[go: up one dir, main page]

JP2012078678A - Image heating device - Google Patents

Image heating device Download PDF

Info

Publication number
JP2012078678A
JP2012078678A JP2010225386A JP2010225386A JP2012078678A JP 2012078678 A JP2012078678 A JP 2012078678A JP 2010225386 A JP2010225386 A JP 2010225386A JP 2010225386 A JP2010225386 A JP 2010225386A JP 2012078678 A JP2012078678 A JP 2012078678A
Authority
JP
Japan
Prior art keywords
heating element
resistance heating
nip portion
resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010225386A
Other languages
Japanese (ja)
Inventor
Atsutoshi Ando
温敏 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010225386A priority Critical patent/JP2012078678A/en
Publication of JP2012078678A publication Critical patent/JP2012078678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)

Abstract

【課題】抵抗発熱体がニップ部の外側にはみ出している像加熱装置において、通常使用時にニップ部の外側の過剰な発熱を簡便に抑え、更に異常昇温時に相対的に高温となるニップ部の内側の過剰な発熱を感熱素子により確実に抑えることで、加熱体の基板割れを抑制する
【解決手段】抵抗発熱体がニップ部の外側にはみ出している像加熱装置において、はみ出し部が温度上昇に伴って発熱量が抑制される構成とし、異常昇温時に通電を遮断する感熱素子をニップ部の内側に位置する抵抗発熱体の上方に配置する。
【選択図】図1
In an image heating apparatus in which a resistance heating element protrudes outside a nip portion, excessive heat generation outside the nip portion can be easily suppressed during normal use, and further, a nip portion that becomes relatively high when an abnormal temperature rise occurs. Suppressing excessive heat generation on the inner side with a thermal element to suppress cracking of the substrate of the heating element. [Solution] In an image heating apparatus in which a resistance heating element protrudes outside the nip, the temperature of the protrusion increases. Accordingly, the heat generation amount is suppressed, and a heat-sensitive element that interrupts energization when the temperature rises abnormally is disposed above the resistance heating element located inside the nip portion.
[Selection] Figure 1

Description

本発明は、複写機やLBP等、電子写真方式・静電記録方式等の作像プロセスを採用した画像形成装置に使用される像加熱装置に関する。   The present invention relates to an image heating apparatus used in an image forming apparatus employing an image forming process such as an electrophotographic system or an electrostatic recording system, such as a copying machine or an LBP.

像加熱装置としては、記録材上に形成した未定着トナー画像を固着画像として加熱定着する定着装置や、記録材に定着された画像を加熱することにより画像の光沢度を増大させる光沢度増大装置等を挙げることができる。   As an image heating device, a fixing device that heats and fixes an unfixed toner image formed on a recording material as a fixed image, or a glossiness increasing device that increases the glossiness of an image by heating the image fixed on the recording material Etc.

従来、例えば画像の加熱定着等のための記録材の像加熱装置には、所定の温度に維持された加熱ローラと、前記加熱ローラに圧接する加圧ローラとによって被加熱材としての記録材を挟持搬送しつつ加熱する熱ローラ方式が多用されている。   2. Description of the Related Art Conventionally, for example, in an image heating apparatus for a recording material for heat fixing of an image, a recording material as a material to be heated is provided by a heating roller maintained at a predetermined temperature and a pressure roller pressed against the heating roller. A heat roller system that heats while nipping and conveying is frequently used.

最近では、熱ローラ方式に代わって、加熱体と、加熱体の支持体(以下ではステーと記す)と、加熱体に対向圧接しつつ搬送される可撓性部材を備える方式がある。即ち、可撓性部材を介して被加熱材としての記録材を加熱体に密着させる加圧ローラを有し、加熱体の熱を可撓性部材を介して記録材へ付与することで記録材面に形成担持されている未定着画像を記録材面に加熱定着させる可撓性部材加熱方式である。   Recently, instead of the heat roller method, there is a method including a heating body, a support body of the heating body (hereinafter referred to as a stay), and a flexible member that is conveyed while being pressed against the heating body. That is, a recording material is provided by having a pressure roller for closely attaching a recording material as a material to be heated to a heating body via a flexible member, and applying heat of the heating body to the recording material via a flexible member. This is a flexible member heating method in which an unfixed image formed and supported on a surface is heated and fixed on a recording material surface.

この像加熱装置の加熱体としては、セラミックス基板上に抵抗発熱体を形成し、給電により抵抗発熱体を発熱させ、記録材を加熱する構成が一般的である。加熱体の温度は温度制御系により制御される。即ち、加熱体の温度は加熱体に当接あるいは接着されたサーミスタ等の検温素子で検知され、その検知温度を基に所定の温度になるようにCPUで温度制御されている。このような可撓性部材加熱方式の像加熱加熱装置においては、加熱体として低熱容量の加熱体を用いることができる。このため、従来の接触加熱方式である熱ローラ方式の装置に比べ、省電力及びウェイトタイムの短縮化(クイックスタート)が可能になる。   As a heating body of this image heating apparatus, a structure in which a resistance heating element is formed on a ceramic substrate, the resistance heating element is heated by power feeding, and the recording material is heated is general. The temperature of the heating body is controlled by a temperature control system. That is, the temperature of the heating body is detected by a temperature measuring element such as a thermistor that is in contact with or bonded to the heating body, and the temperature of the heating body is controlled by the CPU based on the detected temperature. In such a flexible member heating type image heating and heating apparatus, a heating body having a low heat capacity can be used as the heating body. For this reason, it is possible to save power and shorten the wait time (quick start) as compared with a conventional heat roller type apparatus which is a contact heating type.

ここで、可撓性部材加熱方式の像加熱装置においては、記録材の加熱時に、記録材中の水分が水蒸気となり、記録材の印字面から噴き出すときに記録材上の未定着トナーを飛ばしてしまい、画像が乱れることがある。即ち、「尾引き」という可撓性部材加熱方式特有の現象が発生することがある。尾引きは、記録材の水分量が多い場合や像加熱装置のニップ部の内側でトナーを加圧ローラ側へ電気的に引き付ける力が弱い場合等に発生し易い。   Here, in the image heating apparatus of the flexible member heating system, when the recording material is heated, moisture in the recording material becomes water vapor, and unfixed toner on the recording material is blown off when ejected from the printing surface of the recording material. The image may be disturbed. That is, a phenomenon unique to the flexible member heating method, such as “tailing”, may occur. Trailing is likely to occur when the amount of moisture in the recording material is large or when the force for electrically attracting toner to the pressure roller inside the nip portion of the image heating apparatus is weak.

このような尾引きを防止するため、抵抗発熱体の一部を像加熱装置のニップ上流側にはみ出させ、はみ出させた抵抗発熱体の熱によってニップ進入前の記録材上の未定着画像を事前に加熱し、仮定着させるという構成が知られている(特許文献1、特許文献2)。   In order to prevent such tailing, a part of the resistance heating element protrudes to the upstream side of the nip of the image heating apparatus, and the unfixed image on the recording material before entering the nip is preliminarily formed by the heat of the protruding resistance heating element. The structure which heats and heat-supposes is assumed (patent document 1, patent document 2).

このとき、抵抗発熱体が像加熱装置のニップ部の外側にはみ出していると、はみ出した部分は記録材や加圧ローラに熱を奪われることがないため急激に高温になる。そうすると、セラミックス基板の一部分(上流側)だけが膨張して、上流側の抵抗発熱体近傍と、下流側発熱体近傍でセラミックス基板が異なる熱応力を受け、通常使用時にセラミックス基板が割れるという可能性がある。   At this time, if the resistance heating element protrudes to the outside of the nip portion of the image heating apparatus, the protruding portion does not lose heat to the recording material or the pressure roller, so that the temperature rapidly increases. Then, only a part (upstream side) of the ceramic substrate expands, and the ceramic substrate is subjected to different thermal stresses in the vicinity of the upstream resistance heating element and in the vicinity of the downstream heating element, and the ceramic substrate may break during normal use. There is.

これを未然に抑制するために、ニップ部の外側にはみ出している部分で温度上昇と共に発熱量を抑えることでセラミック基板の割れを考慮する必要がある。   In order to suppress this in advance, it is necessary to consider cracks in the ceramic substrate by suppressing the amount of heat generated as the temperature rises at the portion protruding outside the nip portion.

ここで、一般に異常昇温があった場合に抵抗発熱体への通電を遮断する感熱素子(サーモスイッチ、温度ヒューズ等)を設けることが知られる。感熱素子が動作した場合、像加熱装置自体がなんらダメージを受けていない場合には、感熱素子を冷却して再度導通状態に戻すか、感熱素子の交換のみで、像加熱装置は再び利用可能になる。   Here, it is generally known to provide a thermal element (thermo switch, thermal fuse, etc.) that cuts off the power supply to the resistance heating element when an abnormal temperature rise occurs. When the thermal element is activated, if the image heating device itself has not been damaged, the image heating apparatus can be used again by simply cooling the thermal element and returning it to the conductive state or simply replacing the thermal element. Become.

特開平10−186911号公報Japanese Patent Laid-Open No. 10-186911 特開平6−314041号公報Japanese Patent Laid-Open No. 6-314041

異常昇温があった場合に抵抗発熱体への通電を遮断する感熱素子は、上述した像加熱装置においてニップ部の外側にはみだした位置(加熱体の中央または上流側の抵抗発熱体側)に設置されることが考えられる。   The thermal element that cuts off the power supply to the resistance heating element when there is an abnormal temperature rise is located at the position outside the nip (in the center of the heating element or on the resistance heating element side upstream) in the image heating device described above. It is thought that it is done.

しかしながら、加熱体の中央または上流側の抵抗発熱体側に感熱素子が設けられる場合は、通常使用時にニップ部の外側にはみ出している部分で温度上昇と共に発熱量を抑える構成を採る必要がある関係上、加熱体の当該部分の温度上昇速度が遅い。そのために、異常昇温時に、十分なマージンを持って抵抗発熱体に対する通電遮断を行うことが困難であることが判明した。   However, when a thermal element is provided in the center of the heating element or on the upstream side of the resistance heating element, it is necessary to adopt a configuration in which the amount of heat generation is suppressed as the temperature rises at the portion that protrudes outside the nip during normal use. The temperature increase rate of the part of the heating body is slow. For this reason, it has been found that it is difficult to cut off the energization of the resistance heating element with a sufficient margin when the temperature rises abnormally.

