[go: up one dir, main page]

JP2012014750A - Heat-assisted magnetic recording medium and magnetic storage device - Google Patents

Heat-assisted magnetic recording medium and magnetic storage device Download PDF

Info

Publication number
JP2012014750A
JP2012014750A JP2010147016A JP2010147016A JP2012014750A JP 2012014750 A JP2012014750 A JP 2012014750A JP 2010147016 A JP2010147016 A JP 2010147016A JP 2010147016 A JP2010147016 A JP 2010147016A JP 2012014750 A JP2012014750 A JP 2012014750A
Authority
JP
Japan
Prior art keywords
underlayer
alloy
recording medium
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010147016A
Other languages
Japanese (ja)
Other versions
JP5561773B2 (en
Inventor
Tetsuya Kanbe
哲也 神邊
Yuzo Sasaki
有三 佐々木
Atsushi Hashimoto
篤志 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010147016A priority Critical patent/JP5561773B2/en
Publication of JP2012014750A publication Critical patent/JP2012014750A/en
Application granted granted Critical
Publication of JP5561773B2 publication Critical patent/JP5561773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

【課題】磁性粒子間の交換結合が十分に低減され、クラスターサイズが小さい熱アシスト記録媒体、及びそれを用いた磁気記憶装置を提供する。
【解決手段】基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層からなる磁気記録媒体において、該下地層の少なくとも一つが、Ru、もしくはRuを主成分とするHCP構造を有する合金であることを特徴とする熱アシスト磁気記録媒体を用いる。
【選択図】図1
A heat-assisted recording medium in which exchange coupling between magnetic particles is sufficiently reduced and the cluster size is small, and a magnetic storage device using the same are provided.
And A substrate, a plurality of base layer formed on the substrate, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, at least one underlayer, Ru, Alternatively, a heat-assisted magnetic recording medium, which is an alloy having an HCP structure mainly composed of Ru, is used.
[Selection] Figure 1

Description

本発明は熱アシスト磁気記録媒体、及びそれを用いた磁気記憶装置に関する。   The present invention relates to a heat-assisted magnetic recording medium and a magnetic storage device using the same.

媒体に近接場光等を照射して表面を局所的に加熱し、媒体の保磁力を低下させて書き込みを行う熱アシスト記録は、1Tbit/inchクラスの面記録密度を実現できる次世代記録方式として注目されている。熱アシスト記録を用いた場合、室温における保磁力が数十kOeの記録媒体でも、現状ヘッドの記録磁界により容易に書き込みを行うことができる。このため、記録層に10J/m台の高い結晶磁気異方性Kuを有する材料を使用することが可能となり、熱安定性を維持したまま、磁性粒径を6nm以下まで微細化できる。このような高Ku材料としては、L1型結晶構造を有するFePt合金(Ku〜7×10 J/m)や、CoPt合金(Ku〜5×10J/m)等が知られている。 Thermally assisted recording, in which writing is performed by irradiating the medium with near-field light to locally heat the surface and reducing the coercive force of the medium, the next-generation recording method that can realize a surface recording density of 1 Tbit / inch 2 class It is attracting attention as. When heat-assisted recording is used, even a recording medium having a coercive force of several tens of kOe at room temperature can be easily written by the recording magnetic field of the current head. For this reason, it becomes possible to use a material having high magnetocrystalline anisotropy Ku of 10 6 J / m 3 for the recording layer, and the magnetic particle size can be reduced to 6 nm or less while maintaining the thermal stability. . Examples of such high Ku material, L1 0 type FePt alloy having a crystal structure (Ku~7 × 10 6 J / m 3) and, CoPt alloy (Ku~5 × 10 6 J / m 3) or the like is known ing.

磁性層に、L1型結晶構造を有するFePt合金を用いる場合、該FePt層は(001)配向をとっている必要がある。これは、下地層に適切な材料を用いることによって実現できる。例えば、特許文献1にはMgO下地層を用いることによって、FePt磁性層が(001)配向を示すことが示されている。また、非特許文献1には、RuAl下地層を用いることにより、FePt磁性層が(001)配向を示すことが記載されている。 The magnetic layer, when using the FePt alloy having an L1 0 type crystal structure, the FePt layer must have taken (001) orientation. This can be realized by using an appropriate material for the underlayer. For example, Patent Document 1 shows that the FePt magnetic layer exhibits (001) orientation by using an MgO underlayer. Non-Patent Document 1 describes that the FePt magnetic layer exhibits (001) orientation by using a RuAl underlayer.

特開平11−353648JP-A-11-353648

J. Appl. Phys. 97, 10H301 (2005)J. et al. Appl. Phys. 97, 10H301 (2005)

熱アシスト記録媒体において、媒体ノイズを低減するには、磁性粒子間の交換結合を十分に低減し、磁気クラスターサイズを低減する必要がある。交換結合を低減するには、磁性層にSiOやC等の粒界偏析材料を添加することが望ましい。しかし、粒界偏析材料を多量に添加すると、L1構造を有するFePt合金の規則度が劣化し、Kuが低下する。このため、粒界偏析材料を多量に添加することなく、磁性粒子間の交換結合を低減する必要がある。 In the heat-assisted recording medium, in order to reduce the medium noise, it is necessary to sufficiently reduce the exchange coupling between the magnetic particles and reduce the magnetic cluster size. In order to reduce exchange coupling, it is desirable to add a grain boundary segregation material such as SiO 2 or C to the magnetic layer. However, the addition a large amount of grain boundary polarization析材fee is deteriorated rules of the FePt alloy having an L1 0 structure, Ku is lowered. For this reason, it is necessary to reduce the exchange coupling between the magnetic particles without adding a large amount of the grain boundary segregation material.

上記課題は、基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層からなる磁気記録媒体において、該下地層の少なくとも一つが、Ru、もしくはRuを主成分とするHCP構造を有する合金であることを特徴とする熱アシスト磁気記録媒体を用いることによって解決できる。すなわち、本願発明は次の構成による。 The above object includes a substrate, a plurality of base layer formed on the substrate, a magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, at least one underlayer, Ru, Alternatively, the problem can be solved by using a heat-assisted magnetic recording medium that is an alloy having an HCP structure mainly composed of Ru. That is, the present invention has the following configuration.

