[go: up one dir, main page]

JP2012018330A - Optical sheet - Google Patents

Optical sheet Download PDF

Info

Publication number
JP2012018330A
JP2012018330A JP2010156299A JP2010156299A JP2012018330A JP 2012018330 A JP2012018330 A JP 2012018330A JP 2010156299 A JP2010156299 A JP 2010156299A JP 2010156299 A JP2010156299 A JP 2010156299A JP 2012018330 A JP2012018330 A JP 2012018330A
Authority
JP
Japan
Prior art keywords
prism
main body
optical sheet
optical
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010156299A
Other languages
Japanese (ja)
Inventor
Hiroshi Kojima
弘 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010156299A priority Critical patent/JP2012018330A/en
Publication of JP2012018330A publication Critical patent/JP2012018330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】プリズム面側とは反対の裏面側に、微粒子を含有させた凹凸塗膜表面の微小突起によって光学密着を防いだ光学シートで、微小突起による傷付きや、微粒子の脱落を防ぐ。更にまた、プリズム面側での光学密着も改善する。
【解決手段】光学シート10は、柱状単位プリズム1が稜線を互いに平行に配列したプリズム群が、シート状の本体部2の一方の面2pに有し、他方の面2qに突出高さHの平均が0.38μm以上の微小突起4が表面に形成された凹凸塗膜3を有する。しかも、凹凸塗膜はバインダ樹脂3a中に微小突起4を生成する為の球状粒子3bを含み、更にポリエーテル変性ジメチルポリシロキサン等の滑剤を含む。柱状単位プリズムの稜線の高さ(本体部からの間隔)を一定とせずに折れ線状に変化させておく、プリズム面側での光学密着も改善できる。
【選択図】図1
An optical sheet which prevents optical adhesion on a back surface side opposite to a prism surface side by microprotrusions on the surface of a concavo-convex coating film containing microparticles, and prevents damage from microprotrusions and dropping off of microparticles. Furthermore, optical adhesion on the prism surface side is also improved.
In an optical sheet, a prism group in which columnar unit prisms 1 are arranged in parallel with each other in a ridge line is provided on one surface 2p of a sheet-like main body 2, and a projection height H is formed on the other surface 2q. It has the uneven | corrugated coating film 3 by which the micro processus | protrusion 4 whose average is 0.38 micrometer or more was formed in the surface. In addition, the concavo-convex coating film includes spherical particles 3b for forming the fine protrusions 4 in the binder resin 3a, and further includes a lubricant such as polyether-modified dimethylpolysiloxane. Optical contact on the prism surface side can be improved by changing the height of the ridge line of the columnar unit prism (interval from the main body portion) to a polygonal line shape without making it constant.
[Selection] Figure 1

Description

本発明は、光の進行方向を変化させる光学シートに関する。特にプリズム面側とは反対側の面の光学密着を防ぐ為に塗膜層表面に生成させた微小突起による他の光学部材や自身の傷付き等の不具合を防止できる、光学シートに関する。   The present invention relates to an optical sheet that changes the traveling direction of light. In particular, the present invention relates to an optical sheet that can prevent other optical members due to fine protrusions generated on the surface of the coating layer to prevent optical adhesion of the surface opposite to the prism surface side, and defects such as scratches on the optical sheet.

透過型液晶ディスプレイ装置に於いて、背面光源の出光面上に配置してその出射光を集光し輝度を向上させる光学シートが知られている。
例えば、特許文献1では、三角柱単位プリズム等を配列したプリズム面の反対側の裏面に、高さが光源光の波長以上、100μm以下の空隙形成用の微小な突起を多数配置した光学シートが開示されている。裏面を単なる平滑面とせずに、この様な微小突起群を設けておくことで、光学シート裏面に導光板を隣接して配置したときに、導光板との光学密着を防止し、該光学密着による輝度の面内不均一化、干渉縞等を効果的に防げる様になる。
In a transmissive liquid crystal display device, there is known an optical sheet that is arranged on a light exit surface of a back light source and collects the emitted light to improve luminance.
For example, Patent Document 1 discloses an optical sheet in which a large number of minute projections for gap formation whose height is not less than the wavelength of the light source light and not more than 100 μm are arranged on the back surface opposite to the prism surface on which triangular prism unit prisms are arranged. Has been. By providing such a group of minute protrusions without making the back surface a mere smooth surface, when the light guide plate is disposed adjacent to the back surface of the optical sheet, optical contact with the light guide plate is prevented, and the optical contact It is possible to effectively prevent in-plane brightness non-uniformity, interference fringes, and the like.

また、この様な微小突起群は、熱エンボス法、紫外線又は電子線硬化性樹脂液と成形型を用いた成形法(2P法:フォトポリマー法)、微粒子を樹脂液中に含有させた塗料の塗膜表面に微粒子による凹凸を現出させる塗膜法などで形成できる。なかでも、塗膜法は、樹脂に熱可塑性樹脂や熱硬化性樹脂も使用でき、微粒子も樹脂ビーズ等を使用でき、他の方法に比べて、簡便且つ安価に形成できる利点がある。
ここで、塗膜法によって形成した微小突起を有する光学シートの一例を、図6の断面図で示す。同図の光学シート60は、三角柱単位プリズム61が多数配列したプリズム群が、本体部62の一方の面に形成され、本体部62の他方の面(裏面)に、バインダ樹脂63a中に微粒子63bを有する凹凸塗膜63が形成されている。そして、凹凸塗膜63の表面は微粒子63bの部分に微小突起64が形成されている構成である。
In addition, such a microprojection group includes a heat embossing method, a molding method using a UV or electron beam curable resin liquid and a molding die (2P method: photopolymer method), and a paint containing fine particles in the resin liquid. It can be formed by a coating method in which irregularities due to fine particles appear on the surface of the coating. Among them, the coating film method has an advantage that a thermoplastic resin or a thermosetting resin can be used for the resin, and fine particles can use resin beads or the like, which can be easily and inexpensively formed as compared with other methods.
Here, an example of an optical sheet having fine protrusions formed by a coating method is shown in the cross-sectional view of FIG. In the optical sheet 60 of FIG. 6, a prism group in which a large number of triangular prism unit prisms 61 are arranged is formed on one surface of the main body 62, and fine particles 63b in the binder resin 63a are formed on the other surface (back surface) of the main body 62. A concavo-convex coating 63 is formed. And the surface of the uneven | corrugated coating film 63 is the structure by which the microprotrusion 64 is formed in the part of the fine particle 63b.

ただ、微小突起64によって光学密着は防げるが、微小突起64に接する導光板などの他の光学部材の面が傷付くことがあった。それは、光学シート60と、光学シート60の微小突起64側の裏面に隣接配置する他の光学部材とが、該微小突起64の部分で接触した状態で使用されることになるのだが、製品の輸送時や移動時、或いは環境温度変化によるソリやタワミなどの熱変形等によって、点接触に近い接触部分に外力が加わり、該微小突起64の部分に応力が集中するからであった。
また、凹凸塗膜63内部の微粒子63bが塗膜から脱落して、脱落した微粒子が隣接する他の光学部材或いは自身を傷付けることもあった。
そこで、特許文献2では、この様な傷付を防止する為に、塗膜中に含有させる微粒子を、粒径分布の半値幅が1μm以下の球状ビーズとする技術を開示している。
However, although the optical contact can be prevented by the minute protrusion 64, the surface of another optical member such as a light guide plate in contact with the minute protrusion 64 may be damaged. That is, the optical sheet 60 and another optical member disposed adjacent to the back surface of the optical sheet 60 on the microprojection 64 side are used in a state where the microprojections 64 are in contact with each other. This is because an external force is applied to a contact portion close to a point contact due to thermal deformation such as warping or deflection due to a change in environmental temperature during transportation or movement, and stress concentrates on the portion of the minute protrusion 64.
In addition, the fine particles 63b inside the uneven coating 63 may fall off the coating film, and the dropped fine particles may damage other adjacent optical members or themselves.
Therefore, Patent Document 2 discloses a technique in which fine particles to be contained in the coating film are spherical beads having a half-value width of 1 μm or less in order to prevent such scratches.

特許第3518554号公報Japanese Patent No. 3518554 特許第3913870号公報Japanese Patent No. 3913870

しかしながら、塗膜中に含有させる微粒子として、特許文献2で開示された様な粒度分布が単分散の球状粒子を用いたとしても、光学部材の傷付き防止は充分とはいえなかった。
また、特許文献1や特許文献2などによって、光学シートの非プリズム側面である裏面と他の光学部材との光学密着に関する諸問題は解決できたとしても、プリズム面側の光学密着による問題も解決する必要性が高まってきた。それは、特に、近年、低コスト化や軽薄短小化の為に、光学シートと液晶パネル間に、従来は標準的に配置してきた光拡散シートを省略し、光学シートと液晶パネルとが隣接配置される構成が望まれて来たからである。この為、光学シートのプリズム面と液晶パネルの裏面との間でも、光学密着により、干渉縞や、水に濡れた様な明暗ムラ(光滲潤、wet−out)などの外観不良が発生するのを解決することが必要になってきた。
However, even when spherical particles having a monodispersed particle size distribution as disclosed in Patent Document 2 are used as the fine particles to be contained in the coating film, it is not sufficient to prevent the optical member from being damaged.
Moreover, even if various problems related to optical contact between the back surface, which is the non-prism side surface of the optical sheet, and other optical members can be solved by Patent Document 1 and Patent Document 2, the problem due to optical contact on the prism surface side is also solved. The need to do so has increased. In particular, in recent years, the light diffusing sheet that has been conventionally arranged as a standard is omitted between the optical sheet and the liquid crystal panel in order to reduce the cost and reduce the thickness, and the optical sheet and the liquid crystal panel are disposed adjacent to each other. This is because a configuration has been desired. For this reason, even between the prism surface of the optical sheet and the back surface of the liquid crystal panel, appearance defects such as interference fringes and light / dark unevenness (wet-out, wet-out) occur due to water contact. It has become necessary to solve this.

すなわち、本発明の課題は、プリズム面側とは反対の裏面側に、微粒子を含有させた凹凸塗膜表面に生成させた微小突起によって光学密着を防いだ構成の光学シートについて、該微小突起による他の光学部材等の傷付き粒子脱落を防ぐことである。
また、本発明の課題は、さらにプリズム面側での光学密着による外観不良発生を防ぐことである。
That is, an object of the present invention is to provide an optical sheet having a configuration in which optical adhesion is prevented by a microprotrusion generated on the surface of a concavo-convex coating film containing fine particles on the back surface side opposite to the prism surface side. It is to prevent the damaged particles from falling off other optical members.
Moreover, the subject of this invention is preventing the appearance defect generation | occurrence | production by optical contact | adherence by the prism surface side further.

本発明による光学シートは、
(1)柱状単位プリズムをその稜線を互いに平行に配列して成るプリズム群を、シート状の本体部の一方の面に有し、該本体部の他方の面に、微小突起が表面に形成された凹凸塗膜を有する光学シートであって、
該微小突起の突出高さHの平均値が0.38μm以上であり、且つ該凹凸塗膜はバインダ樹脂中に該微小突起を生成する為の球状粒子と、滑剤を含有する、構成とした。
(2)また、上記(1)の構成において、上記滑剤がポリエーテル変性ジメチルポリシロキサンである、構成とした。
The optical sheet according to the present invention is
(1) A prism group formed by arranging columnar unit prisms in parallel with each other in ridges is provided on one surface of a sheet-like main body, and a minute protrusion is formed on the other surface of the main body. An optical sheet having an uneven coating film,
The average value of the protrusion height H of the fine protrusions is 0.38 μm or more, and the uneven coating film contains spherical particles for forming the fine protrusions in the binder resin and a lubricant.
(2) Further, in the configuration of (1), the lubricant is a polyether-modified dimethylpolysiloxane.