すなわち、異常昇温時は、抵抗発熱体に大電流が流れることにより、抵抗発熱体の熱が、セラミックス基板や周囲の部品に伝わる以前に温度が急速に上昇する。そのような状況においては、抵抗発熱体がニップ部の外側にはみ出しているか否かは、抵抗発熱体の温度上昇速度に大きな影響を与えず、抵抗発熱体の温度特性により、下流側の抵抗発熱体温度が、上流側に比して急速に上昇することになる。   That is, when the temperature rises abnormally, a large current flows through the resistance heating element, so that the temperature rapidly rises before the heat of the resistance heating element is transmitted to the ceramic substrate and surrounding components. In such a situation, whether or not the resistance heating element protrudes outside the nip does not significantly affect the temperature rise rate of the resistance heating element, and the resistance heating element on the downstream side depends on the temperature characteristics of the resistance heating element. The body temperature will rise rapidly compared to the upstream side.

その場合、通常使用時とは逆に、下流側抵抗発熱体の温度上昇による熱応力によって、セラミックス基板割れに至る可能性がある。   In this case, contrary to normal use, there is a possibility that the ceramic substrate cracks due to the thermal stress due to the temperature rise of the downstream resistance heating element.

セラミックス基板の割れが生じると、像加熱装置修理の際、高価なヒーターを交換する必要があり、修理コストがかさむ。更にはセラミックス基板割れが発生する際に、ヒーター保持部材等、他の部品も損傷し、像加熱装置そのものを交換しなければならなくなる場合もある。   If the ceramic substrate is cracked, it is necessary to replace an expensive heater when repairing the image heating apparatus, which increases repair costs. Furthermore, when the ceramic substrate cracks, other parts such as a heater holding member may be damaged, and the image heating apparatus itself may need to be replaced.

本発明の目的は、抵抗発熱体がニップ部の外側にはみ出している像加熱装置において、通常使用時にニップ部の外側の過剰な発熱を簡便に抑えることにある。更に、異常昇温時に相対的に高温となるニップ部の内側の過剰な発熱を感熱素子により確実に抑えることで、加熱体の基板割れを抑制することにある。   An object of the present invention is to easily suppress excessive heat generation outside the nip portion during normal use in an image heating apparatus in which the resistance heating element protrudes outside the nip portion. Furthermore, it is in suppressing the board | substrate crack of a heating body by restraining excessive heat_generation | fever inside the nip part which becomes comparatively high at the time of abnormal temperature rise with a thermal element.

上記目的を達成するために、本発明に係わる像加熱装置の代表的な構成は、加熱体と、一面を加熱体と接触摺動し他面を画像を担持した記録材と接触する可撓性部材を有し、前記可撓性部材と圧接する加圧体との間にニップ部を形成し、前記加熱体に対し前記可撓性部材と前記記録材が移動することで前記加熱体の熱を前記可撓性部材を介して前記記録材へ伝達する像加熱装置において、前記加熱体は、基板に2本以上の抵抗発熱体を備え、前記抵抗発熱体のうち少なくとも1本が前記ニップ部の内側に位置し、前記抵抗発熱体のうち少なくとも1本の全体またはその一部が前記ニップ部の上流側で前記記録材を前加熱するために前記ニップ部の外側に位置し、前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体とが電気的に直列もしくは並列に接続され、且つ、前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体とが前記直列に接続される場合は前記ニップ部の外側に位置する前記抵抗発熱体が負の抵抗温度特性を備え、前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体とが前記並列に接続される場合は前記ニップ部の外側に位置する前記抵抗発熱体が正の抵抗温度特性を備え、前記ニップ部の内側に位置する前記抵抗発熱体の温度を制御する温度制御系と、前記ニップの内側に対応する位置の前記加熱体に近接または接触して配置され、前記加熱体の異常昇温時に前記加熱体への電力供給を遮断する感熱素子と、を有することを特徴とする。   In order to achieve the above object, a typical structure of an image heating apparatus according to the present invention is a flexible structure in which a heating body and a recording material carrying one surface in contact with the heating body and the other surface in contact with an image are supported. A nip portion is formed between the pressure member that has a member and is pressed against the flexible member, and the flexible member and the recording material move with respect to the heating member, whereby the heating member heats. In the image heating apparatus, the heating element includes two or more resistance heating elements on a substrate, and at least one of the resistance heating elements is the nip portion. At least one of the resistance heating elements or a part thereof is positioned outside the nip portion to preheat the recording material upstream of the nip portion, and the nip portion The resistance heating element located inside and the outside of the nip portion The resistance heating element is electrically connected in series or in parallel, and the resistance heating element located inside the nip portion and the resistance heating element located outside the nip portion are connected in series. The resistance heating element positioned outside the nip portion has a negative resistance temperature characteristic, the resistance heating element positioned inside the nip portion, and the resistance heating element positioned outside the nip portion; Are connected in parallel, the resistance heating element located outside the nip portion has a positive resistance temperature characteristic, and the temperature control system controls the temperature of the resistance heating element located inside the nip portion. And a thermal element arranged close to or in contact with the heating body at a position corresponding to the inside of the nip, and shuts off power supply to the heating body when the heating body is abnormally heated. And

本発明によれば、通常使用時に尾引き現象を低減させるために記録材に前加熱(プレヒート)を与えることが可能であり、かつ基板割れの可能性のあるニップ部の外側の過剰な発熱を簡便に抑えることが可能である。更に、異常昇温時にニップ部の外側に対し相対的に高温となるニップ部の内側の過剰な発熱を所定位置の感熱素子により確実に抑えて、加熱体の基板割れを抑制することが可能になる。   According to the present invention, it is possible to apply preheating (preheating) to the recording material in order to reduce the tailing phenomenon during normal use, and excessive heat generation outside the nip portion where there is a possibility of substrate cracking. It can be easily suppressed. Furthermore, it is possible to reliably suppress excessive heat generation inside the nip portion, which becomes relatively high with respect to the outside of the nip portion when the temperature rises abnormally, by a heat sensitive element at a predetermined position, thereby suppressing the substrate cracking of the heating body. Become.

本発明の第1の実施形態に係る像加熱装置の概略構成図である。1 is a schematic configuration diagram of an image heating apparatus according to a first embodiment of the present invention. 第1の実施形態に係る像加熱装置を搭載したレーザービームプリンタの要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the laser beam printer which mounts the image heating apparatus which concerns on 1st Embodiment. 第1の実施形態に係る加熱体の平面模型図である。It is a plane model figure of the heating body concerning a 1st embodiment. 第1の実施形態に係る抵抗発熱体の抵抗温度特性の概略図である。It is the schematic of the resistance temperature characteristic of the resistance heating element which concerns on 1st Embodiment. 第1の実施形態に係る通常使用時の加熱体幅方向の温度分布の概念図である。It is a conceptual diagram of the temperature distribution of the heating body width direction at the time of normal use which concerns on 1st Embodiment. 第1の実施形態に係る通常使用時と異常昇温時の加熱体幅方向の温度分布の概念図である。It is a conceptual diagram of the temperature distribution of the heating body width direction at the time of normal use and abnormal temperature rise according to the first embodiment. (A)は感熱素子位置が加熱体の上流側発熱体上に配置された第1の比較例の概略構成図、(B)は本感熱素子位置が加熱体の中央部に配置された第2の比較例の概略構成図である。(A) is a schematic block diagram of the 1st comparative example by which the thermal element position was arrange | positioned on the upstream heat generating body of a heating body, (B) is the 2nd by which this thermal element position was arrange | positioned in the center part of a heating body. It is a schematic block diagram of a comparative example. 感熱素子の位置による、異常昇温時の温度上昇カーブの違いおよび、熱応力の上昇カーブを示す概念図である。It is a conceptual diagram which shows the difference of the temperature rise curve at the time of abnormal temperature rise by the position of a thermal element, and the rise curve of a thermal stress. 第2の実施形態に係る加熱体の平面模型図である。It is a plane model figure of the heating body which concerns on 2nd Embodiment. 第2の実施形態に基づく抵抗発熱体の抵抗温度特性の概略図である。It is the schematic of the resistance temperature characteristic of the resistance heating element based on 2nd Embodiment. 第3の実施形態に係る加熱体の平面模型図である。It is a plane model figure of the heating body which concerns on 3rd Embodiment. 第3の実施形態に係る抵抗発熱体の抵抗温度特性の概略図である。It is the schematic of the resistance temperature characteristic of the resistance heating element which concerns on 3rd Embodiment. 第3の実施形態に係る通常使用時と異常昇温時の加熱体幅方向の温度分布の概念図である。It is a conceptual diagram of the temperature distribution of the heating body width direction at the time of normal use and an abnormal temperature increase according to the third embodiment. 第4の実施形態に係る加熱体の平面模型図である。It is a plane model figure of the heating body which concerns on 4th Embodiment. 第4の実施形態に係る抵抗発熱体の抵抗温度特性の概略図である。It is the schematic of the resistance temperature characteristic of the resistance heating element which concerns on 4th Embodiment. 第4の実施形態に係る通常使用時と異常昇温時の加熱体幅方向の温度分布の概念図である。It is a conceptual diagram of the temperature distribution of the heating body width direction at the time of normal use and an abnormal temperature increase according to the fourth embodiment. (A)は感熱素子の通常使用時の説明図、(B)は感熱素子の異常昇温時の説明図である。(A) is explanatory drawing at the time of normal use of a thermal element, (B) is explanatory drawing at the time of abnormal temperature rise of a thermal element. 抵抗発熱体が3本で構成される場合の図である。It is a figure in case a resistance heating element is comprised by three. (A)はニップ部の外側の抵抗発熱体がニップ部下流側に設けられる場合の図、(B)はニップ部下流側に設けられる抵抗発熱体が一部ニップ部からはみ出ている場合の図である。(A) is a diagram when the resistance heating element outside the nip is provided on the downstream side of the nip, and (B) is a diagram when the resistance heating element provided on the downstream side of the nip is partially protruding from the nip. It is. 上流側、下流側の抵抗発熱体が基板の上方側に設けられる場合の図である。It is a figure in case the upstream and downstream resistance heating elements are provided above the substrate.

以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態の全図においては、同一又は対応する部分には同一の符号を付す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings of the following embodiments, the same or corresponding parts are denoted by the same reference numerals.

《第1の実施形態》
(画像形成装置)
本発明の実施形態に係る像加熱装置を搭載する画像形成装置の一例の概略構成図を図2に示す。この画像形成装置は電子写真方式を用いたレーザービームプリンタである。図2において、101は像担持体としての有機感光ドラム、102は帯電部材としての帯電ローラ、103はレーザー露光装置である。104は現像スリーブ及び現像ブレード並びに1成分磁性トナー等から成る現像装置、105はクリーニングブレード、106は転写ローラ、107は加熱定着を行う像加熱装置である。ドラム101は、帯電ローラ102によって一様に負の電荷に帯電され、露光装置103からのレーザービームによってドラム101に静電潜像が形成される。
<< First Embodiment >>
(Image forming device)
FIG. 2 shows a schematic configuration diagram of an example of an image forming apparatus equipped with the image heating apparatus according to the embodiment of the present invention. This image forming apparatus is a laser beam printer using an electrophotographic system. In FIG. 2, 101 is an organic photosensitive drum as an image carrier, 102 is a charging roller as a charging member, and 103 is a laser exposure apparatus. Reference numeral 104 denotes a developing device composed of a developing sleeve and a developing blade and one-component magnetic toner, 105 denotes a cleaning blade, 106 denotes a transfer roller, and 107 denotes an image heating device that performs heat fixing. The drum 101 is uniformly charged with negative charges by the charging roller 102, and an electrostatic latent image is formed on the drum 101 by the laser beam from the exposure device 103.

