JP2011204958A - Cleaning method and cleaning device - Google Patents
Cleaning method and cleaning device Download PDFInfo
- Publication number
- JP2011204958A JP2011204958A JP2010071676A JP2010071676A JP2011204958A JP 2011204958 A JP2011204958 A JP 2011204958A JP 2010071676 A JP2010071676 A JP 2010071676A JP 2010071676 A JP2010071676 A JP 2010071676A JP 2011204958 A JP2011204958 A JP 2011204958A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- gas
- cleaned
- container
- supersaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
【課題】LSI用半導体ウエハやMEMS用基板のような微細構造を有する被洗浄物を、洗浄によるダメージを与えることなく、ガス溶解水により効果的に洗浄してこれらの被洗浄物を高度に清浄化する。
【解決手段】洗浄容器内10で、被洗浄物を、当該洗浄液の液温における飽和溶解度以上の溶存ガスを含む洗浄液(過飽和ガス溶解液)と接触させて洗浄する。洗浄容器に、過飽和ガス溶解液を導入するか、或いは、洗浄容器内に洗浄液を導入した後加圧ガスを導入して洗浄容器内で過飽和ガス溶解液を調製した後、洗浄容器内で被洗浄物を過飽和ガス溶解液に接触させた状態で洗浄容器内を減圧し、過飽和ガス溶解液から発生した過飽和の溶存ガスの気泡で被洗浄物を洗浄する。
【選択図】図1The object to be cleaned having a fine structure such as a semiconductor wafer for LSI and a substrate for MEMS is effectively cleaned with gas-dissolved water without causing damage due to cleaning, and the object to be cleaned is highly purified. Turn into.
In a cleaning container, an object to be cleaned is brought into contact with a cleaning liquid (supersaturated gas solution) containing dissolved gas having a saturation solubility or higher at the liquid temperature of the cleaning liquid. Introduce a supersaturated gas solution in the cleaning container, or introduce a cleaning solution in the cleaning container and then introduce a pressurized gas to prepare a supersaturated gas solution in the cleaning container, and then clean the target in the cleaning container. The inside of the cleaning container is depressurized while the object is in contact with the supersaturated gas solution, and the object to be cleaned is cleaned with bubbles of supersaturated dissolved gas generated from the supersaturated gas solution.
[Selection] Figure 1
Description
本発明は、各種の被洗浄物の表面を効果的に洗浄する方法及び装置に関する。本発明の洗浄方法及び洗浄装置は、特に半導体用のシリコンウェハ、MEMS(Micro Electro Mechanical Systems)用基板、フラットパネルディスプレイ用のガラス基板、フォトマスク用石英基板等、高度な清浄度が要求される電子材料(電子部品や電子部材等)などの洗浄に好適である。 The present invention relates to a method and apparatus for effectively cleaning the surface of various objects to be cleaned. The cleaning method and the cleaning apparatus of the present invention are required to have a high degree of cleanliness such as a silicon wafer for semiconductors, a substrate for MEMS (Micro Electro Mechanical Systems), a glass substrate for flat panel displays, a quartz substrate for photomasks, and the like. It is suitable for cleaning electronic materials (electronic parts, electronic members, etc.).
LSI用半導体ウェハ、MEMS用基板、フラットパネルディスプレイ用のガラス基板、フォトマスク用石英基板などの電子材料の表面から、微粒子、有機物、金属などを除去するために、従来、いわゆるRCA洗浄法と呼ばれる過酸化水素をベースとする濃厚薬液による高温でのウェット洗浄が行われていた。RCA洗浄法は、電子材料の表面の金属などを除去するために有効な方法であるが、高濃度の酸、アルカリや過酸化水素を多量に使用するために、廃液中にこれらの薬液が排出され、廃液処理において中和や沈殿処理などに多大な負担がかかるとともに、多量の汚泥が発生する。 In order to remove fine particles, organic substances, metals, etc. from the surface of electronic materials such as LSI semiconductor wafers, MEMS substrates, glass substrates for flat panel displays, quartz substrates for photomasks, etc., this is conventionally called the so-called RCA cleaning method. Wet cleaning was performed at high temperature with a concentrated chemical solution based on hydrogen peroxide. The RCA cleaning method is an effective method for removing metal and the like on the surface of electronic materials, but these chemicals are discharged into the waste liquid because a large amount of high-concentration acid, alkali or hydrogen peroxide is used. In addition, a large burden is imposed on neutralization and precipitation in waste liquid treatment, and a large amount of sludge is generated.
そこで、特定のガスを純水に溶解させ、必要に応じて微量の薬剤を添加して調製したガス溶解水が、高濃度薬液に代わって使用されるようになってきている。ガス溶解水による洗浄であれば、被洗浄物への薬剤の残留の問題も少なく、洗浄効果も高いため、洗浄用水の使用量の低減を図ることができる。 Therefore, gas-dissolved water prepared by dissolving a specific gas in pure water and adding a trace amount of chemicals as necessary has been used in place of high-concentration chemical solutions. Cleaning with gas-dissolved water can reduce the amount of cleaning water used because there are few problems of drug residue on the object to be cleaned and the cleaning effect is high.
従来、電子材料用洗浄水としてのガス溶解水に用いられる特定のガスとしては、水素ガス、酸素ガス、オゾンガス、希ガス、炭酸ガスなどがある。 Conventionally, specific gases used for gas-dissolved water as cleaning water for electronic materials include hydrogen gas, oxygen gas, ozone gas, rare gas, and carbon dioxide gas.
ガス溶解水の洗浄効果は、ガスを溶解させていない水による洗浄効果に比べて高いものではあるが、その微粒子除去等の洗浄効果は十分に高いものとは言えず、ガス溶解水による洗浄効果を十分に発現させるためには、超音波洗浄を組み合わせる必要がある。例えば、特許文献1には、超純水に水素ガスを溶解させ、過酸化水素を添加した洗浄液を用い、この洗浄液に超音波を照射しながら被洗浄物を洗浄する洗浄方法が提案されている。 The cleaning effect of gas-dissolved water is higher than that of water that does not dissolve gas, but the cleaning effect of removing fine particles is not sufficiently high. It is necessary to combine ultrasonic cleaning in order to fully develop the expression. For example, Patent Document 1 proposes a cleaning method for cleaning an object to be cleaned while irradiating the cleaning liquid with ultrasonic waves using a cleaning liquid in which hydrogen gas is dissolved in ultrapure water and hydrogen peroxide is added. .
しかし、超音波洗浄設備は高価なため、洗浄コストを引き上げる要因となる。
また、近年の電子材料は、従来にない微細な構造をもち、濃厚薬液によるわずかなエッチングや超音波により構造体に与えられるダメージが問題となっている。特に、LSI用半導体ウエハの微細パターン溝、コンタクトホールや、近年急速に開発・実用化が進んできたMEMS用基板の微細な凹凸のような微細構造にダメージを与えないように、濃厚薬液や超音波を使用しない新しい洗浄技術の開発が望まれている。
However, since the ultrasonic cleaning equipment is expensive, the cleaning cost increases.
In addition, recent electronic materials have a fine structure that has not been conventionally used, and there is a problem of damage caused to the structure by slight etching with a concentrated chemical solution or ultrasonic waves. In particular, a concentrated chemical solution or ultra-fine solution is used so as not to damage fine structures such as fine pattern grooves and contact holes of LSI semiconductor wafers and fine irregularities of MEMS substrates that have been rapidly developed and put into practical use in recent years. Development of a new cleaning technique that does not use sound waves is desired.
