[go: up one dir, main page]

JP2012030467A - Method for recycling waste material of automobile resin - Google Patents

Method for recycling waste material of automobile resin Download PDF

Info

Publication number
JP2012030467A
JP2012030467A JP2010171522A JP2010171522A JP2012030467A JP 2012030467 A JP2012030467 A JP 2012030467A JP 2010171522 A JP2010171522 A JP 2010171522A JP 2010171522 A JP2010171522 A JP 2010171522A JP 2012030467 A JP2012030467 A JP 2012030467A
Authority
JP
Japan
Prior art keywords
coating film
resin
waste material
resin waste
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010171522A
Other languages
Japanese (ja)
Inventor
Shigehito Kato
重日人 加藤
Shinji Tooyama
伸二 遠山
Koji Yoshioka
孝司 吉岡
Hiroki Adachi
宏記 安達
Maiko Ichikawa
真以子 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Kojima Sangyo Co Ltd
Original Assignee
Toyota Motor Corp
Kojima Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Kojima Sangyo Co Ltd filed Critical Toyota Motor Corp
Priority to JP2010171522A priority Critical patent/JP2012030467A/en
Publication of JP2012030467A publication Critical patent/JP2012030467A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

【課題】物性の良好な再生樹脂材料を得ることができる自動車用樹脂製廃材の再生方法を提供する。
【解決手段】塗膜を有する自動車用樹脂製廃材から異物を除去して、再度新たな樹脂材料として再生する自動車用樹脂製廃材の再生方法である。樹脂製廃材を粗破砕する粗破砕工程Aと、粗破砕工程Aによって得られた粗破砕物の中から金属製の異物を除去する金属除去工程Bと、金属除去工程B後の粗破砕物を粉砕する粉砕工程Cと、粉砕工程によって得られた粉砕物の中から残留異物を選別除去する異物選別工程Dとを有し、さらに、少なくとも粗破砕工程Aの後に環式化合物C537によって塗膜を除去する塗膜除去工程Eを有することを特徴とする。塗膜除去工程E中、又は塗膜除去工程Eの直後に、樹脂製廃材に力学的外部エネルギーを与えることが好ましい。
【選択図】図3
The present invention provides a method for recycling a resin waste material for automobiles, which can provide a recycled resin material having good physical properties.
A recycling method for automobile resin waste material, in which foreign matters are removed from the resin resin waste material for automobiles having a coating film, and the resin material is recycled again as a new resin material. Coarse crushing process A for roughly crushing resin waste, metal removal process B for removing metal foreign matter from the coarse crushed material obtained by coarse crushing process A, and coarse crushed material after metal removal process B A pulverization step C for pulverization, and a foreign matter selection step D for selecting and removing residual foreign matters from the pulverized product obtained by the pulverization step. Further, at least after the coarse pulverization step A, the cyclic compound C 5 H 3 F It has the coating-film removal process E which removes a coating film by 7 , It is characterized by the above-mentioned. It is preferable to give mechanical external energy to the resin waste material during the coating film removing step E or immediately after the coating film removing step E.
[Selection] Figure 3

Description

本発明は、廃車にされる自動車から取り外された塗膜を有する樹脂製の外装廃材や内装廃材から異物を除去して、最終的に新たな樹脂材料として再生(リサイクル)する、自動車用樹脂製廃材の再生方法に関する。   The present invention is a resin product for automobiles, which removes foreign matters from resin exterior waste materials and interior waste materials having a coating film removed from automobiles to be scrapped, and finally regenerates (recycles) them as new resin materials. The present invention relates to a method for recycling waste materials.