(3)また、上記(1)又は(2)の構成において、上記柱状単位プリズムは、その配列方向と平行な方向から観察した場合、各柱状単位プリズムは凹凸を形成する折れ線状の外輪郭を有し、一つの柱状単位プリズムの該折れ線状の外輪郭によって画定される複数の凸部について、前記本体部から最も離間した各凸部の頂部と該本体部との間の該本体部の一方の面に立てた法線方向に沿った間隔は一定でない、構成とした。 (3) Also, in the configuration of (1) or (2), when the columnar unit prisms are observed from a direction parallel to the arrangement direction, each columnar unit prism has a polygonal outer contour that forms irregularities. A plurality of convex portions defined by the polygonal outer contour of one columnar unit prism, and one of the main body portions between the top portion of each convex portion and the main body portion farthest from the main body portion The interval along the normal direction set up on the surface of the surface is not constant.

本発明によれば、微小突起を生成する為の凹凸塗膜のバインダ樹脂中に含有させてある滑剤によって、微小突起に起因する他の光学部材や自身に対する傷付き、微小突起生成の為の球状粒子の凹凸塗膜からの脱落を防げる。また、滑剤にポリエーテル変性ジメチルポリシロキサンを用いると、上記傷付き及び脱落をより効果的に防げる。
また、柱状単位プリズムの稜線の高さが一定でないものとすることで、光学シートのプリズム面側と液晶パネル間の光拡散シートを省略した構成としても、プリズム面側での液晶パネルとの光学密着に起因する干渉縞や光滲潤等の外観不良も防げる。その結果、ディスプレイの低コスト化、軽薄短小化を図れる。
According to the present invention, the lubricant contained in the binder resin of the concavo-convex coating film for generating the microprotrusions causes the other optical member due to the microprotrusions and the spherical surface for generating microprotrusions. Prevents particles from falling off the uneven coating. Moreover, the use of polyether-modified dimethylpolysiloxane as a lubricant can more effectively prevent the scratches and dropout.
Also, by assuming that the height of the ridge line of the columnar unit prism is not constant, the optical diffusion between the prism surface side of the optical sheet and the liquid crystal panel can be omitted even if the light diffusion sheet between the liquid crystal panel is omitted. Appearance defects such as interference fringes and light oozing caused by adhesion can be prevented. As a result, the cost of the display can be reduced and the thickness can be reduced.

本発明による光学シートの一実施形態を説明する斜視図(a)と、微小突起の突出高さHを説明する断面図(b)。The perspective view (a) explaining one Embodiment of the optical sheet by this invention, and sectional drawing (b) explaining the protrusion height H of a microprotrusion. 本発明による光学シートの別の実施形態(プリズム稜線高さ可変)を説明する斜視図。The perspective view explaining another embodiment (prism ridgeline height variable) of the optical sheet by this invention. 図2の光学シートを、柱状単位プリズムの配列方向(X軸方向)から観察したときの該プリズムの稜線を含むYZ面に平行な面での断面図。Sectional drawing in a surface parallel to YZ surface containing the ridgeline of this prism when the optical sheet of FIG. 2 is observed from the arrangement direction (X-axis direction) of columnar unit prisms. 耐傷付き性能の測定装置を示す説明図。Explanatory drawing which shows the measuring apparatus of the performance with a damage resistance. 傷付きによる外観不良発生状況を観察するときのエッジライト型背面光源装置の構成を示す断面図。Sectional drawing which shows the structure of an edge light type back light source device when observing the appearance defect appearance condition by a damage. 従来の裏面に微小突起を有する光学シートの一例を示す断面図。Sectional drawing which shows an example of the optical sheet which has a microprotrusion on the back surface of the past.

以下、本発明の実施の形態を、図面を参照しながら説明する。なお、図面は概念図であり、構成要素の縮尺関係、縦横比等は誇張されていることがある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the drawings are conceptual diagrams, and the scale relationships, aspect ratios, and the like of components may be exaggerated.

〔A〕概要:
先ず、本発明による光学シートの一実施形態を、図1(a)の斜視図で示す。同図に示す光学シート10は、柱状単位プリズム1がその稜線方向を互い平行に多数配列されてなるプリズム群を、シート状の本体部2の一方の面2p(図面では図面上方の面)に有し、該本体部2の他方の面2qに凹凸塗膜3が形成され、該凹凸塗膜3はその表面に微小突起4を有する。この凹凸塗膜3は、バインダ樹脂3a中に球状粒子3bを含有する。また、凹凸塗膜3は、球状粒子3bが存在する部分の表面に凸部が形成される様な膜厚で形成されており、該凸部が微小突起4となっている。微小突起4の突出高さHは、図1(b)の断面図で示すとおり、微小突起4が存在しない部分の凹凸塗膜3の塗膜面からの微小突起4の頂上部との高低差(図面ではZ軸方向)として定義される。そして、この微小突起4の突出高さHの平均値が、可視光線の短波長側の波長以上、つまり0.38μm以上となっている。0.38μm以上とすることで、可視光線波長域の全域に亙って光学密着を防ぐことができる。
該突出高さHの測定は、微小突起4の密度が比較的密であり、触針式表面粗さ計で測定、評価が可能な場合には、触針式表面粗さ計を用い、凹凸塗膜3表面について、JIS B0601:1994年版規定の十点平均粗さRzを測定し、このRz値を以って、突出高さHとする。
又、微小突起4の密度が比較的疎であり、触針式表面粗さ計で測定、評価が不能乃至は困難な場合には、光学シート10の法線nd(図1(a)に於けるZ軸でもある)を含む面で切断した切断面を顕微鏡観察して、各微小突起4の高さHを直接読み取る(図1(b)参照)。そして、各個の微小突起4の高さHのデータを3個以上、好ましくは10個程度平均した値を以って、突出高さHとする。
[A] Overview:
First, an optical sheet according to an embodiment of the present invention is shown in the perspective view of FIG. In the optical sheet 10 shown in the figure, a prism group in which a large number of columnar unit prisms 1 are arranged in parallel with each other in the ridge line direction is arranged on one surface 2p of the sheet-like main body portion 2 (surface on the upper side in the drawing). And an uneven coating film 3 is formed on the other surface 2q of the main body 2, and the uneven coating film 3 has a microprojection 4 on its surface. This uneven | corrugated coating film 3 contains the spherical particle 3b in binder resin 3a. Further, the uneven coating film 3 is formed with a film thickness such that a convex portion is formed on the surface of the portion where the spherical particles 3 b are present, and the convex portion is a minute protrusion 4. As shown in the cross-sectional view of FIG. 1B, the protrusion height H of the microprojections 4 is different from the height of the top of the microprojections 4 from the coating surface of the uneven coating film 3 where the microprojections 4 do not exist. (Z-axis direction in the drawing). And the average value of the protrusion height H of this microprotrusion 4 is more than the wavelength by the side of the short wavelength of visible light, ie, 0.38 micrometer or more. When the thickness is 0.38 μm or more, optical adhesion can be prevented over the entire visible light wavelength range.
The protrusion height H is measured by using a stylus type surface roughness meter when the density of the microprojections 4 is relatively dense and can be measured and evaluated with a stylus type surface roughness meter. With respect to the surface of the coating film 3, the ten-point average roughness Rz defined in JIS B0601: 1994 version is measured, and the protrusion height H is determined by this Rz value.
Further, when the density of the microprojections 4 is relatively sparse and measurement or evaluation with a stylus type surface roughness meter is impossible or difficult, the normal line nd of the optical sheet 10 (in FIG. 1A) The section cut along the plane including the Z axis) is observed with a microscope, and the height H of each microprotrusion 4 is directly read (see FIG. 1B). Then, the projection height H is obtained by averaging three or more, preferably about ten, data of the height H of each microprojection 4.

なお、図1(a)では、直交座標系のXYZの各軸を夫々、X軸は柱状単位プリズム1の配列方向に平行にとり、Y軸を柱状単位プリズム1の稜線方向に平行にとり、Z軸を本体部2の厚み方向及び凹凸塗膜3の厚み方向に平行にとってある。また、突出高さHを説明する図1(b)の断面図は、Z軸に平行な任意の面の断面図である。   In FIG. 1A, the X, Y, and Z axes of the orthogonal coordinate system are parallel to the arrangement direction of the columnar unit prisms 1, the Y axis is parallel to the ridge line direction of the columnar unit prisms 1, and the Z axis Is parallel to the thickness direction of the main body 2 and the thickness direction of the uneven coating film 3. Further, the cross-sectional view of FIG. 1B for explaining the protrusion height H is a cross-sectional view of an arbitrary plane parallel to the Z-axis.

更に、凹凸塗膜3は、そのバインダ樹脂3a中に滑剤を含有している。
滑剤を含有させることよって、微小突起4の頂上部が、他の光学部材の面と物理的に接触したときに、接触面同士で滑り易くして、接触面での引っ付きを防ぐことで、互いの面の傷付きが防止される。また、同時に、接触面部分から微小突起4部分の塗膜が崩れて該微小突起4の直下に存在する球状粒子3bが脱落するのも防げることになる。
Furthermore, the uneven coating film 3 contains a lubricant in the binder resin 3a.
By containing a lubricant, when the tops of the microprotrusions 4 are in physical contact with the surfaces of the other optical members, the contact surfaces can be easily slid between each other to prevent the contact between the contact surfaces. Scratches on the surface are prevented. At the same time, it is possible to prevent the spherical particles 3b existing immediately below the microprojections 4 from falling off due to the coating film of the microprojections 4 being broken from the contact surface portion.

また、微小突起4の部分での拡大断面図である図1(b)でよく示される様に、微小突起4部分では、バインダ樹脂3a中に含有されている球状粒子3bは、塗膜面から露出しておらず、塗膜中のバインダ樹脂3aによって被覆されている。塗膜面に多数存在する微小突起4の一部では、被覆されていない球状粒子3bが存在することもあり得るが、好ましく大多数の、より好ましくは全ての微小突起4が塗膜塗膜中のバインダ樹脂3aで被覆されているのが良い。球状粒子3bが塗膜塗膜中のバインダ樹脂3aで被覆されることによって、微小突起4の表面は、滑剤を含有させてあるバインダ樹脂3aの面となり、滑剤を有効に作用させることができる。それは、凹凸塗膜3に含有させる滑剤はバインダ樹脂3aによって構成され、球状粒子3bを分散・保持するマトリック中に含有されることになるからである。このため、微小突起4がバインダ樹脂3aで被覆されることによって、微小突起4の表面は滑剤を含有するバインダ樹脂3aから成る面となり、滑剤による効果を最大限に発揮させることが出来ることになる。   In addition, as well shown in FIG. 1B, which is an enlarged cross-sectional view of the microprojection 4, the spherical particles 3b contained in the binder resin 3a are separated from the coating film surface in the microprojection 4 portion. It is not exposed and is covered with the binder resin 3a in the coating film. Although there may be uncoated spherical particles 3b in a part of the microprojections 4 present in large numbers on the coating film surface, the majority, more preferably all the microprojections 4 are present in the coating film. It is preferable to be coated with the binder resin 3a. By covering the spherical particles 3b with the binder resin 3a in the coating film, the surface of the fine protrusions 4 becomes the surface of the binder resin 3a containing the lubricant, and the lubricant can be effectively applied. This is because the lubricant contained in the concavo-convex coating film 3 is constituted by the binder resin 3a and is contained in a matrix for dispersing and holding the spherical particles 3b. For this reason, when the microprotrusions 4 are coated with the binder resin 3a, the surface of the microprotrusions 4 becomes a surface made of the binder resin 3a containing the lubricant, and the effect of the lubricant can be maximized. .

〔B〕用語の定義:
次に、本発明において用いる主要な用語について、その定義をここで説明しておく。
[B] Definition of terms:
Next, definitions of major terms used in the present invention will be explained here.