本発明は、超音波を用いることなく、LSI用半導体ウエハやMEMS用基板のような微細構造を有する被洗浄物を、ガス溶解水により、洗浄によるダメージを与えることなく効果的に洗浄して、これらの被洗浄物を高度に清浄化する洗浄方法及び洗浄装置を提供することを課題とする。 The present invention effectively cleans an object to be cleaned having a fine structure such as a semiconductor wafer for LSI or a substrate for MEMS without using ultrasonic waves, without causing damage due to cleaning, It is an object of the present invention to provide a cleaning method and a cleaning apparatus for highly cleaning these objects to be cleaned.
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、洗浄に用いる洗浄液に、飽和溶解度以上のガスを溶解させておき、その後、圧力を下げたときに、この過飽和の溶存ガスが活性な気泡となって洗浄液から発生すると、そのスクラブ効果、気泡衝突の衝撃力、気液界面の吸着力などの物理化学的な洗浄作用が、被洗浄物や被洗浄物の表面の微粒子等の汚泥物質に及ぼされることとなり、超音波を用いることなくガス溶解水による洗浄効果を向上させることができることを見出した。 As a result of intensive investigations to solve the above problems, the present inventors have dissolved a gas having a saturation solubility or higher in the cleaning liquid used for cleaning, and when this pressure is lowered, the supersaturated dissolved gas is dissolved. When the bubbles become active bubbles and are generated from the cleaning liquid, the scrubbing effect, the impact force of the bubble collision, the adsorption force at the gas-liquid interface, etc., cause the physicochemical cleaning action such as fine particles on the surface of the object to be cleaned and the object to be cleaned. It has been found that the cleaning effect of the gas-dissolved water can be improved without using ultrasonic waves.
本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
[1] 洗浄容器内で、被洗浄物を、当該洗浄液の液温における飽和溶解度以上の溶存ガスを含む洗浄液(以下、この洗浄液を「過飽和ガス溶解液」と称す。)と接触させて洗浄する方法であって、該洗浄容器に、該過飽和ガス溶解液を導入するか、或いは、該洗浄容器内に洗浄液を導入した後加圧ガスを導入して該洗浄容器内で該過飽和ガス溶解液を調製する第1の工程と、該洗浄容器内で被洗浄物を該過飽和ガス溶解液に接触させた状態で、該洗浄容器内を減圧して該過飽和ガス溶解液から気泡を発生させる第2の工程とを含むことを特徴とする洗浄方法。 [1] In the cleaning container, the object to be cleaned is cleaned by bringing it into contact with a cleaning liquid containing dissolved gas having a solubility equal to or higher than the saturation solubility at the liquid temperature of the cleaning liquid (hereinafter, this cleaning liquid is referred to as “supersaturated gas solution”). In the method, the supersaturated gas solution is introduced into the cleaning container, or a pressurized gas is introduced after the cleaning liquid is introduced into the cleaning container, and the supersaturated gas solution is introduced into the cleaning container. A first step of preparing, and in a state where an object to be cleaned is in contact with the supersaturated gas solution in the cleaning container, a second step of reducing the pressure in the cleaning container to generate bubbles from the supersaturated gas solution A cleaning method comprising the steps of:
[2] [1]において、前記第1の工程と第2の工程からなる洗浄工程を複数回行うことを特徴とする洗浄方法。 [2] A cleaning method according to [1], wherein the cleaning step including the first step and the second step is performed a plurality of times.
[3] [2]において、前記洗浄工程と、次の洗浄工程との間に、前記洗浄容器内の洗浄液を入れ換える第3の工程を有することを特徴とする洗浄方法。 [3] The cleaning method according to [2], including a third step of replacing the cleaning liquid in the cleaning container between the cleaning step and the next cleaning step.
[4] [1]ないし[3]のいずれかにおいて、前記溶存ガスが、窒素ガス、酸素ガス、炭酸ガス、水素ガス、オゾンガス、清浄空気、及び希ガスよりなる群から選ばれる1種又は2種以上であることを特徴とする洗浄方法。 [4] In any one of [1] to [3], the dissolved gas is one or two selected from the group consisting of nitrogen gas, oxygen gas, carbon dioxide gas, hydrogen gas, ozone gas, clean air, and rare gas. A cleaning method characterized in that it is a seed or more.
[5] [1]ないし[4]のいずれかにおいて、前記洗浄液が、純水又は超純水或いは薬剤を溶解させた純水又は超純水であることを特徴とする洗浄方法。 [5] The cleaning method according to any one of [1] to [4], wherein the cleaning liquid is pure water or ultrapure water, or pure water or ultrapure water in which a chemical is dissolved.
[6] [5]において、前記薬剤が、アルカリ、酸、キレート剤及び界面活性剤よりなる群から選ばれる1種又は2種以上であることを特徴とする洗浄方法。 [6] The cleaning method according to [5], wherein the agent is one or more selected from the group consisting of an alkali, an acid, a chelating agent, and a surfactant.
[7] [6]において、前記アルカリがアンモニアであることを特徴とする洗浄方法。 [7] The cleaning method according to [6], wherein the alkali is ammonia.
[8] 洗浄容器内で、被洗浄物を、当該洗浄液の液温における飽和溶解度以上の溶存ガスを含む洗浄液(以下、この洗浄液を「過飽和ガス溶解液」と称す。)と接触させて洗浄する装置であって、密閉可能な耐圧性の洗浄容器と、該洗浄容器に該過飽和ガス溶解液を導入する手段と、該洗浄容器内を減圧する手段と、該洗浄容器内の洗浄液を排出する手段とを有し、該洗浄容器内で被洗浄物を該過飽和ガス溶解液に接触させた状態で、該洗浄容器内を減圧して該過飽和ガス溶解液から気泡を発生させることにより該被洗浄物を洗浄することを特徴とする洗浄装置。 [8] In the cleaning container, the object to be cleaned is cleaned by bringing it into contact with a cleaning liquid containing dissolved gas having a solubility equal to or higher than the saturation solubility at the liquid temperature of the cleaning liquid (hereinafter, this cleaning liquid is referred to as “supersaturated gas solution”). A pressure-resistant cleaning container that can be sealed, means for introducing the supersaturated gas solution into the cleaning container, means for depressurizing the cleaning container, and means for discharging the cleaning liquid in the cleaning container The object to be cleaned by reducing the pressure in the cleaning container and generating bubbles from the supersaturated gas solution in a state where the object to be cleaned is in contact with the supersaturated gas solution in the cleaning container. Cleaning apparatus characterized by cleaning.
[9] 洗浄容器内で、被洗浄物を、当該洗浄液の液温における飽和溶解度以上の溶存ガスを含む洗浄液(以下、この洗浄液を「過飽和ガス溶解液」と称す。)と接触させて洗浄する装置であって、密閉可能な耐圧性の洗浄容器と、該洗浄容器に該洗浄液を導入する手段と、該洗浄容器に加圧ガスを導入して、該洗浄容器内の洗浄液に、当該洗浄液の液温における飽和溶解度以上の溶存ガスを含有させる手段と、該洗浄容器内を減圧する手段と、該洗浄容器内の洗浄液を排出する手段とを有し、該洗浄容器内で被洗浄物を該過飽和ガス溶解液に接触させた状態で、該洗浄容器内を減圧して該過飽和ガス溶解液から気泡を発生させることにより該被洗浄物を洗浄することを特徴とする洗浄装置。 [9] In the cleaning container, the object to be cleaned is cleaned by bringing it into contact with a cleaning liquid containing dissolved gas having a solubility equal to or higher than the saturation solubility at the liquid temperature of the cleaning liquid (hereinafter, this cleaning liquid is referred to as “supersaturated gas solution”). A pressure-resistant cleaning container that can be sealed, a means for introducing the cleaning liquid into the cleaning container, a pressurized gas is introduced into the cleaning container, and the cleaning liquid is introduced into the cleaning liquid in the cleaning container. A means for containing a dissolved gas having a solubility equal to or higher than the saturation solubility at the liquid temperature; a means for reducing the pressure in the cleaning container; and a means for discharging the cleaning liquid in the cleaning container. A cleaning apparatus, wherein the object to be cleaned is cleaned by reducing the pressure in the cleaning container and generating bubbles from the supersaturated gas solution while being in contact with the supersaturated gas solution.