近年、PETボトルやレアメタルなどを始めとして、種々の分野でリサイクルが積極的に進められている。自動車の分野でも、バンパー、ロッカーモール、エアスポイラー、ライセンスガーニッシュ等の外装材や、インストルメントパネル、ピラーガーニッシュ、シートのサイドシールド等の内装材など、樹脂製廃材のリサイクルも検討されている。一般的にこれら自動車用樹脂製廃材の表面には、塗装のための塗膜を有することが多い。   In recent years, recycling has been actively promoted in various fields including PET bottles and rare metals. In the field of automobiles, recycling of plastic waste materials such as exterior materials such as bumpers, rocker moldings, air spoilers, license garnishes, and interior materials such as instrument panels, pillar garnishes, and side shields of seats is also being considered. In general, the surface of these automotive resin wastes often has a coating film for painting.

この種の再生方法としては、例えば下記特許文献1や特許文献2に開示された技術が既に知られている。これらは、塗膜を有するPP製のバンパー廃材を粉砕して異物を除去した後、適宜バージン樹脂(非再生樹脂)やタルクなど所定の添加物を加えて溶融混練し、塗膜を含めて最終的にペレット化された再生樹脂材を得ている。   As this type of regeneration method, for example, the techniques disclosed in Patent Document 1 and Patent Document 2 below are already known. These are crushed PP bumper waste material having a coating film to remove foreign matter, and then melted and kneaded with appropriate additives such as virgin resin (non-recycled resin) and talc, and finally, including the coating film. A pelletized recycled resin material is obtained.

特開平2003−268175号公報Japanese Patent Laid-Open No. 2003-268175 特開平11−147223号公報JP-A-11-147223

しかしながら、特許文献1や特許文献2では塗膜を含めて再生しているので、再生樹脂材料の物性が低下してしまう。これでは、再生樹脂材料の用途も限定されてしまい、実用化には課題を有する。しかも、再生樹脂による物性低下を補うため、パージン材等もある程度の量添加することが必須となる。また、ペレット化された再生樹脂材料を得る場合は、押出し機によって細紐状に押し出される成形品を次の切断工程へ連続して送り出す必要があるが、塗膜の存在によって細紐状の成形品が途中で切れてしまうおそれもある。この場合、その都度加工ラインが止まるので、加工効率延いては生産性が低下してしまうという問題もある。   However, in Patent Document 1 and Patent Document 2, since the film including the coating film is regenerated, the physical properties of the recycled resin material are deteriorated. This limits the use of the recycled resin material and has a problem in practical use. In addition, it is essential to add a certain amount of a pearline material or the like in order to compensate for a decrease in physical properties due to the recycled resin. In addition, when obtaining a pelletized recycled resin material, it is necessary to continuously send out a molded product extruded into a fine string shape by an extruder to the next cutting step. There is also a risk that the item will be cut off. In this case, since the processing line stops each time, there is a problem that the processing efficiency is extended and the productivity is lowered.

そこで、本発明は上記課題を解決するものであって、自動車用樹脂製廃材から塗膜も除去したうえで、物性の良好な再生樹脂材料を得ることができる自動車用樹脂製廃材の再生方法を提供する。   Accordingly, the present invention solves the above-described problem, and provides a method for recycling a resinous waste material for automobiles that can obtain a recycled resin material having good physical properties after removing a coating film from the resinous waste material for automobiles. provide.

そのための手段として、本発明は、塗膜を有する自動車用樹脂製廃材から異物を除去して、再度新たな樹脂材料として再生する自動車用樹脂製廃材の再生方法であって、環式化合物Cによって前記塗膜を除去する塗膜除去工程を有することを特徴とする。環式化合物Cによって処理すれば、樹脂基材を劣化させることなく、塗膜のみを的確に除去することができる。その理由は定かでは無いが、極性溶媒である環式化合物Cに対して、無極性の樹脂基材の分子構造は侵されないが、極性を有する塗膜の分子構造のみが破壊されるからではと考えられる。 As a means for that purpose, the present invention is a method for reclaiming automobile resin waste material by removing foreign matters from the resin waste material for automobiles having a coating film and regenerating again as a new resin material, comprising cyclic compound C 5. characterized in that the H 3 F 7 having a film removal step of removing the paint film. If the operation by the cyclic compound C 5 H 3 F 7, without degrading the resin substrate, the coating can only be accurately removed. The reason is not clear, but the molecular structure of the nonpolar resin substrate is not affected by the cyclic compound C 5 H 3 F 7 which is a polar solvent, but only the molecular structure of the polar coating film is destroyed. It is thought that it is because it is done.

