[go: up one dir, main page]

JP2011224044A - Light source device and endoscope apparatus using the same - Google Patents

Light source device and endoscope apparatus using the same Download PDF

Info

Publication number
JP2011224044A
JP2011224044A JP2010094348A JP2010094348A JP2011224044A JP 2011224044 A JP2011224044 A JP 2011224044A JP 2010094348 A JP2010094348 A JP 2010094348A JP 2010094348 A JP2010094348 A JP 2010094348A JP 2011224044 A JP2011224044 A JP 2011224044A
Authority
JP
Japan
Prior art keywords
light
source device
light source
endoscope
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010094348A
Other languages
Japanese (ja)
Inventor
Akira Mizuyoshi
明 水由
Kazuhiko Nakamura
和彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010094348A priority Critical patent/JP2011224044A/en
Publication of JP2011224044A publication Critical patent/JP2011224044A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

【課題】複数の発光素子による面発光光を用いて照明光を生成する際、照明光の強度分布を高精度に均一化する。
【解決手段】支持体71に複数の発光体73を配置した発光部75と、発光部75からの光を一端側の入射面に導入して他端側の出射面から照明光を出射する導光部材LGと、発光部75と導光部材LGとの間に配置され、導光部材LGの入射面に発光部75からの光を集光させる集光部材77と、を有する光源装置であって、集光部材77が、導光部材LGの入射面に向けて先細りとなる複数のテーパ状柱体79からなり、複数のテーパ状柱体79の基端部79bを、それぞれ発光体73の発光面に対面して配置し、複数のテーパ状柱体79の先端部79aを結束した光出射窓89を、導光部材LGの入射面に対面する側に形成した。また、光量制御手段65によって、複数の発光体73の出射光量を制御する構成とした。
【選択図】図3
When generating illumination light using surface-emitting light from a plurality of light emitting elements, the intensity distribution of the illumination light is made uniform with high accuracy.
A light emitting section 75 in which a plurality of light emitting bodies 73 are arranged on a support 71, and a light guide for introducing light from the light emitting section 75 into an incident surface on one end side and emitting illumination light from an exit surface on the other end side. The light source device includes a light member LG, and a light collecting member 77 that is disposed between the light emitting unit 75 and the light guide member LG and collects light from the light emitting unit 75 on an incident surface of the light guide member LG. The condensing member 77 is composed of a plurality of tapered columnar bodies 79 that taper toward the incident surface of the light guide member LG, and the base end portions 79b of the plurality of tapered columnar bodies 79 are respectively connected to the light emitting body 73. A light exit window 89 arranged to face the light emitting surface and binding the tip portions 79a of the plurality of tapered columnar bodies 79 was formed on the side facing the incident surface of the light guide member LG. Further, the light quantity control means 65 controls the emitted light quantity of the plurality of light emitters 73.
[Selection] Figure 3

Description

本発明は、光源装置及びこれを用いた内視鏡装置に関する。   The present invention relates to a light source device and an endoscope apparatus using the light source device.

一般に、医療用、工業用の内視鏡装置の照明光源としてキセノンランプが広く用いられているが、最近になって、光源の交換寿命が長く、省電力でしかも小型である発光ダイオード素子(LED)が、キセノンランプに置き換わる発光素子として注目されるようになった。例えば、図18に示すように、複数のLED1が支持体2上に配置され、各LED1の出射光をレンズ3により集光して、ライトガイドLGの光ファイババンドルに導入する内視鏡装置が提案されている(特許文献1)。   In general, a xenon lamp is widely used as an illumination light source for medical and industrial endoscope apparatuses. Recently, a light-emitting diode element (LED) having a long light source replacement life, power saving, and small size. ) Has been attracting attention as a light-emitting element that replaces a xenon lamp. For example, as shown in FIG. 18, an endoscope apparatus in which a plurality of LEDs 1 are arranged on a support 2, the emitted light of each LED 1 is collected by a lens 3 and introduced into an optical fiber bundle of a light guide LG. It has been proposed (Patent Document 1).

しかしながら、複数の発光素子により面発光光を形成する場合、基板上の各発光素子の配列パターンや発光光量のばらつき等の発光素子側の特性、光路途中の光学系特性等の影響により照明光の強度分布が均一になりにくく、観察画像にシェーディング等の輝度ムラや、影を発生させる要因となる。   However, when surface emitting light is formed by a plurality of light emitting elements, illumination light is affected by the characteristics of the light emitting elements such as the arrangement pattern of each light emitting element on the substrate and the variation in the amount of emitted light, and the optical system characteristics in the middle of the optical path. It is difficult for the intensity distribution to be uniform, which causes luminance unevenness such as shading and shadows in the observed image.

また、光源装置側からの光を内視鏡プローブ側のライトガイドLG端面に導入する際、レンズ3の収差によって光ファイババンドルの外周を覆う金属スリーブの端面等に光が漏れることがある。ライトガイドLGは、内視鏡プローブの種類によって必要な光量が異なるため、バンドル径も異なり、そのため金属スリーブの直径も内視鏡プローブの種類毎に異なる。例えば経口内視鏡装置や下部消化器官用の内視鏡では図19(A)のような太径のライトガイドLGとなり、例えば経鼻内視鏡や気管支鏡では図13(B)に示すような細径のライトガイドとなる。従って、これら直径の異なるライトガイドLGがコネクタを介して光源装置に接続された際、光源装置側からの光を、光強度分布が一様のままライトガイドLGに導入すると、細径のライトガイドLGほど、金属スリーブ4に漏れ光が照射されやすくなる。また、特に支持体2の外縁側に配置されたLED1からの出射光は金属スリーブ4に照射されやすくなる。   Further, when light from the light source device side is introduced into the end surface of the light guide LG on the endoscope probe side, light may leak to the end surface of the metal sleeve that covers the outer periphery of the optical fiber bundle due to the aberration of the lens 3. The light guide LG requires a different amount of light depending on the type of endoscope probe, so the bundle diameter is also different. Therefore, the diameter of the metal sleeve is also different for each type of endoscope probe. For example, a light guide LG having a large diameter as shown in FIG. 19A is used for an oral endoscope apparatus or an endoscope for a lower digestive organ, and for example, as shown in FIG. 13B for a nasal endoscope or a bronchoscope. Light guide with a small diameter. Therefore, when the light guides LG having different diameters are connected to the light source device via the connectors, if light from the light source device side is introduced into the light guide LG with a uniform light intensity distribution, the light guide with a small diameter is provided. LG is more likely to irradiate the metal sleeve 4 with leakage light. In particular, the light emitted from the LED 1 arranged on the outer edge side of the support 2 is easily irradiated to the metal sleeve 4.

特開2000−66115号公報JP 2000-66115 A

本発明は、上記の実情に鑑みてなされたもので、複数の発光素子により構成される面発光光を、導光部材を介して被観察領域に照射する際、導光部材に導入する光強度分布を自在に調整可能にすることで、照明光の強度分布を高精度に均一化できる光源装置及びこれを用いた内視鏡装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the light intensity introduced into the light guide member when the surface emission light composed of the plurality of light emitting elements is irradiated to the observation region via the light guide member. It is an object of the present invention to provide a light source device capable of making the intensity distribution of illumination light uniform with high accuracy by making the distribution freely adjustable, and an endoscope apparatus using the same.

本発明は下記構成からなる。
(1) 支持体に複数の発光体を配置した発光部と、該発光部からの光を一端側の入射面に導入して他端側の出射面から照明光を出射する導光部材と、前記発光部と前記導光部材との間に配置され、前記導光部材の入射面に前記発光部からの光を集光させる集光部材と、を有する光源装置であって、
前記集光部材が、前記導光部材の入射面に向けて先細りとなる複数のテーパ状柱体からなり、
前記複数のテーパ状柱体の基端部が、それぞれ前記発光体の発光面に対面して配置され、
前記複数のテーパ状柱体の先端部を結束した光出射窓が、前記導光部材の入射面に対面する側に形成されており、
前記複数の発光体の出射光量を制御する光量制御手段を更に備えた光源装置。
(2) 上記の光源装置と、
前記光源装置から出射される光を前記導光部材を介して被観察領域に照射する内視鏡と、を備えた内視鏡装置。
The present invention has the following configuration.
(1) A light emitting unit in which a plurality of light emitters are arranged on a support, a light guide member that introduces light from the light emitting unit into an incident surface on one end side and emits illumination light from an exit surface on the other end side; A light condensing member disposed between the light emitting unit and the light guide member, and condensing light from the light emitting unit on an incident surface of the light guide member,
The light condensing member is composed of a plurality of tapered columns that taper toward the incident surface of the light guide member,
Proximal end portions of the plurality of tapered columnar bodies are respectively arranged facing the light emitting surface of the light emitter,
A light exit window that binds the tip ends of the plurality of tapered columnar bodies is formed on a side facing the incident surface of the light guide member;
A light source device further comprising light amount control means for controlling the amount of light emitted from the plurality of light emitters.
(2) the above light source device;
An endoscope that includes: an endoscope that irradiates an observation region with light emitted from the light source device via the light guide member.

本発明の照明装置及びこれを用いた内視鏡装置によれば、複数の発光素子により構成される面発光光を、導光部材を介して被観察領域に照射する際、導光部材に導入する光強度分布を自在に調整可能にすることで、強度分布を高精度に均一化した照明光を得ることができる。   According to the illumination device of the present invention and the endoscope device using the illumination device, the surface emitting light composed of a plurality of light emitting elements is introduced to the observation region via the light guide member. By making it possible to freely adjust the light intensity distribution to be performed, it is possible to obtain illumination light in which the intensity distribution is made uniform with high accuracy.