本発明によれば、ガス溶解水を用いた洗浄で、省資源かつ低コストに効率的な洗浄を行って、被洗浄物を高度に清浄化することができる(請求項1,8,9)。 According to the present invention, the object to be cleaned can be highly purified by cleaning using gas-dissolved water, efficiently performing resource-saving and low-cost cleaning (claims 1, 8, and 9). .
即ち、前述の如く、過飽和ガス溶解液を入れた洗浄容器の圧力を低くすると、過飽和ガス溶解液中の過飽和の溶存ガスが、ヘンリーの法則に従って気泡となって発生し、洗浄液と分離する。この過飽和の溶存ガスの気泡は洗浄容器内の至るところで発生し、被洗浄物の微細な凹部内においても、その表面に有効に作用する活性な気泡となる。
発生する気泡の量や活性の程度は、過飽和ガス溶解液の溶存ガス量(洗浄液へのガス圧入時の加圧ガス圧力や水圧に関係する。)やその後の減圧の程度などに依存するが、減圧により発生する気泡は、溶存ガスの更なる気化と気泡同士の合体等により次第に体積を増し、洗浄液表面に浮上して消える。この減圧に伴う気泡発生、成長、浮上の過程で、気泡のスクラブ効果、気泡衝突の衝撃力、気液界面の吸着力などの物理化学的な洗浄作用が、被洗浄物や被洗浄物の表面の微粒子等の汚泥物質に及ぼされることとなり、高い洗浄効果を得ることができる。しかして、この気泡による洗浄作用は、被洗浄物に対して大きなダメージを与えるものではなく、LSI半導体ウエハやMEMS用基といった微細構造体に対しても効果的な洗浄を行える。
That is, as described above, when the pressure of the cleaning container containing the supersaturated gas solution is lowered, the supersaturated dissolved gas in the supersaturated gas solution is generated as bubbles according to Henry's law and separated from the cleaning solution. This supersaturated dissolved gas bubble is generated throughout the cleaning container, and becomes an active bubble that effectively acts on the surface of the object in the minute recess of the object to be cleaned.
The amount of bubbles generated and the degree of activity depend on the dissolved gas amount of the supersaturated gas solution (related to the pressurized gas pressure and water pressure at the time of gas injection into the cleaning solution) and the degree of subsequent decompression, Bubbles generated by the decompression gradually increase in volume due to further vaporization of the dissolved gas, coalescence of the bubbles, etc., and rise to the surface of the cleaning liquid and disappear. In the process of bubble generation, growth and levitation associated with this decompression, the physicochemical cleaning action such as bubble scrubbing effect, bubble collision impact force, gas-liquid interface adsorption force, etc. It is affected by sludge substances such as fine particles, and a high cleaning effect can be obtained. Thus, the cleaning action by the bubbles does not cause great damage to the object to be cleaned, and can effectively clean the fine structures such as the LSI semiconductor wafer and the MEMS base.
本発明において、洗浄容器内において、被洗浄物を過飽和ガス溶解液に接触させた状態とする第1の工程と、その後洗浄容器内を減圧して過飽和ガス溶解液から気泡を発生させる第2の工程とからなる洗浄工程を複数回繰り返し行うことにより、より一層高い洗浄効果を得ることができる(請求項2)。
また、このように洗浄工程を繰り返し行う場合において、洗浄工程間で洗浄液を入れ替えることにより、更にその洗浄効果が向上する(請求項3)。
In the present invention, in the cleaning container, a first step of bringing the object to be cleaned into contact with the supersaturated gas solution, and a second step of reducing the pressure in the cleaning container to generate bubbles from the supersaturated gas solution. A higher cleaning effect can be obtained by repeatedly performing the cleaning step consisting of the steps a plurality of times (claim 2).
Further, in the case where the cleaning process is repeated as described above, the cleaning effect is further improved by replacing the cleaning liquid between the cleaning processes.
本発明において、前記溶存ガスとしては、窒素ガス、酸素ガス、炭酸ガス、水素ガス、オゾンガス、清浄空気、及びアルゴンガスよりなる群から選らばれる1種又は2種以上が好ましい(請求項4)。 In the present invention, the dissolved gas is preferably one or more selected from the group consisting of nitrogen gas, oxygen gas, carbon dioxide gas, hydrogen gas, ozone gas, clean air, and argon gas (Claim 4).
また、ガスを溶解させる液としては純水又は超純水、或いはこれらに薬剤を溶解させたものを用いることが好ましく(請求項5)、この薬剤としては、アルカリ、酸、キレート剤及び界面活性剤よりなる群から選ばれる1種又は2種以上、特にアンモニアが好ましく、このような薬剤を含むことにより、より一層良好な洗浄効果を得ることができる(請求項6,7)。 Moreover, it is preferable to use pure water or ultrapure water, or a solution in which a drug is dissolved in this as a liquid for dissolving a gas (Claim 5), and as this drug, an alkali, an acid, a chelating agent, and a surface activity One or more selected from the group consisting of agents, particularly ammonia is preferable, and by including such agents, even better cleaning effects can be obtained (claims 6 and 7).
以下に本発明の洗浄方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of the cleaning method of the present invention will be described in detail.
[被洗浄物]
本発明の洗浄方法の洗浄対象となる被洗浄物としては特に制限はないが、本発明はその優れた洗浄効果から、半導体用のシリコンウェハ、フラットパネルディスプレイ用のガラス基板、フォトマスク用石英基板、MEMS用基板等、高度な清浄度が要求させる電子材料(電子部品や電子部材等)の洗浄に好適であり、とりわけ、LSI用半導体ウエハやMEMS用基板のように、微細パターンや微細凹凸を有し、その微細構造体の洗浄時のダメージが問題となる被洗浄物に対して有効である。
[To be cleaned]
Although there is no particular limitation on the object to be cleaned in the cleaning method of the present invention, the present invention has a silicon substrate for semiconductors, a glass substrate for flat panel displays, and a quartz substrate for photomasks because of its excellent cleaning effect. It is suitable for cleaning electronic materials (electronic parts, electronic members, etc.) that require a high degree of cleanliness, such as MEMS substrates. Especially, it has fine patterns and fine irregularities like LSI semiconductor wafers and MEMS substrates. It is effective for an object to be cleaned in which damage during cleaning of the fine structure is a problem.
[第1の工程]
本発明においては、まず、被洗浄物を入れた洗浄容器に過飽和ガス溶解液を導入するか、或いは、洗浄容器に洗浄液を導入した後、加圧ガスを導入して洗浄容器内で過飽和ガス溶解液を調製する。
ここで、過飽和ガス溶解液とは、該洗浄液の液温における飽和溶解度以上の溶存ガスを含むものである。
[First step]
In the present invention, first, a supersaturated gas solution is introduced into a cleaning container containing an object to be cleaned, or after introducing a cleaning liquid into the cleaning container, a pressurized gas is introduced to dissolve the supersaturated gas in the cleaning container. Prepare the solution.
Here, the supersaturated gas solution includes a dissolved gas having a saturation solubility or higher at the liquid temperature of the cleaning solution.