「一方の面2p」は、本体部2の柱状単位プリズム1が配列される側の面である。また、光学シート10の「一方の面2p」の側を「プリズム面側」と呼ぶ。「一方の面2p」は、配列される柱状単位プリズム1で隙間なく埋め尽くされてプリズム群を構成するときは、最外面乃至界面となる面としては実在しない仮想的な面となる。また、「一方の面2p」は、柱状単位プリズム1が隙間を空けて配列されてプリズム群を構成するときは、該プリズム群は該隙間を有し該隙間は一方の面2pが部分的に露出した実在の面となる。
「プリズム面側」を「出光側」とする向きで光学シート10を使用する場合は、「プリズム面側」は「観察者側」となる。
「主切断面」とは、柱状単位プリズム1において、本体部2の「一方の面2p」に立てた法線nd(図3参照)に平行な断面のうち、柱状単位プリズム1の配列方向にも平行な断面のことを言う。言い換えると、該法線ndに平行で且つ柱状単位プリズム1の稜線に直交する断面である。尚、図1(a)に於いては、Z軸が該法線ndと平行方向となっている。
「突出高さH」とは、図1(b)を参照して定義される、微小突起4が存在しない部分の凹凸塗膜3の表面を基準面とした、該微小突起4の頂上部が突出している高さである。 「平滑」とは、光学的な意味合いでの平滑を意味する。すなわち、或る程度の割合の可視光が、光学シート10の面においてスネルの法則を満たしながら屈折するようになる程度を意味している。したがって、例えば、本体部2の他方の面2qの十点平均粗さRz(JISB0601:1994年版)が最短の可視光波長(0.38μm)未満となっていれば、十分、平滑に該当する。
形状や幾何学的条件を特定する用語、例えば、「三角形」、「円形」、「楕円形」、「平行」、「直交」、「折れ線」等の用語は、厳密な意味に縛られることなく、製造技術における限界や成型時の誤差も含めて、同様の光学的機能を期待し得る程度の誤差、許容範囲、乃至は均等範囲を含めて解釈される用語である。
“One surface 2p” is a surface on the side where the columnar unit prisms 1 of the main body 2 are arranged. In addition, the “one surface 2p” side of the optical sheet 10 is referred to as a “prism surface side”. The “one surface 2p” is a virtual surface that does not actually exist as the outermost surface or the interface surface when the prism unit is filled with the columnar unit prisms 1 arranged without gaps. Further, “one surface 2p” means that when the columnar unit prisms 1 are arranged with a gap therebetween to form a prism group, the prism group has the gap and the one surface 2p is partially formed by the gap. It becomes an exposed real surface.
When the optical sheet 10 is used with the “prism surface side” as the “light output side”, the “prism surface side” is the “observer side”.
The “main cut surface” refers to the columnar unit prism 1 in the arrangement direction of the columnar unit prisms 1 in a cross section parallel to the normal line nd (see FIG. 3) standing on the “one surface 2p” of the main body 2. Also refers to a parallel cross section. In other words, the cross section is parallel to the normal line nd and orthogonal to the ridge line of the columnar unit prism 1. In FIG. 1A, the Z axis is parallel to the normal nd.
The “projection height H” is defined by referring to FIG. 1 (b), and the top of the microprojection 4 is defined by using the surface of the uneven coating film 3 where the microprojection 4 does not exist as a reference plane. It is the protruding height. “Smooth” means smooth in an optical sense. That is, it means the degree that a certain proportion of visible light is refracted while satisfying Snell's law on the surface of the optical sheet 10. Therefore, for example, if the ten-point average roughness Rz (JISB0601: 1994 version) of the other surface 2q of the main body 2 is less than the shortest visible light wavelength (0.38 μm), it is sufficiently smooth.
Terms that specify shape and geometric conditions, such as “triangle”, “circular”, “elliptical”, “parallel”, “orthogonal”, “polyline”, etc., are not bound to a strict meaning. These terms are interpreted to include errors, tolerances, or equivalent ranges to the extent that similar optical functions can be expected, including limitations in manufacturing technology and errors during molding.

〔C〕各層の詳細:
以下、各層について更に説明する。
[C] Details of each layer:
Hereinafter, each layer will be further described.

〔柱状単位プリズム〕
柱状単位プリズム1は、代表的には主切断面の形状が、本体部2側を底辺とする三角形形状の単位プリズムである。この様な、柱状単位プリズム1としては、従来公知の各種プリズムを適宜採用することができる。また、主切断面形状は、三角形の様な直線のみからなる形状の他、一部に曲線がある形状、曲線のみからなる形状(例えば、円又は楕円の一部)も含み得る。
なお、主切断面形状が円又は楕円の一部の場合は、レンズと呼ぶこともでき、本発明における柱状単位プリズム1としては、所謂柱状単位レンズも含み得る。
(Columnar unit prism)
The columnar unit prism 1 is typically a triangular unit prism whose main cut surface has a base on the main body 2 side. As such a columnar unit prism 1, conventionally known various prisms can be appropriately employed. Further, the main cut surface shape may include a shape having only a curved line and a shape having only a curved line (for example, a part of a circle or an ellipse) in addition to a shape consisting only of a straight line such as a triangle.
In addition, when a main cut surface shape is a part of a circle or an ellipse, it can also be called a lens, and the columnar unit prism 1 in the present invention may include a so-called columnar unit lens.

また、柱状単位プリズム1は、配列された各柱状単位プリズム1が全て同一形状、同一寸法以外に、形状及び寸法のうち1以上が異なるものでも良く、更に不規則に異なっているものでも良い。また、柱状単位プリズム1の配列は、全て同一配列周期での規則的配列以外に、配列周期が異なるものでも良く、更に不規則に異なっているものでも良い。   In addition, the columnar unit prisms 1 may be arranged such that one or more of the shapes and dimensions of the arranged columnar unit prisms 1 are different from each other in addition to the same shape and size, and may be irregularly different. Further, the arrangement of the columnar unit prisms 1 may be different from the regular arrangement in the same arrangement period, may be different in the arrangement period, or may be irregularly different.

(稜線高さ可変形状)
更に、柱状単位プリズム1としては、図2の斜視図で例示する光学シート10の様に、稜線の高さが折れ線状に変化し一定でない形状は、プリズム面側でも光滲潤や干渉縞等の光学密着に起因する諸問題を防げる点で、好ましい形態である。
図3は、図2の斜視図で例示する柱状単位プリズム1を、その配列方向に平行な方向(X軸方向)からみた場合の、稜線の外輪郭の形状を説明する図面である。
また、図2の斜視図で例示する柱状単位プリズム1は、その延在方向即ち稜線方向と配列方向とに垂直な方向(Z軸方向)から見ると、言い換えると、本体部2の一方の面2pに立てた法線nd方向から見ると、稜線はY軸に平行な直線を呈する。従って、図2に例示する光学シート10の柱状単位プリズム1は、その稜線の全長さを含むYZ面が存在し、該稜線の高さ変化を示す配列方向(X軸方向)から見た外観図として、該YZ面で切断した断面図も採用することができる。そこで、図3では、このYZ面での断面図として描いてある。つまり、図3は、柱状単位プリズム1を配列方向(X方向)から見た断面図であり、本体部2の一方の面2pの法線方向nd及び柱状単位プリズム1の稜線方向に平行な平面で、且つ該柱状単位プリズム1の稜線を含む平面での断面図である。
(Ridge height variable shape)
Further, as the columnar unit prism 1, as in the optical sheet 10 illustrated in the perspective view of FIG. 2, the height of the ridge line is changed to a polygonal line shape and the shape is not constant. This is a preferred form in that it can prevent various problems caused by optical adhesion.
FIG. 3 is a diagram illustrating the shape of the outer contour of the ridge line when the columnar unit prism 1 illustrated in the perspective view of FIG. 2 is viewed from a direction parallel to the arrangement direction (X-axis direction).
The columnar unit prism 1 illustrated in the perspective view of FIG. 2 is viewed from the direction (Z-axis direction) perpendicular to the extending direction, that is, the ridge line direction and the arrangement direction, in other words, one surface of the main body 2. When viewed from the normal nd direction set at 2p, the ridge line is a straight line parallel to the Y axis. Therefore, the columnar unit prism 1 of the optical sheet 10 illustrated in FIG. 2 has an YZ plane including the entire length of the ridgeline, and is an external view viewed from the arrangement direction (X-axis direction) showing the height change of the ridgeline. As a cross-sectional view taken along the YZ plane, it is also possible to adopt. Therefore, in FIG. 3, it is drawn as a cross-sectional view on the YZ plane. 3 is a cross-sectional view of the columnar unit prism 1 viewed from the arrangement direction (X direction), and is a plane parallel to the normal direction nd of the one surface 2p of the main body 2 and the ridgeline direction of the columnar unit prism 1. 2 is a cross-sectional view taken along a plane including the ridge line of the columnar unit prism 1.

図3に於いて、柱状単位プリズム1の稜線は、或る単位区間Li、Li+1毎に、稜線Lui、稜線Lui+1等の折れ線を接続した折れ線群から構成される。この様に、稜線がYZ平面上で折れ線から成る結果、稜線には複数の頂部Pi、頂部Pi+1が存在することになる。
なお、iは1から始まる整数で、任意の一つの柱状単位プリズム1の稜線の頂部を末端から順番に1番から番号付けした数である。また、下付き添え字i、i+1等を付けないときは、添え字付きの個別の各要素(頂部、稜線など)に共通のことについて述べる。
In FIG. 3, the ridge line of the columnar unit prism 1 is composed of a broken line group in which broken lines such as the ridge line Lu i and the ridge line Lu i + 1 are connected for each unit section L i , L i + 1 . In this way, as a result of the ridge line being a broken line on the YZ plane, the ridge line has a plurality of top portions P i and top portions P i + 1 .
In addition, i is an integer starting from 1, and is a number obtained by numbering the tops of the ridgelines of any one columnar unit prism 1 from the first in order from the end. In addition, when subscripts i, i + 1, etc. are not added, what is common to each individual element (top, ridge line, etc.) with a subscript will be described.

そして、頂部Piとは、同図に於いて、右上がりの線分Luiと、当該右上がりの線分Luiの右側端と接続する右下がりの線分Ldiとの交点である。また、該右上がりの線分Luiの左側端は、隣の単位区間に属する右下がりの線分Ldi-1と接続し、その交点が鞍部Ciとなる。同様に、該右下がりの線分Ldiの右側端は、次の単位区間に属する右上がりの線分Lui+1と接続し、その交点が鞍部Ci+1となる。なお、同図では、右上がりの線分Lui+1は連続した二つの直線の線分から構成されたそれ自体が折れ線となっている線分群である。
そして、鞍部Ciと鞍部Ci+1とを連結する線分Lbiと、該鞍部Ciに接続する右上がりの線分Luiと、該右上がりの線分Lui及び前記鞍部Ci+1に接続する右下がりの線分Ldiとによって、囲われて境界が区画される部分は多角形を成し(同図では三角形)、これで一つの凸部Tiが画定される(図面では判り易い様に網点のハッチングをこの凸部Tiの部分だけ施してある)。そして、凸部Tiに隣接する右隣は、次の凸部Ti+1である。
Then, the top P i, In the figure, which is an intersection with a line segment Lu i right-up, the line segment Ld i downward sloping connecting the right end of the line segment Lu i of the right-up. Further, the left end of the line segment Lu i that rises to the right is connected to the line segment Ld i-1 that falls to the right that belongs to the adjacent unit section, and the intersection is the ridge C i . Similarly, the right end of the right-down line segment Ld i is connected to the right-up line segment Lu i + 1 belonging to the next unit section, and the intersection is the ridge part C i + 1 . In the figure, a line segment Lu i + 1 that rises to the right is a line segment group that is composed of two continuous straight line segments and is a broken line.
The saddle C i and the line segment Lb i which connects the saddle C i + 1, and the line segment Lu i upward sloping connecting to該鞍section C i, segment of the right up Lu i and the saddle C i The portion surrounded by the lower right line segment Ld i connected to +1 forms a polygon (in the figure, a triangle), and this defines one convex portion T i ( In order to make it easy to understand in the drawing, halftone dots are hatched only on the convex portions T i ). Then, right adjacent to the convex portion T i is the next protrusion T i + 1.

また、同図の場合では、凸部Ti+1に属する右上がりの線分Lui+1は連続した二つの線分から構成されたそれ自体が折れ線となっている線分群である様に、右上がりの線分Lu、及び右下がりの線分Ldは、各々、一つの直線のみからなる線分以外に、複数の線分(直線)が連結した線分群のこともある。なお、同図の凸部Ti+1の右上がりの線分Lui+1は、二つの直線が連結した線分群であるので、凸部Ti+1の外形形状は、四角形となる。 Further, in the case of the figure, the line segment Lu i + 1 that rises to the right belonging to the convex portion T i + 1 is a line segment group that is composed of two continuous line segments and is itself a broken line, The line segment Lu that rises to the right and the line segment Ld that descends to the right may be a line segment group in which a plurality of line segments (straight lines) are connected in addition to a line segment composed of only one straight line. Note that the line segment Lu i + 1 that rises to the right of the convex portion T i + 1 in the figure is a line segment group in which two straight lines are connected, and thus the outer shape of the convex portion T i + 1 is a quadrangle.