本発明の実施形態を説明するための図で、内視鏡装置の概念的なブロック構成図である。It is a figure for demonstrating embodiment of this invention, and is a notional block block diagram of an endoscope apparatus. 図1に示す内視鏡装置の一例としての外観図である。It is an external view as an example of the endoscope apparatus shown in FIG. 照明装置の模式的な構成図である。It is a typical block diagram of an illuminating device. 一つのテーパ状柱体による集光の様子を示した説明図である。It is explanatory drawing which showed the mode of condensing by one taper-shaped column. (A)は集光部材の配置例で白色LEDを支持体上の縦横に4×4個配置して、各白色LEDの光出射面にテーパ状柱体の基端部を対面させ、先端部を束ねて光出射窓とした概略的な構成図で、(B)は光出射窓の位置を拡大して示す部分拡大図である。(A) is an example of the arrangement of the light condensing member, 4 × 4 white LEDs are arranged vertically and horizontally on the support, the base end portion of the tapered columnar body faces the light emitting surface of each white LED, and the tip portion FIG. 2B is a schematic configuration diagram showing a light exit window by bundling together, and (B) is a partially enlarged view showing the position of the light exit window in an enlarged manner. 凹面状の支持体を用いた場合の構成図である。It is a block diagram at the time of using a concave-shaped support body. 隣接するテーパ状柱体の間に、光出射方向を光出射窓に向けた補助発光体を配置した場合の構成図である。It is a block diagram at the time of arrange | positioning the auxiliary light-emitting body which orient | assigned the light emission direction to the light emission window between the adjacent taper-shaped column bodies. LEDを実装した支持体上に蛍光体層が形成された発光部の概略的な断面図である。It is a schematic sectional drawing of the light emission part by which the fluorescent substance layer was formed on the support body which mounted LED. 蛍光体をテーパ状柱体に分散させた場合の構成図である。It is a block diagram at the time of disperse | distributing a fluorescent substance to a taper-shaped column. LEDの出射光と蛍光体との組み合わせ、及びレーザ光と蛍光体との組み合わせのスペクトルを示すグラフである。It is a graph which shows the spectrum of the combination of the emitted light of LED, and a fluorescent substance, and the combination of a laser beam and fluorescent substance. (A)は複数のテーパ状柱体からなる集光部材の光出射窓として赤外線吸収体を設けた一例を示す構成図、(B)は集光部材の光出射窓に赤外線成分を選択的に反射する多層反射膜を有するスタブを設けた一例を示す構成図、(C)は(B)のダイクロイックプリズムに代えて赤外線反射機能を有するスタブを設けた一例を示す構成図である。(A) is a block diagram which shows an example which provided the infrared rays absorber as the light emission window of the condensing member which consists of a some taper-shaped column, (B) selectively selects an infrared component in the light emission window of a condensing member. FIG. 6 is a configuration diagram showing an example in which a stub having a multilayer reflective film to be reflected is provided, and FIG. 6C is a configuration diagram showing an example in which a stub having an infrared reflection function is provided in place of the dichroic prism in (B). (A)は大径のライトガイドLGが光源装置に接続されたときの、ライトガイドへの光導入の様子を模式的に示す説明図、(B)は(A)に示す点灯された支持体上のLEDを示す平面図である。(A) is explanatory drawing which shows typically the mode of the light introduction to a light guide when the large diameter light guide LG is connected to the light source device, (B) is the lighted support body shown to (A). It is a top view which shows upper LED. (A)は小径のライトガイドLGが光源装置に接続されたときの、ライトガイドへの光導入の様子を模式的に示す説明図、(B)は(A)に示す点灯された支持体上のLEDを示す平面図である。(A) is explanatory drawing which shows typically the mode of the light introduction to a light guide when the small diameter light guide LG is connected to the light source device, (B) is on the lighted support body shown to (A). It is a top view which shows this LED. 発光部の結線回路を単純化して示した回路図である。It is the circuit diagram which simplified and showed the connection circuit of the light emission part. (A),(B),(C),(D)は、光出射窓における出射光パターンの例を模式的に示す説明図である。(A), (B), (C), (D) is explanatory drawing which shows typically the example of the emitted light pattern in a light-projection window. 内視鏡の先端部とコネクタ部を示す概略構成図である。It is a schematic block diagram which shows the front-end | tip part and connector part of an endoscope. 分岐された光ファイバをスキュー処理した状態を示す概略的な断面図である。It is a schematic sectional view showing a state where a branched optical fiber is subjected to a skew process. 従来の光源装置と内視鏡プローブの接続構造を示す説明図である。It is explanatory drawing which shows the connection structure of the conventional light source device and an endoscope probe. 従来の大径のライトガイドの接続状態(A)と小径のライトガイドとの接続状態(B)を示す説明図である。It is explanatory drawing which shows the connection state (A) of the conventional large diameter light guide, and the connection state (B) of a small diameter light guide.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、内視鏡装置の概念的なブロック構成図、図2は図1に示す内視鏡装置の一例としての外観図である。
図1、図2に示すように、内視鏡装置100は、内視鏡11と、この内視鏡11が接続される制御装置13とを有する。制御装置13には、画像情報等を表示する表示部15と、入力操作を受け付ける入力部17が接続されている。内視鏡11は、被検体内に挿入される内視鏡挿入部19(図2参照)の先端から照明光を出射する照明光学系と、被観察領域を撮像する撮像素子21(図1参照)を含む撮像光学系とを有する、電子内視鏡である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the present invention, and is a conceptual block diagram of an endoscope apparatus. FIG. 2 is an external view as an example of the endoscope apparatus shown in FIG.
As shown in FIGS. 1 and 2, the endoscope apparatus 100 includes an endoscope 11 and a control device 13 to which the endoscope 11 is connected. The control device 13 is connected to a display unit 15 that displays image information and an input unit 17 that receives an input operation. The endoscope 11 includes an illumination optical system that emits illumination light from the distal end of an endoscope insertion portion 19 (see FIG. 2) that is inserted into a subject, and an image sensor 21 that captures an observation region (see FIG. 1). ) Including an imaging optical system.

また、内視鏡11は、内視鏡挿入部19と、内視鏡挿入部19の先端の湾曲操作や観察のための操作を行う操作部23(図2参照)と、内視鏡11を制御装置13に着脱自在に接続するコネクタ部25A,25Bを備える。なお、図示はしないが、操作部23及び内視鏡挿入部19の内部には、組織採取用処置具等を挿入する鉗子チャンネルや、送気・送水用のチャンネル等、各種のチャンネルが設けられる。   The endoscope 11 includes an endoscope insertion unit 19, an operation unit 23 (see FIG. 2) for performing an operation for bending and observing the distal end of the endoscope insertion unit 19, and the endoscope 11. Connector portions 25A and 25B that are detachably connected to the control device 13 are provided. Although not shown, various channels such as a forceps channel for inserting a tissue collection treatment instrument and the like, a channel for air supply / water supply, and the like are provided inside the operation unit 23 and the endoscope insertion unit 19. .

内視鏡挿入部19は、図2に示すように、可撓性を持つ軟性部31と、湾曲部33と、先端部(以降、内視鏡先端部とも呼称する)35から構成される。内視鏡先端部35には、図1に示すように、被観察領域へ光を照射する照射口37と、被観察領域の画像情報を取得するCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子21が配置されている。また、撮像素子21の受光面側には観察像を結像する対物レンズユニット39が配置される。   As shown in FIG. 2, the endoscope insertion portion 19 includes a flexible soft portion 31, a bending portion 33, and a distal end portion (hereinafter also referred to as an endoscope distal end portion) 35. As shown in FIG. 1, the endoscope distal portion 35 has an irradiation port 37 for irradiating light to the observation region, a CCD (Charge Coupled Device) image sensor for acquiring image information of the observation region, and a CMOS (Complementary). An image sensor 21 such as a metal-oxide semiconductor (image sensor) is disposed. An objective lens unit 39 that forms an observation image is disposed on the light receiving surface side of the image sensor 21.

図2に示す湾曲部33は、操作部23に配置されたアングルノブ41の回動操作により湾曲自在にされている。この湾曲部33は、内視鏡11が使用される被検体の部位等に応じて、任意の方向、任意の角度に湾曲でき、内視鏡先端部35の照射口37及び撮像素子21の観察方向を、所望の観察部位に向けることができる。   The bending portion 33 shown in FIG. 2 can be freely bent by a turning operation of the angle knob 41 disposed in the operation portion 23. The bending portion 33 can be bent in an arbitrary direction and an arbitrary angle depending on a part of the subject in which the endoscope 11 is used, and the observation of the irradiation port 37 and the imaging element 21 of the endoscope distal end portion 35. The direction can be directed to the desired observation site.

また、内視鏡11は、医療分野においては経鼻内視鏡、経口内視鏡、下部消化器官用の内視鏡、気管支鏡等、使用用途に応じて異なるタイプのものが用意され、内視鏡の術者は、例えば指示された内視鏡検査オーダに基づいて適切な内視鏡を制御装置13に装着する。内視鏡11には夫々、そのタイプや撮像素子の分光感度特性や照明光に関する各種個体情報が記憶されるメモリ(個体情報保持手段)43を有しており、制御装置13は接続された内視鏡11の個体情報をメモリ43から読み出し、制御部45により内視鏡11のタイプを識別して、適切な条件で術式や表示が行われるように各部を制御する。   In the medical field, different types of endoscopes 11 are prepared depending on the intended use, such as nasal endoscopes, oral endoscopes, endoscopes for lower digestive organs, bronchoscopes, etc. The operator of the endoscope attaches an appropriate endoscope to the control device 13 based on the instructed endoscopic examination order, for example. Each of the endoscopes 11 has a memory (individual information holding means) 43 for storing various types of individual information regarding the type, spectral sensitivity characteristics of the image sensor, and illumination light, and the control device 13 is connected to the endoscope 11. Individual information of the endoscope 11 is read from the memory 43, the type of the endoscope 11 is identified by the control unit 45, and each unit is controlled so that the technique and display are performed under appropriate conditions.

制御装置13は、内視鏡先端部35の照射口37に供給する照明光を発生する光源装置47と、撮像素子21からの画像信号を画像処理するプロセッサ49を備え、コネクタ部25A,25Bを介して内視鏡11に接続される。また、プロセッサ49は、内視鏡11の操作部23や入力部17からの指示に基づいて、内視鏡11から伝送されてくる撮像信号を画像処理し、表示用画像を生成して表示部15へ供給する。   The control device 13 includes a light source device 47 that generates illumination light to be supplied to the irradiation port 37 of the endoscope distal end portion 35, and a processor 49 that performs image processing on an image signal from the imaging device 21, and includes connector portions 25A and 25B. Via the endoscope 11. In addition, the processor 49 performs image processing on the imaging signal transmitted from the endoscope 11 based on an instruction from the operation unit 23 or the input unit 17 of the endoscope 11, generates a display image, and displays the display unit. 15 is supplied.

撮像素子21には、プロセッサ49に設けられた増幅器(以下、AMPと略す)51及び撮像素子ドライバ53が接続されている。AMP51は、撮像素子21から出力された撮像信号に所定のゲインで増幅を施し、これを相関二重サンプリング/プログラマブルゲインアンプ(以下、CDS/PGA回部と略す)55に出力する。   An amplifier (hereinafter abbreviated as AMP) 51 and an image sensor driver 53 provided in the processor 49 are connected to the image sensor 21. The AMP 51 amplifies the image signal output from the image sensor 21 with a predetermined gain and outputs the amplified signal to a correlated double sampling / programmable gain amplifier (hereinafter abbreviated as a CDS / PGA circuit) 55.

CDS/PGA55は、AMP51から出力された撮像信号を、撮像素子21の各受光セルの電荷蓄積量に対応したR、G、Bの画像データとして出力し、この画像データに増幅を施してA/D変換器57に出力する。A/D変換器57は、CDS/PGA回路55から出力されたアナログの画像データを、デジタルの画像データに変換する。画像処理部59は、A/D変換器57でデジタル化された画像データに対して各種画像処理を施し、表示部15に体腔内の観察画像を出力する。   The CDS / PGA 55 outputs the imaging signal output from the AMP 51 as R, G, and B image data corresponding to the charge accumulation amount of each light receiving cell of the imaging device 21, and amplifies the image data to perform A / A Output to D converter 57. The A / D converter 57 converts the analog image data output from the CDS / PGA circuit 55 into digital image data. The image processing unit 59 performs various types of image processing on the image data digitized by the A / D converter 57 and outputs an observation image in the body cavity to the display unit 15.