洗浄液の溶存ガス量が飽和溶解度未満では、その後の第2の工程で洗浄液から活性な気泡を発生させることができず、本発明による優れた洗浄効果を得ることはできない。 If the dissolved gas amount of the cleaning liquid is less than the saturation solubility, active bubbles cannot be generated from the cleaning liquid in the subsequent second step, and the excellent cleaning effect according to the present invention cannot be obtained.
洗浄液の溶存ガス量は、飽和溶解度以上で多い方が洗浄効果が高くなる傾向があるが、溶存ガス量を過度に多くすると、そのための加圧設備や洗浄容器の耐圧構造等が過大となり、実用的ではなくなる。従って、洗浄液の溶存ガス量は、飽和溶解度の1〜5倍、特に1〜3倍、とりわけ1.5〜3倍とすることが好ましい。
なお、以下において、飽和溶解度に対する溶存ガス量の倍数を飽和度と称し、例えば、飽和溶解度と等量であれば「飽和度1」、飽和溶解度の2倍量であれば「飽和度2」、飽和溶解度の3倍量であれば「飽和度3」と称す。
If the amount of dissolved gas in the cleaning liquid is higher than the saturation solubility, the cleaning effect tends to be higher. However, if the amount of dissolved gas is excessively increased, the pressure equipment for that purpose and the pressure-resistant structure of the cleaning container will become excessive, which is practical. It ’s not right. Therefore, the dissolved gas amount of the cleaning liquid is preferably 1 to 5 times, particularly 1 to 3 times, particularly 1.5 to 3 times the saturation solubility.
In the following, the multiple of the dissolved gas amount with respect to the saturation solubility is referred to as saturation, for example, “saturation degree 1” if it is equal to the saturation solubility, “saturation degree 2” if it is twice the saturation solubility, If the amount is 3 times the saturation solubility, it is referred to as “saturation degree 3”.
過飽和ガス溶解液の溶存ガス種としては特に制限はなく、例えば、窒素ガス、酸素ガス、炭酸ガス、水素ガス、オゾンガス、清浄空気、アルゴンガス等の希ガスが挙げられる。これらは1種のみが洗浄液中に溶存していてもよく、2種以上が洗浄液中に溶存していてもよい。2種以上のガスが洗浄液中に溶存している場合、その合計で飽和度1以上であればよい。 There is no restriction | limiting in particular as dissolved gas seed | species of a supersaturated gas solution, For example, noble gases, such as nitrogen gas, oxygen gas, a carbon dioxide gas, hydrogen gas, ozone gas, clean air, and argon gas, are mentioned. Only one of these may be dissolved in the cleaning liquid, or two or more of these may be dissolved in the cleaning liquid. When two or more kinds of gases are dissolved in the cleaning liquid, the total degree of saturation may be 1 or more.
予め調製した過飽和ガス溶解液を洗浄容器に導入させる場合、上述のようなガスを液中に飽和溶解度以上に溶解させる方法としては特に制限はないが、ガス溶解膜モジュールを用い、ガス溶解膜モジュールの気相室にガスを加圧供給して液相室内の液に溶解させる方法が挙げられる。
また、洗浄容器内で過飽和ガス溶解液を調製する場合には、後述の如く、洗浄容器に洗浄液を導入した後、この容器内に加圧ガスを導入すれば良い。
When introducing a pre-saturated supersaturated gas solution into a cleaning vessel, there is no particular limitation on the method for dissolving the gas as described above in the liquid to a saturation solubility or higher, but a gas-dissolved membrane module is used. There is a method in which gas is pressurized and supplied to the gas phase chamber and dissolved in the liquid in the liquid phase chamber.
In addition, when preparing a supersaturated gas solution in the cleaning container, as described later, after introducing the cleaning liquid into the cleaning container, the pressurized gas may be introduced into the container.
上述のようなガスを溶解させて過飽和ガス溶解液を調製するための液体(以下「原水」と称す場合がある。)としては、一般に、被洗浄物を要求される清浄度に洗浄することができる程度に処理された純水又は超純水が用いられる。 As a liquid for dissolving a gas as described above to prepare a supersaturated gas solution (hereinafter sometimes referred to as “raw water”), it is generally possible to clean an object to be cleaned to a required cleanliness level. Pure water or ultrapure water treated to the extent possible is used.
原水は、特定の溶存ガスのみを含む洗浄液を調製するためには、脱気処理した水であることが好ましく、また、脱気処理水であれば、ガスを効率的に飽和溶解度以上に溶解させることができる点においても好ましい。
脱気の程度としては、80%以上、望ましくは90%以上であることが好ましい。
ただし、原水の脱気処理は必須要件ではない。
原水の脱気処理には、通常、脱気膜モジュールを用いることができる。
The raw water is preferably degassed water in order to prepare a cleaning solution containing only a specific dissolved gas, and if it is degassed water, the gas is efficiently dissolved to a saturation solubility or higher. This is also preferable in that
The degree of deaeration is preferably 80% or more, desirably 90% or more.
However, raw water degassing is not an essential requirement.
For the deaeration treatment of raw water, a deaeration membrane module can usually be used.
また、原水には、アンモニア、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシドなどのアルカリ剤や、フッ化水素、塩化水素、硫酸などの酸、キレート剤、界面活性剤などの薬剤の1種又は2種以上を添加して洗浄機能性を高めることもできる。特に、アンモニア等のアルカリ剤を添加して、洗浄液のpHを7以上、好ましくは9〜14のアルカリ性に調整することにより、洗浄により被洗浄物から剥離した微粒子等の汚染物質の被洗浄物への再付着を防止するなどの効果で洗浄効果を高めることができる。なお、このpH調整にはアルカリ性薬剤を用いる他、アルカリ性ガスを用いても良いが、取扱いが簡便で濃度管理を容易に行えるアンモニアを用いることが好ましい。特にアンモニアを1mg/L以上、例えば1〜200mg/L程度添加して、pH7〜11に調整した洗浄液を用いることにより、良好な洗浄効果を得ることができる。なお、この洗浄液のpHが過度に高かったりアンモニアの添加量が過度に多いと、被洗浄物に対するダメージが出るおそれがあり、好ましくない。
原水へのアンモニア等の薬剤の添加は、ガスの溶解後であっても溶解前であっても良い。
また、これらの薬剤は、不純物を含まない高純度品を用いることが好ましい。
The raw water includes alkaline agents such as ammonia, sodium hydroxide, potassium hydroxide and tetramethylammonium hydroxide, acids such as hydrogen fluoride, hydrogen chloride and sulfuric acid, chelating agents and surfactants. It is also possible to increase the cleaning functionality by adding seeds or two or more. In particular, by adding an alkaline agent such as ammonia and adjusting the pH of the cleaning liquid to 7 or more, preferably 9-14, the object to be cleaned of contaminants such as fine particles separated from the object to be cleaned by cleaning The cleaning effect can be enhanced by an effect such as preventing re-adhesion. The pH adjustment may be performed using an alkaline agent or an alkaline gas. However, it is preferable to use ammonia that is easy to handle and allows easy concentration control. In particular, a good cleaning effect can be obtained by using a cleaning liquid adjusted to pH 7 to 11 by adding ammonia at 1 mg / L or more, for example, about 1 to 200 mg / L. In addition, when the pH of this cleaning liquid is excessively high or the amount of ammonia added is excessively large, there is a risk of damage to the object to be cleaned, which is not preferable.
Addition of a chemical such as ammonia to the raw water may be after the gas is dissolved or before the gas is dissolved.
Moreover, it is preferable to use the high purity goods which do not contain an impurity for these chemicals.