また、頂部Pi、頂部Pi+1で示される様に、互いに隣接する頂部Pi、頂部Pi+1の本体部2の一方の面2pからの夫々の間隔di、間隔di+1は、等しくない。言い換えると、一方の面2pからの頂部Pの「高さ」は一定ではない。つまり、間隔dは頂部Pの「高さ」とも言える。そして、同図の場合、頂部Piに対して間隔dが大きい方の頂部Pi+1が、他の光学部材20の面に接触する様になる。(厳密に言うと頂部Pi+1の圧縮変形がない状態のときである) Further, as indicated by the top part P i and the top part P i + 1 , the distance d i and the distance d i + from the one surface 2p of the main body part 2 of the top part P i and the top part P i + 1 that are adjacent to each other. 1 is not equal. In other words, the “height” of the apex P from the one surface 2p is not constant. That is, the distance d can be said to be the “height” of the top portion P. In the case of the figure, the top P i + 1 having a larger distance d relative to the top P i, becomes as contact with the surface of the other optical members 20. (Strictly speaking, it is when there is no compression deformation of the top P i + 1 )

光学シート10のプリズム面側での他の光学部材20との光学密着に起因する不具合も防止する点において、一つの柱状単位プリズム1に含まれる複数の頂部Pは、少なくとも(稜線方向で)隣接する頂部P同士は、間隔dが互いに同一ではないことが好ましい。図3で言えば頂部Piと頂部Pi+1とは、間隔diと間隔di+1が異なることが好ましい。更に、一つの柱状単位プリズム1に含まれる全ての頂部Pの間隔dが、全て互いに異なっているのが、より好ましい。 The plurality of apexes P included in one columnar unit prism 1 are at least (in the ridge line direction) adjacent to each other in that problems due to optical contact with other optical members 20 on the prism surface side of the optical sheet 10 are also prevented. It is preferable that the intervals d are not the same between the tops P to be performed. In FIG. 3, it is preferable that the interval p i and the interval d i + 1 are different between the apex P i and the apex P i + 1 . Furthermore, it is more preferable that the intervals d of all the top portions P included in one columnar unit prism 1 are all different from each other.

また、図2の斜視図で示す様に、隣接する柱状単位プリズム1の稜線に於ける夫々の頂部Pは、稜線の延在方向において同一位置(同一Y座標)としないのが、好ましい。言い換えると、隣接する柱状単位プリズム1の稜線に於ける夫々の頂部Pは、柱状単位プリズム1の配列方向で並ばない様に配置するのが好ましい。この様にすることで、光学シート10を、他の光学シートや導光板など他の光学部材20と隣接配置した時に、他の光学部材20との接触が、透過型表示装置などの観察の際に、目立つことを防げる。   Moreover, as shown in the perspective view of FIG. 2, it is preferable that the respective top portions P in the ridge lines of the adjacent columnar unit prisms 1 are not located at the same position (the same Y coordinate) in the extending direction of the ridge lines. In other words, it is preferable that the apexes P in the ridge lines of the adjacent columnar unit prisms 1 are arranged so as not to line up in the arrangement direction of the columnar unit prisms 1. In this way, when the optical sheet 10 is disposed adjacent to another optical member 20 such as another optical sheet or a light guide plate, the contact with the other optical member 20 is observed when observing a transmission type display device or the like. And you can prevent it from standing out.

なお、柱状単位プリズム1の稜線の高さ(間隔d)は、図2及び図3の例では、直線のみが連結した線分群から成る折れ線状に変化する例であった。これによって、プリズム面側が他の光学部材の平滑面と隣接配置されたときに、(稜線の高さが一定の柱状単位プリズムで生じ得る)該稜線部分での長い領域に亘った線状の密着が生じない。この為、他の光学部材20との光学密着に起因する種々の不具合の発生を大幅に抑制できる。
しかも、稜線の頂部Pの高さ(間隔d)が全て同一ではないので、他の光学部材20と隣接配置されたときに、他の光学部材20とは、該頂部Pのうちの高さの高い一部の頂部Pが接触する。接触は点状乃至は、接触時の圧力による形状変形も考慮すると線状の領域のみである。そして、光学シート10やこれと隣接配置される他の光学部材20の、反りや外力による撓み・変形などによって接触圧力が増加したときは、未だ接触していない頂部Pのうち高さの高いものも、他の光学部材20と接触する様になる。この様に、光学シート10及び隣接配置される他の光学部材20との接触圧力の増加があっても、新たに生成される接触領域によって圧力を分散させて、他の光学部材20との接触に起因する不具合を効果的に防ぐことが可能となる。
Note that the height (interval d) of the ridge lines of the columnar unit prism 1 is an example of changing into a polygonal line formed of a line segment group in which only straight lines are connected in the examples of FIGS. As a result, when the prism surface side is arranged adjacent to the smooth surface of another optical member, linear adhesion over a long region at the ridge line portion (which may occur in a columnar unit prism having a constant ridge line height) Does not occur. For this reason, generation | occurrence | production of the various malfunction resulting from the optical contact | adherence with the other optical member 20 can be suppressed significantly.
In addition, since the heights (intervals d) of the apex portions P of the ridge lines are not all the same, when arranged adjacent to the other optical member 20, the other optical member 20 has a height of the apex portion P. A part of the high apex P contacts. The contact is point-like or only a linear region in consideration of shape deformation due to pressure at the time of contact. When the contact pressure increases due to warping or bending / deformation due to external force of the optical sheet 10 or another optical member 20 disposed adjacent thereto, the top portion P that is not yet in contact has a high height. Also, it comes into contact with the other optical member 20. In this way, even if there is an increase in the contact pressure between the optical sheet 10 and the other optical member 20 disposed adjacent thereto, the pressure is dispersed by the newly generated contact region, and the contact with the other optical member 20 is achieved. It is possible to effectively prevent problems caused by.

なお、稜線の高さ(間隔d)については一定でないが、図2及び図3に例示する光学シート10では、稜線は平面視(XY平面への投影)では直線状に延びている。従って、柱状単位プリズム1の主切断面形状は、稜線上の任意の部分に於いて、本体部2に近い側の部分は除いて稜線を含む側の部分は全て同一形状の二等辺三角形である。この為、その光学的作用効果は稜線の延在方向に亘って同じである。したがって、稜線の高さを一定とせず折れ線状に変化させた事によって生成する高さの異なる頂部Pが、新たな外観上の不具合を生じることはない。   Although the height (interval d) of the ridge lines is not constant, in the optical sheet 10 illustrated in FIGS. 2 and 3, the ridge lines extend linearly in a plan view (projection onto the XY plane). Accordingly, the main cut surface shape of the columnar unit prism 1 is an isosceles triangle having the same shape in any part on the ridge line except for the part close to the main body 2 and the side including the ridge line. . For this reason, the optical effect is the same over the extending direction of the ridgeline. Therefore, the apex portion P having a different height generated by changing the height of the ridge line into a broken line shape without making the ridge line constant does not cause a new appearance defect.

ところで、この様に稜線の高さを折れ線状に変化させた柱状単位プリズム1を配列したプリズム群を製造するには、例えば、従来からこの種のプリズム群の製造に利用されているシリンダ状(円筒状)成形型を、切削バイトで作製するときに、切削バイトの切削深さを折れ線状に変化させつつ切削していくことで、容易に製造できる。   By the way, in order to manufacture a prism group in which the columnar unit prisms 1 having the ridgeline height changed to a polygonal line are arranged in this way, for example, a cylinder-like structure conventionally used for manufacturing this kind of prism group ( When producing a (cylindrical) mold with a cutting bit, it can be easily manufactured by cutting while changing the cutting depth of the cutting bit into a polygonal line.

(寸法及び分布の具体例)
ここで、柱状単位プリズム1及びそれからなるプリズム群の寸法の具体例を示せば、柱状単位プリズム1の底面の幅(プリズム配列方向での寸法)は10〜500μm、頂部Pの間隔d(高さ)は5〜100μm、主切断面形状は二等辺三角形状のとき稜線を形成する頂角は80〜110°好ましくは90°である。さらに、頂部Pの間隔dを全て同一にしないときは、頂部Pの間隔dの最大値と最小値との差である振幅(高低差)は、一例として1〜10μmとすると良い。また、稜線の延在方向での隣接する頂部Pの間隔は、切削バイトの深さ制御など型製造上の制約や、光学密着防止効果などを勘案して、一例として70〜900mmの範囲内で可変とする等である。
(Specific examples of dimensions and distribution)
Here, if the specific example of the dimension of the columnar unit prism 1 and the prism group which consists of it is shown, the width | variety of the bottom face of the columnar unit prism 1 (dimension in a prism arrangement direction) will be 10-500 micrometers, and the space | interval d (height of the top part P). ) Is 5 to 100 μm, and when the main cut surface shape is an isosceles triangle, the apex angle forming the ridge line is 80 to 110 °, preferably 90 °. Furthermore, when not all the intervals d of the top portions P are the same, the amplitude (height difference) that is the difference between the maximum value and the minimum value of the intervals d of the top portions P is preferably 1 to 10 μm as an example. In addition, the distance between the adjacent apexes P in the extending direction of the ridge line is within a range of 70 to 900 mm as an example in consideration of restrictions on mold manufacturing such as depth control of cutting tools and an effect of preventing optical adhesion. For example, it is variable.

〔本体部〕
本体部2としては、ポリリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂等の透明樹脂材料、或いはガラス、セラミックス等の透明無機材料を用いることができる。
本体部2は「シート状」であるが、ここで「シート」とは、「フィルム」、「板」の概念も含むものであり、これらの用語は、呼称の違いのみに基づいて、互いから区別されるものではない。つまり、厚みや剛性によって区別されりものではない。例えば、本体部2の厚さは、25μm〜5mm等である。
なお、本体部2の他方の面2qは、凹凸塗膜3が形成される面であり、通常は平滑面である。しかし、凹凸塗膜形成面としての他方の面2qは平滑面でなくても良い。
また、本体部2の一方の面2p及び他方の面2qは、共に通常は平面であり、本体部2は板のときは平板状となる。
[Main body]
As the main body 2, a polyester resin such as poly (ethylene terephthalate) or polyethylene naphthalate, a transparent resin material such as an acrylic resin, a polycarbonate resin, or a polyolefin resin, or a transparent inorganic material such as glass or ceramics can be used. .
Although the main body 2 is “sheet-like”, the term “sheet” includes the concept of “film” and “plate”, and these terms are different from each other based only on the difference in designation. It is not distinguished. That is, they are not distinguished by thickness or rigidity. For example, the thickness of the main body 2 is 25 μm to 5 mm or the like.
In addition, the other surface 2q of the main body 2 is a surface on which the uneven coating film 3 is formed, and is usually a smooth surface. However, the other surface 2q as the uneven coating film forming surface may not be a smooth surface.
Moreover, both the one surface 2p and the other surface 2q of the main body 2 are usually flat, and the main body 2 is flat when it is a plate.