撮像素子ドライバ53には、制御部45によって制御されるタイミングジェネレータ(以下、TGと略す)61が接続されている。撮像素子ドライバ53は、TG61から入力されるタイミング信号(クロックパルス)により、撮像素子21の撮像信号(電荷蓄積量)の読み出しタイミング、撮像素子21の電子シャッタのシャッタ速度等を制御する。   A timing generator (hereinafter abbreviated as TG) 61 controlled by the control unit 45 is connected to the image sensor driver 53. The image sensor driver 53 controls the read timing of the image signal (charge accumulation amount) of the image sensor 21, the shutter speed of the electronic shutter of the image sensor 21, and the like based on the timing signal (clock pulse) input from the TG 61.

光源装置47には、内視鏡11の照射口37に照明光を供給する光源部63と、光源部63の出射光量を制御する光量制御手段としての光源ドライバ65等が搭載されている。光源部63からの出射光は、多数の光ファイバ束からなるライトガイドLGを通じて、照射口37を介して被観察領域に照射される。なお、本構成例では、光源部63の発光素子として、中心発振波長が例えば450〜470nmの複数のLED(発光ダイオード)を用いており、LEDの光出射面には、このLEDから出射される青色光により励起される蛍光体を含有する蛍光体層が配置される。   The light source device 47 includes a light source unit 63 that supplies illumination light to the irradiation port 37 of the endoscope 11, a light source driver 65 as a light amount control unit that controls an emitted light amount of the light source unit 63, and the like. The emitted light from the light source unit 63 is irradiated to the observation area through the irradiation port 37 through the light guide LG made up of a number of optical fiber bundles. In this configuration example, a plurality of LEDs (light emitting diodes) having a central oscillation wavelength of, for example, 450 to 470 nm are used as the light emitting elements of the light source unit 63, and the light is emitted from the LEDs on the light emission surface of the LEDs. A phosphor layer containing a phosphor excited by blue light is disposed.

蛍光体は、LEDからの出射光の一部を吸収して緑色〜黄色に励起発光する複数種の蛍光体物質(例えばYAG系蛍光体、或いはBAM(BaMgAl1017)等の蛍光体)を含んで構成される。これにより、青色光を励起光とする緑色〜黄色の励起発光光と、蛍光体により吸収されず透過したLEDからの出射光とが合わされて、白色(疑似白色)の照明光が生成される。生成された白色の照明光は、ライトガイドLGにより導光されて照射口37から被観察領域に照射されることになる。 The phosphors are a plurality of kinds of phosphor materials (for example, YAG-based phosphors or phosphors such as BAM (BaMgAl 10 O 17 )) that absorb a part of the light emitted from the LED and excite and emit green to yellow light. Consists of including. As a result, the green to yellow excitation light that uses blue light as the excitation light and the light emitted from the LED that is transmitted without being absorbed by the phosphor are combined to generate white (pseudo-white) illumination light. The generated white illumination light is guided by the light guide LG and irradiated from the irradiation port 37 to the observation area.

ここで、本明細書でいう白色光とは、厳密に可視光の全ての波長成分を含むものに限らず、例えば、基準色であるR(赤),G(緑),B(青)等、特定の波長帯の光を含むものであればよく、例えば、緑色から赤色にかけての波長成分を含む光や、青色から緑色にかけての波長成分を含む光等も広義に含むものとする。   Here, the white light referred to in the present specification is not limited to the one that strictly includes all wavelength components of visible light, and examples thereof include R (red), G (green), and B (blue) that are reference colors. As long as it includes light in a specific wavelength band, for example, light including a wavelength component from green to red, light including a wavelength component from blue to green, and the like are broadly included.

上記の蛍光体は、蛍光体を構成する蛍光物質と、充填剤となる固定・固化用樹脂との屈折率差を考慮して、蛍光物質そのものと充填剤に対する粒径を、赤外域の光に対して吸収が小さく、かつ散乱が大きい材料で構成することが好ましい。これにより、赤色や赤外域の光に対して光強度を落とすことなく散乱効果が高められ、光学的損失を小さくできる。   In consideration of the refractive index difference between the phosphor constituting the phosphor and the fixing / solidifying resin serving as the filler, the above phosphors have the same particle size with respect to the phosphor and the filler in the infrared region. On the other hand, it is preferable to use a material that has low absorption and high scattering. As a result, the scattering effect is enhanced without reducing the light intensity with respect to red or infrared light, and the optical loss can be reduced.

また、光源ドライバ65には、制御部45、及びTG61が接続されている。光源ドライバ65は、TG61からの固体撮像素子42の撮像信号(蓄積電荷)の読み出しタイミングを司る読み出しパルス、及び電子シャッタパルスで規定される露光期間内に、制御部45の制御に応じたパルス状の駆動電流を供給する。つまり、光源ドライバ65は、撮像素子21の撮像タイミングと同期して任意の照明光を被観察領域に照射させることができる。   Further, the control unit 45 and the TG 61 are connected to the light source driver 65. The light source driver 65 is pulse-shaped according to the control of the control unit 45 within the exposure period defined by the readout pulse that controls the readout timing of the imaging signal (accumulated charge) of the solid-state imaging device 42 from the TG 61 and the electronic shutter pulse. The drive current is supplied. That is, the light source driver 65 can irradiate the observation area with arbitrary illumination light in synchronization with the imaging timing of the imaging device 21.

上記のように各LED(白色LEDとも呼称する)からの出射光と蛍光体からの励起発光光による白色光は、内視鏡11の先端部35から被観察領域に向けて照射される。そして、照明光が照射された被観察領域の様子は、対物レンズユニット39により被検体像を撮像素子21に結像させることで撮像画像として取得される。   As described above, the light emitted from each LED (also referred to as a white LED) and the white light generated by the excitation light emitted from the phosphor are emitted from the distal end portion 35 of the endoscope 11 toward the observation region. The state of the observation region irradiated with the illumination light is acquired as a captured image by forming an object image on the image sensor 21 by the objective lens unit 39.

撮像後に撮像素子21から出力される撮像画像の画像信号は、前述したように信号処理されて画像処理部59に入力される。画像処理部59は、デジタル信号に変換された撮像素子21からの撮像画像信号に対して、ホワイトバランス補正、ガンマ補正、輪郭強調、色補正等の各種処理を施し、各種情報と共に内視鏡観察画像にされ、表示部15に出力される。また必要に応じて、内視鏡観察画像はメモリやストレージ装置からなる図示しない記憶部に記憶する。   The image signal of the captured image output from the image sensor 21 after imaging is subjected to signal processing as described above and input to the image processing unit 59. The image processing unit 59 performs various processes such as white balance correction, gamma correction, contour enhancement, and color correction on the captured image signal from the image sensor 21 converted into a digital signal, and endoscopic observation together with various information. The image is output to the display unit 15. If necessary, the endoscope observation image is stored in a storage unit (not shown) including a memory and a storage device.

次に、上記構成の内視鏡装置100の光源装置について詳細に説明する。
図3に照明装置の模式的な構成図を示した。
照明装置200は、前述の光源装置47に搭載された光源部63と、光源部63の光出射口に一端側を接続して他端側から照明光を出射する導光部材としてのライトガイドLDとを有する。光源部63は、支持体71上に複数の白色LED(発光体)73を配置して、光源ドライバ65からの電力供給を受けて発光する発光部75と、この発光部75とライトガイドLGの一端側との間に配置され、ライトガイドLGの光入射面に発光部75からの出射光を集光させる集光部材77とを有する。
Next, the light source device of the endoscope apparatus 100 having the above configuration will be described in detail.
FIG. 3 shows a schematic configuration diagram of the lighting device.
The illuminating device 200 includes a light source 63 mounted on the light source device 47 described above, and a light guide LD serving as a light guide member that emits illumination light from the other end side by connecting one end side to the light emission port of the light source unit 63. And have. The light source unit 63 includes a plurality of white LEDs (light emitters) 73 arranged on a support 71, a light emitting unit 75 that emits light upon receiving power supply from the light source driver 65, and the light emitting unit 75 and the light guide LG. It has a condensing member 77 which is arranged between one end side, and condenses the emitted light from light-emitting part 75 on the light entrance surface of light guide LG.

ライトガイドLGは、多数本の光ファイバ束と、この光ファイバ束の外周を覆うスリーブ81とを有する長尺状の導光部材である。ライトガイドLGは、光源装置47に対してコネクタ部25Aを接続することで、スリーブ81の外周を覆う保護パイプ83が係合孔85にガイドされつつ挿入され、ライトガイドLG先端のガラス窓87が、光源部63の光出射窓89に対面した状態で固定される。   The light guide LG is a long light guide member having a large number of optical fiber bundles and a sleeve 81 covering the outer periphery of the optical fiber bundle. The light guide LG is inserted by connecting the connector portion 25A to the light source device 47 so that the protective pipe 83 covering the outer periphery of the sleeve 81 is guided by the engagement hole 85, and the glass window 87 at the tip of the light guide LG is inserted. The light source 63 is fixed in a state of facing the light exit window 89.

スリーブ81は、円筒状であって、例えば、ステンレスや銅合金等の金属、セラミックス、結晶化ガラス、樹脂等を利用できるが、特に、ジルコニアセラミックス(酸化ジルコニウム:ZrO)が、光に対する半透過性を有して好ましい。スリーブ81をジルコニアセラミックスで形成することにより、仮にスリーブ端面に高強度の光が照射されても、照射光がスリーブ端面から内部に浸透して光照射範囲を拡大できる。これにより、スリーブ端面で局所的な温度上昇が発生することを防止できる。 The sleeve 81 is cylindrical and can be made of, for example, a metal such as stainless steel or copper alloy, ceramics, crystallized glass, resin, etc. In particular, zirconia ceramics (zirconium oxide: ZrO 2 ) is semi-transmissive to light. Therefore, it is preferable. By forming the sleeve 81 from zirconia ceramics, even if high-intensity light is irradiated to the sleeve end face, the irradiation light can penetrate from the sleeve end face to the inside to expand the light irradiation range. Thereby, it is possible to prevent a local temperature increase from occurring at the end face of the sleeve.

なお、光源部63にはヒートシンク91が設けられ、ファン93からの送風によって光源部63の発熱を外部に逃している。   The light source unit 63 is provided with a heat sink 91, and the heat generated by the light source unit 63 is released to the outside by the air blown from the fan 93.

集光部材77は、ライトガイドLGに向けて先細りとなる複数のテーパ状柱体79の集合体であり、一つのテーパ状柱体79が一つの白色LED73に対応して配置されている。図4に一つのテーパ状柱体79による集光の様子を示した。テーパ状柱体79は、透光性を有するガラスや樹脂からなり、断面が光路前方に向けて縮小する楔型の柱体である。ここでは複数のテーパ状柱体79をより高密度に束ねることができる三角柱形状としているが、この他にも、円柱形状や他の多角柱形状としてもよく、円錐体、多角錐体形状としてもよい。   The condensing member 77 is an aggregate of a plurality of tapered columnar bodies 79 that taper toward the light guide LG, and one tapered columnar 79 is arranged corresponding to one white LED 73. FIG. 4 shows how light is collected by one tapered column 79. The tapered columnar body 79 is a wedge-shaped columnar body that is made of light-transmitting glass or resin and whose cross-section is reduced toward the front of the optical path. Here, a triangular prism shape that can bundle a plurality of tapered columnar bodies 79 at a higher density is used. However, in addition to this, a cylindrical shape or other polygonal column shape may be used, and a cone shape or a polygonal pyramid shape may be used. Good.