(1)基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層を含む熱アシスト磁気記録媒体において、該下地層の少なくとも一つが、Ru、もしくはRuを主成分とするHCP構造を有する合金であることを特徴とする熱アシスト磁気記録媒体。
(2)Ruを主成分とする下地層が、RuAl、RuCo、RuNi、RuMn、RuCr、RuV、RuMo、RuW、RuTi、RuTa、RuZr、RuCu、RuSi、RuB合金の何れかであることを特徴とする(1)に記載の熱アシスト磁気記録媒体。
(3)Ru、もしくはRu合金下地層が(11・0)面を基板面と平行とした配向をとっていることを特徴とする(1)または(2)に記載の熱アシスト磁気記録媒体。
(4)Ru、もしくはRu合金下地層が5Pa以上のArガス雰囲気中でのスパッタリング法で形成されていることを特徴とする(1)乃至(3)の何れか1項に記載の熱アシスト磁気記録媒体。
(5)Ru、もしくはRu合金下地層上に、MgO下地層が形成されており、該MgO下地層上に磁性層が形成されていることを特徴とする(1)乃至(4)の何れか1項に記載の熱アシスト磁気記録媒体。
(6)Ru、もしくはRu合金下地層が、Cr、もしくはCrを主成分とするBCC構造の合金からなる下地層上に形成されていることを特徴とする(1)乃至(5)の何れか1項に記載の熱アシスト磁気記録媒体。
(7)Crを主成分とするBCC構造の合金が、CrTi、CrMo、CrV、CrMn、CrW合金の何れかであることを特徴とする(6)に記載の熱アシスト磁気記録媒体。
(8)Ru、もしくはRu合金下地層が、B2構造を有するNiAl、もしくはRuAl合金下地層上に形成されていることを特徴とする(1)乃至(5)の何れか1項に記載の熱アシスト磁気記録媒体。
(9)磁性層がL1構造を有するFePt、もしくはCoPt合金を主成分とし、かつ、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、Cから選択される少なくとも一種類の酸化物、もしくは元素を含有していることを特徴とする(1)乃至(8)の何れか1項に記載の熱アシスト磁気記録媒体。
(10)磁気記録媒体と、該磁気記録媒体を回転させるための駆動部と、該磁気記録媒体を加熱するためのレーザー発生部と、該レーザー発生部から発生したレーザー光をヘッド先端まで導く導波路と、ヘッド先端に取り付けられた近接場光発生部を備えた磁気ヘッドと、該磁気ヘッドを移動させるための駆動部と、記録再生信号処理系から構成さる磁気記憶装置において、該磁気記録媒体が(1)乃至(9)の何れか1項に記載の熱アシスト媒体であることを特徴とする磁気記憶装置。
(1) a substrate, a plurality of base layer formed on the substrate, the thermally assisted magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, at least one underlayer, Ru Or a heat-assisted magnetic recording medium characterized by being an alloy having an HCP structure mainly composed of Ru.
(2) The underlying layer containing Ru as a main component is any one of RuAl, RuCo, RuNi, RuMn, RuCr, RuV, RuMo, RuW, RuTi, RuTa, RuZr, RuCu, RuSi, and RuB. The heat-assisted magnetic recording medium according to (1).
(3) The heat-assisted magnetic recording medium according to (1) or (2), wherein the Ru or Ru alloy underlayer is oriented with the (11.0) plane parallel to the substrate surface.
(4) The heat-assisted magnetism according to any one of (1) to (3), wherein the Ru or Ru alloy underlayer is formed by a sputtering method in an Ar gas atmosphere of 5 Pa or more. recoding media.
(5) Any one of (1) to (4), wherein an MgO underlayer is formed on a Ru or Ru alloy underlayer, and a magnetic layer is formed on the MgO underlayer. 2. The heat-assisted magnetic recording medium according to item 1.
(6) Any of (1) to (5), wherein the Ru or Ru alloy underlayer is formed on an underlayer made of Cr or an alloy having a BCC structure mainly composed of Cr. 2. The heat-assisted magnetic recording medium according to item 1.
(7) The heat-assisted magnetic recording medium according to (6), wherein the alloy having a BCC structure mainly composed of Cr is one of CrTi, CrMo, CrV, CrMn, and CrW alloy.
(8) The heat described in any one of (1) to (5), wherein the Ru or Ru alloy underlayer is formed on a NiAl or RuAl alloy underlayer having a B2 structure. Assisted magnetic recording medium.
(9) The magnetic layer is mainly composed of FePt or CoPt alloy having an L1 0 structure, and SiO 2 , TiO 2 , Cr 2 O 3 , Al 2 O 3 , Ta 2 O 5 , ZrO 2 , Y 2 O (3 ) The element according to any one of (1) to (8), which contains at least one kind of oxide or element selected from CeO 2 , MnO, TiO, ZnO, and C Thermally assisted magnetic recording medium.
(10) A magnetic recording medium, a drive unit for rotating the magnetic recording medium, a laser generating unit for heating the magnetic recording medium, and a laser beam generated from the laser generating unit for guiding the laser light to the head tip In a magnetic storage device comprising a waveguide, a magnetic head having a near-field light generating unit attached to the tip of the head, a driving unit for moving the magnetic head, and a recording / reproducing signal processing system, the magnetic recording medium Is a heat-assisted medium according to any one of (1) to (9).

本発明により、高いL1規則度を有し、かつ、磁性粒子間の交換結合が十分に低減された磁性粒子からなる熱アシスト記録媒体が実現され、これを用いた磁気記憶装置を提供することができる。 The present invention has a high L1 0 ordering parameter, and heat-assisted recording medium is realized in which the exchange coupling between the magnetic particles comprise sufficiently reduced magnetic particles, to provide a magnetic storage apparatus using the same Can do.

本発明の磁気記録媒体の層構成の一例を表す図The figure showing an example of the laminated constitution of the magnetic recording medium of this invention 本発明の磁気記録媒体の層構成の一例を表す図The figure showing an example of the laminated constitution of the magnetic recording medium of this invention 本発明の磁気ヘッドを表す図The figure showing the magnetic head of this invention 本発明の磁気記録媒体のArガス圧とSNRの関係を表す図The figure showing the relationship between Ar gas pressure and SNR of the magnetic recording medium of the present invention 本発明の磁気記憶装置の傾視図The perspective view of the magnetic storage device of the present invention

本願発明の熱アシスト磁気記録媒体は、基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層を含み、該下地層の少なくとも一つが、Ru、もしくはRuを主成分とするHCP構造を有する合金であることを特徴とする。 Thermally assisted magnetic recording medium of the present invention includes a substrate, a plurality of base layer formed on the substrate, comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, at least one underlayer, It is characterized by being an alloy having an HCP structure mainly composed of Ru or Ru.

Ru下地層は、CoCrPt合金と酸化物からなるグラニュラー磁性層の下地層として広く用いられている。この場合、Ru下地層は(00・1)配向をとっている。CoCrPt合金はRuと同じHCP構造を有し、格子定数も比較的近い。よって、(00・1)配向したRu下地層の上にCoCrPt合金を形成することにより、該CoCrPt合金がエピタキシャル成長により、良好な(00・1)配向を示す。これが、CoCrPt合金磁性層を用いた現行の垂直記録媒体でRu下地層が広く使用されている理由である。   The Ru underlayer is widely used as an underlayer for a granular magnetic layer made of a CoCrPt alloy and an oxide. In this case, the Ru underlayer has a (00 · 1) orientation. The CoCrPt alloy has the same HCP structure as Ru and has a relatively close lattice constant. Therefore, by forming a CoCrPt alloy on the (00 · 1) oriented Ru underlayer, the CoCrPt alloy exhibits good (00 · 1) orientation by epitaxial growth. This is the reason why the Ru underlayer is widely used in current perpendicular recording media using a CoCrPt alloy magnetic layer.