(本体部と柱状単位プリズムとの形成)
なお、本体部2及び柱状単位プリズム1からなる部分は、従来公知の方法・透明材料より形成することができる。例えば、柱状単位プリズム1が配列されて形成されるプリズム群と本体部2とを、溶融押出法、射出成形法、熱プレスによるエンボス法等の成形法で同一材料で一体的に成形して形成することができる。或いは、予め成膜乃至は成形した本体部2に対して、樹脂液を接触させ且つ該樹脂液を成形型と前記本体部2とで挟んだ状態で、硬化反応等の化学反応或いは冷却によって固化させて、表面にプリズム形状を賦形する成形法によって、異なる層として形成することもできる。なお、樹脂液に紫外線や電子線等の電離放射線で硬化する電離放射線硬化性樹脂を使用して電離放射線で硬化させる場合は、所謂2P法(フォトポリマー法)と呼ばれている。このとき、本体部2として樹脂シート等の透明基材を用いると、透明基材上に樹脂層からなるプリズム群が形成される。つまり、隣接する単位柱状プリズム1同士の間に谷部でも僅かな厚みの樹脂層が形成される。この様なときは、本体部2は、該谷部の樹脂層の厚みに該当する、谷部及び谷部以外の部分での樹脂層と、透明基材とから構成され、透明基材上に形成した樹脂層の厚みの一部を含むことになる。
(Formation of main body and columnar unit prism)
In addition, the part which consists of the main-body part 2 and the columnar unit prism 1 can be formed from a conventionally well-known method and a transparent material. For example, the prism group formed by arranging the columnar unit prisms 1 and the main body 2 are integrally formed with the same material by a molding method such as a melt extrusion method, an injection molding method, or an embossing method by hot pressing. can do. Alternatively, it is solidified by a chemical reaction such as a curing reaction or cooling in a state where a resin liquid is brought into contact with the main body 2 formed or formed in advance and the resin liquid is sandwiched between the mold and the main body 2. Thus, different layers can be formed by a molding method in which a prism shape is formed on the surface. When the resin liquid is cured with ionizing radiation using an ionizing radiation curable resin that is cured with ionizing radiation such as ultraviolet rays or electron beams, it is called a so-called 2P method (photopolymer method). At this time, when a transparent substrate such as a resin sheet is used as the main body 2, a prism group made of a resin layer is formed on the transparent substrate. That is, a resin layer having a slight thickness is formed between the adjacent unit columnar prisms 1 even at the valleys. In such a case, the main body 2 is composed of a resin layer in a portion other than the valley and the valley corresponding to the thickness of the resin layer in the valley, and a transparent substrate, and on the transparent substrate. A part of the thickness of the formed resin layer is included.

〔凹凸塗膜〕
凹凸塗膜3は、バインダ樹脂3aと球状粒子3bと滑剤とを少なくとも含む透明な層である。凹凸塗膜3は、バインダ樹脂3aと球状粒子3bと滑剤、及び溶剤を含む樹脂組成物(塗液、塗料)によって塗布形成することができる。樹脂組成物が溶剤を含むことによって、固化時に塗膜体積収縮による膜厚減少によって、球状粒子3b部分が浮き上がる様に突出した微小突起4が形成される。なお、該樹脂組成物は、この他、分散剤、安定剤、紫外線吸収剤など、公知の各種添加剤を含み得る。
[Uneven film]
The uneven coating film 3 is a transparent layer including at least a binder resin 3a, spherical particles 3b, and a lubricant. The uneven coating film 3 can be formed by coating with a resin composition (coating liquid or paint) containing a binder resin 3a, spherical particles 3b, a lubricant, and a solvent. When the resin composition contains a solvent, microscopic protrusions 4 that protrude so that the spherical particle 3b portion is lifted are formed by the film thickness reduction due to the shrinkage of the coating film volume during solidification. In addition to the above, the resin composition may contain various known additives such as a dispersant, a stabilizer, and an ultraviolet absorber.

(バインダ樹脂)
バインダ樹脂3aとしては、球状粒子3bの脱落、或いは凹凸塗膜3自体の剥離等を防ぐ観点から、本体部2及び球状粒子3bとの密着性が強い透明な樹脂を適宜採用すると良い。この様なバインダ樹脂3aとしては、熱可塑性樹脂、或いは、熱硬化性樹脂や電離放射線硬化性樹脂等の硬化性樹脂などの透明な樹脂を使用できる。例えば、熱可塑性樹脂は、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、塩化ビニル−酢酸ビニル共重合体等であり、熱硬化性樹脂は熱硬化性アクリル系樹脂、熱硬化性ポリエステル系樹脂、熱硬化性ポリウレタン系樹脂等であり、電離放射線硬化性樹脂は紫外線や電子線で硬化する、アクリル系樹脂、エポキシ系樹脂、ポリエステル系樹脂等である。なお、硬化性樹脂の場合は、硬化剤、重合開示剤などが該樹脂成分の一部として含み得る。
(Binder resin)
As the binder resin 3a, a transparent resin having strong adhesion to the main body 2 and the spherical particles 3b may be appropriately employed from the viewpoint of preventing the spherical particles 3b from dropping off or peeling of the uneven coating film 3 itself. As such a binder resin 3a, a transparent resin such as a thermoplastic resin or a curable resin such as a thermosetting resin or an ionizing radiation curable resin can be used. For example, the thermoplastic resin is an acrylic resin, a polyester resin, a polyurethane resin, a vinyl chloride-vinyl acetate copolymer, and the thermosetting resin is a thermosetting acrylic resin, a thermosetting polyester resin, Examples thereof include thermosetting polyurethane resins, and ionizing radiation curable resins are acrylic resins, epoxy resins, polyester resins, and the like that are cured by ultraviolet rays or electron beams. In the case of a curable resin, a curing agent, a polymerization disclosure agent, and the like can be included as part of the resin component.

(球状粒子)
球状粒子3bは、透明性を有する粒子で、また粒子形状が球状乃至はそれに近い略球状の粒子である。この様な球状粒子3bとしては、アクリル樹脂ビーズ、ポリカーボネート樹脂ビーズ、ポリウレタン樹脂ビーズ等の樹脂ビーズの他、ガラスビーズ、シリカビーズ等の無機質ビーズを用いることができる。
微小突起4を生成する為の微粒子として形状的に球状粒子3bを用いることで、生成する微小突起4の形状自体を、滑り易い形状にできる。
(Spherical particles)
The spherical particles 3b are transparent particles, and are substantially spherical particles having a spherical shape or a shape close to that. As such spherical particles 3b, in addition to resin beads such as acrylic resin beads, polycarbonate resin beads, and polyurethane resin beads, inorganic beads such as glass beads and silica beads can be used.
By using the spherical particles 3b in shape as the fine particles for generating the fine protrusions 4, the shape of the generated fine protrusions 4 can be made to be a slippery shape.

球状粒子3bの粒子径は、例えば、(平均しない)粒径で1〜10μm程度である。また、粒度分布は広いと微小突起4の夫々の突出高さHの分布が広くなる。従って、粒子径の大きい球状粒子3bは突出高さHが高い微小突起4を生成し空隙形成に積極的に作用するが、凹凸塗膜3からの脱落し易くなる。また、脱落しなくても突出高さHの高い微小突起4の面密度が粒度分布が狭い場合に比べて相対的に小さくなり、傷付きへの影響度合いが強くなる。この為、粒度分布は狭い方が好ましい。従って、粒度分布が狭い、つまり単分散乃至は単分散に近い粒度分布を有するものが、より好ましい。例えば、先の特許文献2で開示されている様な、粒径分布が粒径分布曲線に於ける半値幅を1μm以下としたものが好ましい。単分散の球状粒子3bを用いることによって、微小突起4の突出高さHの均一性が向上し、突出高さHの相対的に高い微小突起4への荷重集中の度合いが低下する。例えば、粒度分布の半値幅を1μm以下とすることによって、突出高さHの分布の半値幅を概ね1μm以下にできる。なお、半値幅とは粒度分布に於いては、粒径分布曲線のピーク高さの1/2の高さに該当する部分での粒径幅である。突出高さHの場合も同様である。この為、滑剤による効果と共に、球状粒子3b側からも傷付き及び脱落の防止に寄与させることができる。   The particle diameter of the spherical particles 3b is, for example, about 1 to 10 μm in particle diameter (not averaged). Further, if the particle size distribution is wide, the distribution of the protrusion heights H of the microprojections 4 is widened. Accordingly, the spherical particles 3b having a large particle diameter generate the fine protrusions 4 having a high protrusion height H and positively act on the formation of voids, but easily fall off from the uneven coating film 3. Moreover, even if it does not fall off, the surface density of the fine protrusions 4 with a high protrusion height H is relatively smaller than when the particle size distribution is narrow, and the degree of influence on scratches is increased. For this reason, it is preferable that the particle size distribution is narrow. Therefore, it is more preferable that the particle size distribution is narrow, that is, a monodispersion or a particle size distribution close to monodispersion. For example, as disclosed in the aforementioned Patent Document 2, it is preferable that the particle size distribution has a half-value width of 1 μm or less in the particle size distribution curve. By using the monodispersed spherical particles 3b, the uniformity of the projection height H of the microprojections 4 is improved, and the degree of load concentration on the microprojections 4 having a relatively high projection height H is reduced. For example, by setting the half-value width of the particle size distribution to 1 μm or less, the half-value width of the distribution of the protrusion height H can be set to approximately 1 μm or less. The half-value width is a particle size width at a portion corresponding to a height that is ½ of the peak height of the particle size distribution curve in the particle size distribution. The same applies to the protrusion height H. For this reason, it can contribute to prevention of a damage | wound and drop-off from the spherical particle 3b side with the effect by a lubricant.

なお、粒度分布及び平均粒径は、個数基準もあるが、一般には体積基準(乃至は重量)が使われていおり、本発明でもこれと同様に体積基準の体積平均粒径であり、半値幅も同様である。この様な、体積基準の粒度分布乃至は平均粒子径は、レーザ光線を利用した動的光散乱法等によって測定できる。また、顕微鏡観察で個々の球状粒子の粒子径を測定しこれから算出しても良い。   The particle size distribution and the average particle size are based on the number, but generally the volume basis (or weight) is used. In the present invention, the volume-based volume average particle size is the same as this, and the half-value width is the same. Is the same. Such a volume-based particle size distribution or average particle diameter can be measured by a dynamic light scattering method using a laser beam. Moreover, the particle diameter of each spherical particle may be measured by microscopic observation and calculated from this.

また、球状粒子3bの(個々の粒子の)最大径が10μmを超えると光の進路変更作用が増加する。この為、光学シート10のプリズム面による集光作用が低下し、輝度向上シートとしての光学機能が損なわれ始める。従って、極力10μm超の粒子は避けるのが好ましい。
もっとも、あえて、粒子径の大きいものを採用して、適度に拡散させる機能を付与する形態を排除するものではない。一方、球状粒子3bの(個々の粒子の)最小径が1μm未満となると、凹凸塗膜3を形成する塗料組成物での球状粒子3bの分散に高度の技術が必要になり、また材料自体が高価となる等の点で好ましくない。
なお、球状粒子3bの含有量は、バインダ樹脂に対して、例えば2〜15質量%とする。球状粒子3bの含有量を調整することで、微小突起4の面密度を調整することができる。
Further, when the maximum diameter (individual particles) of the spherical particles 3b exceeds 10 μm, the light path changing action increases. For this reason, the light condensing action by the prism surface of the optical sheet 10 is reduced, and the optical function as the brightness enhancement sheet starts to be impaired. Therefore, it is preferable to avoid particles exceeding 10 μm as much as possible.
However, it is not intended to exclude a mode of giving a function of appropriately diffusing by adopting a particle having a large particle diameter. On the other hand, when the minimum diameter (individual particles) of the spherical particles 3b is less than 1 μm, a high level of technology is required to disperse the spherical particles 3b in the coating composition forming the uneven coating film 3, and the material itself is This is not preferable in that it is expensive.
In addition, content of the spherical particle 3b shall be 2-15 mass% with respect to binder resin, for example. By adjusting the content of the spherical particles 3b, the surface density of the microprojections 4 can be adjusted.

(滑剤)
滑剤としては、流動パラフィン、パラフィンワックス、合成ポリエチレンワックスなどの炭化水素系滑剤、ラウリン酸などの脂肪酸系滑剤、ステアリルアルコールなどの高級アルコール系滑剤、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等の脂肪族アミド系滑剤、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミドのアルキレン脂肪酸アミド系滑剤、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウムなどのステアリン酸金属塩からなる金属石鹸系滑剤、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等の脂肪酸エステル系滑剤、シリコーンオイル、各種変性シリコーンオイル等のシリコーン系滑剤、を挙げることができる。
滑剤を凹凸塗膜3中に配合させることで、微小突起4の頂上部が他の光学部材20と接触した時に、該頂上部での滑りを良くして、自身及び他の部材の傷付き、並びに、微小突起4の形状変形による塗膜内からの球状粒子3bの脱落を、防ぐ効果が得られる。
(Lubricant)
Lubricants include hydrocarbon lubricants such as liquid paraffin, paraffin wax, synthetic polyethylene wax, fatty acid lubricants such as lauric acid, higher alcohol lubricants such as stearyl alcohol, stearic acid amide, oleic acid amide, erucic acid amide, etc. Aliphatic amide lubricants, methylene bis stearamide, alkylene fatty acid amide lubricants of ethylene bis stearamide, metal soap lubricants made of metal stearate such as zinc stearate, calcium stearate, magnesium stearate, stearic acid monoglyceride And fatty acid ester lubricants such as stearyl stearate and hydrogenated oil, and silicone lubricants such as silicone oil and various modified silicone oils.
By blending the lubricant into the uneven coating film 3, when the top of the microprojection 4 comes into contact with the other optical member 20, the slip at the top is improved, and scratches on itself and other members are caused. In addition, the effect of preventing the spherical particles 3b from falling out of the coating film due to the shape deformation of the microprojections 4 can be obtained.