テーパ状柱体79は、その先端部79aが、ライトガイドLGの光入射面に対面する平面状の光出射窓89に接続され、基端部79bが白色LED73の発光面に対面して配置されている。そして、白色LED73からの出射光は、テーパ状柱体79内で全反射を繰り返しながら先端部79aまで集光されつつ導光される。これにより、発光体からの出射光の殆どをライトガイドLGに有効な光として入射させることができ、光の利用効率を向上できる。   The tapered column 79 has a distal end 79 a connected to a planar light exit window 89 facing the light incident surface of the light guide LG, and a base end 79 b facing the light emitting surface of the white LED 73. ing. The emitted light from the white LED 73 is guided while being condensed to the tip end portion 79 a while repeating total reflection in the tapered columnar body 79. As a result, most of the light emitted from the light emitter can be incident on the light guide LG as effective light, and the light utilization efficiency can be improved.

また、テーパ状柱体79は、先端部79a、基端部79bの少なくともいずれかの光路途中に赤外線成分の透過を制限する選択透光部材が配置されている。この選択透光部材としては、例えば赤外線吸収体である赤外線カットフィルタが利用できる。また、テーパ状柱体79全体が赤外線を選択的に除去する光学機能を有する部材であってもよい。   Further, the tapered columnar body 79 is provided with a selective light-transmitting member that restricts transmission of infrared components in the middle of the optical path of at least one of the distal end portion 79a and the proximal end portion 79b. As this selective translucent member, for example, an infrared cut filter which is an infrared absorber can be used. Further, the entire tapered columnar body 79 may be a member having an optical function of selectively removing infrared rays.

透過を制限する赤外線の波長は650nm以上であることが好ましく、これによれば、一般的な撮像素子によりカラー撮像画像を取得する際に、撮像素子のR(赤)光より長波長側の有感度域における受光成分が画像データに重畳されることがなくなり、混色の発生を防止できる。   The wavelength of infrared rays that restricts transmission is preferably 650 nm or more. According to this, when a color captured image is acquired by a general image sensor, the wavelength on the longer wavelength side than the R (red) light of the image sensor is present. The light receiving component in the sensitivity range is not superposed on the image data, and color mixing can be prevented.

本構成例の光源部63の構成においては、図5(A)に集光部材の配置例を示すように白色LED73を支持体71上の縦横に4×4個配置している。各白色LED73の光出射面に、テーパ状柱体79の基端部79bを対面させた状態で、例えば透明接着剤や図示しない固定用治具等によってこれら基端部79bを固定する。そして、複数のテーパ状柱体79の先端部79aを、その配列を乱すことなく束ねて、微小サイズの光出射窓89を形成する。光出射窓89の一部を拡大すると、図5(B)に示すようにテーパ状柱体79の先端部79aが高密度に密集した結束状態となっている。これら先端部79aのそれぞれは光出射窓89を構成する。   In the configuration of the light source unit 63 of this configuration example, 4 × 4 white LEDs 73 are arranged vertically and horizontally on the support 71 as shown in FIG. With the base end 79b of the tapered column 79 facing the light emitting surface of each white LED 73, the base end 79b is fixed with, for example, a transparent adhesive or a fixing jig (not shown). And the front-end | tip part 79a of the some taper-shaped column 79 is bundled, without disturbing the arrangement | sequence, and the light emission window 89 of a micro size is formed. When a part of the light exit window 89 is enlarged, as shown in FIG. 5 (B), the tip end portions 79a of the tapered columnar body 79 are in a bundled state in which they are densely packed. Each of these tip portions 79a constitutes a light exit window 89.

ここで、上記の白色LED73は、表面実装型(SMD)、直接支持体上に実装するチップ・オン・ボード型(COB)が用いられ、その発光面のサイズは0.6mm2〜10mm2程度の略正方形状で、好ましくは1mm2程度である。また、テーパ状柱体79の先端部79aにおける光出射窓の面積は1〜5mm2、好ましくは2mm2程度であり、テーパ状柱体79の長手方向の全長は20mm程度とされている。 Here, the white LED73 is surface mounted (SMD), directly support chip-on-board type to be mounted on (COB) is used, the size of the emission surface is 0.6 mm 2 to 10 mm 2 approximately The approximate square shape, preferably about 1 mm 2 . The area of the light exit window at the distal end 79a of the tapered columnar body 79 is 1 to 5 mm 2, and preferably about 2 mm 2, the longitudinal direction of the length of the tapered columnar body 79 is about 20 mm.

上記構成の光源装置100によれば、複数の白色LED73からの出射光がそれぞれテーパ状柱体79の基端部79bに導入され、テーパ状柱体79内を全反射導光されて先端部79aから高密度の光束となって出射される。従って、複数のテーパ状柱体79の先端部79aが結束された光出射窓89からは、高効率で、しかも高強度の光が出射される。このように、光出射窓89は多数のテーパ状柱体79が光学的に接続されており、光出射側から覗いた場合に、万華鏡(カレイドスコープ)の如き、多数の鏡面によって発光体が無数に分散配置されたように見える。従って、各発光体からの出射光は、外部に散乱することなく、殆どの出射光成分が光出射窓89に集光され、高密度の光束となる。   According to the light source device 100 having the above-described configuration, light emitted from the plurality of white LEDs 73 is introduced into the base end portion 79b of the tapered columnar body 79, and is totally reflected and guided through the tapered columnar body 79 to be the distal end portion 79a. Is emitted as a high-density light flux. Therefore, high-efficiency and high-intensity light is emitted from the light emission window 89 in which the tips 79a of the plurality of tapered columnar bodies 79 are bundled. In this way, the light exit window 89 is optically connected with a large number of tapered columnar bodies 79. When viewed from the light exit side, the light emitting window 89 has numerous mirrors such as kaleidoscopes. Seems to be distributed. Therefore, the emitted light from each light emitter is not scattered outside, but most of the emitted light component is condensed on the light exit window 89 to become a high-density light beam.

また、各テーパ状柱体79の先端部79aは、白色LED73の配置関係をそのまま維持して結束されているため、各白色LED73の出射光量に対応した支持体71上の配列通りの光出射パターンで光出射窓89に集光させることができる。   Further, since the tip 79a of each tapered column 79 is bundled while maintaining the arrangement relationship of the white LEDs 73, the light emission pattern according to the arrangement on the support 71 corresponding to the amount of light emitted from each white LED 73. Thus, the light can be condensed on the light exit window 89.

ここで、光出射窓89から出射される光の強度分布を、光出射窓89の中心部を最大とし、周辺に離れるにつれて強度が低下する分布にすると、光源装置47に接続される内視鏡の種類によってライトガイドLGの光入射面における直径(図3に示すガラス窓87の直径に相当)が変化しても、出射光の殆どがライトガイドLGの光入射面に導入され、スリーブ81に漏れることがなくなる。   Here, when the intensity distribution of the light emitted from the light exit window 89 is maximized at the center of the light exit window 89 and the intensity decreases as the distance from the periphery increases, the endoscope connected to the light source device 47 Even if the diameter of the light incident surface of the light guide LG changes (corresponding to the diameter of the glass window 87 shown in FIG. 3) depending on the type of the light guide LG, most of the emitted light is introduced into the light incident surface of the light guide LG. It will not leak.

上記の光出射窓89からの出射光強度分布にすることで、スリーブ81に高強度の光が照射され、その光が反射して光源側に戻されて、発光部75の支持体71や白色LED73を昇温させたり、スリーブ81に照射された光により、スリーブ81が発熱してライトガイドLGを昇温させたりする等の、熱による影響を光源部63やライトガイドLGが受けることがなくなる。よって、光源装置47に接続される内視鏡が、経鼻内視鏡、経口内視鏡や下部消化官内視鏡、気管支鏡、等の異なるタイプの内視鏡であっても、それぞれに対して高強度の照明光をライトガイドLGの光入射面内に確実に照射でき、光入射面以外のスリーブ81等の周囲に照射されることを防止できる。   By making the intensity distribution of the emitted light from the light exit window 89, the sleeve 81 is irradiated with high-intensity light, the light is reflected and returned to the light source side, and the support 71 of the light-emitting unit 75 or white The light source unit 63 and the light guide LG are not affected by heat, such as raising the temperature of the LED 73 or heating the light guide LG due to heat generated by the light applied to the sleeve 81. . Therefore, even if the endoscope connected to the light source device 47 is a different type of endoscope such as a nasal endoscope, an oral endoscope, a lower digestive endoscope, a bronchoscope, etc. On the other hand, it is possible to reliably irradiate high-intensity illumination light on the light incident surface of the light guide LG, and to prevent irradiation around the sleeve 81 and the like other than the light incident surface.

光出射窓89からの出射光強度分布は、発光部75における各白色LED73の出射光量を光源ドライバ65によって制御することで自在に変更でき、また、任意のタイイングで調整することができる。   The intensity distribution of the emitted light from the light exit window 89 can be freely changed by controlling the amount of light emitted from each white LED 73 in the light emitting unit 75 by the light source driver 65, and can be adjusted by arbitrary tying.

なお、上記の支持体71は平板状に限らず、図6に示すような凹面状の支持体71Aとしてもよい。集光部材77側を凹面状に形成した支持体71Aの表面に白色LED73を配置すると、白色LED73から光出射窓89までの距離を白色LED73の配置位置によらずに均等化でき、テーパ状柱体79の全長を短く揃えることができる。その結果、各白色LED73からの出射光がそれぞれ同一条件の下で光出射窓89に到達し、支持体71上における白色LED73の配置位置の違いによる光量差がなくなる。しかも各テーパ状柱体79の先端部79aを、白色LED73の配置関係をそのまま維持して束ねることが容易に行える。   The support 71 is not limited to a flat plate shape, and may be a concave support 71A as shown in FIG. When the white LED 73 is arranged on the surface of the support 71A having the condensing member 77 formed in a concave shape, the distance from the white LED 73 to the light exit window 89 can be equalized regardless of the arrangement position of the white LED 73, and a tapered column. The overall length of the body 79 can be made shorter. As a result, the emitted light from each white LED 73 reaches the light exit window 89 under the same conditions, and the light quantity difference due to the difference in the arrangement position of the white LED 73 on the support 71 is eliminated. In addition, it is possible to easily bundle the tip portions 79a of the respective tapered columnar bodies 79 while maintaining the arrangement relationship of the white LEDs 73 as they are.