次に、現像装置104の中で帯電したトナーがドラム101上の静電潜像に付着して可視像となり、転写ローラ106上で記録材である紙に転写され、像加熱装置107で定着される。クリーニングブレード105は、ドラム101上に残ったトナーを除去する。以上の各ユニットの働きにより、画像が形成される。   Next, the toner charged in the developing device 104 adheres to the electrostatic latent image on the drum 101 to become a visible image, is transferred onto the recording material paper on the transfer roller 106, and is fixed by the image heating device 107. Is done. The cleaning blade 105 removes toner remaining on the drum 101. An image is formed by the function of each unit described above.

(像加熱装置)
図1は本実施形態における像加熱装置(可撓性部材加熱方式)の一例の概略構成図である。この像加熱装置は、可撓性部材2としてエンドレスベルト状若しくは円筒状のものを用い、可撓性部材2の周長の少なくとも一部は常にテンションフリー(テンションが加わらない状態)とする。この可撓性部材2は加圧体としての加圧ローラ4の回転駆動力で回転駆動されるよう、加熱体3を含むようにして可撓性部材のガイド部材であるステー1に外嵌させてある。
(Image heating device)
FIG. 1 is a schematic configuration diagram of an example of an image heating apparatus (flexible member heating method) in the present embodiment. In this image heating apparatus, an endless belt or cylindrical member is used as the flexible member 2, and at least a part of the circumference of the flexible member 2 is always tension-free (a state in which no tension is applied). The flexible member 2 is externally fitted to the stay 1 which is a guide member of the flexible member so as to include the heating body 3 so as to be rotationally driven by the rotational driving force of the pressure roller 4 as a pressure body. .

即ち、可撓性部材2は一面を加熱体3と接触摺動し、他面を画像を担持した記録材Pと接触し、加熱体3に対し可撓性部材2と記録材Pが移動することで、加熱体3の熱を可撓性部材2を介して記録材Pへ伝達する。   That is, the flexible member 2 slides in contact with the heating member 3 on one surface and contacts the recording material P carrying the image on the other surface, and the flexible member 2 and the recording material P move relative to the heating member 3. Thus, the heat of the heating body 3 is transmitted to the recording material P through the flexible member 2.

このエンドレスの可撓性部材2の内周長と加熱体3を含むステー1の外周長は、可撓性部材2の方を例えば3mm程度大きくしてあり、従って、可撓性部材2は周長に余裕を持って外嵌している。本実施の形態では、可撓性部材2の外周長は56.54mm(円筒状態で直径18mm(φ18))とした。   The inner peripheral length of the endless flexible member 2 and the outer peripheral length of the stay 1 including the heating body 3 are, for example, about 3 mm larger than that of the flexible member 2. It is fitted with a margin in length. In the present embodiment, the outer peripheral length of the flexible member 2 is 56.54 mm (in the cylindrical state, the diameter is 18 mm (φ18)).

加圧ローラ4は加熱体3との間に可撓性部材2を挟んでニップ部Nを形成し、且つ、可撓性部材2を回転駆動させる可撓性部材外面接触駆動手段としての加圧部材である。加圧ローラ4と可撓性部材2の外面との摩擦力と、加圧ローラ4の回転駆動により、可撓性部材2に回転力が作用する。可撓性部材2の駆動ローラを兼ねる加圧ローラ4は、芯金4aと弾性体層4bと最外層の離形層4cから成る。そして、不図示の軸受け手段、付勢手段により所定の押圧力をもって可撓性部材2を挟ませて加熱体3の表面に圧接するように配設してある。   The pressure roller 4 forms a nip portion N with the flexible member 2 sandwiched between the pressure roller 4 and the pressure roller 4 as a flexible member outer surface contact driving means for rotationally driving the flexible member 2. It is a member. A rotational force acts on the flexible member 2 by the frictional force between the pressure roller 4 and the outer surface of the flexible member 2 and the rotational driving of the pressure roller 4. The pressure roller 4 also serving as a driving roller for the flexible member 2 includes a cored bar 4a, an elastic body layer 4b, and an outermost release layer 4c. And it arrange | positions so that the flexible member 2 may be pinched | interposed with the predetermined pressing force by the bearing means and the urging | biasing means not shown, and the surface of the heating body 3 may be pressed.

本実施形態では、芯金4aは鉄芯金を、弾性体層4bはシリコーンゴムを、離形層4cはPFAをコーティングしたものを用いた。加圧ローラ4の外径は20mm、弾性体層4bの厚さは3mmとした。   In this embodiment, the cored bar 4a is an iron cored bar, the elastic body layer 4b is coated with silicone rubber, and the release layer 4c is coated with PFA. The outer diameter of the pressure roller 4 was 20 mm, and the thickness of the elastic layer 4b was 3 mm.

ステー1はポリイミド、ポリアミドイミド、PEEK、PPS、液晶ポリマー等の高耐熱性樹脂や、これらの樹脂とセラミックス、金属、ガラス等との複合材料等で構成している。本実施形態では液晶ポリマーを用いた。   The stay 1 is composed of a high heat resistant resin such as polyimide, polyamideimide, PEEK, PPS, or liquid crystal polymer, or a composite material of these resins with ceramics, metal, glass, or the like. In this embodiment, a liquid crystal polymer is used.

可撓性部材2は熱容量を小さくしてクイックスタート性を向上させるために、可撓性部材膜厚は100μm以下の耐熱性のあるPTFE、PFA、FEP等の単層可撓性部材が使用できる。或いはポリイミド、ポリアミドイミド、PEEK、PES、PPS等の可撓性部材の外周表面にPTFE、PFA、FEP等をコーティングした複合層可撓性部材を使用できる。この他に、膜厚40μm以下のステンレス製の可撓性部材の外周表面にPTFE、PFA、FEP等をコーティングした複合層可撓性部材も使用できる。   In order to reduce the heat capacity and improve the quick start property, the flexible member 2 can use a single layer flexible member such as PTFE, PFA, FEP having heat resistance of 100 μm or less. . Alternatively, a composite layer flexible member in which PTFE, PFA, FEP or the like is coated on the outer peripheral surface of a flexible member such as polyimide, polyamideimide, PEEK, PES, or PPS can be used. In addition, a composite layer flexible member in which PTFE, PFA, FEP or the like is coated on the outer peripheral surface of a stainless steel flexible member having a film thickness of 40 μm or less can also be used.

本実施形態では、膜厚約50μmのポリイミド可撓性部材の外周表面にPTFE・PFAをブレンドした離形層をコーティングしたものを用いた。   In this embodiment, a polyimide flexible member having a film thickness of about 50 μm coated with a release layer obtained by blending PTFE / PFA on the outer peripheral surface is used.

(通常使用時における加熱体の構成)
加熱体3は、可撓性部材2および記録材Pの搬送方向aに対して直角方向を長手方向とする細長い形状で耐熱性、絶縁性、良熱伝導性の加熱体基板31、および基板31の表面側の長手方向に沿って形成具備させた抵抗発熱体6、7を備える。そして、この2本の抵抗発熱体である、ニップ部の上流側に配置される上流側の抵抗発熱体6と、ニップ部の内側に位置される下流側の抵抗発熱体7は、2本折り返して電気的に直列に接続される。
(Configuration of heating element during normal use)
The heating body 3 is an elongated shape having a longitudinal direction perpendicular to the conveyance direction “a” of the flexible member 2 and the recording material P, and has a heat resistance, insulation, and good thermal conductivity, and a substrate 31. Resistance heating elements 6 and 7 formed along the longitudinal direction of the front surface side. The two resistance heating elements, that is, the upstream resistance heating element 6 disposed upstream of the nip portion and the downstream resistance heating element 7 positioned inside the nip portion are folded back into two. Are electrically connected in series.

加熱体3は、抵抗発熱体6、7を形成具備させた基板31の表面(可撓性部材摺動面であるニップ部に対面する面)側を下向きに露呈させてステー1の下面側に保持させて固定配設されている。更に、この抵抗発熱体を形成した加熱体表面を保護させた耐熱性オーバーコート層34(図3)、抵抗発熱体32の給電用電極21、22(図1)を備え、全体として低熱容量の加熱体とされている。   The heating element 3 is exposed on the lower surface side of the stay 1 by exposing the surface (surface facing the nip portion which is a sliding surface of the flexible member) of the substrate 31 provided with the resistance heating elements 6 and 7 downward. It is held and fixedly arranged. Furthermore, a heat-resistant overcoat layer 34 (FIG. 3) that protects the surface of the heating element on which the resistance heating element is formed, and power supply electrodes 21 and 22 (FIG. 1) of the resistance heating element 32 are provided. It is a heating element.

図1、図3で交流電源26に接続されるトライアック(双方向サイリスタ)25は、相補的な2個のサイリスタを逆並列に接続する構成をとることで、双方向に電流を流すことを可能とし、直流だけでなく交流でも使えるようにしたものである。なお、サイリスタとは、主にゲートからカソードへゲートを流すことにより、アノードとカソード間を導通させることが出来る3端子のである。   The triac (bidirectional thyristor) 25 connected to the AC power supply 26 in FIGS. 1 and 3 can flow current in both directions by connecting two complementary thyristors in antiparallel. It can be used not only for direct current but also for alternating current. The thyristor is a three-terminal device that can conduct between the anode and the cathode mainly by flowing the gate from the gate to the cathode.

図1で、加熱体3の裏面(非可撓性部材摺動面)には検温素子5がニップ部の内側に対応する位置に設けられ、CPU24と共に構成される温度制御系によって、ニップ部の内側に位置する下流側の抵抗発熱体7の温度が所定範囲内に制御される。   In FIG. 1, a temperature measuring element 5 is provided at a position corresponding to the inside of the nip portion on the back surface (non-flexible member sliding surface) of the heating body 3, and the temperature control system configured with the CPU 24 causes the nip portion. The temperature of the downstream resistance heating element 7 located inside is controlled within a predetermined range.