[第2の工程]
本発明では、上記第1の工程後、洗浄容器内で被洗浄物を過飽和ガス溶解液に接触させた状態で、好ましくは、被洗浄物の全体を過飽和ガス溶解液に浸漬させた状態で、この洗浄容器内を減圧して過飽和ガス溶解液から気泡を発生させることにより、被洗浄物を洗浄する。
この減圧の程度としては特に制限はないが、一般的には大気圧とするのが簡便である。
これにより、過飽和ガス溶解液から気泡が発生し、その優れた洗浄作用で被洗浄物を効果的に洗浄することができる。
この第2の工程は、通常、洗浄容器内を減圧することによる洗浄液からの気泡の発生が終了するまで行われる。
[Second step]
In the present invention, after the first step, the object to be cleaned is in contact with the supersaturated gas solution in the cleaning container, preferably, the entire object to be cleaned is immersed in the supersaturated gas solution, The object to be cleaned is cleaned by reducing the pressure in the cleaning container and generating bubbles from the supersaturated gas solution.
Although there is no restriction | limiting in particular as the grade of this pressure reduction, Generally it is easy to set it as atmospheric pressure.
Thereby, bubbles are generated from the supersaturated gas solution, and the object to be cleaned can be effectively cleaned by the excellent cleaning action.
This second step is usually performed until the generation of bubbles from the cleaning liquid by reducing the pressure in the cleaning container is completed.
[洗浄工程の繰り返し]
上記の第1の工程と第2の工程よりなる洗浄工程は、これを繰り返し行うことにより、より一層優れた洗浄効果を得ることができる。
この場合、洗浄工程の繰り返し回数には特に制限はないが、2〜50回、特に2〜10回程度行うことが効果的である。この繰り返し回数が少な過ぎると、洗浄工程を繰り返し行うことによる洗浄効果の向上効果を十分に得ることができず、多過ぎると洗浄効果に対して洗浄コスト、洗浄時間が過大となり、好ましくない。
[Repeat cleaning process]
The cleaning step comprising the first step and the second step described above can be performed repeatedly to obtain a further excellent cleaning effect.
In this case, the number of repetitions of the cleaning process is not particularly limited, but it is effective to perform the cleaning process 2 to 50 times, particularly about 2 to 10 times. If the number of repetitions is too small, the effect of improving the cleaning effect by repeatedly performing the cleaning step cannot be sufficiently obtained, and if too large, the cleaning cost and the cleaning time are excessive with respect to the cleaning effect.
[第3の工程]
上述のように、洗浄工程を繰り返し行う場合、洗浄容器内の洗浄液を入れ換えずに行っても良いが、洗浄容器内の洗浄液を入れ換えることにより、その都度高清浄な洗浄液で洗浄を行うことができ、更に優れた洗浄効果を得ることができる。
[Third step]
As described above, when the cleaning process is repeated, it may be performed without replacing the cleaning liquid in the cleaning container, but by replacing the cleaning liquid in the cleaning container, cleaning can be performed with a highly clean cleaning liquid each time. Further, an excellent cleaning effect can be obtained.
洗浄液を入れ換える第3の工程は、特に洗浄容器内で過飽和ガス溶解液を調製する態様において有効であり、この場合、次のような操作を行うことが好ましい。
(1) 洗浄容器に原水を導入した後、加圧ガスを圧入して、洗浄容器内で過飽和ガス溶解液を調製する(第1の工程)。
(2) その後洗浄容器内を減圧して気泡を発生させて被洗浄物を洗浄する(第2の工程)。
(3) 次いで、洗浄容器内の洗浄液を洗浄容器外へ排出する(第3の工程)。
(4) 上記(1)〜(3)の工程を必要回数繰り返す。
The third step of replacing the cleaning liquid is particularly effective in an embodiment in which a supersaturated gas solution is prepared in the cleaning container. In this case, it is preferable to perform the following operation.
(1) After introducing raw water into the cleaning container, a pressurized gas is injected to prepare a supersaturated gas solution in the cleaning container (first step).
(2) Thereafter, the inside of the cleaning container is depressurized to generate bubbles to clean the object to be cleaned (second step).
(3) Next, the cleaning liquid in the cleaning container is discharged out of the cleaning container (third step).
(4) The above steps (1) to (3) are repeated as many times as necessary.
洗浄容器内の洗浄液の入れ換えに際して、洗浄容器内に導入される洗浄液は、前回の洗浄工程で用いた洗浄液と同一のものであってもよく、原水の種類(薬剤の有無)、溶存ガスの種類やその飽和度が異なるものであってもよい。また、洗浄液を入れ換える第3の工程は、すべての洗浄工程間に設けずに、一部の洗浄工程間にのみ設けてもよい。 When replacing the cleaning liquid in the cleaning container, the cleaning liquid introduced into the cleaning container may be the same as the cleaning liquid used in the previous cleaning process, the type of raw water (presence of chemicals), the type of dissolved gas Or the degree of saturation thereof may be different. Further, the third step of replacing the cleaning liquid may be provided only between some cleaning steps, not between all the cleaning steps.
[仕上げ洗浄]
本発明の洗浄方法においては、第2の工程後、洗浄容器内の洗浄液を排出した後、溶存ガスを含まない原水、好ましくは純水又は超純水を洗浄容器内に導入して再び排出する仕上げ洗浄(リンス洗浄)を行ってもよい。また、このリンス洗浄を複数回行ってもよい。
[Finishing cleaning]
In the cleaning method of the present invention, after the second step, after the cleaning liquid in the cleaning container is discharged, raw water not containing dissolved gas, preferably pure water or ultrapure water, is introduced into the cleaning container and discharged again. Finish cleaning (rinse cleaning) may be performed. Further, this rinse cleaning may be performed a plurality of times.
[乾燥]
上記洗浄後は、洗浄容器から被洗浄物を取り出し、乾燥を行う。乾燥方法は特に限定はなく、スピン乾燥、IPA乾燥、IPAペーパー乾燥、マランゴニ乾燥、窒素ガスによるブロー乾燥等により行うことができる。
[Dry]
After the cleaning, the object to be cleaned is taken out from the cleaning container and dried. The drying method is not particularly limited, and can be performed by spin drying, IPA drying, IPA paper drying, Marangoni drying, blow drying with nitrogen gas, or the like.
[洗浄装置]
以下に、本発明の洗浄装置の一例を示す図1を参照して、本発明の洗浄装置及びこの洗浄装置を用いた本発明の洗浄方法をより具体的に説明する。
[Cleaning equipment]
Hereinafter, the cleaning apparatus of the present invention and the cleaning method of the present invention using this cleaning apparatus will be described more specifically with reference to FIG. 1 showing an example of the cleaning apparatus of the present invention.
図1において、10は、耐圧性の洗浄容器であり、蓋部10Aと容器部10Bとで分割可能であり、かつ、これらのフランジ部を当接することにより密閉可能な構造とされている。
11,12は、洗浄容器10の底部から洗浄液又はリンス水を洗浄容器10内に導入するための配管であり、開閉バルブV1を有する。
13は、洗浄容器10の頂部から、洗浄液又はリンス水をオーバーフローするオーバーフロー用配管を兼ねた洗浄容器10内の減圧用のガス抜き配管であり、開閉バルブV2を有する。
14は、加圧ガスを洗浄容器10内に導入するためのガス導入配管であり、開閉バルブV3を有する。
15は、配管12を経て洗浄容器内の洗浄液排液を排出するための排出配管であり、開閉バルブV4を有する。
In FIG. 1, reference numeral 10 denotes a pressure-resistant cleaning container, which can be divided into a
11 and 12 are pipes for introducing a cleaning liquid or rinsing water into the cleaning container 10 from the bottom of the cleaning container 10, and have an open / close valve V 1 .
