exhaust gas washing device
JP2009131836A (en) * 2007-11-09 2009-06-18 Espo Chemical Corp Air cleaning apparatus and air cleaning method using the apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041682A (en) * 2012-10-02 2013-04-17 云南云天化国际化工股份有限公司 Application method of fine desulfurization in sulfuric acid exhaust absorption
CN103041682B (en) * 2012-10-02 2016-05-11 云南云天化国际化工股份有限公司 The application process of a kind of smart desulfurization in sulfuric acid tail is inhaled
CN103801185A (en) * 2012-11-08 2014-05-21 江苏佳世达环保工程有限公司 Metal flue gas processing and purifying system
JP2015042389A (en) * 2013-08-26 2015-03-05 株式会社Ihi Exhaust gas desulfurizer
EP2859935A1 (en) * 2013-10-11 2015-04-15 Alstom Technology Ltd Method and apparatus for wet desulfurization spray towers
CN104548881A (en) * 2013-10-11 2015-04-29 阿尔斯通技术有限公司 Method and apparatus for wet desulfurization spray towers
US9364781B2 (en) 2013-10-11 2016-06-14 Alstom Technology Ltd Method and apparatus for wet desulfurization spray towers
US9468885B2 (en) 2013-10-11 2016-10-18 General Electric Technology Gmbh Method and apparatus for wet desulfurization spray towers
CN104190244A (en) * 2014-09-12 2014-12-10 北京国电清新环保技术股份有限公司 Multi-stage suspension type flue gas desulfurization device for granular active coke and flue gas desulfurization method thereof
CN105413443A (en) * 2015-12-17 2016-03-23 江苏鲲鹏环保工程技术有限公司 Device for enhancing flue gas desulfurization effect
CN105413443B (en) * 2015-12-17 2018-05-08 江苏鲲鹏环保工程技术有限公司 A kind of device for strengthening flue gas desulfurization effect
CN110935290A (en) * 2018-12-27 2020-03-31 久保田化水株式会社 Wet flue gas desulfurization device and wet flue gas desulfurization method

Also Published As

Publication number Publication date
JP5648576B2 (en) 2015-01-07
WO2011142405A1 (en) 2011-11-17
TWI507240B (en) 2015-11-11
TW201210677A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
JP5648576B2 (en) Wet flue gas desulfurization equipment using a three-way spray nozzle.
JP4785006B2 (en) Wet flue gas desulfurization equipment
CN203355586U (en) Multi-stage-absorption ammonia desulphurization system
JP2015174025A (en) Seawater flue gas desulfurization apparatus and application method of the same
CA2809655A1 (en) Flue gas desulfurization device, combustion system, and combustion method
KR102036295B1 (en) Plant and process for the absorption of individual components in gases
CN104785084A (en) Mass transfer enhancing high-efficiency desulfurization absorption tower
JP2010115602A (en) Two-step wet desulfurization method and apparatus
EP2762221A1 (en) Dual-chamber multi-absorption wet flue desulfurization device
JPH119956A (en) Absorption tower of wet flue gas desulfurizer
JP2013111527A (en) Wet-type flue gas desulfurization apparatus
JP3073972B2 (en) Flue gas desulfurization equipment
JP2011230047A (en) Exhaust gas desulfurizer and oxygen combustion apparatus and method having the same
CN102921288A (en) Y-shaped absorption tower and method for performing flue gas desulfurization by using Y-shaped absorption tower
WO2019163950A1 (en) Water treatment tank and desulfurization device
KR100733075B1 (en) Wet flue gas desulfurization unit with gas layer porous plate
KR100652856B1 (en) Exhaust gas processing device
JP2008080248A (en) Wet process flue gas desulfurizer
WO2014196458A1 (en) Device for desulfurization with seawater and system for desulfurization with seawater
JP2004237258A (en) Wet type flue gas desulfurization equipment
CN110935290A (en) Wet flue gas desulfurization device and wet flue gas desulfurization method
JP2002153727A (en) Double chamber type wet flue gas desulfurization device
JP3904771B2 (en) Two-chamber wet flue gas desulfurization system
CN202962261U (en) Y-shaped absorption plate tower
US20200391156A1 (en) Water treatment tank and desulfurization device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5648576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350