即ち、加熱体3は、抵抗発熱体の長手端部の給電用電極21,22に対する給電により抵抗発熱体が長手全長に亘って発熱することで昇温する。その昇温が検温素子5で検知され、検温素子5の出力をA/D変換してCPU24に取り込み、その情報に基づいてトライアック25により抵抗発熱体に通電する電力を位相、波数制御等により制御して、加熱体3の温度制御がなされる。即ち、検温素子5の検知温度が所定の設定温度より低いと加熱体3が昇温するように、設定温度より高いと降温するように通電を制御することで、加熱体3は定着時一定温度に保たれる。   That is, the temperature of the heating element 3 is increased when the resistance heating element generates heat over the entire length by feeding power to the feeding electrodes 21 and 22 at the longitudinal ends of the resistance heating element. The temperature rise is detected by the temperature sensing element 5, and the output of the temperature sensing element 5 is A / D converted and taken into the CPU 24. Based on the information, the electric power supplied to the resistance heating element by the triac 25 is controlled by phase, wave number control, etc. Thus, the temperature of the heating element 3 is controlled. In other words, the heating body 3 is fixed at a fixed temperature by controlling energization so that the heating body 3 is heated when the temperature detected by the temperature detecting element 5 is lower than a predetermined set temperature, and the temperature is lowered when the temperature is higher than the set temperature. To be kept.

加熱体3の基板31は、セラミックスとして例えば、アルミナや窒化アルミニウム等の材料が用いられる。本実施形態では、厚さ1mm、幅6.4mm、長さ270mmのアルミナ基板を使用している。給電用電極21、22は銀・パラジウム合金のスクリーン印刷パターンを用いて形成した。オーバーコート層34は約50μm厚の耐熱・摺動性ガラスを用い、給電用電極パターンと同様、スクリーン印刷によって形成し、焼成することにより、所望の特性の加熱体を得た。   The substrate 31 of the heating body 3 is made of a material such as alumina or aluminum nitride as ceramics. In this embodiment, an alumina substrate having a thickness of 1 mm, a width of 6.4 mm, and a length of 270 mm is used. The power feeding electrodes 21 and 22 were formed using a screen printing pattern of silver / palladium alloy. The overcoat layer 34 was made of heat-resistant and slidable glass having a thickness of about 50 μm, and was formed by screen printing and fired in the same manner as the electrode pattern for power supply, thereby obtaining a heating element having desired characteristics.

抵抗発熱体は、例えば、酸化ルテニウム、カーボン、シリコンカーバイト等の負の抵抗温度特性を有する電気抵抗材料をスクリーン印刷等により、線状若しくは帯状に塗工し、焼成することにより形成したものである。本実施形態では、酸化ルテニウムとガラスを混合したものに、MgO、NbO等の温度特性調整剤を分散したものをスクリーン印刷により、上下流別々に、それぞれ厚み約10μm、幅1.0mm、全長220mmに塗工して、焼成・形成した。   The resistance heating element is formed, for example, by applying an electric resistance material having negative resistance temperature characteristics such as ruthenium oxide, carbon, silicon carbide or the like in a linear or belt shape by screen printing or the like and baking it. is there. In this embodiment, a mixture of ruthenium oxide and glass and a dispersion of a temperature characteristic adjusting agent such as MgO or NbO are screen-printed separately, upstream and downstream, respectively, with a thickness of about 10 μm, a width of 1.0 mm, and a total length of 220 mm. Then, it was fired and formed.

抵抗発熱体の基板幅方向における位置に関し、上流側の抵抗発熱体6の中心から基板中心までの距離と、下流側の抵抗発熱体7の中心から基板中心までの距離とが等しくなるように配置した。具体的には、各抵抗発熱体中心から基板中心までの距離を1.9mmとした。基板幅方向の基板両端部から抵抗発熱体6、7までの距離はそれぞれ0.7mmとした。   Regarding the position of the resistance heating element in the substrate width direction, the distance from the center of the resistance heating element 6 on the upstream side to the center of the substrate and the distance from the center of the resistance heating element 7 on the downstream side to the center of the substrate are equal. did. Specifically, the distance from the center of each resistance heating element to the center of the substrate was 1.9 mm. The distance from the both ends of the substrate in the substrate width direction to the resistance heating elements 6 and 7 was 0.7 mm.

加熱体3の温度が所定温度に立ち上がり、且つ、加圧ローラ4の回転による可撓性部材2の回転周速度が定常化した状態において、可撓性部材2を挟んで加熱体3と加圧ローラ4とで形成されるニップ部Nに記録材Pが画像形成部(転写部)より導入される。そして、記録材Pが可撓性部材2と一緒にニップ部Nを挟持搬送されることにより、加熱体3の熱が可撓性部材2を介して記録材Pに付与され、記録材P上の未定着顕画像(トナー画像)Tが記録材P面に加熱定着される。圧接ニップ部Nを通った記録材Pは、可撓性部材2の面から分離されて搬送される。   In a state where the temperature of the heating body 3 rises to a predetermined temperature and the rotational peripheral speed of the flexible member 2 is stabilized by the rotation of the pressure roller 4, the heating body 3 is pressed with the flexible member 2 interposed therebetween. The recording material P is introduced from the image forming portion (transfer portion) into the nip portion N formed by the roller 4. Then, when the recording material P is nipped and conveyed together with the flexible member 2, the heat of the heating body 3 is applied to the recording material P via the flexible member 2, and the recording material P The unfixed visible image (toner image) T is heat-fixed on the recording material P surface. The recording material P that has passed through the pressure nip N is separated from the surface of the flexible member 2 and conveyed.

図1に示すように、本実施形態では加熱体がニップ部の上流側に2mmはみ出した構成をしており、加熱体の上流側の抵抗発熱体6の全体がニップ部の外側である上流側に位置している。   As shown in FIG. 1, in the present embodiment, the heating body has a structure protruding 2 mm upstream of the nip portion, and the upstream side of the resistance heating element 6 on the upstream side of the heating body is outside the nip portion. Is located.

本実施形態では上流側の抵抗発熱体6の全体がニップ部の上流側に位置しているが、その一部がニップ部の内側に入っていて、他の部分がニップ部の外側にはみ出ている配置でも、ニップ部の外側の部分にて同様の効果が期待出来る。図1において、下流側の抵抗発熱体7はニップ部の内側に位置している。   In the present embodiment, the entire resistance heating element 6 on the upstream side is located on the upstream side of the nip portion, but a part thereof is inside the nip portion, and the other portion protrudes outside the nip portion. Even in such an arrangement, the same effect can be expected at the outer portion of the nip portion. In FIG. 1, the resistance heating element 7 on the downstream side is located inside the nip portion.

本実施形態では、検温素子5はニップ部の内側に位置し、紙が通紙された際のニップ部の内側の温度変化を検知している。したがって、上下流の抵抗発熱体に流れる電流Iの電流値は、ニップ部の内側の温調温度に必要な発熱量W2を満たす量となり、その結果、良好な定着性を得ることができた。   In the present embodiment, the temperature detecting element 5 is positioned inside the nip portion, and detects a temperature change inside the nip portion when the paper is passed. Therefore, the current value of the current I flowing through the upstream and downstream resistance heating elements is an amount that satisfies the heat generation amount W2 necessary for the temperature adjustment inside the nip portion, and as a result, good fixability can be obtained.

(感熱素子の構成)
図17(A)(B)に感熱素子11の具体例として断面概略図を示す。サーモスイッチ・ケース50(下部が感熱面になっている)は、バイメタル51とバイメタル上に配置されたピン52を内包し、ピン52は通電プレート53を支持している。通電プレート53は、接点55において通電プレート54と接しており、ヒータ16が異常昇温を起こしていない通常時には図17(A)のようにこの接点55を介してヒータへの通電が可能な状態になっている。一方、ヒータ16の異常昇温時には図17(B)のように、バイメタル51が正常時とは逆側に反り、ピン52を押し上げる。これによって通電プレート53も押し上げられ、接点55が開放され、ヒータへの通電が不可能な状態になる。
(Configuration of thermal element)
17A and 17B are schematic cross-sectional views as specific examples of the thermal element 11. The thermoswitch case 50 (the lower part is a heat-sensitive surface) includes a bimetal 51 and a pin 52 disposed on the bimetal, and the pin 52 supports a current-carrying plate 53. The energizing plate 53 is in contact with the energizing plate 54 at the contact point 55, and the heater 16 can be energized through the contact point 55 as shown in FIG. It has become. On the other hand, as shown in FIG. 17B, when the heater 16 is abnormally heated, the bimetal 51 warps in the opposite direction to the normal state and pushes up the pin 52. As a result, the energization plate 53 is also pushed up, the contact 55 is opened, and the heater cannot be energized.

(上流側の抵抗発熱体の温度上昇に伴う発熱量抑制)
本実施形態では、上記温度特性調整剤の量を変化させることにより、上流側抵抗発熱体6の抵抗変化率を−5000ppm/℃、ニップ部の内側(下流側)の抵抗発熱体の抵抗変化率を−300ppm/℃とした。
(Suppression of heat generation due to temperature rise of upstream resistance heating element)
In this embodiment, by changing the amount of the temperature characteristic adjusting agent, the resistance change rate of the upstream resistance heating element 6 is −5000 ppm / ° C., and the resistance change rate of the resistance heating element inside (downstream) the nip portion. Was -300 ppm / ° C.

基板幅方向における位置については、上流側抵抗発熱体6の中心から基板中心までの距離と下流側抵抗発熱体7の中心から基板中心までの距離とが等しくなるように配置した(各抵抗発熱体中心から基板中心までの距離は1.9mmとした)。   The positions in the substrate width direction are arranged so that the distance from the center of the upstream resistance heating element 6 to the center of the substrate is equal to the distance from the center of the downstream resistance heating element 7 to the center of the substrate (each resistance heating element). The distance from the center to the substrate center was 1.9 mm).

図4に本実施形態における上流側抵抗発熱体6と下流側抵抗発熱体7の抵抗温度特性の概略図を示す。図4において実線が上流側抵抗発熱体6の抵抗温度特性を、破線が下流側抵抗発熱体7の抵抗温度特性をそれぞれ示す。   FIG. 4 shows a schematic diagram of resistance temperature characteristics of the upstream resistance heating element 6 and the downstream resistance heating element 7 in the present embodiment. In FIG. 4, the solid line indicates the resistance temperature characteristic of the upstream resistance heating element 6, and the broken line indicates the resistance temperature characteristic of the downstream resistance heating element 7.