テーパ状柱体79と白色LED73との関係は、一つのテーパ状柱体に対して一つの白色LEDを設けることに加え、図7に示すように、支持体71上の隣接するテーパ状柱体79A,79Bの間で、光補助発光体としての白色LED95を、出射方向を光出射窓89へ向けて配置してもよい。この場合の白色LED95からの出射光は、図5(B)に示すテーパ状柱体79の先端部79aを束ねたときに生じる隙間から出射され、光出射窓89の出射光量が更に増加する。   The relationship between the tapered column 79 and the white LED 73 is that in addition to providing one white LED for one tapered column, as shown in FIG. Between 79A and 79B, the white LED 95 as the light auxiliary light emitter may be arranged with the emission direction directed toward the light emission window 89. In this case, the emitted light from the white LED 95 is emitted from a gap generated when the tip end portions 79a of the tapered columnar body 79 shown in FIG. 5B are bundled, and the amount of light emitted from the light exit window 89 is further increased.

また、図7に示すように、テーパ状柱体79Aが隣接するテーパ状柱体79Bに接合面97を介して接合すれば、一つのテーパ状柱体79Aの先端部から複数の白色LED73の光を合わせて出射できる。これにより、一つの発光体に対する光出射窓89の占有面積を小さくでき、光出射窓89に束ねられるテーパ状柱体79の数を増やすことができる。よって、照明光の生成に寄与する発光体の数を増やしてより高輝度な照明光を生成できる。   Further, as shown in FIG. 7, if the tapered columnar body 79A is bonded to the adjacent tapered columnar body 79B via the bonding surface 97, the light from the plurality of white LEDs 73 is emitted from the tip of one tapered columnar body 79A. Can be emitted together. Thereby, the area occupied by the light exit window 89 for one light emitter can be reduced, and the number of tapered column bodies 79 bundled in the light exit window 89 can be increased. Therefore, it is possible to generate illumination light with higher luminance by increasing the number of light emitters that contribute to generation of illumination light.

次に、発光部75の他の態様を以下に示す。
図8はLEDを実装した支持体上に蛍光体層が形成された発光部の概略的な断面図である。この構成では、支持体71上に複数の青色LED73Aを配置して、支持体71と青色LED73Aの表面に前述の蛍光体を含む蛍光体層101を形成している。蛍光体層101は、蛍光体が結合剤(バインダ)中に分散されてなる液体の塗布後に乾燥・固化させることで形成される。
Next, the other aspect of the light emission part 75 is shown below.
FIG. 8 is a schematic cross-sectional view of a light emitting unit in which a phosphor layer is formed on a support on which LEDs are mounted. In this configuration, a plurality of blue LEDs 73A are arranged on the support 71, and the phosphor layer 101 containing the aforementioned phosphor is formed on the surfaces of the support 71 and the blue LEDs 73A. The phosphor layer 101 is formed by drying and solidifying after applying a liquid in which the phosphor is dispersed in a binder.

このように支持体71の表面全体に蛍光体層101を形成することで、青色LED73Aの発光により支持体71の全体が均一に発光して、光出射窓89における光量ムラが発生しにくくなる。また、仮にテーパ状柱体79先端の光出射窓89から反射光が戻り来た場合でも、蛍光体層101により反射光が遮断されて、支持体71や青色LED73Aの昇温を防止できる。   By forming the phosphor layer 101 on the entire surface of the support 71 in this way, the entire support 71 emits light uniformly by the light emission of the blue LED 73A, and light amount unevenness in the light exit window 89 is less likely to occur. Further, even if the reflected light returns from the light exit window 89 at the tip of the tapered columnar body 79, the reflected light is blocked by the phosphor layer 101, and the temperature rise of the support 71 and the blue LED 73A can be prevented.

また、蛍光体は図9に示すように、テーパ状柱体79Cに分散させた構成としてもよい。この場合、青色LED73Aからの出射光がテーパ状柱体79C内で全反射導光される途中で蛍光体が励起発光し、この蛍光体の発光成分の殆どが光出射窓89に到達して出射される。これにより、蛍光体の発光成分を効率良く取り出すことができ、出射光量の増加に寄与できる。   Further, as shown in FIG. 9, the phosphor may be dispersed in the tapered columnar body 79C. In this case, the phosphor is excited to emit light while light emitted from the blue LED 73A is totally reflected and guided in the tapered column 79C, and most of the light emission components of the phosphor reach the light exit window 89 and exit. Is done. Thereby, the light emitting component of the phosphor can be extracted efficiently, which can contribute to an increase in the amount of emitted light.

さらに、上記のようにLEDの出射光と蛍光体との組み合わせにより白色光を生成することで、レーザ光と蛍光体との組み合わせによる白色光と比較して演色性を高めることができる。つまり、図10に発光スペクトルの一例を示すように、レーザ光と蛍光体との組み合わせにより白色光を生成する場合は、図中点線で示すように短波長のレーザ光の波長帯域が狭く、蛍光体からの蛍光のスペクトルとの間に波長欠損が生じやすい。   Furthermore, as described above, white light is generated by the combination of the emitted light of the LED and the phosphor, so that the color rendering can be improved as compared with the white light by the combination of the laser beam and the phosphor. That is, as shown in an example of the emission spectrum in FIG. 10, when white light is generated by a combination of a laser beam and a phosphor, the wavelength band of the short-wavelength laser beam is narrow as shown by the dotted line in the figure. Wavelength loss tends to occur between the fluorescence spectrum from the body.

一方、LEDは、LEDの発光スペクトルの幅Wがレーザ光よりも広く、蛍光体からの蛍光のスペクトルも種々の波長帯が励起光として寄与するためブロードな波長光となる。しかも、LEDの発光と、蛍光体からの発光との間の波長成分が強度増加分Hによって波長欠損が改善される。これにより、LEDと蛍光体との組み合わせによる白色光は演色性が高く、より観察に適した照明光となる。   On the other hand, the LED has a broad wavelength light because the emission spectrum width W of the LED is wider than that of the laser light, and the spectrum of the fluorescence from the phosphor also contributes as excitation light in various wavelength bands. Moreover, the wavelength defect between the light emission of the LED and the light emission from the phosphor is improved by the intensity increase H. Thereby, the white light by the combination of LED and fluorescent substance has high color rendering property, and becomes illumination light more suitable for observation.

次に、光源部63とライトガイドLGとの接続部における発熱を防止するため、発光部75の出射光から赤外線成分を除去してからライトガイドLGに導入する構成例について説明する。
図11(A)は、複数のテーパ状柱体79からなる集光部材77の光出射窓として赤外線吸収体を設けた一例を示す構成図である。本構成例では、集光部材77とライトガイドLGとの間に赤外線吸収体である赤外線カットフィルタ105を設け、この赤外線カットフィルタ105により集光部材77で集光される光から赤外線(熱線)を除去し、赤外線カットフィルタ205を透過した光成分のみをライトガイドLGに導入している。これにより、ライトガイドLG側では、光導入に起因する昇温が防止される。
Next, in order to prevent heat generation at the connection portion between the light source unit 63 and the light guide LG, a configuration example in which an infrared component is removed from the light emitted from the light emitting unit 75 and then introduced into the light guide LG will be described.
FIG. 11A is a configuration diagram illustrating an example in which an infrared absorber is provided as a light exit window of a light collecting member 77 including a plurality of tapered columnar bodies 79. In this configuration example, an infrared cut filter 105 that is an infrared absorber is provided between the light collecting member 77 and the light guide LG, and infrared light (heat rays) is collected from the light collected by the light collecting member 77 by the infrared cut filter 105. And only the light component transmitted through the infrared cut filter 205 is introduced into the light guide LG. Thereby, on the light guide LG side, the temperature rise resulting from light introduction is prevented.

また、図示はしないが、赤外線カットフィルタ105の表面に反射防止膜(ARコート層)を形成することで、赤外線カットフィルタ105の界面における反射をなくすことができ、光源側への戻り光の発生を防止できる。   Although not shown, by forming an antireflection film (AR coating layer) on the surface of the infrared cut filter 105, reflection at the interface of the infrared cut filter 105 can be eliminated, and return light is generated toward the light source. Can be prevented.

図11(B)は、集光部材77の光出射窓89に赤外線成分を選択的に反射する多層反射膜を有するスタブを設けた一例を示す構成図である。本構成例では、集光部材77とライトガイドLGとの間に多層反射膜を有するダイクロイックプリズム107を設け、このダイクロイックプリズム107により集光部材で集光される光から赤外線IRを除去し、ダイクロイックプリズム107を透過した光成分のみをライトガイドLGに導入している。これにより、上記同様にライトガイドLG側の昇温が防止される。また、透明ガラスからなる光出射窓89を図11(A)に示す赤外線カットフィルタにすることで、赤外線成分をより確実に除去できる。なお、ダイクロイックプリズム107に代えて、ダイクロイックミラーとしても同様の効果が得られる。   FIG. 11B is a configuration diagram illustrating an example in which a stub having a multilayer reflective film that selectively reflects an infrared component is provided in the light exit window 89 of the light collecting member 77. In this configuration example, a dichroic prism 107 having a multilayer reflective film is provided between the light condensing member 77 and the light guide LG, and infrared irradiance is removed from the light collected by the light condensing member by the dichroic prism 107, thereby dichroic. Only the light component transmitted through the prism 107 is introduced into the light guide LG. Thereby, similarly to the above, the temperature rise on the light guide LG side is prevented. Moreover, the infrared rays component can be more reliably removed by making the light emission window 89 which consists of transparent glass into the infrared cut filter shown to FIG. 11 (A). The same effect can be obtained by using a dichroic mirror instead of the dichroic prism 107.

図11(C)は、図11(B)のダイクロイックプリズムに代えて赤外線反射機能を有するスタブを設けた一例を示す構成図である。本構成例では、赤外線反射ガラス109を集光部材77とライトガイドLGとの間に設けている。赤外線反射ガラス109は、例えば透明ガラス体の表面に酸化チタンと酸化ケイ素を主原料とする積層構造を形成して構成される。これにより、上記同様にライトガイドLG側の昇温が防止される。   FIG. 11C is a configuration diagram showing an example in which a stub having an infrared reflection function is provided in place of the dichroic prism of FIG. In this configuration example, the infrared reflecting glass 109 is provided between the light collecting member 77 and the light guide LG. The infrared reflecting glass 109 is configured by forming a laminated structure using titanium oxide and silicon oxide as main raw materials on the surface of a transparent glass body, for example. Thereby, similarly to the above, the temperature rise on the light guide LG side is prevented.

次に、複数のLEDの出射光量制御を行うことで、ライトガイドLGに導入される光の照射範囲を変更する発光部75の制御例について説明する。図12(A)は大径のライトガイドLGが光源装置47(図3参照)に接続されたときの、ライトガイドLGへの光導入の様子を模式的に示す説明図、図12(B)は(A)に示す点灯された支持体上のLEDを示す平面図である。なお、LEDの数は一例として33個として図示しているが、これに限らない。   Next, a control example of the light emitting unit 75 that changes the irradiation range of light introduced into the light guide LG by performing emission light amount control of a plurality of LEDs will be described. FIG. 12A is an explanatory diagram schematically showing the state of light introduction into the light guide LG when the large-diameter light guide LG is connected to the light source device 47 (see FIG. 3). [FIG. 2] It is a top view which shows LED on the lighted support body shown to (A). In addition, although the number of LED is shown as 33 as an example, it is not restricted to this.