一方、磁性層にL1構造を有する合金、例えばFePt合金等を用いる場合、上記Ru下地層を使用することは困難と考えられていた。これは、L1−FePt合金の(00・1)面は、4回対称の正方形であるため、六回対称のRu(00・1)面上にエピタキシャル成長しないと考えられていたためである。 Meanwhile, the alloy having an L1 0 structure in the magnetic layer, for example, when using a FePt alloy, has been considered to be difficult to use the Ru underlying layer. This is because the (00 · 1) plane of the L1 0 -FePt alloy is a four-fold symmetric square, and therefore it was considered that epitaxial growth does not occur on the six-fold Ru (00 · 1) plane.

ここでRu下地層を、スパッタリング法を用いて5Pa以上の高ガス圧で形成することにより、Ru結晶粒の初期成長部よりも上層部(先端部)が細くなったdome形状のRu結晶粒を形成することができる。これは、自己陰影効果によるものであるが、これにより、隣接するRu結晶粒間に深い溝が形成され、Ru下地層表面の凹凸が大きくなる。本願発明者は、L1構造を有する合金を主成分とする磁性層を、前期Ru下地層上に形成することにより、磁性粒子間にも溝が形成され、これにより粒子間の交換結合を低減できることを見いだした。これにより、磁気クラスターサイズが低減され、低ノイズな熱アシスト媒体を得ることができる。 Here, by forming the Ru underlayer at a high gas pressure of 5 Pa or more by using a sputtering method, dome-shaped Ru crystal grains in which the upper layer part (tip part) is thinner than the initial growth part of the Ru crystal grains. Can be formed. This is due to the self-shading effect, but as a result, deep grooves are formed between adjacent Ru crystal grains, and the unevenness of the Ru underlayer surface becomes large. The present inventor has a magnetic layer mainly composed of an alloy having an L1 0 structure, by forming the previous period Ru underlying layer, grooves are also formed between the magnetic grains, thereby reducing the exchange coupling between grains I found what I could do. Thereby, the magnetic cluster size is reduced, and a low noise heat assist medium can be obtained.

Ru下地層は、Al、Co、Ni、Mn、Cr、V、Mo、W、Ti、Ta、Zr、Cu、Si、B等の元素を含有していても良い。Ru合金がHCP構造を維持できる範囲内であれば、上記元素の含有量に特に制限はないが、より顕著な凹凸を形成するため、添加量は30at%(原子%)以下が望ましい。   The Ru underlayer may contain elements such as Al, Co, Ni, Mn, Cr, V, Mo, W, Ti, Ta, Zr, Cu, Si, and B. As long as the Ru alloy can maintain the HCP structure, the content of the element is not particularly limited. However, in order to form more prominent irregularities, the addition amount is desirably 30 at% (atomic%) or less.

また、L1−FePt合金に(001)配向をとらせるため、Ru下地層は(11・0)配向をとっていることが望ましい。Ruに(11・0)配向をとらせるには、例えば、Cr下地層を150〜300℃の高温で作製し、該Cr下地層上にRu下地層を形成すればよい。高温で形成されたCr下地層は、(100)配向をとるため、該Cr下地層上にRu下地層を形成することにより、該Ru下地層がエピタキシャル成長によって、(11・0)配向を示す。Cr下地層の代わりに、CrTi、CrMo、CrV、CrMn、CrW等のBCC構造を有するCr合金を用いても良い。Ru下地層に(11・0)配向をとらせるための、Cr、もしくはCr合金下地層を、以後、配向制御層と記す。配向制御層にCr合金を用いる場合、該Cr合金に含まれるTi、Mo、V、W等の添加元素の含有量は、概ね40at%以下が望ましい。40at%を上回ると、配向制御層の(100)配向が劣化するため、好ましくない。 Further, in order to make the L1 0 -FePt alloy take the (001) orientation, it is desirable that the Ru underlayer has the (11.0) orientation. In order to make Ru have (11.0) orientation, for example, a Cr underlayer is formed at a high temperature of 150 to 300 ° C., and a Ru underlayer is formed on the Cr underlayer. Since the Cr underlayer formed at a high temperature has a (100) orientation, the Ru underlayer is formed on the Cr underlayer so that the Ru underlayer exhibits (11.0) orientation by epitaxial growth. Instead of the Cr underlayer, a Cr alloy having a BCC structure such as CrTi, CrMo, CrV, CrMn, or CrW may be used. Hereinafter, the Cr or Cr alloy underlayer for allowing the Ru underlayer to take (11.0) orientation is referred to as an orientation control layer. When a Cr alloy is used for the orientation control layer, the content of additive elements such as Ti, Mo, V, and W contained in the Cr alloy is preferably approximately 40 at% or less. If it exceeds 40 at%, the (100) orientation of the orientation control layer deteriorates, which is not preferable.

また、配向制御層として、B2構造を有するNiAl合金、もしくはRuAl合金を用いても良い。NiAl合金、もしくはRuAl合金を概ね150℃以上の高温で形成した場合、(100)配向を示す。よって、該NiAl合金、もしくはRuAl合金からなる配向制御層の上にRuを形成することにより、該Ruに(11・0)配向をとらせることができる。   Further, a NiAl alloy having a B2 structure or a RuAl alloy may be used as the orientation control layer. When a NiAl alloy or a RuAl alloy is formed at a high temperature of approximately 150 ° C. or higher, (100) orientation is exhibited. Therefore, by forming Ru on the orientation control layer made of the NiAl alloy or RuAl alloy, it is possible to make the Ru take (11.0) orientation.