14 is a gas introduction pipe for introducing pressurized gas into the cleaning vessel 10 has an opening and closing valve V 3.
15 is a discharge pipe for discharging the cleaning liquid draining the wash container via a
この洗浄容器10により、次のような手順で本発明に従って、被洗浄物を洗浄することができる。 With this cleaning container 10, the object to be cleaned can be cleaned according to the present invention in the following procedure.
(1) 洗浄容器10の蓋部10Aを取り外し、洗浄容器10内に被洗浄物を入れる。洗浄容器10内で発生する気泡が効果的に被洗浄物に接触するように、被洗浄物の洗浄面が液面に対し垂直となるように設置することが好ましい。
洗浄容器10内に被洗浄物を入れた後は、蓋部10Aを取り付けて、洗浄容器10を密閉する。
(2) 開閉バルブV3,V4を閉、開閉バルブV1,V2を開として、洗浄液の原水を配管11,12を経て、配管13からオーバーフローするまで洗浄容器10内に導入し、その後、開閉バルブV1,V2を閉とする。
(3) 開閉バルブV3を開として、加圧ガスを配管14を経て洗浄容器10に圧入し、洗浄容器10内の原水に飽和溶解度以上にガスを溶解させて過飽和ガス溶解液を調製し、その後開閉バルブV3を閉とする。このガス圧入時の加圧ガスの圧力は、調製される過飽和ガス溶解液の飽和度に比例するものであり、通常の場合、加圧ガス圧力は0.01〜2.0MPa、特に0.01〜1.0MPaとすることが好ましい。この加圧ガス圧力が低過ぎると過飽和ガス溶解液の飽和度が低いために洗浄効果が十分でなく、高過ぎると加圧設備、洗浄容器の耐圧構造が過大となる。
(4) 開閉バルブV2を開として、洗浄容器10内を減圧し、過飽和ガス溶解液から気泡を発生させ、洗浄容器10内の被洗浄物を洗浄する。
(5) 気泡の発生が終了したら、開閉バルブV2開のまま、開閉バルブV1,V4を開として、洗浄容器10内の洗浄液を排出する。
(6) 必要に応じて、上記(2)〜(5)を繰り返す。或いは、(3),(4)を繰り返した後(5)を行う。
(7) 開閉バルブV3,V4を閉、開閉バルブV1,V2を開として、リンス水を配管11,12を経て、配管13からオーバーフローするまで洗浄容器10内に導入し、その後、リンス水の供給を停止した後、開閉バルブV4を開いて、洗浄容器10内のリンス水を排出する。
このリンス洗浄も必要に応じて複数回行ってもよい。
(1) Remove the lid 10 </ b> A of the cleaning container 10 and put an object to be cleaned into the cleaning container 10. It is preferable to install the object to be cleaned so that the surface to be cleaned is perpendicular to the liquid surface so that bubbles generated in the cleaning container 10 effectively contact the object to be cleaned.
After putting an object to be cleaned in the cleaning container 10, a
(2) With the on-off valves V 3 and V 4 closed and the on-off valves V 1 and V 2 opened, the raw water of the cleaning liquid is introduced into the cleaning container 10 through the
(3) as an opening and closing valve V 3 opened, the pressurized gas is pressed into the cleaning vessel 10 through the
As (4) off valve V 2 opened, the washing vessel 10 and vacuum, bubbles are generated from the supersaturated gas solution, washing the object to be cleaned in the cleaning vessel 10.
(5) When the generation of bubbles is completed, the opening / closing valves V 1 and V 4 are opened while the opening / closing valve V 2 is open, and the cleaning liquid in the cleaning container 10 is discharged.
(6) Repeat (2) to (5) as necessary. Alternatively, (5) is performed after repeating (3) and (4).
(7) The on-off valves V 3 and V 4 are closed, the on-off valves V 1 and V 2 are opened, and rinse water is introduced into the cleaning container 10 through the
This rinse cleaning may also be performed a plurality of times as necessary.
上記一連の工程が終了した後は、前述の如く、洗浄容器10から被洗浄物を取り出して乾燥する。 After the above series of steps is completed, the object to be cleaned is taken out from the cleaning container 10 and dried as described above.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[実施例1]
図1に示す洗浄装置により、以下の汚染ウェハを被洗浄物として洗浄実験を行った。
[Example 1]
With the cleaning apparatus shown in FIG. 1, cleaning experiments were conducted using the following contaminated wafers as objects to be cleaned.
<被洗浄物>
半導体の製造工程の一部であるケミカルメカニカルポリッシングに用いられるシリカ研磨材で汚染させた後、乾燥させたシリコンウエハ(以下「汚染ウエハ」という。)
<To be cleaned>
A silicon wafer that has been contaminated with a silica abrasive used for chemical mechanical polishing, which is a part of the semiconductor manufacturing process, and then dried (hereinafter referred to as “contaminated wafer”).
洗浄手順は次の通りである。
(1) 洗浄容器10の蓋部10Aを取り外し、洗浄容器10内に汚染ウエハを入れ汚染ウエハ表面が垂直となるように固定した後、蓋部10Aを取り付けて、洗浄容器10を密閉した。
なお、洗浄容器は5MPaの耐圧容器であり、その容積は5Lである。
The cleaning procedure is as follows.
(1) The
The washing container is a 5 MPa pressure vessel, and its volume is 5L.
(2) 開閉バルブV3、V4を閉、開閉バルブV1,V2を開として、超純水を配管11,12を経て、配管13からオーバーフローするまで洗浄容器10内に導入し、その後、開閉バルブV1,V2を閉とした。
(3) 開閉バルブV3を開として、加圧した窒素ガス(ガス圧力0.5MPa)を配管14を経て洗浄容器10に圧入し、洗浄容器10内の超純水に飽和度5となるように窒素ガスを溶解させて過飽和ガス溶解液を調製し、その後開閉バルブV3を閉とした。
(4) 開閉バルブV2を開として、洗浄容器10内を大気圧となるように減圧し、過飽和ガス溶解液から気泡を発生させ、洗浄容器10内の汚染ウエハを洗浄した。
(5) 気泡の発生が終了したら、開閉バルブV2開のまま、開閉バルブV1,V4を開として、洗浄容器10内の洗浄液を排出した。
(6) 開閉バルブV3,V4を閉、開閉バルブV1,V2を開として、リンス水として超純水を配管11,12を経て、配管13からオーバーフローするまで洗浄容器10内に導入し、その後、リンス水の供給を停止した後、開閉バルブV4を開として、洗浄容器10内のリンス水を排出した。
(7) 洗浄容器10から洗浄したウエハを取り出して遠心力により水分を除去することにより乾燥した。
上記洗浄前後のウエハの微粒子数をトプコン社製「WM−1500 欠陥検査装置」を用いて測定し、除去率(洗浄前の微粒子数−洗浄後の微粒子数)/洗浄前の微粒子数 ×100)を算出し、結果を表1に示した。
(2) Open / close valves V 3 , V 4 are closed, open / close valves V 1 , V 2 are opened, and ultrapure water is introduced into the cleaning container 10 through the
(3) Open / close valve V 3 is opened, and pressurized nitrogen gas (gas pressure 0.5 MPa) is pressed into the cleaning container 10 through the
(4) as an opening and closing valve V 2 opened, the washing vessel 10 and vacuum so that the atmospheric pressure, bubbles are generated from the supersaturated gas solution was washed contaminated wafer cleaning vessel 10.
(5) When the generation of bubbles was completed, the on-off valves V 1 and V 4 were opened while the on-off valve V 2 was open, and the cleaning liquid in the cleaning container 10 was discharged.