また、上記各種滑剤の中でも、変性シリコーンオイルの一種であるポリエーテル変性シリコーンオイルは好ましい滑剤である。ポリエーテル変性シリコーンオイルは、シリコーンオイルのシロキサン骨格をポリエーテル骨格で修飾した化合物であり、シロキサン骨格の片末端、両末端及び側鎖のいずれか1以上の部位に、ポリエーテル骨格が結合したブロック共重合体である。この様なポリエーテル変性シリコーンオイルの好ましい化合物例として、例えば、ポリエーテル変性ジメチルポリシロキサンを挙げることができる。ポリエーテル変性ジメチルポリシロキサンは、シロキサン骨格がジメチルポリシロキサンであり、これにポリエーテル骨格が結合した化合物である。この様なポリエーテル変性ジメチルポリシロキサンとしては、例えば、下記〔一般式1〕で表される、ポリエーテル骨格がジメチルポリシロキサン骨格の側鎖として結合した化合物は、バインダ樹脂との相溶性、滑り性などの点で、好ましい滑剤の一種である。   Among the above-mentioned various lubricants, polyether-modified silicone oil which is a kind of modified silicone oil is a preferable lubricant. The polyether-modified silicone oil is a compound in which the siloxane skeleton of the silicone oil is modified with the polyether skeleton, and a block in which the polyether skeleton is bonded to one or more of one end, both ends, and side chains of the siloxane skeleton. It is a copolymer. As a preferred compound example of such a polyether-modified silicone oil, for example, polyether-modified dimethylpolysiloxane can be mentioned. The polyether-modified dimethylpolysiloxane is a compound in which the siloxane skeleton is dimethylpolysiloxane and the polyether skeleton is bonded thereto. As such a polyether-modified dimethylpolysiloxane, for example, a compound represented by the following [general formula 1] in which a polyether skeleton is bonded as a side chain of the dimethylpolysiloxane skeleton is compatible with a binder resin, slip It is a kind of a preferable lubricant in terms of properties.

Figure 2012018330
Figure 2012018330

〔一般式1〕中、aは1〜5の整数、bは1〜5の整数、cは1〜30の整数、dはc以上の1〜70の整数、R1はH(水素原子)又はアルキル基、R2はH又はアルキル基、Meはメチル基である。 In [General Formula 1], a is an integer of 1 to 5, b is an integer of 1 to 5, c is an integer of 1 to 30, d is an integer of 1 to 70 that is greater than or equal to c, and R 1 is H (hydrogen atom). Alternatively, an alkyl group, R 2 is H or an alkyl group, and Me is a methyl group.

なお、〔一般式1〕で表されるポリエーテル変性ジメチルポリシロキサンは、エチレンオキシド単位(R2がHの場合)や、プロピレンオキシド単位(R2がメチル基の場合)等を含むポリエーテル骨格を有する。また、当該ポリエーテル変性ジメチルポリシロキサンは、重量平均分子量が5,000〜25,000であるものが滑剤性能の点で好ましい。また、その配合量は、バインダ樹脂に対して好ましくは0.01〜5質量%、より好ましくは0.1〜1質量%である。滑剤量がこれより多過ぎると、滑剤の分散が困難となり、表面へのブリードアウトが顕著になる。また、透明性など外観にも支障を来たす。また、滑剤量がこれより少な過ぎると、滑剤による効果が得られなくなる。 The polyether-modified dimethylpolysiloxane represented by [General Formula 1] has a polyether skeleton containing an ethylene oxide unit (when R 2 is H), a propylene oxide unit (when R 2 is a methyl group), and the like. Have. The polyether-modified dimethylpolysiloxane preferably has a weight average molecular weight of 5,000 to 25,000 in terms of lubricant performance. Moreover, the compounding quantity becomes like this. Preferably it is 0.01-5 mass% with respect to binder resin, More preferably, it is 0.1-1 mass%. If the amount of the lubricant is too much, it becomes difficult to disperse the lubricant, and bleeding out to the surface becomes remarkable. In addition, the appearance such as transparency is also hindered. If the amount of lubricant is too small, the effect of the lubricant cannot be obtained.

なお、変性シリコーンオイルとしては、上記以外にも、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、オレフィン変性シリコーンオイル、フッ素変性シリコーンオイル、アルコール変性シリコーンオイル、高級脂肪酸変性シリコーンオイル等を挙げることができる。   Examples of the modified silicone oil include amino-modified silicone oil, epoxy-modified silicone oil, olefin-modified silicone oil, fluorine-modified silicone oil, alcohol-modified silicone oil, and higher fatty acid-modified silicone oil.

以上の様にして、当該ポリエーテル変性ジメチルポリシロキサン等から成る滑剤を、凹凸塗膜3のバインダ樹脂3a中に含有させておくことで、良好な傷付き防止効果及び球状粒子3bの脱落防止効果を発揮し得る滑り性を与えることができる。   As described above, by containing the lubricant composed of the polyether-modified dimethylpolysiloxane or the like in the binder resin 3a of the concavo-convex coating film 3, it is possible to prevent damage and prevent the spherical particles 3b from falling off. The slipperiness which can exhibit can be given.

〔微小突起〕
微小突起4は、上記凹凸塗膜3の説明中で既に述べた様に、凹凸塗膜3を形成することで、塗膜内の球状粒子3bが存在する部分の表面に生成される。また、塗膜内の微粒子として球状粒子3bを採用することで、微小突起4の頂上部及びその周辺の形状を、角ばった形状ではなく、丸みを帯びた形状にして生成できる。その結果、微小突起4を形状的にも他の光学部材に対して滑り易いものにできる。
そして、微小突起4は、その本来の目的である光学密着防止の観点から、該微小突起4の突出高さHの平均値は可視光線の最短波長である0.38μm以上、より好ましくは可視光線の最長波長である0.78μm以上とするのが良い。該平均値が0.38μm未満、つまり可視光線の最小波長未満では、効果的に光学密着を防げない。なお、突出高さHの平均値の最大値は、特に制限はないが、微小突起4を生成する為の球状粒子3bの最大粒径は上記のとおり10μmとするのが良いので、せいぜい20μm、好ましくは10μmとするのが良い。
なお、突出高さHの平均値は、任意の測定評価面積について、微小突起4の少なくとも10個、好ましくは30個以上について、算術平均して算出する。
また、微小突起4の面密度は、100〜3000個/mm2程度が、接触圧力の分散の点で好ましい。この範囲を超えると、光透過率の低下による輝度の低下が目立ち始める。また、この範囲より少ないと、空隙を面で均一に生成できない。
[Microprojections]
As described above in the description of the uneven coating film 3, the microprojections 4 are generated on the surface of the portion where the spherical particles 3b exist in the coating film by forming the uneven coating film 3. Further, by adopting the spherical particles 3b as the fine particles in the coating film, the shape of the top of the fine protrusions 4 and the periphery thereof can be generated in a rounded shape instead of a square shape. As a result, the fine protrusions 4 can be made slippery with respect to other optical members in terms of shape.
From the viewpoint of preventing optical adhesion, which is the original purpose of the microprojection 4, the average value of the projection height H of the microprojection 4 is 0.38 μm or more, which is the shortest wavelength of visible light, more preferably visible light. It is preferable that the longest wavelength is 0.78 μm or more. If the average value is less than 0.38 μm, that is, less than the minimum wavelength of visible light, optical adhesion cannot be effectively prevented. The maximum value of the average value of the protrusion height H is not particularly limited, but the maximum particle diameter of the spherical particles 3b for generating the fine protrusions 4 is preferably 10 μm as described above. The thickness is preferably 10 μm.
The average value of the protrusion height H is calculated by arithmetically averaging at least 10 and preferably 30 or more of the fine protrusions 4 for an arbitrary measurement evaluation area.
Further, the surface density of the fine protrusions 4 is preferably about 100 to 3000 / mm 2 in terms of dispersion of contact pressure. Beyond this range, a decrease in luminance due to a decrease in light transmittance starts to stand out. On the other hand, if it is less than this range, the voids cannot be generated uniformly on the surface.

〔D〕変形形態:
本発明による光学シート10は、上記した構成以外に、例えば下記の様に、更にその他構成要素を加えた形態としても良い。
[D] Variation:
In addition to the above-described configuration, the optical sheet 10 according to the present invention may have a configuration in which other components are further added, for example, as described below.

凹凸塗膜3は、光を拡散させる光拡散機能を備えていてもよい。例えば、凹凸塗膜3が含有する球状粒子3bを光拡散剤として機能させることによって、光拡散機能が付与され得る。球状粒子3bを光拡散剤として機能させるには、球状粒子3bとバインダ樹脂3aとに屈折率差の大きい材料を用いると良い。   The uneven coating film 3 may have a light diffusion function for diffusing light. For example, the light diffusing function can be imparted by causing the spherical particles 3b contained in the uneven coating film 3 to function as a light diffusing agent. In order to make the spherical particles 3b function as a light diffusing agent, it is preferable to use a material having a large refractive index difference between the spherical particles 3b and the binder resin 3a.

光学シート10は帯電防止層を有していてもよい。帯電防止層によって、埃等の異物付着を低減し、付着した異物による傷付きを防止できる。なお、帯電防止層を別途設けず、柱状単位プリズム1、本体部2、凹凸塗膜3のいずれか1以上に、帯電防止剤を添加して帯電防止機能を付与しても良い。
また、柱状単位プリズム1及び本体部2の全部を、ガラス、石英などの透明な無機材料で構成しても良い。
また、光学シート10の入光面とする面に、該面直下の層よりも相対的に低屈折率の低屈折率層からなる反射防止層を設けても良い。光学シート10への入射光の反射損失を低減出来る。
The optical sheet 10 may have an antistatic layer. The antistatic layer can reduce the adhesion of foreign matters such as dust, and can prevent the attached foreign matter from being damaged. In addition, an antistatic layer may be added to any one or more of the columnar unit prism 1, the main body 2, and the concavo-convex coating film 3 without providing an antistatic layer separately to provide an antistatic function.
Further, the entire columnar unit prism 1 and the main body 2 may be made of a transparent inorganic material such as glass or quartz.
Further, an antireflection layer composed of a low refractive index layer having a relatively lower refractive index than that of the layer immediately below the surface may be provided on the surface of the optical sheet 10 as the light incident surface. The reflection loss of incident light on the optical sheet 10 can be reduced.

以下、実施例及び比較例によって、本発明を更に説明する。   Hereinafter, the present invention will be further described with reference to examples and comparative examples.