配向制御層と、Ru、もしくはRu合金下地層の間に、格子ミスフィットを緩和するためのミスフィット緩和層を形成してもよい。これにより、磁性層の配向性が改善され、Hcを更に高くすることができる。ミスフィット緩和層には、BCC構造、もしくはHCP構造を有する合金を用いことができる。ミスフィット緩和層にBCC構造の合金を用いる場合、該BCC合金の格子定数aBCCは、配向制御層の格子定数をa、Ru、もしくはRu合金のa軸の格子定数をaとすると、a < aBCC < 1.22aであることが望ましい。また、ミスフィット緩和層にHCP構造の合金を用いる場合、該HCP合金のa軸の格子定数aHCPは、a < 1.22aHCP < 1.22aであることが望ましい。配向制御層には、例えば、MoCr、MoV、WCr、WV、WMo等のBCC合金や、RuCo、RuCr等のHCP合金を用いることができる。 A misfit mitigation layer for mitigating lattice misfit may be formed between the orientation control layer and the Ru or Ru alloy underlayer. Thereby, the orientation of the magnetic layer is improved, and Hc can be further increased. For the misfit mitigating layer, an alloy having a BCC structure or an HCP structure can be used. When an alloy having a BCC structure is used for the misfit relaxation layer, the lattice constant a BCC of the BCC alloy is a 1 , Ru, or the a-axis lattice constant of the Ru alloy is a 2 . It is desirable that a 1 <a BCC <1.22a 2 . In addition, when an HCP structure alloy is used for the misfit mitigating layer, the a-axis lattice constant a HCP of the HCP alloy is preferably a 1 <1.22a HCP <1.22a 2 . For the orientation control layer, for example, a BCC alloy such as MoCr, MoV, WCr, WV, or WMo, or an HCP alloy such as RuCo or RuCr can be used.

L1−FePt合金からなる磁性層は、Ru、もしくはRu下地層上に直接形成してもよいが、Ru、もしくはRu下地層上にMgO下地層を形成し、該MgO下地層上に形成してもよい。Ru下地層と、磁性層間にMgOを導入することにより、下地層中の元素が磁性層中に拡散するのを防ぐことができる。但し、MgO層を厚くしすぎると、表面の凹凸が低下するため、MgO膜厚は5nm以下、望ましくは3nm以下が好ましい。 The magnetic layer made of the L1 0 -FePt alloy may be formed directly on the Ru or Ru underlayer, but the MgO underlayer is formed on the Ru or Ru underlayer, and is formed on the MgO underlayer. May be. By introducing MgO between the Ru underlayer and the magnetic layer, the elements in the underlayer can be prevented from diffusing into the magnetic layer. However, if the MgO layer is too thick, the surface unevenness is lowered, so the MgO film thickness is 5 nm or less, preferably 3 nm or less.

磁性層には、L1型結晶構造を有するFePt合金、もしくはCoPt合金を用いることができる。磁性層は、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、Cから選択される少なくとも一種類の酸化物、もしくは元素を含有していることが望ましい。上記酸化物、もしくは元素が磁性結晶粒を分断したグラニュラー構造をとらせることによって、磁性粒子間の交換結合を低減できると同時に、磁性結晶粒を微細化できる。 The magnetic layer can be used for FePt alloy or CoPt alloy, having an L1 0 type crystal structure. The magnetic layer is at least one selected from SiO 2 , TiO 2 , Cr 2 O 3 , Al 2 O 3 , Ta 2 O 5 , ZrO 2 , Y 2 O 3 , CeO 2 , MnO, TiO, ZnO, and C. It is desirable to contain an oxide or an element. By adopting a granular structure in which the oxide or element divides the magnetic crystal grains, exchange coupling between the magnetic grains can be reduced and the magnetic crystal grains can be made finer.

Cr、もしくはCr合金下地層(配向制御層)と基板の間に、密着性を改善するための密着層を設けても良い。また、ヒートシンク層として、熱伝導率の高いCu、Ag、Au、Al、もしくはこれらの合金層を設けても良い。また、書き込み能力を改善するため、軟磁性下地層(SUL)を形成しても良い。SULとしては、CoTaZr、CoFeZrTa、CoFeTaSi、CoFeZrB、FeTaC、FeAlSi、NiFe等を用いることができる。SULは上記軟磁性合金単層としても良いし、Ruを介して反強磁性結合した積層膜でもよい。   An adhesion layer for improving adhesion may be provided between the Cr or Cr alloy underlayer (orientation control layer) and the substrate. Further, as the heat sink layer, Cu, Ag, Au, Al, or an alloy layer thereof having high thermal conductivity may be provided. Further, a soft magnetic underlayer (SUL) may be formed to improve the writing ability. As SUL, CoTaZr, CoFeZrTa, CoFeTaSi, CoFeZrB, FeTaC, FeAlSi, NiFe, or the like can be used. The SUL may be a single soft magnetic alloy layer or a laminated film antiferromagnetically coupled via Ru.

(実施例1)
図1に本実施例で作製した磁気記録媒体の層構成の一例を示す。ガラス基板101、Co−50at%Tiシード層102、Co−3at%Nb−5at%Zr軟磁性下地層(SUL)103、Cr−20at%V下地層104、Ru、もしくはRu合金下地層105、(Fe−45at%Pt)−12mol%TiO磁性層106、Fe−30at%Niキャップ層107、DLC保護膜108が順次形成されている。シード層からキャップ層までの成膜はスパッタリング法、DLC保護膜はイオンビーム法を用いた。Ru合金には、RuAl、RuCo、RuNi、RuMn、RuCr、RuV、RuMo、RuW、RuTi、RuTa、及びRuZr合金を用いた。CrV合金下地層の(100)配向化を促進するため、該下地層形成前に、150〜300℃の基板加熱を行うことが望ましいが本実施例では280 ℃で加熱を行った。また、磁性層の規則度改善のため、磁性層形成前に400℃以上の基板加熱を行った。Ru、もしくはRu合金下地層は、5Pa以上、望ましくは10Pa以上のArガス雰囲気中で形成することが好ましいが、本実施例では、12Paで形成した。
また、上記媒体と同一層構成で、Ru、もしくはRu合金下地層を形成しない(w/o Ru)媒体を比較例1として作製した。
Example 1
FIG. 1 shows an example of the layer structure of the magnetic recording medium produced in this example. Glass substrate 101, Co-50at% Ti seed layer 102, Co-3at% Nb-5at% Zr soft magnetic underlayer (SUL) 103, Cr-20at% V underlayer 104, Ru or Ru alloy underlayer 105, An Fe-45 at% Pt) -12 mol% TiO 2 magnetic layer 106, an Fe-30 at% Ni cap layer 107, and a DLC protective film 108 are sequentially formed. A sputtering method was used for film formation from the seed layer to the cap layer, and an ion beam method was used for the DLC protective film. As the Ru alloy, RuAl, RuCo, RuNi, RuMn, RuCr, RuV, RuMo, RuW, RuTi, RuTa, and RuZr alloy were used. In order to promote the (100) orientation of the CrV alloy underlayer, it is desirable to heat the substrate at 150 to 300 ° C. before the formation of the underlayer, but in this example, the substrate was heated at 280 ° C. In order to improve the degree of order of the magnetic layer, the substrate was heated at 400 ° C. or higher before forming the magnetic layer. The Ru or Ru alloy underlayer is preferably formed in an Ar gas atmosphere of 5 Pa or more, desirably 10 Pa or more, but in this example, it was formed at 12 Pa.
Further, as a comparative example 1, a medium having the same layer configuration as that of the medium and having no Ru or Ru alloy underlayer (w / o Ru) was produced.