以下の表1に抵抗値の温度変化及び上下流の発熱比率を示す。上流側抵抗発熱体の抵抗値をR1、下流側抵抗発熱体の抵抗値をR2とすると、両者の抵抗発熱体に流れる電流Iは共通であるから、上流側抵抗発熱体の発熱量W1、下流側抵抗発熱体の発熱量W2はそれぞれ、W1=I×R1、W2=I×R2となる。したがって上下流の抵抗発熱体の発熱比率は、上下流の抵抗発熱体の抵抗値比率と同じである。 Table 1 below shows the temperature change of the resistance value and the heat generation ratio of the upstream and downstream. Assuming that the resistance value of the upstream resistance heating element is R1 and the resistance value of the downstream resistance heating element is R2, the current I flowing through both resistance heating elements is common. The calorific values W2 of the side resistance heating elements are W1 = I 2 × R1 and W2 = I 2 × R2, respectively. Therefore, the heat generation ratio of the upstream and downstream resistance heating elements is the same as the resistance value ratio of the upstream and downstream resistance heating elements.

本実施形態のように、上流側抵抗発熱体R1がニップ部の外側に位置しているとき、通常使用時においては、R1が負の抵抗温度係数をもつため、温度の上昇とともにR1が減少し、それにつれてW1も減少する。そのため、上流側発熱体の温度上昇が抑えられ、セラミックス基板内の温度差は小さくなる。 As in this embodiment, when the upstream resistance heating element R1 is located outside the nip portion, during normal use, R1 has a negative resistance temperature coefficient, so that R1 decreases as the temperature rises. As a result, W1 also decreases. Therefore, the temperature rise of the upstream heating element is suppressed, and the temperature difference in the ceramic substrate is reduced.

すなわち、複数の抵抗発熱体を直列に接続し、ニップ部の外側に位置する抵抗発熱体(上流側の抵抗発熱体)が、負の温度特性を有する構成をとることにより、上流側の抵抗発熱体の温度が上昇した際に、上流側の抵抗発熱体の抵抗値が減少する。このことにより、ニップ部の内側に位置する抵抗発熱体(下流側の発熱体)との分担電圧が変化することによって、下流側の抵抗発熱体で消費される電力が上昇する。よって、上流側の抵抗発熱体の発熱が抑制されることで、セラミックス基板上流側が急激に高温になる問題と、通常使用時のセラミックス基板が割れる問題を抑制することが可能になる。   That is, by connecting a plurality of resistance heating elements in series and the resistance heating element (upstream resistance heating element) located outside the nip portion has a negative temperature characteristic, upstream resistance heating is performed. When the body temperature rises, the resistance value of the upstream resistance heating element decreases. As a result, the voltage shared with the resistance heating element (downstream heating element) located inside the nip portion changes, and the power consumed by the downstream resistance heating element increases. Therefore, by suppressing the heat generation of the upstream resistance heating element, it is possible to suppress the problem that the upstream side of the ceramic substrate suddenly becomes high temperature and the problem that the ceramic substrate breaks during normal use.

(異常昇温時における加熱体の状況)
通常使用を超えた、異常昇温時には、上流側抵抗発熱体R1と下流側発熱体R2の抵抗差が大きくなりすぎ、下流側抵抗発熱体R2の温度上昇が、上流側抵抗発熱体R1の温度上昇に対して著しく大きくなる。そのため、通常使用時とは逆に、下流側抵抗発熱体R2の温度が高く、上流側抵抗発熱体R1の温度が相対的に低くなることにより、抵抗発熱体R1、R2間に温度差が生じ、それに伴う熱応力の差によって、セラミックス基板の割れが生じやすくなる。
(Status of heated body during abnormal temperature rise)
When the temperature rises abnormally beyond normal use, the resistance difference between the upstream resistance heating element R1 and the downstream heating element R2 becomes too large, and the temperature rise of the downstream resistance heating element R2 increases the temperature of the upstream resistance heating element R1. Significantly increases with the rise. Therefore, contrary to the normal use, the temperature of the downstream resistance heating element R2 is high, and the temperature of the upstream resistance heating element R1 is relatively low, resulting in a temperature difference between the resistance heating elements R1 and R2. The ceramic substrate is liable to crack due to the difference in thermal stress associated therewith.

通常使用時においては、ニップ部の内側にある下流側抵抗発熱体7が200℃で温調されているとき、発熱体の総電力は約500Wであった。このときニップ部の外側にある上流側抵抗発熱体6では総電力の約1/5の約100Wの電力が消費された。この状態であれば、ニップ部の外側の抵抗発熱体6(上流側)とニップ部の内側(下流側)の抵抗発熱体7の温度はいずれも約200℃で飽和し、図5に示すように、加熱体幅方向において温度分布が対称的になる。   During normal use, when the downstream resistance heating element 7 inside the nip was temperature-controlled at 200 ° C., the total power of the heating element was about 500 W. At this time, the upstream resistance heating element 6 outside the nip portion consumed about 100 W of electric power, which was about 1/5 of the total electric power. In this state, the temperature of the resistance heating element 6 outside the nip portion (upstream side) and the resistance heating element 7 inside the nip portion (downstream side) are both saturated at about 200 ° C., as shown in FIG. Furthermore, the temperature distribution becomes symmetrical in the heating body width direction.

しかしながら、トライアック25のショート時等、何らかの理由で、電力制御が不可能になり、加熱体3が異常昇温した場合、表1に示す通り、上流側抵抗発熱体の抵抗値と下流側抵抗発熱体の抵抗値の比がさらに大きくなる。それとともに、全体的抵抗も下がるため、さらに大きな電力が下流側抵抗発熱体に投入されることになる。例えば、300℃まで温度上昇した場合、加熱体に投入される電力は、100V入力時においても1010Wにもなる。その結果、図6に示すように、基板内に、通常使用時と逆の温度差が発生し、それによって生じる熱応力が、セラミックス基板の割れが発生する最低熱応力を上回る場合には、セラミックス基板割れが発生することになる。   However, when the power control becomes impossible for some reason, such as when the triac 25 is short-circuited, and the heating element 3 is abnormally heated, the resistance value of the upstream resistance heating element and the downstream resistance heating are as shown in Table 1. The ratio of body resistance is further increased. At the same time, since the overall resistance is lowered, a larger amount of electric power is input to the downstream resistance heating element. For example, when the temperature rises to 300 ° C., the electric power supplied to the heating body becomes 1010 W even when 100 V is input. As a result, as shown in FIG. 6, when a temperature difference opposite to that during normal use occurs in the substrate and the resulting thermal stress exceeds the minimum thermal stress at which the ceramic substrate cracks, Substrate cracking will occur.

(異常昇温時における加熱体の制御)
ニップ部の内側に対応する位置の加熱体3の裏面に近接または接触して、加熱体3の異常昇温時に加熱体3への電力供給を遮断する感熱素子11が設けられている(図1)。感熱素子11としては、サーモスイッチや温度ヒューズ等を用いることができ、本実施形態では所定の温度でバイメタルが反転することにより電流を遮断することができる機構をもつサーモスイッチを用いた。感熱素子11の動作温度は、1℃/1分の速度で温度上昇するオイル中で測定した場合は、250℃であった。
(Control of heating element during abnormal temperature rise)
A thermal element 11 is provided that is close to or in contact with the back surface of the heating element 3 at a position corresponding to the inside of the nip portion, and that cuts off the power supply to the heating element 3 when the heating element 3 is abnormally heated (see FIG. ). As the thermosensitive element 11, a thermo switch, a thermal fuse, or the like can be used. In this embodiment, a thermo switch having a mechanism capable of interrupting current when the bimetal is inverted at a predetermined temperature is used. The operating temperature of the thermosensitive element 11 was 250 ° C. when measured in oil rising at a rate of 1 ° C./1 min.

本実施形態においては、加熱体3の下流側抵抗発熱体7の上方に感熱素子11を配置しているため、下流側抵抗発熱体7の異常昇温を検知し、セラミックス基板割れが発生する以前に加熱体3への通電を遮断することが可能となる。   In the present embodiment, since the thermal element 11 is disposed above the downstream resistance heating element 7 of the heating element 3, an abnormal temperature rise of the downstream resistance heating element 7 is detected and before the ceramic substrate crack occurs. In addition, it is possible to cut off the power supply to the heating element 3.

図7(A)、図7(B)には、本実施形態に対する比較例としての、感熱素子11を加熱体の上流側発熱体上に配置した像加熱装置、および感熱素子11を、加熱体の中央部に配置した像過熱装置の概略断面図を示す。
図7に、実施形態1およびこれら比較例の、異常昇温時における感熱素子温度の推移を示す。図8に示される通り、中央部、上流側抵抗発熱体上に感熱素子11を配置した場合に比べ、下流側抵抗発熱体上に感熱素子11を配置した場合において、温度上昇速度が早くなっている。
7A and 7B, as a comparative example for the present embodiment, an image heating apparatus in which the thermal element 11 is arranged on the upstream heating element of the heating element, and the thermal element 11 are shown. The schematic sectional drawing of the image heating apparatus arrange | positioned in the center part of is shown.
FIG. 7 shows changes in the temperature of the thermal element at the time of abnormal temperature increase in the first embodiment and these comparative examples. As shown in FIG. 8, the temperature increase rate is faster in the case where the thermal element 11 is arranged on the downstream resistance heating element than in the case where the thermal element 11 is arranged on the central side and the upstream resistance heating element. Yes.

感熱素子内部のバイメタルの熱容量や、バイメタルの動作時間等による、若干のタイミングのずれはあるものの、おおむね感熱素子温度が動作温度に至ると、感熱素子は動作し、加熱体への通電が遮断される。   Although there is a slight timing lag due to the heat capacity of the bimetal inside the thermal element and the operating time of the bimetal, the thermal element generally operates when the temperature of the thermal element reaches the operating temperature, and energization of the heating element is interrupted. The

さらに、図8には、異常昇温時における、下流側抵抗発熱体部分のセラミックス基板が受ける熱応力の推移をあらわすグラフも示している。異常昇温時の下流側抵抗発熱体部分のセラミックス基板の受ける熱応力が、セラミックス基板が割れる最低熱応力の値を超えると、セラミックス基板の割れが生じる可能性が高くなる。   Further, FIG. 8 also shows a graph showing the transition of the thermal stress received by the ceramic substrate in the downstream resistance heating element portion at the time of abnormal temperature rise. When the thermal stress received by the ceramic substrate in the downstream resistance heating element portion at the time of abnormal temperature rise exceeds the value of the minimum thermal stress at which the ceramic substrate breaks, there is a high possibility that the ceramic substrate will crack.