これによれば、従来の異物除去に加えて塗膜も除去しているので、得られる再生樹脂材料の物性低下を避けることができる。したがって、従来のようにバージン材を添加せずとも、ある程度の物性を担保することができる。バージン材を添加するとしても、その添加量を低減することができる。そのうえ、従来の再生樹脂材料では使用できなかった部材としての用途も広がり、実用性が向上する。また、ペレット化された再生樹脂材料として得る場合でも、押出し機から押し出された細紐状の成形品が途中で切れ難くなり、生産性も向上できる。   According to this, since the coating film is removed in addition to the conventional foreign matter removal, it is possible to avoid deterioration of physical properties of the obtained recycled resin material. Therefore, some physical properties can be ensured without adding a virgin material as in the prior art. Even if a virgin material is added, the amount added can be reduced. In addition, the use as a member that could not be used with the conventional recycled resin material is expanded, and the practicality is improved. Moreover, even when it is obtained as a pelletized recycled resin material, the thin string-like molded product extruded from the extruder is difficult to cut halfway, and the productivity can be improved.

また、本発明の自動車用樹脂製廃材の再生方法では、自動車用樹脂製廃材を粗破砕する粗破砕工程と、粗破砕工程によって得られた粗破砕物の中から金属製の異物を除去する金属除去工程と、金属除去工程後の粗破砕物を粉砕する粉砕工程と、粉砕工程によって得られた粉砕物の中から残留異物を選別除去する異物選別工程とを備えることが好ましい。これによれば、塗膜以外の金属や異物も確実に除去することができる。そのため、再生樹脂材料の物性をより的確に担保することができる。そのうえで、塗膜除去工程は、少なくとも粗破砕工程の後に行うことが好ましい。少なくとも粗破砕工程の後であれば、粉砕工程の前でもよいし後でも良い。また、異物選別工程の後でもよいし、異物選別工程の途中に組み込んでも構わない。塗膜除去工程は粗破砕工程の前に行うことも可能ではあるが、廃車から得られた樹脂製廃材をそのまま粗破砕等せずに処理するには大型の処理槽が必要となるので処理施設が大型化したり輸送効率が悪いなど、処理が大変である。これに対し、塗膜除去工程を粗破砕工程の後に行えば、塗膜除去処理が容易である。また、ある程度の面積(外形寸法)は有するので、除去した塗膜の分離回収も容易である。したがって、仮に粉砕工程の後に微粉砕するような場合、塗膜除去工程は微粉砕工程の前に行うことが好ましい。樹脂製廃材を微粉砕した後に塗膜除去工程を行うと、除去した塗膜の分離回収が煩雑になるからである。   Further, in the method for recycling automobile resin waste material according to the present invention, a rough crushing step for roughly crushing automotive resin waste material, and a metal for removing metal foreign substances from the coarsely crushed material obtained by the coarse crushing step It is preferable to include a removing step, a pulverizing step for pulverizing the coarsely crushed product after the metal removing step, and a foreign matter selecting step for selecting and removing residual foreign matter from the pulverized product obtained by the pulverizing step. According to this, metals other than a coating film and a foreign material can also be removed reliably. Therefore, the physical properties of the recycled resin material can be ensured more accurately. In addition, it is preferable to perform the coating film removing step at least after the rough crushing step. As long as it is at least after the rough crushing step, it may be before or after the crushing step. Further, it may be after the foreign matter sorting step or may be incorporated in the middle of the foreign matter sorting step. Although it is possible to perform the paint film removal process before the rough crushing process, a large processing tank is required to process the resin waste material obtained from the scrapped car without rough crushing, etc. The processing is difficult because of the large size and poor transportation efficiency. On the other hand, if the coating film removing process is performed after the rough crushing process, the coating film removing process is easy. Moreover, since it has a certain area (outside dimension), it is easy to separate and recover the removed coating film. Therefore, if fine pulverization is performed after the pulverization step, the coating film removal step is preferably performed before the fine pulverization step. This is because if the coating film removal step is performed after the resin waste material is finely pulverized, it is difficult to separate and recover the removed coating film.