〔実施例1〕
柱状単位プリズム1からなるプリズム群とは逆凹凸形状の型面を有する金属製の成形型に、透明なアクリル系の紫外線硬化性樹脂液を塗布し、更にその上に厚み188μmの透明な2軸延伸ポリエチレンテレフタレートフィルム(PETフィルム)を重ねた状態で、紫外線照射によって該樹脂液を硬化させて、柱状単位プリズム1がその稜線を互いに平行にシート状の本体部2の一方の面に配列して成るプリズム群を有する、プリズムシート部材を作製した。なお、本体部2は上記PETフィルムと、該PETフィルムと成形型面上の凸部と間の上記紫外線硬化性樹脂液の硬化物層の厚みに該当する該硬化物層の一部から構成される。また、該硬化物層の残りの厚み部分が、多数の柱状単位プリズム1からなるプリズム群を構成する。また、柱状単位プリズム1の形状は、主切断面形状が、頂角90°の直角二等辺三角形で底辺が50μm、高さは稜線方向の全域に亙って25μm、配列周期は50μmであり、本体部2の一方の面2pを完全に被覆して、同一形状同一寸法同一周期で柱状単位プリズム1を配列したプリズム構造となっている。
[Example 1]
A transparent acrylic UV-curing resin liquid is applied to a metal mold having a mold surface that has a concave and convex shape opposite to that of the prism group consisting of the columnar unit prisms 1, and further, a transparent biaxial film having a thickness of 188 μm. In a state where stretched polyethylene terephthalate films (PET films) are stacked, the resin liquid is cured by ultraviolet irradiation, and the columnar unit prisms 1 are arranged in parallel with each other on one surface of the sheet-like main body 2. The prism sheet member which has the prism group which consists of was produced. The main body 2 is composed of the PET film and a part of the cured product layer corresponding to the thickness of the cured product layer of the ultraviolet curable resin liquid between the PET film and the convex portion on the mold surface. The Further, the remaining thickness portion of the cured product layer constitutes a prism group including a large number of columnar unit prisms 1. The columnar unit prism 1 has a main cut surface shape of a right isosceles triangle having a vertex angle of 90 °, a base of 50 μm, a height of 25 μm over the entire area in the ridge line direction, and an arrangement period of 50 μm. The prism unit has a prism structure in which one surface 2p of the main body 2 is completely covered and the columnar unit prisms 1 are arranged with the same shape, the same size and the same period.

次に、上記プリズムシート部材の裏面側である本体部2の他方の面2qに、次の組成の塗料を塗布し加熱乾燥して、凹凸塗膜3を形成し、図1で例示した様な、光学シート10を作製した。   Next, a coating material having the following composition is applied to the other surface 2q of the main body 2 which is the back surface side of the prism sheet member, followed by heating and drying to form a concavo-convex coating film 3, as illustrated in FIG. An optical sheet 10 was produced.

[塗料組成]
バインダ樹脂(熱可塑性ポリエステル系樹脂) 94.99質量部
球状粒子(架橋アクリル系樹脂ビーズ) 5質量部(5質量%)
(綜研化学株式会社製、MX−500H、平均粒径5μmの球形状、粒度分布2〜10 μmで半値幅1μmの単分散タイプ)
滑剤(ポリエーテル変性ジメチルポリシロキサン) 0.01質量部
溶剤(メチルエチルケント) 適量
[Coating composition]
Binder resin (thermoplastic polyester resin) 94.99 parts by mass Spherical particles (cross-linked acrylic resin beads) 5 parts by mass (5% by mass)
(Made by Soken Chemical Co., Ltd., MX-500H, spherical shape with an average particle size of 5 μm, monodisperse type with a particle size distribution of 2 to 10 μm and a half-value width of 1 μm)
Lubricant (polyether-modified dimethylpolysiloxane) 0.01 parts by weight Solvent (methyl ethyl kent) Appropriate amount

得られた凹凸塗膜3には、突出高さHが十点平均粗さRz3.24μmの微小突起4が、面密度100個/mm2で形成されていた。 In the obtained uneven coating film 3, fine protrusions 4 having a protrusion height H of 10-point average roughness Rz3.24 μm were formed at a surface density of 100 / mm 2 .

〔実施例2〕
実施例1に於いて、滑剤の配合量を5質量%に増量させた他は、実施例1と同様にして光学シートを作製した。
[Example 2]
In Example 1, an optical sheet was produced in the same manner as in Example 1 except that the blending amount of the lubricant was increased to 5% by mass.

〔実施例3〕
実施例1に於いて、球状粒子の配合量を増量して微小突起4の面密度を3000個/mm2に増やした他は、実施例1と同様にして光学シートを作製した。
Example 3
An optical sheet was prepared in the same manner as in Example 1, except that the amount of spherical particles was increased to increase the surface density of the microprojections 4 to 3000 / mm 2 .

〔実施例4〕
実施例3に於いて、滑剤の配合量を5質量%に増量させた他は、実施例3と同様にして光学シートを作製した。
Example 4
In Example 3, an optical sheet was produced in the same manner as in Example 3 except that the blending amount of the lubricant was increased to 5% by mass.

〔比較例1〕
実施例1において、凹凸塗膜3の形成に使用した塗料組成物から滑剤を除いた他は、実施例1と同様にして光学シートを作製した。
[Comparative Example 1]
In Example 1, an optical sheet was prepared in the same manner as in Example 1 except that the lubricant was removed from the coating composition used for forming the uneven coating film 3.

〔実施例5〕
実施例1に於いて、柱状単位プリズム1の形状として、成形型を変更して、図2及び図3で示す様な稜線の高さを柱状単位プリズムの配列方向から見たときに折れ線状に変化させた高さ可変のプリズムに代えた他は、実施例1と同様にして光学シートを作製した。
なお、稜線の頂部Pの間隔d(高さ)は、基準の間隔(高さ)25μmに対して±2μmの範囲(23〜27μm)で分布させた。又、各凸部Tの底辺の長さ(図3参照)は74〜893mmの範囲で分布させた。
Example 5
In the first embodiment, the shape of the columnar unit prism 1 is changed as the shape of the columnar unit prism 1 so that the height of the ridge line as shown in FIGS. 2 and 3 becomes a polygonal line shape when viewed from the arrangement direction of the columnar unit prisms. An optical sheet was produced in the same manner as in Example 1 except that the changed height variable prism was used.
The interval d (height) of the apex portion P of the ridge line was distributed in a range of ± 2 μm (23 to 27 μm) with respect to the reference interval (height) of 25 μm. Further, the lengths of the bases of the convex portions T (see FIG. 3) were distributed in the range of 74 to 893 mm.

〔性能評価〕
耐傷付き性について、実施例1〜4及び比較例1の主要な仕様と共に、表1に纏めて示す。
[Performance evaluation]
The scratch resistance is shown in Table 1 together with the main specifications of Examples 1 to 4 and Comparative Example 1.

耐傷付き性能は、次の様にして評価した。図4に概念的に示す様に、耐摩耗試験機(テスタ産業株式会社製、「AB−301 学振型摩擦堅牢度試験機」)の可動盤41上に、試験片42(光学シート10)をその凹凸塗膜3側を上にして載置し、更にこの試験片42の凹凸塗膜3の面上に、光学シート10使用時に隣接する可能性のある光学部材43を載置する。更に、該光学部材43の上に載置した荷重部44に250gの荷重をかける。荷重部44の底面は外径20mm、内径10mmのドーナツ状形状で、底面積は2.36cm2である。そして、可動盤41を一方向(左方向の矢印で図示)に移動速度5mm/sで20秒かけて100mm移動させた後の、試験片42及び他の光学部材43の接触面の傷付き具合を、倍率100〜1000倍の範囲での顕微鏡による目視観察で確認する。尚、今回の実測では、倍率は500倍を選択した。 The scratch resistance performance was evaluated as follows. As conceptually shown in FIG. 4, a test piece 42 (optical sheet 10) is placed on a movable plate 41 of an abrasion resistance tester (manufactured by Tester Sangyo Co., Ltd., “AB-301 Gakushin type friction fastness tester”). Is placed with the concave-convex coating 3 side up, and an optical member 43 that may be adjacent when the optical sheet 10 is used is placed on the surface of the concave-convex coating 3 of the test piece 42. Further, a load of 250 g is applied to the load portion 44 placed on the optical member 43. The bottom surface of the load portion 44 has a donut shape with an outer diameter of 20 mm and an inner diameter of 10 mm, and the bottom area is 2.36 cm 2 . Then, after the movable platen 41 is moved 100 mm in one direction (illustrated by a left arrow) at a moving speed of 5 mm / s over 20 seconds, the contact condition of the contact surface of the test piece 42 and the other optical member 43 is damaged. Is confirmed by visual observation with a microscope in the range of 100 to 1000 times magnification. In this actual measurement, a magnification of 500 times was selected.

性能のレベル判定は、顕微鏡観察で他の光学部材43の接触部分に傷が観察されなかったものをレベルA(表1中「A」で表記、以下同様)、顕微鏡観察では傷が1〜5本観察されたが、後述図5の様なエッジライト型の背面光源装置50に組み立てた状態での目視観察では傷が確認できなかったものはレベルB、顕微鏡観察で傷が6本以上観察され、上記背面光源装置に組み立てた状態での目視観察でも傷が確認されたものはレベルCと評価した。
なお、接触部分で傷を観察する領域は、レンズシートの場合はそのプリズムの稜線部分の長さ3mmに亘った領域として、拡散シートと導光板の場合は面積9mm2の正方形の領域とする。
The level of performance is determined by level A (indicated by “A” in Table 1, the same applies hereinafter) where no scratch was observed on the contact portion of the other optical member 43 by microscopic observation, and from 1 to 5 by microscopic observation. Although this observation was made, if no scratches could be confirmed by visual observation in the state assembled in the edge light type rear light source device 50 as shown in FIG. Those in which scratches were confirmed by visual observation in the state assembled to the back light source device were evaluated as level C.
In the case of a lens sheet, the area where the scratches are observed is the area extending over the length of 3 mm of the prism ridge, and in the case of the diffusion sheet and the light guide plate, a square area having an area of 9 mm 2 is used.

凹凸塗膜3と隣接する可能性のある光学部材43としては、表1に列記のとおり、レンズシート、下拡散シート、導光板の三種類で評価した。
レンズシートとしては、住友スリーエム株式会社製の輝度向上フィルム(商品名「BEF II」)を用いた。使用した輝度向上フィルムは、主切断面が二等辺三角形状の柱状単位プリズム(三角柱プリズム)を、その稜線を互いに平行に配列して成るプリズム群を有する。試験片42と接触させる側の面はプリズム面であり、プリズムの稜線の向きは、可動盤41の移動方向に対して平行(表1中「峰平行」)と、直交(表1中「峰直交」)との2条件で評価した。なお、図4は峰直交時の図面である。
また、上記の下拡散シートとしては、大日本印刷株式会社製の裏面マットプリズムシート(ヘイズ5)のマット面を評価に用いた。この拡散シートの表面(接触面)は、中心線平均粗さRa 0.23μm、十点平均粗さRz3.92μmである。なお、中心線平均粗さRa及び十点平均粗さRzはJIS B0601(1994年版)に準拠して測定した特性値である。
また、導光板としては、導光板用途のポリメチルメタクリレート樹脂(三菱レイヨン株式会社製)からなる厚さ3mmの透明板を用いた。
As the optical member 43 that may be adjacent to the uneven coating film 3, as listed in Table 1, evaluation was made with three types of lens sheet, lower diffusion sheet, and light guide plate.
As the lens sheet, a brightness enhancement film (trade name “BEF II”) manufactured by Sumitomo 3M Limited was used. The brightness enhancement film used has a prism group in which columnar unit prisms (triangular prisms) whose main cut surfaces are isosceles triangles are arranged in parallel with each other. The surface to be brought into contact with the test piece 42 is a prism surface, and the direction of the ridge line of the prism is parallel to the moving direction of the movable platen 41 (“peak parallel” in Table 1) and orthogonal (“peak” in Table 1). The evaluation was performed under two conditions of “orthogonal”. FIG. 4 is a drawing when the peaks are orthogonal.
Further, as the lower diffusion sheet, a mat surface of a back surface mat prism sheet (Haze 5) manufactured by Dai Nippon Printing Co., Ltd. was used for evaluation. The surface (contact surface) of the diffusion sheet has a center line average roughness Ra of 0.23 μm and a ten-point average roughness Rz of 3.92 μm. The center line average roughness Ra and the ten-point average roughness Rz are characteristic values measured according to JIS B0601 (1994 edition).
Further, as the light guide plate, a transparent plate having a thickness of 3 mm made of polymethyl methacrylate resin (manufactured by Mitsubishi Rayon Co., Ltd.) for use as a light guide plate was used.