本実施例媒体のX線回折測定を行ったところ、CrV下地層のBCC(100)配向、Ru、もしくはRu合金下地層のHCP(11・0)配向、磁性層のL1(001)配向が確認できた。表1に本実施例媒体の保磁力Hc、磁性層の平均粒径<D>、及びクラスターサイズDnを示す。ここで、平均粒径は、TEM観察により見積もった。また、クラスターサイズは、IEEE Trans. Magn., vol. 27, pp4975−4977, 1991に記載の方法を用いて室温で測定した。具体的には、マイナーループ解析から見積もった反磁界係数Ndと磁性膜tmagを用いて、Dn=tmag×√Ndとしてクラスターサイズを算出した。尚、表には、Ru下地層を形成せず、CrV下地層上に直接MgO下地層を形成した比較例媒体の値も示してある。本実施例媒体は、いずれも15kOe以上の高いHcを示した。これに対し、比較例媒体のHcは10.2kOeと低かった。平均粒径は、実施例、比較例共に概ね6−6.5nmで大きな差はみられなかった。一方、実施例媒体のDnはいずれも30nm以下であったのに対し、比較例媒体のDnは56nmと、実施例媒体よりも大幅に大きかった。実施例媒体と比較例媒体の平均粒径が、ほぼ同程度であったことから、実施例媒体のクラスターサイズが小さいのは、交換結合がより低減されているためと考えられる。 When X-ray diffraction measurement was performed on the medium of this example, the BCC (100) orientation of the CrV underlayer, the HCP (11.0) orientation of the Ru or Ru alloy underlayer, and the L1 0 (001) orientation of the magnetic layer were found. It could be confirmed. Table 1 shows the coercive force Hc, the average particle diameter <D> of the magnetic layer, and the cluster size Dn of the medium of this example. Here, the average particle diameter was estimated by TEM observation. In addition, the cluster size is IEEE Trans. Magn. , Vol. 27, pp 4975-4777, 1991, and measured at room temperature. Specifically, the cluster size was calculated as Dn = tmag × √Nd using the demagnetizing field coefficient Nd estimated from the minor loop analysis and the magnetic film tmag. The table also shows the values of comparative media in which the Ru underlayer was not formed but the MgO underlayer was formed directly on the CrV underlayer. All of the media of this example showed high Hc of 15 kOe or more. On the other hand, Hc of the comparative example medium was as low as 10.2 kOe. The average particle size was approximately 6 to 6.5 nm in both Examples and Comparative Examples, and no significant difference was observed. On the other hand, Dn of the example medium was 30 nm or less, whereas Dn of the comparative example medium was 56 nm, which was significantly larger than the example medium. Since the average particle sizes of the example medium and the comparative example medium were approximately the same, the reason why the cluster size of the example medium is small is considered that exchange coupling is further reduced.

Figure 2012014750
Figure 2012014750

以上より、Ru、もしくはRu合金からなる下地層を形成することにより、交換結合が低減され、クラスターサイズを低減できることが明らかになった。また、Ru合金下地層にRuCo、RuNi、RuCrを用いたときに、クラスターサイズが特に小さくなっており、これらの下地層を用いることにより、交換結合を著しく低減できることがわかった。   From the above, it has been clarified that exchange coupling is reduced and the cluster size can be reduced by forming an underlayer made of Ru or a Ru alloy. In addition, when RuCo, RuNi, and RuCr were used for the Ru alloy underlayer, the cluster size was particularly small, and it was found that the exchange coupling can be remarkably reduced by using these underlayers.

(実施例2)
図2に本実施例で作製した磁気記録媒体の層構成の一例を示す。ガラス基板201、Ti−50at%Alシード層202、Cu−2at%Zrヒートシンク層203、Ru−50at%Al下地層204、Mo−20at%V下地層205、Ru−2at%Cu下地層206、MgO下地層207、(Fe−50at%Pt)−45mol%C磁性層208、CoCrPtキャップ層209、DLC210が順次形成されている。シード層からキャップ層までの成膜はスパッタリング法、DLC保護膜はイオンビーム法を用いた。ここで、MoV下地層は、NiAl下地層とRuCu下地層の格子整合性を改善するためのミスフィット緩和層である。RuAl下地層に(100)配向をとらせるため、RuAl下地層形成前に200℃程度の基板加熱を行った。また、磁性層の規則度改善のため、磁性層形成前に450℃で基板加熱を行った。本実施例では、RuCu下地層成膜時のArガス圧を3Paから22Paまで変化させた。
(Example 2)
FIG. 2 shows an example of the layer structure of the magnetic recording medium manufactured in this example. Glass substrate 201, Ti-50at% Al seed layer 202, Cu-2at% Zr heat sink layer 203, Ru-50at% Al underlayer 204, Mo-20at% V underlayer 205, Ru-2at% Cu underlayer 206, MgO An underlayer 207, a (Fe-50 at% Pt) -45 mol% C magnetic layer 208, a CoCrPt cap layer 209, and a DLC 210 are sequentially formed. A sputtering method was used for film formation from the seed layer to the cap layer, and an ion beam method was used for the DLC protective film. Here, the MoV underlayer is a misfit relaxation layer for improving the lattice matching between the NiAl underlayer and the RuCu underlayer. In order to make the RuAl underlayer take (100) orientation, the substrate was heated to about 200 ° C. before the RuAl underlayer was formed. In order to improve the degree of order of the magnetic layer, the substrate was heated at 450 ° C. before forming the magnetic layer. In this example, the Ar gas pressure during RuCu underlayer film formation was changed from 3 Pa to 22 Pa.

本実施例媒体のX線回折測定を行ったところ、RuCu下地層成膜時のArガス圧に依らず、RuAl下地層のB2(100)配向、MoV下地層のBCC(100)配向、RuCu合金下地層のHCP(11・0)配向、磁性層のL1(001)配向が確認できた。 When X-ray diffraction measurement was performed on the medium of this example, it was found that the RuAl underlayer had a B2 (100) orientation, the MoV underlayer had a BCC (100) orientation, and a RuCu alloy, regardless of the Ar gas pressure during RuCu underlayer formation. The HCP (11.0) orientation of the underlayer and the L1 0 (001) orientation of the magnetic layer were confirmed.