ここで上流側抵抗発熱体と下流側抵抗発熱体の中間部に感熱素子を配置した場合に、トライアックがショートすることにより故意に異常昇温を発生させる暴走試験を実施した。すると、下流側抵抗発熱体部分のセラミックス基板に、大きな熱応力が発生することにより、セラミックス基板の割れに至った。このことから、比較例においては、感熱素子温度が動作温度に達する前に、下流側発熱体部のセラミックス基板が受ける熱応力が、ヒーター割れの発生する最低熱応力を超えてしまったことが分かった。   Here, when a thermal element was arranged in the middle part between the upstream resistance heating element and the downstream resistance heating element, a runaway test was performed in which an abnormal temperature increase was intentionally generated by a short circuit of the triac. Then, a large thermal stress was generated on the ceramic substrate in the downstream resistance heating element portion, which led to cracking of the ceramic substrate. From this, in the comparative example, it was found that the thermal stress received by the ceramic substrate of the downstream heating element exceeded the minimum thermal stress at which heater cracking occurred before the thermal element temperature reached the operating temperature. It was.

《第2の実施形態》
図9に示す本実施形態では、上流側抵抗発熱体9は第1の実施形態と同じく酸化ルテニウムとガラス、および温度特性調整剤を混合したものを、下流側抵抗発熱体10は銀・パラジウム合金とガラスを混合したものを用いた。そして、上流側抵抗発熱体9および下流側抵抗発熱体10をスクリーン印刷によりアルミナ基板上に塗工して形成した。本実施形態では、上流側抵抗発熱体9の抵抗変化率を−4000ppm/℃、下流側抵抗発熱体10の抵抗変化率を+500ppm/℃とした。
<< Second Embodiment >>
In the present embodiment shown in FIG. 9, the upstream resistance heating element 9 is a mixture of ruthenium oxide, glass, and a temperature characteristic adjusting agent, as in the first embodiment, and the downstream resistance heating element 10 is a silver / palladium alloy. A mixture of glass and glass was used. Then, the upstream resistance heating element 9 and the downstream resistance heating element 10 were formed on the alumina substrate by screen printing. In the present embodiment, the resistance change rate of the upstream resistance heating element 9 is −4000 ppm / ° C., and the resistance change rate of the downstream resistance heating element 10 is +500 ppm / ° C.

図9に本実施形態における加熱体の正面図及び通電制御を行う回路を示す。抵抗発熱体の長さ、幅、厚さ、基板上における位置は第1の実施形態と同じであり、その他の像加熱装置及び画像形成装置の構成は第1の実施形態と同じである。   FIG. 9 shows a front view of a heating body and a circuit for performing energization control in this embodiment. The length, width, thickness, and position on the substrate of the resistance heating element are the same as those in the first embodiment, and the other image heating apparatus and image forming apparatus are the same as those in the first embodiment.

図10に本実施形態における上流側抵抗発熱体9と下流側抵抗発熱体10の抵抗温度特性の概略図を示す。図において実線が上流側抵抗発熱体9の抵抗温度特性を、破線が下流側抵抗発熱体10の抵抗温度特性をそれぞれ示す。以下の表2に抵抗値の温度変化及び上下流の発熱比率を示す。   FIG. 10 is a schematic diagram of resistance temperature characteristics of the upstream resistance heating element 9 and the downstream resistance heating element 10 in the present embodiment. In the figure, the solid line indicates the resistance temperature characteristic of the upstream resistance heating element 9, and the broken line indicates the resistance temperature characteristic of the downstream resistance heating element 10. Table 2 below shows the temperature change of the resistance value and the heat generation ratio of the upstream and downstream.

本実施形態においても、異常昇温時における下流側抵抗発熱体の温度上昇速度は、上流側抵抗発熱体よりも高くなる。この場合においても、感熱素子11を下流側抵抗発熱体10の上方に配置することにより、加熱体のセラミックス基板割れを防止することが可能となる。 Also in this embodiment, the temperature increase rate of the downstream resistance heating element at the time of abnormal temperature rise is higher than that of the upstream resistance heating element. Even in this case, it is possible to prevent cracking of the ceramic substrate of the heating element by disposing the thermal element 11 above the downstream resistance heating element 10.

《第3の実施形態》
図11は本実施形態における加熱体の正面図および通電制御を行う回路を表す図である。本実施形態では、図11に示すように2本の抵抗発熱体12、13は電気的に並列に接続されている。図11には加熱体3の裏面(非可撓性部材摺動面)も示しており、裏面には下流側抵抗発熱体13に相当する部分に感熱素子11が設けられている。
<< Third Embodiment >>
FIG. 11 is a diagram illustrating a front view of a heating body and a circuit for performing energization control in the present embodiment. In the present embodiment, as shown in FIG. 11, the two resistance heating elements 12 and 13 are electrically connected in parallel. FIG. 11 also shows the back surface (sliding surface of the inflexible member) of the heating body 3, and the thermal element 11 is provided on the back surface in a portion corresponding to the downstream resistance heating element 13.

本実施形態において、抵抗発熱体の材料として、上流側の抵抗発熱体12に銀パラジウムとガラスを混合したものを、下流側の抵抗発熱体13に酸化ルテニウムを用いた。上流が抵抗発熱体12の抵抗変化率を+500ppm/℃、下流側抵抗発熱体13の抵抗変化率を−5000ppm/℃とした。これらをスクリーン印刷により、上下流とも厚み約10μm、幅1.1mm、全長220mmに塗工して形成した。   In this embodiment, as the material of the resistance heating element, the upstream resistance heating element 12 is mixed with silver palladium and glass, and the downstream resistance heating element 13 is ruthenium oxide. Upstream, the resistance change rate of the resistance heating element 12 was +500 ppm / ° C., and the resistance change rate of the downstream resistance heating element 13 was −5000 ppm / ° C. These were formed by screen printing to a thickness of about 10 μm, a width of 1.1 mm, and a total length of 220 mm, both upstream and downstream.

本実施形態においても、他の実施形態と同様、加熱体がニップの上流側に2mmはみ出した構成をしており、加熱体の上流側抵抗発熱体12がニップの外に位置している。下流側抵抗発熱体はニップ内に位置している。   In this embodiment, similarly to the other embodiments, the heating body protrudes 2 mm upstream of the nip, and the upstream resistance heating element 12 of the heating body is located outside the nip. The downstream resistance heating element is located in the nip.

図12に本実施形態における上流側抵抗発熱体12と下流側抵抗発熱体13の抵抗温度特性の概略図を示す。図12において、実線が上流側抵抗発熱体12の抵抗温度特性を、破線が下流側抵抗発熱体13の抵抗温度特性をそれぞれ示す。室温からの立ち上げ領域においては、上流側抵抗発熱体12の抵抗値R2と下流側抵抗発熱体13の抵抗値R1の大小関係がR1>R2となっているが、温調温度付近や、それ以上の温度ではR1<R2となっている。   FIG. 12 shows a schematic diagram of resistance temperature characteristics of the upstream resistance heating element 12 and the downstream resistance heating element 13 in the present embodiment. In FIG. 12, the solid line indicates the resistance temperature characteristic of the upstream resistance heating element 12, and the broken line indicates the resistance temperature characteristic of the downstream resistance heating element 13. In the start-up region from room temperature, the magnitude relationship between the resistance value R2 of the upstream resistance heating element 12 and the resistance value R1 of the downstream resistance heating element 13 is R1> R2. At the above temperature, R1 <R2.

図13は、本実施形態における加熱体の幅方向における温度分布を示したものである。通常使用時においては、温度分布は、上流側発熱体12、下流側発熱体13でほぼ対照的になっているものの、トライアック故障などの場合における異常昇温時には、下流側発熱体13の発熱量の方が大きくなる。これは、異常昇温時には、上流側抵抗発熱体12と下流側抵抗発熱体13の抵抗差が大きくなることから、上流側抵抗発熱体12に比べて非常に大きな電流が下流側抵抗発熱体13に流れることによる。それにより、下流側抵抗発熱体13の熱がセラミックス基板や、周囲の部材に吸収されるよりも急速に昇温してしまうためである。   FIG. 13 shows the temperature distribution in the width direction of the heating element in the present embodiment. During normal use, the temperature distribution is substantially contrasted between the upstream heating element 12 and the downstream heating element 13, but the amount of heat generated by the downstream heating element 13 during an abnormal temperature increase in the case of a triac failure or the like. Is bigger. This is because when the temperature rises abnormally, the resistance difference between the upstream resistance heating element 12 and the downstream resistance heating element 13 becomes large, so that a very large current is generated compared to the upstream resistance heating element 12. By flowing into. This is because the temperature of the downstream resistance heating element 13 is increased more rapidly than the heat absorbed by the ceramic substrate and the surrounding members.

本実施形態の加熱装置において、トライアックを故意にショートさせて、加熱体を異常昇温させる暴走試験を行ったところ、セラミックス基板割れに至る前にサーモスイッチ11が切れ、加熱装置は加熱を停止した。   In the heating device of this embodiment, when a runaway test was performed in which the triac was intentionally shorted to abnormally raise the temperature of the heating body, the thermoswitch 11 was turned off before the ceramic substrate cracked, and the heating device stopped heating. .

《第4の実施形態》
図14は、本実施形態における加熱体の正面図および通電制御を行う回路を表す図である。本実施形態では、図14に示すように、2本の抵抗発熱体14、15は電気的に並列に接続されている。
<< Fourth Embodiment >>
FIG. 14 is a diagram illustrating a front view of a heating body and a circuit that performs energization control in the present embodiment. In the present embodiment, as shown in FIG. 14, the two resistance heating elements 14 and 15 are electrically connected in parallel.

本実施形態では、抵抗発熱体の材料として、上流側抵抗発熱体14にキュリー温度が200℃のチタン酸バリウムを、下流側抵抗発熱体15に銀パラジウムとガラスを混合したものを用いた。これらをスクリーン印刷により、上下流とも厚み10μm、幅1.1mm、全長220mmに塗工して形成した。   In this embodiment, as the material of the resistance heating element, the upstream resistance heating element 14 is made of barium titanate having a Curie temperature of 200 ° C., and the downstream resistance heating element 15 is mixed with silver palladium and glass. These were formed by screen printing to a thickness of 10 μm, a width of 1.1 mm, and a total length of 220 mm in both upstream and downstream.

上流側抵抗発熱体14として用いるチタン酸バリウムは、不純物を添加することにより、所望の温度にキュリー温度をシフトさせることが可能である。チタン酸バリウムのキュリー温度は120℃であるが、本実施形態では鉛を添加することによってキュリー温度を200℃にシフトさせた。   Barium titanate used as the upstream resistance heating element 14 can shift the Curie temperature to a desired temperature by adding impurities. The Curie temperature of barium titanate is 120 ° C. In this embodiment, the Curie temperature is shifted to 200 ° C. by adding lead.