図12(A),(B)に示すように、支持体71上の複数の白色LED73からの出射光は、集光部材77により光出射窓89の範囲に集光されてライトガイドLGに導入される。集光部材77は、前述の各テーパ状柱体79を配列を乱すことなく束ねることで、支持体71上に配列された複数の白色LED73の配置パターンが光出射窓89にそのまま縮小して再現されるものとする。   As shown in FIGS. 12A and 12B, the light emitted from the plurality of white LEDs 73 on the support 71 is condensed by the light collecting member 77 in the range of the light emission window 89 and introduced into the light guide LG. Is done. The condensing member 77 bundles the tapered columns 79 described above without disturbing the arrangement, so that the arrangement pattern of the plurality of white LEDs 73 arranged on the support 71 is reduced and reproduced as it is on the light exit window 89. Shall be.

この場合、支持体71に配置された白色LED73が全て点灯すると、配列パターンの中心から外周側までの全範囲で発光し、光出射窓89の全体から光がライトガイドLGに向けて出射される。   In this case, when all the white LEDs 73 arranged on the support 71 are lit, light is emitted in the entire range from the center of the array pattern to the outer peripheral side, and light is emitted from the entire light emission window 89 toward the light guide LG. .

図13(A)は小径のライトガイドLGが光源装置47(図3参照)に接続されたときの、ライトガイドLGへの光導入の様子を模式的に示す説明図、図13(B)は(A)に示す点灯された支持体上のLEDを示す平面図である。
図13(A),(B)に示すように、図12(A),(B)とは異なるタイプの内視鏡(例えば経鼻内視鏡や気管支鏡等)が光源装置47に接続されたとき、ライトガイドLGの径が小さくなる。その場合には、支持体71に配置された複数の白色LEDのうち、最外縁に近い白色LED73BKに対しては供給電力を遮断又は減少制御し、中央部の白色LED73BLに対しては通常通り又は供給電力を増加制御する。
FIG. 13A is an explanatory view schematically showing the state of light introduction into the light guide LG when the small-diameter light guide LG is connected to the light source device 47 (see FIG. 3), and FIG. It is a top view which shows LED on the lighted support body shown to (A).
As shown in FIGS. 13A and 13B, an endoscope of a type different from those shown in FIGS. 12A and 12B (for example, a nasal endoscope or a bronchoscope) is connected to the light source device 47. The diameter of the light guide LG is reduced. In that case, among the plurality of white LEDs arranged on the support 71, the white LED 73BK closest to the outermost edge is controlled to cut off or reduce the supply power, and the white LED 73BL at the center is normally or Increase power supply control.

すると、中央部の白色LED73BLからの出射光の外縁が図13(A)に点線で示す中央側の範囲に狭められ、光出射窓89の外縁側からの光出射が抑制される。これにより、小径のライトガイドLGであってもその光入射面に集中して光が導入され、ライトガイドLGの光入射面以外のスリーブ81等に光が漏れることがない。   Then, the outer edge of the emitted light from the white LED 73BL at the center is narrowed to the center side range indicated by the dotted line in FIG. 13A, and the light emission from the outer edge side of the light emitting window 89 is suppressed. As a result, even if the light guide LG has a small diameter, light is concentrated on the light incident surface and light does not leak to the sleeve 81 or the like other than the light incident surface of the light guide LG.

上記の図13(A),(B)に示すように複数の発光体を選択的に出射光量制御する場合には、発光部73を図14に示すような結線構造にするとよい。図14に発光部75を4×4個の各白色LED73の構成として、その結線回路を単純化して示した。   As shown in FIGS. 13 (A) and 13 (B) above, in the case of selectively controlling the amount of emitted light of a plurality of light emitters, the light emitting section 73 may be connected as shown in FIG. FIG. 14 shows the light emitting unit 75 as a configuration of each of 4 × 4 white LEDs 73, and a simplified connection circuit thereof.

同図に示すように、複数の白色LED73は格子状に配置されており、その外周側と内周側のLED群に分割して、それぞれのLED群を内周側ドライバ111と外周側ドライバ113により個別に制御する。図示例では内周側と外周側の2つに分割しているが、発光体の数に応じて、更に分割数を増やした結線構造としてもよく、その場合には、より細かに出射光パターンの制御が行える。   As shown in the figure, the plurality of white LEDs 73 are arranged in a lattice pattern, and are divided into LED groups on the outer peripheral side and the inner peripheral side, and the respective LED groups are divided into the inner peripheral driver 111 and the outer peripheral driver 113. Control individually. In the illustrated example, it is divided into two parts, the inner peripheral side and the outer peripheral side. However, a connection structure in which the number of divisions is further increased in accordance with the number of light emitters may be used. Can be controlled.

例えば、図1に示すように内視鏡11が光源装置47に接続されたとき、制御部45は、内視鏡のメモリ43の有する個体情報を読み出し、この接続された内視鏡11のタイプ(ライトガイドLGの直径に関する情報を含む)や各種特性の情報に基づいて光源ドライバ65を制御する。光源ドライバ65は、接続された内視鏡11のライトガイドLGの直径に応じて、図14に示す内周側のLED群と外周側のLED群の発光量を内周側ドライバ111及び外周側ドライバ113により制御する。   For example, as shown in FIG. 1, when the endoscope 11 is connected to the light source device 47, the control unit 45 reads the individual information that the memory 43 of the endoscope has, and the type of the connected endoscope 11 The light source driver 65 is controlled based on (including information on the diameter of the light guide LG) and information on various characteristics. The light source driver 65 determines the amount of light emitted from the inner and outer LED groups shown in FIG. 14 according to the diameter of the light guide LG of the connected endoscope 11. Control by the driver 113.

つまり、大径のライトガイドLGの場合は内周側のLED群と外周側のLED群を同じ光量に設定し、小径のライトガイドLGの場合は内周側のLED群の光量を増加させ、外周側のLED群の光量を減少、或いは消灯制御する。光量制御は、電流制御、電圧制御、オンオフ制御の他、駆動信号のPWM制御、パルス数制御、パルス振幅制御、或いはこれらを組み合わせた制御により行うことができる。   That is, in the case of a large-diameter light guide LG, the LED group on the inner peripheral side and the LED group on the outer peripheral side are set to the same light amount, and in the case of a small-diameter light guide LG, the light amount of the LED group on the inner peripheral side is increased. The light quantity of the LED group on the outer peripheral side is reduced or turned off. In addition to current control, voltage control, and on / off control, light amount control can be performed by PWM control of drive signals, pulse number control, pulse amplitude control, or a combination of these.

なお、発光体の接続回路は、図14に示すようにLED群毎に光量制御する以外にも、各発光体をそれぞれ個別に光量制御する方式としてもよい。その場合、光出射窓89からの出射光パターンを任意のパターンとして自在に作ることができる。   In addition to the light amount control for each LED group as shown in FIG. 14, the light emitter connection circuit may have a method of individually controlling the light amount of each light emitter. In that case, an outgoing light pattern from the light outgoing window 89 can be freely formed as an arbitrary pattern.

図15(A),(B),(C),(D)は、光出射窓89における出射光パターンの例を模式的に示している。出射光パターンは発光体である白色LED73の配置パターンが光出射窓89にそのまま縮小して再現されるものとして、図中に白色LED73の配置位置と共に示している。
図15(A)は同心円状にブロック分割した出射光パターンの例であり、図中点線で区切られる中央ブロックとその外周の環状ブロックからなる。図15(B)は円周方向にブロック分割した出射光パターンの例であり、所定の円周角で区切られる複数のブロックからなる。図15(C)は半径方向と円周方向へのブロック分割を組み合わせて分割した例である。図15(D)はランダムに光量を設定した例である。
FIGS. 15A, 15 </ b> B, 15 </ b> C, and 15 </ b> D schematically show an example of the outgoing light pattern in the light outgoing window 89. The emission light pattern is shown together with the arrangement position of the white LED 73 in the drawing, assuming that the arrangement pattern of the white LED 73 as a light emitter is reduced and reproduced as it is in the light emission window 89.
FIG. 15A shows an example of an outgoing light pattern that is divided into concentric blocks, and is composed of a central block that is divided by dotted lines in the figure and an annular block on the outer periphery thereof. FIG. 15B is an example of an outgoing light pattern that is divided into blocks in the circumferential direction, and includes a plurality of blocks that are divided at a predetermined circumferential angle. FIG. 15C shows an example in which block division in the radial direction and the circumferential direction is combined. FIG. 15D shows an example in which the light amount is set at random.

これら出射光パターンによれば、上記ライトガイドLGの径の違いによる調整に加えて、光出射窓89の中心から円周方向に光量を変化させる調整や、光出射窓89全体の出射光量を均等に調整することも可能となる。   According to these emission light patterns, in addition to the adjustment based on the difference in the diameter of the light guide LG, the adjustment of changing the light amount from the center of the light emission window 89 in the circumferential direction, and the emission light amount of the entire light emission window 89 are made uniform. It is also possible to adjust to.

即ち、図16に内視鏡11Aの先端部35とコネクタ部25Aを示すように、ライトガイドLGが、内視鏡先端部35で撮像素子21と対物レンズユニット39を有する撮像光学系を挟むようにLG1とLG2とに分岐して配置される場合、LG1とLG2に接続される双方の照射口37A、37Bから均等に照明光を出射させる必要がある。   That is, as shown in FIG. 16 with the distal end portion 35 and the connector portion 25A of the endoscope 11A, the light guide LG sandwiches the imaging optical system having the imaging element 21 and the objective lens unit 39 at the endoscope distal end portion 35. When the light beam is branched into LG1 and LG2, it is necessary to emit illumination light equally from both irradiation ports 37A and 37B connected to LG1 and LG2.

コネクタ部25Aから突出する保護パイプ83内に収容されたライトガイドLGは、一般にはLG1の束とLG2の束とが相互に混ざり合うことなく、それぞれが境界線P−Pを境に二分割して配置される。そのため、光出射窓89の円周方向に光量分布が存在すると、照射口37A,37Bからの出射光量が不均一になる。   The light guide LG accommodated in the protective pipe 83 protruding from the connector portion 25A is generally divided into two with the boundary line P-P as a boundary without the LG1 bundle and the LG2 bundle being mixed with each other. Arranged. Therefore, if there is a light amount distribution in the circumferential direction of the light exit window 89, the amount of light emitted from the irradiation ports 37A and 37B becomes non-uniform.

その場合に、各ブロックの出射光量を個別に調整することで、LG1とLG2とに均等な光量を供給でき、双方の照射口37A,37Bから均等な照明光を出射させることができる。   In that case, by adjusting the emitted light quantity of each block individually, the equal light quantity can be supplied to LG1 and LG2, and the uniform illumination light can be emitted from both irradiation ports 37A and 37B.