本実施例で作製した媒体の記録再生特性を、図3に示したヘッドを用いて評価した。ヘッドは、主磁極301、補助磁極302、磁界を発生させるためのコイル303、レーザーダイオードLD304、LDから発生したレーザー光305を近接場発生素子306まで伝達するための導波路307から構成される記録ヘッド308、及びシールド309で挟まれた再生素子310から構成される再生ヘッド311からなる。近接場光素子から発生した近接場光により媒体312を加熱し、媒体の保磁力をヘッド磁界以下まで低下させて記録できる。また、LD、導波路、近接場発生素子からなる加熱機構313を主磁極と補助磁極の間に配置しても良い。但し、この場合、主磁極のリーディング側を加熱する必要があるため、媒体の進行方向は図とは逆に右側となる。   The recording / reproducing characteristics of the medium produced in this example were evaluated using the head shown in FIG. The head includes a main magnetic pole 301, an auxiliary magnetic pole 302, a coil 303 for generating a magnetic field, a laser diode LD304, and a waveguide 307 for transmitting laser light 305 generated from the LD to the near-field generating element 306. The reproducing head 311 includes a reproducing element 310 sandwiched between a head 308 and a shield 309. Recording can be performed by heating the medium 312 with near-field light generated from the near-field light element, and reducing the coercive force of the medium to a head magnetic field or less. In addition, a heating mechanism 313 including an LD, a waveguide, and a near-field generating element may be disposed between the main magnetic pole and the auxiliary magnetic pole. However, in this case, since the leading side of the main magnetic pole needs to be heated, the traveling direction of the medium is on the right side contrary to the figure.

上記ヘッドで評価した本実施例媒体のSNRとRuCu下地層形成時のArガス圧の関係を図4に示す。ガス圧の増加と共にSNRが増加し、5Pa以上で14dB以上の高いSNRが得られる。SNRはガス圧増加と共に更に増加し、10Pa以上で15dB以上の値が得られている。   FIG. 4 shows the relationship between the SNR of the medium of this example evaluated by the head and the Ar gas pressure when forming the RuCu underlayer. As the gas pressure increases, the SNR increases, and a high SNR of 14 dB or more is obtained at 5 Pa or more. The SNR further increases with an increase in gas pressure, and a value of 15 dB or more is obtained at 10 Pa or more.

RuCu下地層をArガス圧3Paで形成した媒体と、10Paで形成した媒体の磁性層の平均粒径を、平面TEM観察により見積もったところ、両者の平均粒径は、それぞれ6.1nm、6.3nmでほぼ同程度であった。尚、上記平面TEM観察は、磁性層の平均粒径を精密に見積もるため、CoCrPtキャップ層を形成しない媒体を作製して行った。また、実施例1で述べた手法と同様の手法で両者のクラスターサイズを見積もったところ、RuCu下地層をArガス圧3Paで形成した媒体のクラスターサイズは62nmであった。これに対して、RuCu下地層を10Paで形成した媒体のクラスターサイズは22nmと小さかった。このことは、後者の媒体で磁性粒子間の交換相互作用がより低減されていることを示している。また、両者の断面TEM観察を行ったところ、10Paで形成したRuCu下地層の方が、先端部が細くなっており、粒子間に深い溝が形成されていた。交換相互作用が低減されたのは、このためと考えられる。以上より、RuCu下地層形成時のArガス圧を増加させることにより、磁性粒子間の交換相互作用が低減され、SNRを改善できることがわかった。RuCu形成時のArガス圧を10Paから更に増加させてもSNRに大きな変化はないが、ガス圧を過剰に増加させると、ヘッドの浮上特性等のHDI性能が劣化するため、Arガス圧は40Pa以下が望ましい。   When the average particle diameter of the magnetic layer of the medium in which the RuCu underlayer was formed at an Ar gas pressure of 3 Pa and the medium formed at 10 Pa was estimated by planar TEM observation, the average particle diameter of both was 6.1 nm and 6. It was almost the same at 3 nm. The planar TEM observation was performed by producing a medium on which no CoCrPt cap layer was formed in order to accurately estimate the average particle diameter of the magnetic layer. Further, when the cluster size of both was estimated by the same method as described in Example 1, the cluster size of the medium in which the RuCu underlayer was formed at an Ar gas pressure of 3 Pa was 62 nm. On the other hand, the cluster size of the medium in which the RuCu underlayer was formed at 10 Pa was as small as 22 nm. This indicates that the exchange interaction between magnetic particles is further reduced in the latter medium. Moreover, when cross-sectional TEM observation of both was performed, the tip of the RuCu underlayer formed at 10 Pa was narrower and deep grooves were formed between the particles. This is considered to be why the exchange interaction is reduced. From the above, it has been found that by increasing the Ar gas pressure during the formation of the RuCu underlayer, the exchange interaction between the magnetic particles is reduced and the SNR can be improved. Even if the Ar gas pressure during RuCu formation is further increased from 10 Pa, the SNR does not change greatly. However, if the gas pressure is excessively increased, the HDI performance such as the flying characteristics of the head deteriorates, so the Ar gas pressure is 40 Pa. The following is desirable.

(実施例3)
実施例1で示した媒体(実施例媒体1.1〜1.12)にパーフルオルポリエーテル系の潤滑剤を塗布したのち、図5に示した磁気記憶装置に組み込んだ。本磁気記憶装置は、磁気記録媒体501と、磁気記録媒体を回転させるための駆動部502と、磁気ヘッド503と、ヘッドを移動させるための駆動部504と、記録再生信号処理系505から構成される。磁気ヘッドは図3で示したヘッドと同一構造のヘッドを用いた。表2に1400kFCIの信号を記録し、記録再生特性を評価したときのSNRと記録トラック幅MWWを示す。ここで、記録トラック幅はトラックプロファイルの半値幅と定義した。実施例媒体はいずれも15dB以上の高いSNRと、60nm以下の狭いMWWを示した。中でも、クラスターサイズが特に小さかった実施例媒体1.3、実施例媒体1.4、実施例媒体1.6が高いSNRを示した。また、RuMn、RuW、RuTa下地層を用いた実施例媒体1.5、実施例媒体1.9、実施例媒体1.11が特に狭いMWWを示した。よって、トラック密度を上げる場合は、RuW、RuMo、RuSi下地層を用いることが望ましいことがわかった。
(Example 3)
A perfluoropolyether-based lubricant was applied to the medium shown in Example 1 (Example mediums 1.1 to 1.12), and then incorporated into the magnetic storage device shown in FIG. This magnetic storage device includes a magnetic recording medium 501, a driving unit 502 for rotating the magnetic recording medium, a magnetic head 503, a driving unit 504 for moving the head, and a recording / reproducing signal processing system 505. The A magnetic head having the same structure as the head shown in FIG. 3 was used. Table 2 shows the SNR and the recording track width MWW when a 1400 kFCI signal was recorded and the recording / reproduction characteristics were evaluated. Here, the recording track width is defined as the half width of the track profile. All of the example media exhibited a high SNR of 15 dB or more and a narrow MWW of 60 nm or less. Among them, the example medium 1.3, the example medium 1.4, and the example medium 1.6, in which the cluster size was particularly small, exhibited high SNR. Further, Example Medium 1.5, Example Medium 1.9, and Example Medium 1.11 using RuMn, RuW, and RuTa underlayers showed particularly narrow MWW. Therefore, it was found that it is desirable to use a RuW, RuMo, or RuSi underlayer when increasing the track density.