なお、エッジライト型の背面光源装置の構成は、図5の断面図で示す背面光源装置50の様に、冷陰極管51を側面に備えた導光板52の出光面上に、下拡散シート乃至はレンズシート43(他の光学部材20)、光学シート10である試験片42の順に重ねた構成の平面光源装置である。光学シート10はプリズム面側を出光側にして配置する。また、性能評価時の他の光学部材20がレンズシートの場合は、該レンズシートのプリズム面側が試験片42(光学シート10)の凹凸塗膜3の面と接する向きで配置する。
また、光学シート10の柱状単位プリズム1を、図2で示す様に、稜線高さ可変にした形態では、傷付き評価に使用した光学シート10の試験片42のプリズム面上に、偏光フィルムを配置する。
そして、観察者V側から目視で観察し外観を評価する。
The configuration of the edge light type rear light source device is similar to the rear light source device 50 shown in the cross-sectional view of FIG. 5 on the light emitting surface of the light guide plate 52 having a cold cathode tube 51 on the side surface. Is a planar light source device having a configuration in which a lens sheet 43 (another optical member 20) and a test piece 42 which is the optical sheet 10 are stacked in this order. The optical sheet 10 is arranged with the prism surface side as the light output side. Further, when the other optical member 20 at the time of performance evaluation is a lens sheet, the prism surface side of the lens sheet is arranged in a direction in contact with the surface of the uneven coating film 3 of the test piece 42 (optical sheet 10).
Further, in the form in which the columnar unit prism 1 of the optical sheet 10 is made variable in height as shown in FIG. 2, a polarizing film is formed on the prism surface of the test piece 42 of the optical sheet 10 used for the scratch evaluation. Deploy.
And it visually observes from the observer V side and evaluates an external appearance.

また、球状粒子3bの脱落は、試験後の凹凸塗膜3の表面を、前記傷付き評価と同様に面積9mm2の正方形の領域について倍率100〜1000倍の範囲にて顕微鏡で観察して、球状粒子3bが脱落した後のクレータ状の窪みの有無を確認する。尚、今回の実測では、倍率は500倍を選択した。 In addition, the drop of the spherical particles 3b is obtained by observing the surface of the concavo-convex coating film 3 after the test with a microscope in the range of magnification of 100 to 1000 times with respect to a square region having an area of 9 mm 2 in the same manner as the evaluation with scratches. The presence or absence of a crater-like depression after the spherical particles 3b are removed is confirmed. In this actual measurement, a magnification of 500 times was selected.

Figure 2012018330
Figure 2012018330

その結果、表1に示すとおり、滑剤を含有させた各実施例では一部に顕微鏡観察で傷が僅か観察されたものもあるが(レベルB)、背面光源装置としては実用上外観不良となる程度ではなかった。一方、滑剤を含有させなかった比較例1は、傷が増え、実用上も外観不良となる程度(レベルC)であった。
また、球状粒子3bの脱落に関しては、各実施例とも観察されなかったが、比較例1では、他の光学部材がレンズ(直交)、下拡散シートである場合には球状粒子3bの脱落が観察された。
As a result, as shown in Table 1, in each of the examples containing the lubricant, some scratches were slightly observed by microscopic observation (level B), but as a rear light source device, the appearance was practically poor. It was not about. On the other hand, in Comparative Example 1 in which no lubricant was contained, the number of scratches was increased and the appearance was practically poor (level C).
Further, the dropout of the spherical particles 3b was not observed in each example, but in Comparative Example 1, the dropout of the spherical particles 3b was observed when the other optical member was a lens (orthogonal) and a lower diffusion sheet. It was done.

また、実施例5の柱状単位プリズム1を稜線高さ可変にした形態では、図5の様にエッジライト型の面光源装置で、光学シート10のプリズム面上に、更に他の光学部材20として偏光フィルム53を載置しても、光学密着による光滲潤の不具合は観察されなかった。しかし、実施例1〜4及び比較例1では、光学密着による光滲潤(水に濡れた滲み状の明暗模様)が観察された。   Further, in the embodiment in which the columnar unit prism 1 according to the fifth embodiment is variable in ridge line height, an edge light type surface light source device as shown in FIG. 5 is used as another optical member 20 on the prism surface of the optical sheet 10. Even when the polarizing film 53 was placed, no defect of light oozing due to optical adhesion was observed. However, in Examples 1 to 4 and Comparative Example 1, a light oozing due to optical contact (a bleed-like bright and dark pattern wet with water) was observed.

1 柱状単位プリズム
2 本体部
2p 一方の面
2q 他方の面
3 凹凸塗膜
3a バインダ樹脂
3b 球状粒子
4 微小突起
10 光学シート
20 他の光学部材(導光板など)
40 耐傷付き性能の測定装置
41 可動盤
42 試験片
43 隣接させる他の光学部材
44 荷重部
50 エッジライト型の面光源装置
51 光源
52 導光板
53 偏光フィルム
60 従来の光学シート
61 柱状単位プリズム
62 本体部
63 凹凸塗膜
63a バインダ樹脂
63b 球状粒子
64 微小突起
d 間隔(稜線の頂部の高さ)
C 鞍部
H 突出高さ
L 稜線
nd 法線(方向)
P 頂部
T 凸部
V 観察者
DESCRIPTION OF SYMBOLS 1 Columnar unit prism 2 Main-body part 2p One surface 2q The other surface 3 Uneven coating film 3a Binder resin 3b Spherical particle 4 Microprotrusion 10 Optical sheet 20 Other optical members (light guide plate etc.)
40 Measuring Device 41 for Scratch Resistance 41 Movable Plate 42 Test Piece 43 Other Optical Member 44 Adjacent to Load Part 50 Edge Light Type Surface Light Source Device 51 Light Source 52 Light Guide Plate 53 Polarizing Film 60 Conventional Optical Sheet 61 Columnar Unit Prism 62 Main Body Part 63 Concavity and convexity coating 63a Binder resin 63b Spherical particle 64 Minute protrusion d Interval (height of top of ridge line)
C ridge part H protrusion height L ridge line nd normal line (direction)
P Top part T Convex part V Observer

Claims (3)

柱状単位プリズムをその稜線を互いに平行に配列して成るプリズム群を、シート状の本体部の一方の面に有し、該本体部の他方の面に、微小突起が表面に形成された凹凸塗膜を有する光学シートであって、
該微小突起の平均突出高さHが0.38μm以上であり、且つ該凹凸塗膜はバインダ樹脂中に該微小突起を生成する為の球状粒子と、滑剤を含有する、光学シート。
A prism group consisting of columnar unit prisms whose ridges are arranged in parallel to each other is provided on one surface of a sheet-like main body, and the other surface of the main body has a concavo-convex coating with minute protrusions formed on the surface. An optical sheet having a film,
An optical sheet in which the average protrusion height H of the fine protrusions is 0.38 μm or more, and the uneven coating film contains spherical particles for forming the fine protrusions in a binder resin and a lubricant.
上記滑剤がポリエーテル変性ジメチルポリシロキサンである、請求項1に記載の光学シート。   The optical sheet according to claim 1, wherein the lubricant is a polyether-modified dimethylpolysiloxane. 上記柱状単位プリズムは、その配列方向と平行な方向から観察した場合、各柱状単位プリズムは凹凸を形成する折れ線状の外輪郭を有し、一つの柱状単位プリズムの該折れ線状の外輪郭によって画定される複数の凸部について、前記本体部から最も離間した各凸部の頂部と該本体部との間の該本体部の一方の面に立てた法線方向に沿った間隔は一定でない、請求項1又は2に記載の光学シート。
When the columnar unit prisms are observed from a direction parallel to the arrangement direction, each columnar unit prism has a polygonal outer contour that forms irregularities, and is defined by the polygonal outer contour of one columnar unit prism. With respect to the plurality of convex portions, the interval along the normal direction set up on one surface of the main body portion between the top portion of each convex portion and the main body portion farthest from the main body portion is not constant, Item 3. The optical sheet according to Item 1 or 2.
JP2010156299A 2010-07-09 2010-07-09 Optical sheet Pending JP2012018330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156299A JP2012018330A (en) 2010-07-09 2010-07-09 Optical sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156299A JP2012018330A (en) 2010-07-09 2010-07-09 Optical sheet

Publications (1)

Publication Number Publication Date
JP2012018330A true JP2012018330A (en) 2012-01-26

Family

ID=45603605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156299A Pending JP2012018330A (en) 2010-07-09 2010-07-09 Optical sheet

Country Status (1)

Country Link
JP (1) JP2012018330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069849A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Light guide plate, surface light source device, video source unit, and liquid crystal display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133214A (en) * 1997-08-26 1999-05-21 Dainippon Printing Co Ltd Optical sheet, optical sheet laminate, surface light source device, and transmission type display device
JP2002504698A (en) * 1998-02-18 2002-02-12 ミネソタ マイニング アンド マニュファクチャリング カンパニー Optical film
JP2002243920A (en) * 2001-02-15 2002-08-28 Keiwa Inc Optical sheet and backlight unit using the same
JP2009187011A (en) * 2008-02-11 2009-08-20 Samsung Fine Chemicals Co Ltd Prism sheet having prism mountain of longitudinal wave pattern improved in front luminance, backlight unit adopting the same and liquid crystal display device with backlight unit
WO2009124107A1 (en) * 2008-04-02 2009-10-08 3M Innovative Properties Company Light directing film and method for making the same
WO2010098389A1 (en) * 2009-02-26 2010-09-02 大日本印刷株式会社 Optical sheet, surface light source apparatus, transmission type display apparatus, light emitter, mold, and method for manufacturing mold
JP2011209414A (en) * 2010-03-29 2011-10-20 Dainippon Printing Co Ltd Optical sheet, optical element, surface light source device, transmission type display device, and light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133214A (en) * 1997-08-26 1999-05-21 Dainippon Printing Co Ltd Optical sheet, optical sheet laminate, surface light source device, and transmission type display device
JP2002504698A (en) * 1998-02-18 2002-02-12 ミネソタ マイニング アンド マニュファクチャリング カンパニー Optical film
JP2002243920A (en) * 2001-02-15 2002-08-28 Keiwa Inc Optical sheet and backlight unit using the same
JP2009187011A (en) * 2008-02-11 2009-08-20 Samsung Fine Chemicals Co Ltd Prism sheet having prism mountain of longitudinal wave pattern improved in front luminance, backlight unit adopting the same and liquid crystal display device with backlight unit
WO2009124107A1 (en) * 2008-04-02 2009-10-08 3M Innovative Properties Company Light directing film and method for making the same
WO2010098389A1 (en) * 2009-02-26 2010-09-02 大日本印刷株式会社 Optical sheet, surface light source apparatus, transmission type display apparatus, light emitter, mold, and method for manufacturing mold
JP2011209414A (en) * 2010-03-29 2011-10-20 Dainippon Printing Co Ltd Optical sheet, optical element, surface light source device, transmission type display device, and light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069849A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Light guide plate, surface light source device, video source unit, and liquid crystal display device

Similar Documents

Publication Publication Date Title
KR101357380B1 (en) Optical sheet, surface light source device, and transmission display device
KR100937093B1 (en) Light control film
JP5498027B2 (en) Optical sheet for liquid crystal display device and backlight unit using the same
JP6746282B2 (en) Optical sheet, edge light type backlight unit, and method for manufacturing optical sheet
TWI364555B (en) Optical sheet and backlight assembly having the same
JP5937357B2 (en) Light diffusing sheet and backlight using the same
CN101903809A (en) Light control film
KR101094690B1 (en) Optical sheet for liquid crystal display device and backlight unit using the same
KR20100002197A (en) Optical film
KR101530452B1 (en) Methods for manufacturing light-diffusing element and polarizing plate with light-diffusing element, and light-diffusing element and polarizing plate with light-diffusing element obtained by same methods
JP2012083740A (en) Optical sheet, optical member, surface light source device, and liquid crystal display device
TWI361933B (en)
CN108474876B (en) Optical sheet for backlight unit and backlight unit
CN101833126A (en) Optical film and manufacturing method thereof
JP5724527B2 (en) Light guide plate laminate and manufacturing method thereof
JP2004145330A (en) Optical sheet and backlight unit using the same
JP2010122628A (en) Optical sheet, back light unit and display device
CN101298485A (en) Polymerizable compositions and uses thereof
WO2005085916A1 (en) Light control film and backlight device using it
JP2013171056A (en) Optical sheet, surface light source device and liquid crystal display device
JP2012018330A (en) Optical sheet
JP2004145328A (en) Optical sheet and backlight unit using the same
JP2016212191A (en) Prism sheet, surface light source device, video source unit, and liquid crystal display device
TWI390251B (en) Light control film and the use of its backlight device
TWI725898B (en) Light diffuser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150220