また、ブロック毎に出射光量を個別に制御する以外にも、図17に示すように、LG1とLG2の光ファイバを均等に混在させるスキュー処理を施してもよい。この場合には、光出射窓89を円周方向にブロック分割する必要がなくなる。   In addition to individually controlling the amount of emitted light for each block, as shown in FIG. 17, skew processing for evenly mixing LG1 and LG2 optical fibers may be performed. In this case, it is not necessary to divide the light exit window 89 into blocks in the circumferential direction.

このように、本発明は上記の実施形態に限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。即ち、上記説明では生体組織の観察や処置を行う医療用内視鏡装置への適用例を示しているが、これに限らず、工業用内視鏡装置であってもよく、また、内視鏡装置に限らず、ファイババンドルで導光する他の照明装置に対しても適用できる。また、上記構成では発光体としてLEDを用いているが、レーザ光源からのレーザ光を、前述の支持体71上の格子状発光位置にそれぞれ導光する構成としてもよい。さらに、テーパ状柱体79は、多成分ガラスファイバ母材を加熱及び延伸して作られた、一端側から他端側に向けて次第に縮径する形状のテーパファイバであってもよい。また、テーパ状柱体79に導入する発光体は単一に限らず、複数の発光体からの出射光を導入してもよい。その場合、それぞれの発光体を個別に出射光量制御することで、光出射窓89の光強度のダイナミックレンジを拡大できる。   As described above, the present invention is not limited to the above-described embodiments, and modifications and applications by those skilled in the art based on the description of the specification and well-known techniques are also within the scope of the present invention. It is included in the range to calculate. That is, in the above description, an example of application to a medical endoscope apparatus that performs observation and treatment of a living tissue is shown. However, the present invention is not limited thereto, and may be an industrial endoscope apparatus. The present invention can be applied not only to a mirror device but also to other lighting devices that guide light with a fiber bundle. Further, although the LED is used as the light emitter in the above configuration, the laser light from the laser light source may be guided to the lattice-like light emission positions on the support 71 described above. Further, the tapered column 79 may be a tapered fiber having a diameter gradually reduced from one end side to the other end side, which is made by heating and stretching a multicomponent glass fiber preform. Further, the number of light emitters to be introduced into the tapered columnar body 79 is not limited to a single one, and light emitted from a plurality of light emitters may be introduced. In that case, the dynamic range of the light intensity of the light exit window 89 can be expanded by individually controlling the amount of light emitted from each light emitter.

以上の通り、本明細書には次の事項が開示されている。
(1) 支持体に複数の発光体を配置した発光部と、該発光部からの光を一端側の入射面に導入して他端側の出射面から照明光を出射する導光部材と、前記発光部と前記導光部材との間に配置され、前記導光部材の入射面に前記発光部からの光を集光させる集光部材と、を有する光源装置であって、
前記集光部材が、前記導光部材の入射面に向けて先細りとなる複数のテーパ状柱体からなり、
前記複数のテーパ状柱体の基端部が、それぞれ前記発光体の発光面に対面して配置され、
前記複数のテーパ状柱体の先端部を結束した光出射窓が、前記導光部材の入射面に対面する側に形成されており、
前記複数の発光体の出射光量を制御する光量制御手段を更に備えた光源装置。
この光源装置によれば、複数の発光素子により構成される面発光光を、導光部材を介して被観察領域に照射する際、導光部材に導入する光強度分布を光量制御手段により自在に調整可能にすることで、照明光の強度分布を高精度に均一化することができ、ムラのない照明光を生成することができる。
As described above, the following items are disclosed in this specification.
(1) A light emitting unit in which a plurality of light emitters are arranged on a support, a light guide member that introduces light from the light emitting unit into an incident surface on one end side and emits illumination light from an exit surface on the other end side; A light condensing member disposed between the light emitting unit and the light guide member, and condensing light from the light emitting unit on an incident surface of the light guide member,
The light condensing member is composed of a plurality of tapered columns that taper toward the incident surface of the light guide member,
Proximal end portions of the plurality of tapered columnar bodies are respectively arranged facing the light emitting surface of the light emitter,
A light exit window that binds the tip ends of the plurality of tapered columnar bodies is formed on a side facing the incident surface of the light guide member;
A light source device further comprising light amount control means for controlling the amount of light emitted from the plurality of light emitters.
According to this light source device, the light intensity distribution introduced into the light guide member can be freely controlled by the light amount control means when the surface emission light composed of the plurality of light emitting elements is irradiated to the observation region through the light guide member. By making it adjustable, the intensity distribution of the illumination light can be made uniform with high accuracy, and illumination light without unevenness can be generated.

(2) (1)の光源装置であって、
前記複数のテーパ状柱体の各基端部に、前記発光部の発光体がそれぞれ1つずつ対面して配置された光源装置。
この光源装置によれば、一つのテーパ状柱体に対して一つの発光体が対応して配置されるため、各発光体からの出射光の殆どをテーパ状柱体に取り込むことができ、光利用効率を向上できる。
(2) The light source device of (1),
A light source device in which one of the light emitters of the light emitting unit is disposed facing each base end of each of the plurality of tapered columns.
According to this light source device, since one light emitter is arranged corresponding to one taper column, most of the emitted light from each light emitter can be taken into the taper column, and the light Use efficiency can be improved.

(3) (1)又は(2)の光源装置であって、
前記光量制御手段が、前記複数の発光体それぞれの出射光量を個別に制御する光源装置。
この光源装置によれば、各発光体の出射光量を個別に制御することで、得られる照明の強度分布をきめ細かに設定でき、より均一な照明光を得ることができる。
(3) The light source device according to (1) or (2),
A light source device in which the light quantity control means individually controls the emitted light quantity of each of the plurality of light emitters.
According to this light source device, by individually controlling the amount of light emitted from each light emitter, the intensity distribution of the obtained illumination can be set finely, and more uniform illumination light can be obtained.

(4) (1)又は(2)の光源装置であって、
前記複数のテーパ状柱体を前記光出射窓の中心から同心円状に区分した複数のグループに対し、
前記光量制御手段が、前記各テーパ状柱体に対応する前記発光体の出射光量を前記グループ毎にそれぞれ個別に制御する光源装置。
この光源装置によれば、同心円状に区分された環状のグループ毎に個別に発光体を点灯制御するので、導光部材の入射面における内周側と外周側で異なる光量に変更でき、各種の出射光パターンが自在に生成できる。
(4) The light source device of (1) or (2),
For a plurality of groups in which the plurality of tapered columns are concentrically divided from the center of the light exit window,
The light source device in which the light amount control unit individually controls the emitted light amount of the light emitter corresponding to each tapered column body for each group.
According to this light source device, since the light emitters are individually controlled to be turned on and off for each of the annular groups divided concentrically, the light amount can be changed to different light amounts on the inner peripheral side and the outer peripheral side on the incident surface of the light guide member. An outgoing light pattern can be freely generated.

(5) (3)の光源装置であって、
前記光量制御手段が、前記光出射窓の導光部材の入射面の円周方向に区分した複数のグループ毎に、前記発光体の出射光量を制御する光源装置。
この光源装置によれば、円周方向に区分されたグループ毎に発光体を点灯制御するので、導光部材の入射面における円周方向の光量分布を自在に設定できる。
(5) The light source device of (3),
The light source device in which the light quantity control unit controls the emitted light quantity of the light emitter for each of a plurality of groups divided in a circumferential direction of an incident surface of a light guide member of the light exit window.
According to this light source device, lighting control of the light emitters is performed for each group divided in the circumferential direction, and thus the light amount distribution in the circumferential direction on the incident surface of the light guide member can be freely set.

(6) (1)〜(4)のいずれか1つの光源装置であって、
前記発光体が発光ダイオードである光源装置。
この光源装置によれば、光源の交換寿命が長く、省電力でしかも小型の構成にでき、しかも、蛍光体と組み合わせて白色光を生成する場合に、スペクトルをブロードにできるため、照明光の演色性を向上できる。
(6) The light source device according to any one of (1) to (4),
A light source device in which the light emitter is a light emitting diode.
According to this light source device, the replacement life of the light source is long, it is possible to achieve a power-saving and compact configuration, and when white light is generated in combination with a phosphor, the spectrum can be broadened. Can be improved.

(7) (1)〜(6)のいずれか1つの光源装置であって、
前記複数の発光体が配置された前記支持体の表面に、前記発光体からの光で励起発光する蛍光体層が形成された光源装置。
この光源装置によれば、支持体の全体が均一に発光して、光出射窓における光量ムラが発生しにくくなる。
(7) The light source device according to any one of (1) to (6),
A light source device in which a phosphor layer that emits light by excitation from light from the light emitter is formed on a surface of the support on which the plurality of light emitters are arranged.
According to this light source device, the entire support emits light uniformly, and unevenness in the amount of light in the light exit window is less likely to occur.

(8) (1)〜(7)のいずれか1つの光源装置と、
前記光源装置から出射される光を前記導光部材を介して被観察領域に照射する内視鏡と、を備えた内視鏡装置。
この内視鏡装置によれば、輝度ムラの少ない高輝度の照明光を常に安定して被観察領域に照射でき、内視鏡による診断精度を一層向上できる。
(8) any one of the light source devices of (1) to (7);
An endoscope that includes: an endoscope that irradiates an observation region with light emitted from the light source device via the light guide member.
According to this endoscope apparatus, it is possible to always stably irradiate a region to be observed with high-intensity illumination light with little luminance unevenness, and further improve the diagnostic accuracy by the endoscope.

(9) (8)の内視鏡装置であって、
前記内視鏡が、該内視鏡の個体情報を有する個体情報保持手段を備え、
前記光源装置が、前記個体情報保持手段から読み取った前記個体情報に基づいて、前記発光体の出射光量を制御する内視鏡装置。
この内視鏡装置によれば、光源装置に接続した内視鏡の個体情報に基づいて、この内視鏡に適した発光体の制御が行える。
(9) The endoscope apparatus according to (8),
The endoscope includes individual information holding means having individual information of the endoscope,
An endoscope apparatus in which the light source device controls an emitted light amount of the light emitter based on the individual information read from the individual information holding unit.
According to this endoscope apparatus, based on the individual information of the endoscope connected to the light source device, it is possible to control the light emitter suitable for this endoscope.

(10) (9)の内視鏡装置であって、
前記個体情報が、前記内視鏡の導光部材の直径に関する情報を含む内視鏡装置。
この内視鏡装置によれば、発光部から導光部材が太径、又は細径であるときに、それぞれ異なる照射条件で導光部材に光を導入でき、導光部材の種類に適応した最適な照明光を生成できる。
(10) The endoscope apparatus according to (9),
An endoscope apparatus in which the individual information includes information related to a diameter of a light guide member of the endoscope.
According to this endoscope apparatus, when the light guide member has a large diameter or a small diameter from the light emitting unit, light can be introduced into the light guide member under different irradiation conditions, and the optimum for the type of the light guide member Can produce a simple illumination light.