Figure 2012014750
Figure 2012014750

101…ガラス基板
102…CoTiシード層
103…CoNbZr軟磁性下地層
104…CrV下地層
105…Ru、もしくはRu合金下地層
106…FePt−TiO2磁性層
107…FeNiキャップ層
108…DLC保護膜
201…ガラス基板
202…TiAlシード層
203…CuZrヒートシンク層
204…RuAl下地層
205…MoV下地層
206…RuCu下地層
207…MgO下地層
208…FePtC磁性層
209…CoCrPtキャップ層
2010…DLC保護膜
301…主磁極
302…補助磁極
303…コイル
304…半導体レーザーダイオード
305…レーザー光
306…近接場光発生部
307…導波路
308…記録ヘッド
309…シールド
310…再生素子
311…再生ヘッド
501…磁気記録媒体
502…媒体駆動部
503…磁気ヘッド
504…ヘッド駆動部
505…記録再生信号処理系
DESCRIPTION OF SYMBOLS 101 ... Glass substrate 102 ... CoTi seed layer 103 ... CoNbZr soft magnetic underlayer 104 ... CrV underlayer 105 ... Ru or Ru alloy underlayer 106 ... FePt-TiO2 magnetic layer 107 ... FeNi cap layer 108 ... DLC protective film 201 ... Glass Substrate 202 ... TiAl seed layer 203 ... CuZr heat sink layer 204 ... RuAl underlayer 205 ... MoV underlayer 206 ... RuCu underlayer 207 ... MgO underlayer 208 ... FePtC magnetic layer 209 ... CoCrPt cap layer 2010 ... DLC protective film 301 ... main magnetic pole 302 ... auxiliary magnetic pole 303 ... coil 304 ... semiconductor laser diode 305 ... laser beam 306 ... near-field light generator 307 ... waveguide 308 ... recording head 309 ... shield 310 ... reproducing element 311 ... reproducing head 501 ... magnetic recording medium 502 ... Body drive unit 503 ... magnetic head 504 ... head driving unit 505 ... recording signal processing system

Claims (10)

基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層を含む熱アシスト磁気記録媒体において、該下地層の少なくとも一つが、Ru、もしくはRuを主成分とするHCP構造を有する合金であることを特徴とする熱アシスト磁気記録媒体。 A substrate, a plurality of base layer formed on the substrate, the thermally assisted magnetic recording medium comprising a magnetic layer mainly composed of an alloy having an L1 0 structure, at least one underlayer, Ru or Ru, A heat-assisted magnetic recording medium, characterized by being an alloy having an HCP structure mainly composed of Ruを主成分とする下地層が、RuAl、RuCo、RuNi、RuMn、RuCr、RuV、RuMo、RuW、RuTi、RuTa、RuZr、RuCu、RuSi、RuB合金の何れかであることを特徴とする請求項1に記載の熱アシスト磁気記録媒体。 The underlayer comprising Ru as a main component is any one of RuAl, RuCo, RuNi, RuMn, RuCr, RuV, RuMo, RuW, RuTi, RuTa, RuZr, RuCu, RuSi, and RuB alloy. 2. The heat-assisted magnetic recording medium according to 1. Ru、もしくはRu合金下地層が(11・0)面を基板面と平行とした配向をとっていることを特徴とする請求項1または2に記載の熱アシスト磁気記録媒体。 3. The heat-assisted magnetic recording medium according to claim 1, wherein the Ru or Ru alloy underlayer is oriented with the (11.0) plane being parallel to the substrate surface. Ru、もしくはRu合金下地層が5Pa以上のArガス雰囲気中でのスパッタリング法で形成されていることを特徴とする請求項1乃至3の何れか1項に記載の熱アシスト磁気記録媒体。 The heat-assisted magnetic recording medium according to any one of claims 1 to 3, wherein the Ru or Ru alloy underlayer is formed by a sputtering method in an Ar gas atmosphere of 5 Pa or more. Ru、もしくはRu合金下地層上に、MgO下地層が形成されており、該MgO下地層上に磁性層が形成されていることを特徴とする請求項1乃至4の何れか1項に記載の熱アシスト磁気記録媒体。 5. The MgO underlayer is formed on the Ru or Ru alloy underlayer, and the magnetic layer is formed on the MgO underlayer. 6. Thermally assisted magnetic recording medium. Ru、もしくはRu合金下地層が、Cr、もしくはCrを主成分とするBCC構造の合金からなる下地層上に形成されていることを特徴とする請求項1乃至5の何れか1項に記載の熱アシスト磁気記録媒体。 The Ru or Ru alloy underlayer is formed on an underlayer made of Cr or an alloy having a BCC structure containing Cr as a main component, according to any one of claims 1 to 5. Thermally assisted magnetic recording medium. Crを主成分とするBCC構造の合金が、CrTi、CrMo、CrV、CrMn、CrW合金の何れかであることを特徴とする請求項6に記載の熱アシスト磁気記録媒体。 7. The heat-assisted magnetic recording medium according to claim 6, wherein the alloy having a BCC structure mainly composed of Cr is any one of CrTi, CrMo, CrV, CrMn, and CrW alloys. Ru、もしくはRu合金下地層が、B2構造を有するNiAl、もしくはRuAl合金下地層上に形成されていることを特徴とする請求項1乃至5の何れか1項に記載の熱アシスト磁気記録媒体。 The heat-assisted magnetic recording medium according to claim 1, wherein the Ru or Ru alloy underlayer is formed on a NiAl or RuAl alloy underlayer having a B2 structure. 磁性層がL1構造を有するFePt、もしくはCoPt合金を主成分とし、かつ、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、Cから選択される少なくとも一種類の酸化物、もしくは元素を含有していることを特徴とする請求項1乃至8の何れか1項に記載の熱アシスト磁気記録媒体。 The magnetic layer is mainly composed of FePt or CoPt alloy having an L1 0 structure, and SiO 2 , TiO 2 , Cr 2 O 3 , Al 2 O 3 , Ta 2 O 5 , ZrO 2 , Y 2 O 3 , CeO. 9. The heat-assisted magnetic recording medium according to claim 1, comprising at least one oxide or element selected from 2 , MnO, TiO, ZnO, and C. 10. . 磁気記録媒体と、該磁気記録媒体を回転させるための駆動部と、該磁気記録媒体を加熱するためのレーザー発生部と、該レーザー発生部から発生したレーザー光をヘッド先端まで導く導波路と、ヘッド先端に取り付けられた近接場光発生部を備えた磁気ヘッドと、該磁気ヘッドを移動させるための駆動部と、記録再生信号処理系から構成さる磁気記憶装置において、該磁気記録媒体が請求項1乃至9の何れか1項に記載の熱アシスト媒体であることを特徴とする磁気記憶装置。
A magnetic recording medium, a driving unit for rotating the magnetic recording medium, a laser generating unit for heating the magnetic recording medium, a waveguide for guiding laser light generated from the laser generating unit to the head tip, In a magnetic storage device comprising a magnetic head having a near-field light generating unit attached to the tip of the head, a driving unit for moving the magnetic head, and a recording / reproducing signal processing system, the magnetic recording medium is claimed. A magnetic storage device according to any one of 1 to 9, wherein the magnetic storage device is the heat-assisted medium.
JP2010147016A 2010-06-29 2010-06-29 Thermally assisted magnetic recording medium and magnetic storage device Active JP5561773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147016A JP5561773B2 (en) 2010-06-29 2010-06-29 Thermally assisted magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147016A JP5561773B2 (en) 2010-06-29 2010-06-29 Thermally assisted magnetic recording medium and magnetic storage device