図15に本実施形態における上流側抵抗発熱体14と下流側抵抗発熱体15の抵抗温度特性の概略図を示す。図15において、実線が上流側抵抗発熱体14の抵抗温度特性を、破線が下流側抵抗発熱体15の抵抗温度特性をそれぞれ示す。   FIG. 15 shows a schematic diagram of resistance temperature characteristics of the upstream resistance heating element 14 and the downstream resistance heating element 15 in the present embodiment. In FIG. 15, the solid line indicates the resistance temperature characteristic of the upstream resistance heating element 14, and the broken line indicates the resistance temperature characteristic of the downstream resistance heating element 15.

下流側抵抗発熱体15の銀パラジウムは常温から高温まで緩やかに抵抗値が上昇し続ける。これに対し、上流側抵抗発熱体14のチタン酸バリウムは、常温から高温になるにつれて抵抗値が下がるものの、キュリー温度である200℃付近から抵抗値がけた違いに上昇する。上流側抵抗発熱体14と下流側抵抗発熱体15は電気的に並列に接続されているため、200℃以上で上流側抵抗発熱体14の抵抗値が下流側抵抗発熱体15の抵抗値よりもけた違いに大きな値になる。   The resistance value of silver palladium of the downstream resistance heating element 15 continues to rise gradually from room temperature to high temperature. On the other hand, although the resistance value of the barium titanate of the upstream resistance heating element 14 decreases as the temperature increases from normal temperature, the resistance value increases from about 200 ° C. which is the Curie temperature. Since the upstream resistance heating element 14 and the downstream resistance heating element 15 are electrically connected in parallel, the resistance value of the upstream resistance heating element 14 is higher than the resistance value of the downstream resistance heating element 15 at 200 ° C. or higher. It becomes a big value to the difference.

その場合、電流は抵抗値が小さな下流側抵抗発熱体15の方にのみ流れるような状態になる。したがって、上流側発熱体14は200℃以上で電力が入らなくなるため、上流側抵抗発熱体14は200℃以上に昇温することが出来なくなり、200℃付近で上流側抵抗発熱体14の温度は飽和する(自己温度制御)。したがって、下流側発熱体15の温調温度と上流側抵抗発熱体のキュリー温度を同じくらいに調整しておく。   In this case, the current flows only to the downstream resistance heating element 15 having a small resistance value. Therefore, since the upstream heating element 14 cannot receive power at 200 ° C. or more, the upstream resistance heating element 14 cannot be heated to 200 ° C. or more, and the temperature of the upstream resistance heating element 14 is around 200 ° C. Saturates (self-temperature control). Therefore, the temperature control temperature of the downstream heating element 15 and the Curie temperature of the upstream resistance heating element are adjusted to be the same.

このことによって、通常使用時には上流側抵抗発熱体14がニップ部の外側に位置し、なおかつサーミスタで温調される事が無くても上流側抵抗発熱体14はニップ部の内側の下流側抵抗発熱体10の定着温度と同等の温度に維持することができる。   As a result, the upstream resistance heating element 14 is positioned outside the nip during normal use, and the upstream resistance heating element 14 is heated downstream from the nip even if the temperature is not controlled by the thermistor. It can be maintained at a temperature equivalent to the fixing temperature of the body 10.

本実施形態のような加熱体においては、異常昇温時には、上流側抵抗発熱体14に電流が何も流れず、ほとんど全ての電力が下流側抵抗発熱体15に投入されるため、異常昇温時には下流側抵抗発熱体の温度上昇がきわめて大きくなる。その結果、図16に示すように、加熱体の幅方向における温度分布が、下流側に偏った形となる。   In the heating element as in the present embodiment, when the temperature rises abnormally, no current flows through the upstream resistance heating element 14 and almost all the electric power is input to the downstream resistance heating element 15, so Sometimes the temperature rise of the downstream resistance heating element becomes extremely large. As a result, as shown in FIG. 16, the temperature distribution in the width direction of the heating element is biased toward the downstream side.

本実施形態の加熱装置においても、トライアックを故意にショートさせて、加熱体を異常昇温させる暴走試験を行ったところ、他の実施形態と同様に、セラミックス基板が割れに至る前にサーモスイッチ11が切れ、加熱装置は加熱を停止した。   Also in the heating apparatus of this embodiment, when a runaway test was performed in which the TRIAC was intentionally shorted to abnormally raise the temperature of the heating body, the thermoswitch 11 was broken before the ceramic substrate was cracked, as in the other embodiments. The heating device stopped heating.

以上のように、尾引き現象の低減と通常使用時のセラミックス基板割れの問題を抑制しつつ、感熱素子11を下流側抵抗発熱体の上方に加熱体と近接または接触して配置することによって、異常昇温時のセラミックス基板割れを防止することができる。   As described above, by arranging the thermal element 11 close to or in contact with the heating element above the downstream resistance heating element while suppressing the problem of the reduction of the tailing phenomenon and the ceramic substrate cracking during normal use, It is possible to prevent the ceramic substrate from cracking during abnormal temperature rise.

(変形例)
上述した実施形態においては、電気的に直列もしくは並列に接続された2本の抵抗発熱体について記載したが、本発明はこれに限らず電気的に直列もしくは並列に接続された2本以上の抵抗発熱体であれば良い。即ち、抵抗発熱体のうち少なくとも1本がニップ部Nの内側に位置し、抵抗発熱体のうち少なくとも1本の全体またはその一部がニップ部Nの上流側で記録材Pを前加熱(プレヒート)するためにニップ部Nの外側に位置するようにする。
(Modification)
In the above-described embodiments, two resistance heating elements electrically connected in series or in parallel have been described. However, the present invention is not limited to this, and two or more resistors electrically connected in series or in parallel. Any heating element may be used. That is, at least one of the resistance heating elements is located inside the nip portion N, and at least one of the resistance heating elements or a part thereof is preheated (preheated) on the upstream side of the nip portion N. ) To be located outside the nip portion N.

例えば図18に示すように、ニップ部Nの内側に抵抗発熱体Gを設け、ニップ部Nの外側にニップ部上流側に向かって抵抗発熱体F(一部がニップ部Nよりはみ出している)、抵抗発熱体E(全部がニップ部Nよりはみ出している)を設けても良い。そして、この場合、下流側の抵抗発熱体Gが、上流側の抵抗発熱体(ここでは抵抗発熱体F、Eとして複数本の前記抵抗発熱体を電気的に並列もしくは直列に配置)と電気的に直列もしくは並列に接続される関係となれば良い。   For example, as shown in FIG. 18, a resistance heating element G is provided inside the nip N, and a resistance heating element F (a part of the nip N protrudes from the nip N) outside the nip N toward the upstream side of the nip. A resistance heating element E (all protruding from the nip portion N) may be provided. In this case, the resistance heating element G on the downstream side is electrically connected to the resistance heating element on the upstream side (here, a plurality of resistance heating elements are arranged in parallel or in series as the resistance heating elements F and E). Need only be connected in series or in parallel.

なお、図18で上流側の抵抗発熱体F、Eの少なくとも一方を第4の実施形態で説明した自己温度制御型の抵抗発熱体とすることもできる。   Note that at least one of the upstream resistance heating elements F and E in FIG. 18 may be the self-temperature control type resistance heating element described in the fourth embodiment.

また上述した実施形態においては、ニップ部Nの外側に設けられる抵抗発熱体に関し、ニップ部Nの上流側に設けていたが、本発明はこれに限らず、図19(A)に示すようにニップ部Nの下流側に設けても良い。図19(A)で、ニップ部Nの内側に抵抗発熱体Jを設け、ニップ部Nの外側としてニップ部下流側に抵抗発熱体Kを設ける。   In the embodiment described above, the resistance heating element provided outside the nip portion N is provided on the upstream side of the nip portion N. However, the present invention is not limited to this, as shown in FIG. You may provide in the downstream of the nip part N. FIG. In FIG. 19A, a resistance heating element J is provided on the inner side of the nip portion N, and a resistance heating element K is provided on the downstream side of the nip portion as the outer side of the nip portion N.

ニップ部Nの下流側の抵抗発熱体Kで加熱された可撓性部材F(位置Yで加熱)の部分は、コンパクト化のために全周の長さが短くされるという前提で、ほぼ一周して、ニップ部Nの上流側の位置Xに至る。位置Yから位置Xに至る経過時間が可撓性部材Fの内部を伝達する時間にほぼ等しく、かつ位置Xで記録材Pが前加熱(プレヒート)されるように記録材Pの搬送系が組まれていれば、尾引きの発生を抑えることができる。   The portion of the flexible member F (heated at the position Y) heated by the resistance heating element K on the downstream side of the nip portion N makes almost one turn on the premise that the entire circumference is shortened for compactness. Thus, the position X reaches the upstream side of the nip portion N. The conveyance system of the recording material P is set so that the elapsed time from the position Y to the position X is substantially equal to the time for transmitting the inside of the flexible member F and the recording material P is preheated (preheated) at the position X. If it is rare, the occurrence of tailing can be suppressed.

ニップ部下流側の抵抗発熱体Kに関しては、図19(A)に示すように全体がニップ部Nからはみ出していても良く、あるいは図19(B)に示すように一部がニップ部Nからはみ出していても良い。ニップ部上流側には抵抗発熱体を設けても良いが、図14(A)では抵抗発熱体の替わりに可撓性部材Fを外挿させる支持部材Lを構成している。   With respect to the resistance heating element K on the downstream side of the nip portion, the whole may protrude from the nip portion N as shown in FIG. 19A, or a part of the resistance heating element K may protrude from the nip portion N as shown in FIG. It may protrude. Although a resistance heating element may be provided on the upstream side of the nip portion, in FIG. 14A, a supporting member L for extrapolating the flexible member F is configured instead of the resistance heating element.

なお、上述した実施形態においては、抵抗発熱体を基板31の下方側(ニップ部Nに対面する側)に設けたが、図20に示すように基板31の上方側(ニップ部Nに対面する側と反対側)に設けても良い。図20で、11は基板31の上方側に形成された下流側の抵抗発熱体7、10と検温素子5との間の耐電圧を満足するために設けたガラスコート、フッ素樹脂層等の保護層である。   In the above-described embodiment, the resistance heating element is provided on the lower side of the substrate 31 (the side facing the nip portion N), but as shown in FIG. 20, the upper side of the substrate 31 (facing the nip portion N). It may be provided on the opposite side). In FIG. 20, reference numeral 11 denotes a protection of a glass coat, a fluororesin layer, etc. provided to satisfy the withstand voltage between the resistance heating elements 7 and 10 on the downstream side formed on the upper side of the substrate 31 and the temperature detecting element 5. Is a layer.

また、上述した実施形態においては、2本以上の抵抗発熱体を配置する基板31をセラミックスとしたが、熱伝導性など同様の性質を備える材質であればセラミックス以外の材質を用いても良い。   In the above-described embodiment, the substrate 31 on which two or more resistance heating elements are arranged is made of ceramics. However, any material other than ceramics may be used as long as the material has similar properties such as thermal conductivity.