(6) Close the on-off valves V 3 and V 4 , open the on-off valves V 1 and V 2 , and introduce ultrapure water as rinse water into the cleaning container 10 through the
(7) The cleaned wafer was taken out from the cleaning container 10 and dried by removing water by centrifugal force.
The number of fine particles on the wafer before and after the cleaning was measured using a “WM-1500 defect inspection apparatus” manufactured by Topcon, and the removal rate (number of fine particles before washing−number of fine particles after washing) / number of fine particles before washing × 100) And the results are shown in Table 1.
[実施例2]
実施例1において、工程(3),(4)を繰り返し、合計5回行った後、工程(5)に移行したこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表1に示した。
[Example 2]
In Example 1, the steps (3) and (4) were repeated and performed 5 times in total, and then the contaminated wafer was washed in the same manner except that the step (5) was performed, and the particulate removal rate was similarly examined. The results are shown in Table 1.
[実施例3]
実施例1において、工程(3),(4)を繰り返し、合計10回行った後、工程(5)に移行したこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表1に示した。
[Example 3]
In Example 1, the steps (3) and (4) were repeated, and after 10 times in total, the contaminated wafer was cleaned in the same manner except that the step (5) was performed, and the particulate removal rate was similarly examined. The results are shown in Table 1.
[実施例4]
実施例1において、工程(2)において、超純水にアンモニアを溶解させた1mg/L濃度のアンモニア水(pH9.4)を用いたこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表1に示した。
[Example 4]
In Example 1, in the step (2), the contaminated wafer was cleaned in the same manner except that 1 mg / L ammonia water (pH 9.4) in which ammonia was dissolved in ultrapure water was used. The particle removal rate was examined and the results are shown in Table 1.
[実施例5]
実施例4において、工程(3),(4)を繰り返し、合計5回行った後、工程(5)に移行したこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表1に示した。
[Example 5]
In Example 4, the steps (3) and (4) were repeated, and after 5 times in total, the contaminated wafer was cleaned in the same manner except that the step (5) was performed, and the particulate removal rate was similarly examined. The results are shown in Table 1.
[実施例6]
実施例4において、工程(3),(4)を繰り返し、合計10回行った後、工程(5)に移行したこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表1に示した。
[Example 6]
In Example 4, the steps (3) and (4) were repeated, and after 10 times in total, the contaminated wafer was washed in the same manner except that the step (5) was performed, and the particulate removal rate was similarly examined. The results are shown in Table 1.
[実施例7]
実施例5において、工程(3)における窒素ガス圧力を1.0MPaとして、飽和度10の過飽和ガス溶解液としたこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表1に示した。
[Example 7]
In Example 5, the contaminated wafer was cleaned in the same manner except that the nitrogen gas pressure in step (3) was 1.0 MPa, and a supersaturated gas solution having a saturation degree of 10 was used, and the particulate removal rate was similarly examined, The results are shown in Table 1.
[実施例8]
実施例5において、工程(3)における窒素ガス圧力を1.5MPaとして、飽和度15の過飽和ガス溶解液としたこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表1に示した。
[Example 8]
In Example 5, the contaminated wafer was washed in the same manner except that the nitrogen gas pressure in step (3) was 1.5 MPa, and a supersaturated gas solution with a saturation level of 15 was obtained, and the particulate removal rate was similarly examined, The results are shown in Table 1.
[比較例1]
実施例1において、工程(3),(4)を省略したこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表1に示した。
[Comparative Example 1]
In Example 1, the contaminated wafer was cleaned in the same manner except that steps (3) and (4) were omitted, and the particle removal rate was similarly examined. The results are shown in Table 1.
表1より、ガスの圧入、減圧を繰り返すことで、超音波を用いることなく、汚染ウエハ上の微粒子を効率的に洗浄除去できることがわかる。また、洗浄液にアンモニアを添加すると、一旦、汚染ウエハから剥離した微粒子の再付着が防止され、更に洗浄効果が向上することが分かる。 From Table 1, it can be seen that by repeating the gas injection and pressure reduction, the fine particles on the contaminated wafer can be efficiently washed and removed without using ultrasonic waves. It can also be seen that when ammonia is added to the cleaning liquid, the re-adhesion of the fine particles once peeled off from the contaminated wafer is prevented, and the cleaning effect is further improved.
[実施例9]
図1に示す洗浄装置を用い、実施例1で洗浄したものと同様の汚染ウエハを以下の手順で洗浄し、同様に微粒子除去率を調べ、結果を表2に示した。
[Example 9]
A contaminated wafer similar to that cleaned in Example 1 was cleaned using the cleaning apparatus shown in FIG. 1 according to the following procedure. Similarly, the particle removal rate was examined, and the results are shown in Table 2.
(1) 洗浄容器10内に実施例1と同様に汚染ウエハを入れて固定した。
(2) 開閉バルブV3,V4を閉、開閉バルブV1,V2を開として、1mg/L濃度のアンモニア水(pH9.4)を配管11,12を経て、配管13からオーバーフローするまで洗浄容器10内に導入し、その後、開閉バルブV1,V2を閉とした。
(3) 開閉バルブV3を開として、加圧した窒素ガス(ガス圧力1.0MPa)を配管14を経て洗浄容器10に圧入し、洗浄容器10内のアンモニア水に飽和度10となるように窒素ガスを溶解させて過飽和ガス溶解液を調製し、その後、開閉バルブV3を閉とした。
(4) 開閉バルブV2を開として、洗浄容器10内を大気圧となるように減圧し、過飽和ガス溶解液から気泡を発生させ、洗浄容器10内の汚染ウエハを洗浄した。
(5) 気泡の発生が終了したら、開閉バルブV2開のまま、開閉バルブV1,V4を開として、洗浄容器10内の洗浄液を排出した。
(6) 開閉バルブV3,V4を閉、開閉バルブV1,V2を開として、リンス水として超純水を配管11,12を経て、配管13からオーバーフローするまで洗浄容器10内に導入し、その後、リンス水の供給を停止した後、開閉バルブV4を開として、洗浄容器10内のリンス水を排出した。
(7) 洗浄容器10から洗浄したウエハを取り出して実施例1と同様に乾燥した。
(1) In the same manner as in Example 1, a contaminated wafer was placed in the cleaning container 10 and fixed.
(2) Open / close valves V 3 , V 4 are closed, open / close valves V 1 , V 2 are opened, and 1 mg / L ammonia water (pH 9.4) passes through
(3) Open / close valve V 3 is opened, and pressurized nitrogen gas (gas pressure 1.0 MPa) is pressed into the cleaning container 10 through the
(4) as an opening and closing valve V 2 opened, the washing vessel 10 and vacuum so that the atmospheric pressure, bubbles are generated from the supersaturated gas solution was washed contaminated wafer cleaning vessel 10.
(5) When the generation of bubbles was completed, the on-off valves V 1 and V 4 were opened while the on-off valve V 2 was open, and the cleaning liquid in the cleaning container 10 was discharged.
(6) Close the on-off valves V 3 and V 4 , open the on-off valves V 1 and V 2 , and introduce ultrapure water as rinse water into the cleaning container 10 through the
(7) The cleaned wafer was taken out of the cleaning container 10 and dried in the same manner as in Example 1.
[実施例10]
実施例9において、工程(2)〜(5)を繰り返し、合計2回行った後、工程(6)に移行したこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表2に示した。
[Example 10]
In Example 9, the steps (2) to (5) were repeated a total of two times, and then the contaminated wafer was cleaned in the same manner except that the step (6) was performed, and the particulate removal rate was similarly examined. The results are shown in Table 2.