Publications (2)

Publication Number Publication Date
JP2012014750A true JP2012014750A (en) 2012-01-19
JP5561773B2 JP5561773B2 (en) 2014-07-30

Family

ID=45601005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147016A Active JP5561773B2 (en) 2010-06-29 2010-06-29 Thermally assisted magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP5561773B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165002A1 (en) * 2012-05-01 2013-11-07 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording/reproducing apparatus
WO2013172260A1 (en) * 2012-05-14 2013-11-21 昭和電工株式会社 Magnetic recording medium and magnetic recording/reproducing device
JP2014049146A (en) * 2012-08-29 2014-03-17 Showa Denko Kk Magnetic recording medium and magnetic recording playback device
JP2014053065A (en) * 2012-08-07 2014-03-20 Hitachi Metals Ltd Sputtering target material for heat sink layer formation of heat-assisted magnetic recording medium
JP2014078304A (en) * 2012-10-11 2014-05-01 Showa Denko Kk Magnetic recording medium, manufacturing method of magnetic recording medium, and magnetic recording/reproducing device
JP2015005317A (en) * 2013-06-20 2015-01-08 昭和電工株式会社 Magnetic recording medium, magnetic storage device
JP2015015061A (en) * 2013-07-03 2015-01-22 昭和電工株式会社 Magnetic recording medium, and magnetic memory device
JP2015088217A (en) * 2013-11-01 2015-05-07 エイチジーエスティーネザーランドビーブイ Vertical small particle media weakly coupled vertically and horizontally
US10170145B2 (en) 2016-01-12 2019-01-01 Fuji Electric Co., Ltd. Magnetic recording medium and method for producing the same
US10847181B2 (en) 2016-01-12 2020-11-24 Fuji Electric Co., Ltd. Magnetic recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012319A (en) * 2004-06-28 2006-01-12 Sony Corp Magnetic recording medium
JP2007257679A (en) * 2006-03-20 2007-10-04 Fujitsu Ltd Magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2008052869A (en) * 2006-08-28 2008-03-06 Hitachi Global Storage Technologies Netherlands Bv Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP2009026394A (en) * 2007-07-20 2009-02-05 Univ Chuo Magnetic recording medium and magnetic recording / reproducing apparatus
JP2010129163A (en) * 2008-12-01 2010-06-10 Showa Denko Kk Thermally-assisted magnetic recording medium, and magnetic recording and reproducing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012319A (en) * 2004-06-28 2006-01-12 Sony Corp Magnetic recording medium
JP2007257679A (en) * 2006-03-20 2007-10-04 Fujitsu Ltd Magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2008052869A (en) * 2006-08-28 2008-03-06 Hitachi Global Storage Technologies Netherlands Bv Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP2009026394A (en) * 2007-07-20 2009-02-05 Univ Chuo Magnetic recording medium and magnetic recording / reproducing apparatus
JP2010129163A (en) * 2008-12-01 2010-06-10 Showa Denko Kk Thermally-assisted magnetic recording medium, and magnetic recording and reproducing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165002A1 (en) * 2012-05-01 2013-11-07 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording/reproducing apparatus
JP2013232266A (en) * 2012-05-01 2013-11-14 Showa Denko Kk Thermally assisted magnetic recording medium and magnetic recording/reproducing apparatus
US9007880B2 (en) 2012-05-01 2015-04-14 Showa Denko K.K. Thermally assisted magnetic recording medium and magnetic recording and reproducing apparatus
JP2013257930A (en) * 2012-05-14 2013-12-26 Showa Denko Kk Magnetic recording medium and magnetic recording reproduction device
WO2013172260A1 (en) * 2012-05-14 2013-11-21 昭和電工株式会社 Magnetic recording medium and magnetic recording/reproducing device
US9361924B2 (en) 2012-05-14 2016-06-07 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing apparatus
JP2014053065A (en) * 2012-08-07 2014-03-20 Hitachi Metals Ltd Sputtering target material for heat sink layer formation of heat-assisted magnetic recording medium
JP2014049146A (en) * 2012-08-29 2014-03-17 Showa Denko Kk Magnetic recording medium and magnetic recording playback device
JP2014078304A (en) * 2012-10-11 2014-05-01 Showa Denko Kk Magnetic recording medium, manufacturing method of magnetic recording medium, and magnetic recording/reproducing device
JP2015005317A (en) * 2013-06-20 2015-01-08 昭和電工株式会社 Magnetic recording medium, magnetic storage device
JP2015015061A (en) * 2013-07-03 2015-01-22 昭和電工株式会社 Magnetic recording medium, and magnetic memory device
JP2015088217A (en) * 2013-11-01 2015-05-07 エイチジーエスティーネザーランドビーブイ Vertical small particle media weakly coupled vertically and horizontally
US10170145B2 (en) 2016-01-12 2019-01-01 Fuji Electric Co., Ltd. Magnetic recording medium and method for producing the same
US10847181B2 (en) 2016-01-12 2020-11-24 Fuji Electric Co., Ltd. Magnetic recording medium

Also Published As

Publication number Publication date
JP5561773B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5561773B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5961490B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
CN102725793B (en) Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP6145332B2 (en) Magnetic recording medium, magnetic storage device
JP5923324B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP6317896B2 (en) Magnetic recording medium and magnetic storage device
JP6014385B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP6145350B2 (en) Magnetic recording medium, magnetic storage device
US20110235479A1 (en) Thermally assisted magnetic recording medium and magnetic recording storage
CN104282318B (en) Magnetic recording medium and magnetic storage apparatus
JP5506604B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5938224B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP6009055B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5961439B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP2018106774A (en) Magnetic recording medium and magnetic memory device
JP5923152B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5858634B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5730047B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP2013149328A (en) Magnetic recording medium and magnetic recording and reproducing device
JP5787349B2 (en) Thermally assisted magnetic recording medium and magnetic storage device
JP5685983B2 (en) Magnetic recording medium
JP2018206457A (en) Magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5561773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350