なお、第1乃至第4の実施形態、変形例で記載した事項を本発明の範囲内として適宜組み合わせる構成を採っても良い。   In addition, you may take the structure which combines suitably the matter described in the 1st thru | or 4th embodiment and the modification within the scope of the present invention.

1・・ステー、2・・可撓性部材、3・・加熱体、4・・加圧ローラ、4a・・芯金、
4b・・弾性体層、4c・・離形層、5・・検温素子、6・・上流側抵抗発熱体、7・・下流側抵抗発熱体、11・・感熱素子、21、21・・給電用電極、24・・CPU、
25・・トライアック、26・・AC電源、31・・基板、N・・ニップ部、P・・記録材、T・・トナー、a・・記録材搬送方向
1 .... Stay, 2 .... Flexible member, 3 .... Heating body, 4 .... Pressure roller, 4a ..., Metal core,
4b ··· Elastic body layer, 4c · · Release layer, 5 · · Temperature sensing element, · · · Upstream resistance heating element, · · · Downstream resistance heating element, 11 · · · Thermal element, 21, 21 · · · Feeding Electrode, 24 ... CPU,
25 ... Triac, 26 ... AC power supply, 31 ... Substrate, N ... Nip, P ... Recording material, T ... Toner, a ... Recording material conveyance direction

Claims (10)

加熱体と、一面を加熱体と接触摺動し他面を画像を担持した記録材と接触する可撓性部材を有し、前記可撓性部材と圧接する加圧体との間にニップ部を形成し、前記加熱体に対し前記可撓性部材と前記記録材が移動することで前記加熱体の熱を前記可撓性部材を介して前記記録材へ伝達する像加熱装置において、
前記加熱体は、
基板に2本以上の抵抗発熱体を備え、
前記抵抗発熱体のうち少なくとも1本が前記ニップ部の内側に位置し、
前記抵抗発熱体のうち少なくとも1本の全体またはその一部が前記ニップ部の上流側で前記記録材を前加熱するために前記ニップ部の外側に位置し、
前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体とが電気的に直列もしくは並列に接続され、
且つ、前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体とが前記直列に接続される場合は前記ニップ部の外側に位置する前記抵抗発熱体が負の抵抗温度特性を備え、
前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体とが前記並列に接続される場合は前記ニップ部の外側に位置する前記抵抗発熱体が正の抵抗温度特性を備え、
前記ニップ部の内側に位置する前記抵抗発熱体の温度を制御する温度制御系と、
前記ニップ部の内側に対応する位置の前記加熱体に近接または接触して配置され、前記加熱体の異常昇温時に前記加熱体への電力供給を遮断する感熱素子と、を有することを特徴とする像加熱装置。
A nip portion is provided between the heating member and a pressure member that contacts and slides on one surface with the heating member and contacts the other surface with a recording material carrying an image. In the image heating apparatus that transmits heat of the heating body to the recording material through the flexible member by moving the flexible member and the recording material with respect to the heating body.
The heating body is
The board has two or more resistance heating elements,
At least one of the resistance heating elements is located inside the nip portion,
At least one of the resistance heating elements or a part thereof is located outside the nip portion for preheating the recording material upstream of the nip portion,
The resistance heating element located inside the nip part and the resistance heating element located outside the nip part are electrically connected in series or in parallel,
When the resistance heating element located inside the nip portion and the resistance heating element located outside the nip portion are connected in series, the resistance heating element located outside the nip portion is With negative resistance temperature characteristics,
When the resistance heating element located inside the nip part and the resistance heating element located outside the nip part are connected in parallel, the resistance heating element located outside the nip part is positive. With resistance temperature characteristics,
A temperature control system for controlling the temperature of the resistance heating element located inside the nip portion;
A thermal element disposed near or in contact with the heating body at a position corresponding to the inside of the nip portion, and shuts off power supply to the heating body when the heating body is abnormally heated. Image heating device.
前記ニップ部の外側に位置する前記抵抗発熱体が、酸化ルテニウム、カーボン、シリコンカーバイトの内、少なくとも1つを備えることを特徴とする請求項1に記載の像加熱装置。   The image heating apparatus according to claim 1, wherein the resistance heating element located outside the nip portion includes at least one of ruthenium oxide, carbon, and silicon carbide. 前記ニップ部の外側に位置する前記抵抗発熱体が自己温度制御型を備えることを特徴とする請求項1に記載の像加熱装置。   The image heating apparatus according to claim 1, wherein the resistance heating element located outside the nip portion includes a self-temperature control type. 前記ニップ部の外側に位置する前記自己温度制御型の抵抗発熱体がチタン酸バリウムからなることを特徴とする請求項3に記載の像加熱装置。   The image heating apparatus according to claim 3, wherein the self-temperature control type resistance heating element located outside the nip portion is made of barium titanate. 前記ニップ部の外側に位置する前記抵抗発熱体が、前記記録材の搬送方向に対して上流側に位置することを特徴とする請求項1乃至請求項4のいずれか1項に記載の像加熱装置。   5. The image heating according to claim 1, wherein the resistance heating element located outside the nip portion is located upstream in a conveyance direction of the recording material. apparatus. 前記ニップ部の外側に位置する前記抵抗発熱体が、前記記録材の搬送方向に対して下流側に位置することを特徴とする請求項1乃至請求項4のいずれか1項に記載の像加熱装置。   5. The image heating according to claim 1, wherein the resistance heating element positioned outside the nip portion is positioned downstream of the recording material conveyance direction. 6. apparatus. 前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体の少なくとも一方が、前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体とが前記直列に接続される場合は電気的に並列に配置した複数本の前記抵抗発熱体を備え、
前記ニップ部の内側に位置する前記抵抗発熱体と前記ニップ部の外側に位置する前記抵抗発熱体とが前記並列に接続される場合は電気的に直列に配置した複数本の前記抵抗発熱体を備えることを特徴とする請求項1乃至請求項6のいずれか1項に記載の像加熱装置。
At least one of the resistance heating element positioned inside the nip portion and the resistance heating element positioned outside the nip portion is positioned outside the resistance heating element positioned inside the nip portion and the nip portion. When the resistance heating element is connected in series, a plurality of the resistance heating elements arranged in parallel electrically,
When the resistance heating element positioned inside the nip portion and the resistance heating element positioned outside the nip portion are connected in parallel, the plurality of resistance heating elements arranged in series are electrically connected. The image heating apparatus according to claim 1, further comprising: an image heating apparatus according to claim 1;
前記2本以上の抵抗発熱体が前記基板の前記ニップ部に対面する側に設けられることを特徴とする請求項1乃至請求項7のいずれか1項に記載の像加熱装置。   The image heating apparatus according to claim 1, wherein the two or more resistance heating elements are provided on a side of the substrate facing the nip portion. 前記2本以上の抵抗発熱体が前記基板の前記ニップ部に対面する側と反対側に設けられることを特徴とする請求項1乃至請求項7のいずれか1項に記載の像加熱装置。   The image heating apparatus according to any one of claims 1 to 7, wherein the two or more resistance heating elements are provided on a side opposite to a side facing the nip portion of the substrate. 前記基板がセラミックス基板であることを特徴とする請求項1乃至請求項9のいずれか1項に記載の像加熱装置。   The image heating apparatus according to claim 1, wherein the substrate is a ceramic substrate.
JP2010225386A 2010-10-05 2010-10-05 Image heating device Pending JP2012078678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010225386A JP2012078678A (en) 2010-10-05 2010-10-05 Image heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225386A JP2012078678A (en) 2010-10-05 2010-10-05 Image heating device

Publications (1)

Publication Number Publication Date
JP2012078678A true JP2012078678A (en) 2012-04-19

Family

ID=46238981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225386A Pending JP2012078678A (en) 2010-10-05 2010-10-05 Image heating device

Country Status (1)

Country Link
JP (1) JP2012078678A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050988A (en) * 2014-08-29 2016-04-11 キヤノン株式会社 Fixing device
JP2018036549A (en) * 2016-09-01 2018-03-08 キヤノン株式会社 Fixing device
JP2020194105A (en) * 2019-05-29 2020-12-03 株式会社リコー Heating device, fixing device, and image forming apparatus
JP2022131644A (en) * 2021-02-26 2022-09-07 株式会社リコー Fixing device and image forming device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050988A (en) * 2014-08-29 2016-04-11 キヤノン株式会社 Fixing device
US9417576B2 (en) 2014-08-29 2016-08-16 Canon Kabushiki Kaisha Fixing device
CN108717253A (en) * 2014-08-29 2018-10-30 佳能株式会社 Fixing device
CN108717253B (en) * 2014-08-29 2021-01-15 佳能株式会社 Fixing device
JP2018036549A (en) * 2016-09-01 2018-03-08 キヤノン株式会社 Fixing device
JP2020194105A (en) * 2019-05-29 2020-12-03 株式会社リコー Heating device, fixing device, and image forming apparatus
JP7385820B2 (en) 2019-05-29 2023-11-24 株式会社リコー Heating device, fixing device and image forming device
JP2022131644A (en) * 2021-02-26 2022-09-07 株式会社リコー Fixing device and image forming device
JP7619086B2 (en) 2021-02-26 2025-01-22 株式会社リコー Fixing device and image forming apparatus

Similar Documents

Publication Publication Date Title
US7283145B2 (en) Image heating apparatus and heater therefor
JP6461247B2 (en) Image heating device
CN108717253B (en) Fixing device
JP4208772B2 (en) Fixing device and heater used in the fixing device
JP4804038B2 (en) Image heating apparatus and heater used in the apparatus
JP4455548B2 (en) Image heating device
JP6436812B2 (en) Fixing device
JP7119280B2 (en) Heating device, fixing device and image forming device
JP2007212589A (en) Heating body, heating device, and image forming apparatus
JP5317550B2 (en) Fixing device
US8731424B2 (en) Image forming apparatus
CN108693751B (en) Fixing apparatus and heater for fixing apparatus
JP2017072781A (en) Image heating apparatus and image forming apparatus
JP2012078678A (en) Image heating device
JP2008140702A (en) Heating apparatus and image forming apparatus
JP2019101251A (en) Image heating device
JP4378276B2 (en) Heating body and image heating apparatus
JP2018146822A (en) Heat generating device, image heating device, and image forming apparatus
JP2008139778A (en) Heating apparatus and image forming apparatus
JP2008152957A (en) Heating apparatus and image forming apparatus
JP7271134B2 (en) image heating device
JP2012078631A (en) Image heating device
JP2008192398A (en) Heating body and image heating apparatus
JP2018014163A (en) Heater, fixing device and image formation device
JP2013008510A (en) Heater and image heating device