11 内視鏡
13 制御装置
19 内視鏡挿入部
25A,25B コネクタ部
35 内視鏡先端部
43 メモリ(個体情報保持手段)
45 制御部
47 光源装置
49 プロセッサ
63 光源部
65 光源ドライバ(光量制御手段)
71 支持体
73 白色LED(発光体)
73A 青色LED(発光体)
73BK 消灯LED
73BL 点灯LED
75 発光部
77 集光部材
79 テーパ状柱体
79a 先端部
89 光出射窓
95 白色LED(補助発光体)
101 蛍光体層
111 内周側ドライバ
113 外周側ドライバ
LG ライトガイド
DESCRIPTION OF SYMBOLS 11 Endoscope 13 Control apparatus 19 Endoscope insertion part 25A, 25B Connector part 35 Endoscope front-end | tip part 43 Memory (individual information holding means)
45 Control unit 47 Light source device 49 Processor
63 Light source section 65 Light source driver (light quantity control means)
71 Support 73 White LED (light emitter)
73A Blue LED (light emitter)
73BK OFF LED
73BL lighting LED
75 Light Emitting Unit 77 Light Condensing Member 79 Tapered Column 79a Tip 89 Light Exit Window 95 White LED (auxiliary light emitter)
101 phosphor layer 111 inner peripheral side driver 113 outer peripheral side driver LG light guide

Claims (10)

支持体に複数の発光体を配置した発光部と、該発光部からの光を一端側の入射面に導入して他端側の出射面から照明光を出射する導光部材と、前記発光部と前記導光部材との間に配置され、前記導光部材の入射面に前記発光部からの光を集光させる集光部材と、を有する光源装置であって、
前記集光部材が、前記導光部材の入射面に向けて先細りとなる複数のテーパ状柱体からなり、
前記複数のテーパ状柱体の基端部が、それぞれ前記発光体の発光面に対面して配置され、
前記複数のテーパ状柱体の先端部を結束した光出射窓が、前記導光部材の入射面に対面する側に形成されており、
前記複数の発光体の出射光量を制御する光量制御手段を更に備えた光源装置。
A light-emitting unit in which a plurality of light-emitting bodies are arranged on a support, a light guide member that introduces light from the light-emitting unit into an incident surface on one end side and emits illumination light from an output surface on the other end side, and the light-emitting unit A light condensing member that is disposed between the light guide member and condenses light from the light emitting unit on an incident surface of the light guide member,
The light condensing member is composed of a plurality of tapered columns that taper toward the incident surface of the light guide member,
Proximal end portions of the plurality of tapered columnar bodies are respectively arranged facing the light emitting surface of the light emitter,
A light exit window that binds the tip ends of the plurality of tapered columnar bodies is formed on a side facing the incident surface of the light guide member;
A light source device further comprising light amount control means for controlling the amount of light emitted from the plurality of light emitters.
請求項1記載の光源装置であって、
前記複数のテーパ状柱体の各基端部に、前記発光部の発光体がそれぞれ1つずつ対面して配置された光源装置。
The light source device according to claim 1,
A light source device in which one of the light emitters of the light emitting unit is disposed facing each base end of each of the plurality of tapered columns.
請求項1又は請求項2記載の光源装置であって、
前記光量制御手段が、前記複数の発光体それぞれの出射光量を個別に制御する光源装置。
The light source device according to claim 1 or 2,
A light source device in which the light quantity control means individually controls the emitted light quantity of each of the plurality of light emitters.
請求項1又は請求項2記載の光源装置であって、
前記複数のテーパ状柱体を前記光出射窓の中心から同心円状に区分した複数のグループに対し、
前記光量制御手段が、前記各テーパ状柱体に対応する前記発光体の出射光量を前記グループ毎にそれぞれ個別に制御する光源装置。
The light source device according to claim 1 or 2,
For a plurality of groups in which the plurality of tapered columns are concentrically divided from the center of the light exit window,
The light source device in which the light amount control unit individually controls the emitted light amount of the light emitter corresponding to each tapered column body for each group.
請求項4記載の光源装置であって、
前記光量制御手段が、前記光出射窓の導光部材の入射面の円周方向に区分した複数のグループ毎に、前記発光体の出射光量を制御する光源装置。
The light source device according to claim 4,
The light source device in which the light quantity control unit controls the emitted light quantity of the light emitter for each of a plurality of groups divided in a circumferential direction of an incident surface of a light guide member of the light exit window.
請求項1〜請求項5のいずれか1項記載の光源装置であって、
前記発光体が発光ダイオードである光源装置。
The light source device according to any one of claims 1 to 5,
A light source device in which the light emitter is a light emitting diode.
請求項1〜請求項6のいずれか1項記載の光源装置であって、
前記複数の発光体が配置された前記支持体の表面に、前記発光体からの光で励起発光する蛍光体層が形成された光源装置。
The light source device according to any one of claims 1 to 6,
A light source device in which a phosphor layer that emits light by excitation from light from the light emitter is formed on a surface of the support on which the plurality of light emitters are arranged.
請求項1〜請求項7のいずれか1項記載の光源装置と、
前記光源装置から出射される光を前記導光部材を介して被観察領域に照射する内視鏡と、を備えた内視鏡装置。
The light source device according to any one of claims 1 to 7,
An endoscope that includes: an endoscope that irradiates an observation region with light emitted from the light source device via the light guide member.
請求項8記載の内視鏡装置であって、
前記内視鏡が、該内視鏡の個体情報を有する個体情報保持手段を備え、
前記光源装置が、前記個体情報保持手段から読み取った前記個体情報に基づいて、前記発光体の出射光量を制御する内視鏡装置。
The endoscope apparatus according to claim 8, wherein
The endoscope includes individual information holding means having individual information of the endoscope,
An endoscope apparatus in which the light source device controls an emitted light amount of the light emitter based on the individual information read from the individual information holding unit.
請求項9記載の内視鏡装置であって、
前記個体情報が、前記内視鏡の導光部材の直径に関する情報を含む内視鏡装置。
The endoscope apparatus according to claim 9, wherein
An endoscope apparatus in which the individual information includes information related to a diameter of a light guide member of the endoscope.
JP2010094348A 2010-04-15 2010-04-15 Light source device and endoscope apparatus using the same Abandoned JP2011224044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094348A JP2011224044A (en) 2010-04-15 2010-04-15 Light source device and endoscope apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094348A JP2011224044A (en) 2010-04-15 2010-04-15 Light source device and endoscope apparatus using the same

Publications (1)

Publication Number Publication Date
JP2011224044A true JP2011224044A (en) 2011-11-10

Family

ID=45040193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094348A Abandoned JP2011224044A (en) 2010-04-15 2010-04-15 Light source device and endoscope apparatus using the same

Country Status (1)

Country Link
JP (1) JP2011224044A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105446A1 (en) * 2011-01-31 2012-08-09 オリンパスメディカルシステムズ株式会社 Light source device
JP2018056160A (en) * 2016-09-26 2018-04-05 日亜化学工業株式会社 Light emitting device
WO2018235166A1 (en) * 2017-06-20 2018-12-27 オリンパス株式会社 Endoscope system
US10212780B2 (en) 2015-12-14 2019-02-19 Olympus Corporation Light source device
WO2020255398A1 (en) * 2019-06-21 2020-12-24 オリンパス株式会社 Illumination optical system and illumination device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216114A (en) * 1998-02-05 1999-08-10 Olympus Optical Co Ltd Illuminator for endoscope
JP2002102142A (en) * 2000-09-27 2002-04-09 Asahi Optical Co Ltd Fluorescent endoscope apparatus and fluorescent endoscope system
JP2005347223A (en) * 2004-06-07 2005-12-15 Olympus Corp Light source device
JP2007041378A (en) * 2005-08-04 2007-02-15 Fujifilm Corp Combined light source
JP2007111338A (en) * 2005-10-21 2007-05-10 Pentax Corp Endoscope device that can control the amount of light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216114A (en) * 1998-02-05 1999-08-10 Olympus Optical Co Ltd Illuminator for endoscope
JP2002102142A (en) * 2000-09-27 2002-04-09 Asahi Optical Co Ltd Fluorescent endoscope apparatus and fluorescent endoscope system
JP2005347223A (en) * 2004-06-07 2005-12-15 Olympus Corp Light source device
JP2007041378A (en) * 2005-08-04 2007-02-15 Fujifilm Corp Combined light source
JP2007111338A (en) * 2005-10-21 2007-05-10 Pentax Corp Endoscope device that can control the amount of light

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105446A1 (en) * 2011-01-31 2012-08-09 オリンパスメディカルシステムズ株式会社 Light source device
JP5245016B2 (en) * 2011-01-31 2013-07-24 オリンパスメディカルシステムズ株式会社 Light source device
US8698884B2 (en) 2011-01-31 2014-04-15 Olympus Medical Systems Corp. Light source apparatus
US10212780B2 (en) 2015-12-14 2019-02-19 Olympus Corporation Light source device
JP2018056160A (en) * 2016-09-26 2018-04-05 日亜化学工業株式会社 Light emitting device
WO2018235166A1 (en) * 2017-06-20 2018-12-27 オリンパス株式会社 Endoscope system
CN110753510A (en) * 2017-06-20 2020-02-04 奥林巴斯株式会社 Endoscope system
US11583173B2 (en) 2017-06-20 2023-02-21 Olympus Corporation Light source apparatus, endoscope system, and illumination control method for adjusting first and second illumination light emitted from first and second illumination light emission ends of a light guide
WO2020255398A1 (en) * 2019-06-21 2020-12-24 オリンパス株式会社 Illumination optical system and illumination device
US12171400B2 (en) 2019-06-21 2024-12-24 Olympus Corporation Illumination optical system and illumination device

Similar Documents

Publication Publication Date Title
JP2011224042A (en) Light source device and endoscope apparatus using the same
JP2011224043A (en) Light source device and endoscope apparatus using the same
JP5470416B2 (en) Light source device for medical equipment and endoscope device
JP5587120B2 (en) Endoscope light source device
JP5401205B2 (en) Endoscope device
JP5508959B2 (en) Endoscope device
US20110172492A1 (en) Medical apparatus and endoscope apparatus
JP2009297290A (en) Endoscope apparatus and image processing method thereof
JP2013198547A (en) Light source device and endoscopic system
JP2011224044A (en) Light source device and endoscope apparatus using the same
JP2017136396A (en) Endoscope system
JP4837321B2 (en) Endoscope device
JP5450339B2 (en) Endoscope light source device
JP2012070839A (en) Light source device and endoscopic diagnostic system
JP2012081048A (en) Electronic endoscope system, electronic endoscope, and excitation light irradiation method
JP5145119B2 (en) Endoscope light source device
JP2014121363A (en) Light source device and endoscope system using the same
JP2017225736A (en) Endoscope apparatus
JP2012115372A (en) Endoscope apparatus
JP6389912B2 (en) Endoscope device
JP6209642B2 (en) Endoscope device
JP5922209B2 (en) Endoscope device
JP2014014716A (en) Endoscopic apparatus
JP2006122251A (en) LED fiber light source device and endoscope device using the same
JP2016202582A (en) Endoscope

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20131218