[実施例11]
実施例9において、工程(2)〜(5)を繰り返し、合計5回行った後、工程(6)に移行したこと以外は同様にして汚染ウエハの洗浄を行い、同様に微粒子除去率を調べ、結果を表2に示した。
[Example 11]
In Example 9, the steps (2) to (5) were repeated, and after 5 times in total, the contaminated wafer was washed in the same manner except that the step (6) was performed, and the particulate removal rate was similarly examined. The results are shown in Table 2.
表2より、ガス注入、減圧を繰り返すだけでなく、更に洗浄液を交換することにより、洗浄効果がより一層向上することが分かる。 From Table 2, it can be seen that the cleaning effect is further improved by not only repeating the gas injection and pressure reduction but also exchanging the cleaning liquid.
10 洗浄容器
10A 蓋部
10B 容器部
10
Claims (9)
該洗浄容器に、該過飽和ガス溶解液を導入するか、或いは、該洗浄容器内に洗浄液を導入した後加圧ガスを導入して該洗浄容器内で該過飽和ガス溶解液を調製する第1の工程と、
該洗浄容器内で被洗浄物を該過飽和ガス溶解液に接触させた状態で、該洗浄容器内を減圧して該過飽和ガス溶解液から気泡を発生させる第2の工程と
を含むことを特徴とする洗浄方法。 In the cleaning container, the object to be cleaned is cleaned by bringing it into contact with a cleaning liquid containing dissolved gas having a saturation solubility or higher at the liquid temperature of the cleaning liquid (hereinafter, this cleaning liquid is referred to as “supersaturated gas solution”). And
The supersaturated gas solution is introduced into the cleaning container, or the cleaning liquid is introduced into the cleaning container and then pressurized gas is introduced to prepare the supersaturated gas solution in the cleaning container. Process,
And a second step of generating bubbles from the supersaturated gas solution by reducing the pressure in the cleaning vessel in a state where an object to be cleaned is in contact with the supersaturated gas solution in the cleaning container. How to wash.
密閉可能な耐圧性の洗浄容器と、
該洗浄容器に該過飽和ガス溶解液を導入する手段と、
該洗浄容器内を減圧する手段と、
該洗浄容器内の洗浄液を排出する手段と
を有し、
該洗浄容器内で被洗浄物を該過飽和ガス溶解液に接触させた状態で、該洗浄容器内を減圧して該過飽和ガス溶解液から気泡を発生させることにより該被洗浄物を洗浄することを特徴とする洗浄装置。 An apparatus for cleaning an object to be cleaned by bringing it into contact with a cleaning liquid containing dissolved gas having a solubility equal to or higher than the saturation solubility at the liquid temperature of the cleaning liquid (hereinafter referred to as “supersaturated gas solution”). And
A pressure-resistant cleaning container that can be sealed;
Means for introducing the supersaturated gas solution into the cleaning vessel;
Means for depressurizing the inside of the cleaning container;
Means for discharging the cleaning liquid in the cleaning container,
In a state where the object to be cleaned is in contact with the supersaturated gas solution in the cleaning container, the object to be cleaned is cleaned by reducing the pressure in the cleaning container and generating bubbles from the supersaturated gas solution. Characteristic cleaning device.
密閉可能な耐圧性の洗浄容器と、
該洗浄容器に該洗浄液を導入する手段と、
該洗浄容器に加圧ガスを導入して、該洗浄容器内の洗浄液に、当該洗浄液の液温における飽和溶解度以上の溶存ガスを含有させる手段と、
該洗浄容器内を減圧する手段と、
該洗浄容器内の洗浄液を排出する手段と
を有し、
該洗浄容器内で被洗浄物を該過飽和ガス溶解液に接触させた状態で、該洗浄容器内を減圧して該過飽和ガス溶解液から気泡を発生させることにより該被洗浄物を洗浄することを特徴とする洗浄装置。 An apparatus for cleaning an object to be cleaned by bringing it into contact with a cleaning liquid containing dissolved gas having a solubility equal to or higher than the saturation solubility at the liquid temperature of the cleaning liquid (hereinafter referred to as “supersaturated gas solution”). And
A pressure-resistant cleaning container that can be sealed;
Means for introducing the cleaning liquid into the cleaning container;
Means for introducing a pressurized gas into the cleaning container and causing the cleaning liquid in the cleaning container to contain a dissolved gas having a saturation solubility or higher at the liquid temperature of the cleaning liquid;
Means for depressurizing the inside of the cleaning container;
Means for discharging the cleaning liquid in the cleaning container,
In a state where the object to be cleaned is in contact with the supersaturated gas solution in the cleaning container, the object to be cleaned is cleaned by reducing the pressure in the cleaning container and generating bubbles from the supersaturated gas solution. Characteristic cleaning device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010071676A JP2011204958A (en) | 2010-03-26 | 2010-03-26 | Cleaning method and cleaning device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010071676A JP2011204958A (en) | 2010-03-26 | 2010-03-26 | Cleaning method and cleaning device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2011204958A true JP2011204958A (en) | 2011-10-13 |
Family
ID=44881291
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2010071676A Pending JP2011204958A (en) | 2010-03-26 | 2010-03-26 | Cleaning method and cleaning device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2011204958A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106457611A (en) * | 2014-05-16 | 2017-02-22 | 梅耶博格公司 | Wafer processing method |
-
2010
- 2010-03-26 JP JP2010071676A patent/JP2011204958A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106457611A (en) * | 2014-05-16 | 2017-02-22 | 梅耶博格公司 | Wafer processing method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5019370B2 (en) | Substrate cleaning method and cleaning apparatus | |
| TWI405621B (en) | Cleaning liquid and cleaning method for electronic material | |
| JP5585076B2 (en) | Cleaning method | |
| EP1272288A1 (en) | Processes and apparatus for treating electronic components | |
| JP2012143708A (en) | Washing method | |
| JP2007012859A (en) | Equipment and method for processing substrate | |
| Vereecke et al. | Evaluation of megasonic cleaning for sub-90nm technologies | |
| JP7458930B2 (en) | Substrate processing method and substrate processing apparatus | |
| JP2002261062A (en) | Method and apparatus for removing particles on a semiconductor wafer | |
| JP2007150164A (en) | Substrate washing method | |
| JP4482844B2 (en) | Wafer cleaning method | |
| WO2011086876A1 (en) | Surface cleaning method for silicon wafer | |
| JP2011204958A (en) | Cleaning method and cleaning device | |
| KR101000404B1 (en) | Wafer Cleaning Method | |
| JP2004296463A (en) | Cleaning method and cleaning device | |
| JP6020626B2 (en) | Device Ge substrate cleaning method, cleaning water supply device and cleaning device | |
| JP2005259743A (en) | Resist stripping apparatus, resist stripping method using the same, and semiconductor device manufacturing method | |
| JP2001007073A (en) | Cleaning method | |
| JP3595681B2 (en) | Manufacturing method of epitaxial wafer | |
| JP4051693B2 (en) | Cleaning method for electronic materials | |
| JP2014225570A (en) | METHOD FOR CLEANING Ge SUBSTRATE FOR DEVICE, CLEANING WATER SUPPLY DEVICE AND CLEANING DEVICE | |
| JP2002045806A (en) | Cleaning equipment | |
| WO2015189933A1 (en) | METHOD FOR CLEANING Ge SUBSTRATE FOR DEVICE, CLEANING-WATER-SUPPLYING DEVICE, AND CLEANING DEVICE | |
| JP2005064443A6 (en) | Substrate processing method and substrate processing apparatus | |
| JP2007012860A (en) | Equipment and method for processing substrate |