また、塗膜除去工程中(環式化合物Cによって塗膜を除去している最中)、又は塗膜除去工程の直後に、自動車用樹脂製廃材に力学的外部エネルギーを与えることが好ましい。基本的には、塗膜は環式化合物Cによって化学的に樹脂基材から剥離されるが、場合によっては剥離しきれず残存していることもある。この場合、樹脂製廃材に力学的外部エネルギーを与えることで、塗膜を積極的に除去することができ、塗膜の除去残しを防ぐことができる。但し、力学的外部エネルギーによる積極的な除去は、環式化合物Cによる化学的な作用が前提となる。また、力学的外部エネルギーも併用すれば、処理時間を短縮することもできる。 Moreover, mechanical external energy is given to the resin waste material for automobiles during the coating film removal process (while removing the coating film with the cyclic compound C 5 H 3 F 7 ) or immediately after the coating film removal process. It is preferable. Basically, the coating film is chemically peeled from the resin base material by the cyclic compound C 5 H 3 F 7 , but in some cases, it cannot be completely peeled off and may remain. In this case, by applying mechanical external energy to the resin waste material, the coating film can be positively removed, and removal of the coating film can be prevented. However, aggressive removal by mechanical external energy is predicated on chemical action by the cyclic compound C 5 H 3 F 7 . In addition, if mechanical external energy is also used, the processing time can be shortened.

本発明によれば、自動車用樹脂製廃材から、従来の異物に加えて塗膜をも除去したうえで再生するので、物性の良好な再生樹脂材料を得ることができる。   According to the present invention, a recycled resin material having good physical properties can be obtained from the waste resin material for automobiles, since it is recycled after removing the coating film in addition to the conventional foreign matter.

PP製廃材の再生設備における前半ラインを示す模式図である。It is a schematic diagram which shows the first half line in the reproduction | regeneration facilities of PP waste materials. PP製廃材の再生設備における後半ラインを示す模式図である。It is a schematic diagram which shows the latter half line in the reproduction equipment of PP waste materials. PP製廃材の代表的な再生工程を示す工程図である。It is process drawing which shows the typical reproduction | regeneration process of PP waste materials. 廃車のバンパーに含まれる代表的な異物の種類及び数量と除去率を表したデータ表である。It is a data table showing the type and quantity of typical foreign substances contained in the bumper of scrap cars and the removal rate. PP製廃材の再生工程の変形例を示す模式図である。It is a schematic diagram which shows the modification of the reproduction process of PP waste material. PP製廃材の再生工程の別の変形例を示す模式図である。It is a schematic diagram which shows another modification of the reproduction | regeneration process of PP waste material. PP製廃材の再生工程のさらに別の変形例を示す模式図である。It is a schematic diagram which shows another modification of the reproduction | regeneration process of PP waste materials.

以下に、適宜図面を参照しながら本発明に係るの代表的な実施形態について説明する。本実施形態では、図3に示すように、自動車用樹脂製廃材を粗破砕する粗破砕工程A、粗破砕工程Aによって得られた粗破砕物の中から金属製の異物を除去する金属除去工程B、金属除去工程B後の粗破砕物を粉砕する粉砕工程C、粉砕工程Cによって得られた粉砕物の中から残留異物を選別除去する異物選別工程D、及び環式化合物Cによって塗膜を除去する塗膜除去工程Eなどを経て、再生される。 Hereinafter, typical embodiments according to the present invention will be described with reference to the drawings as appropriate. In this embodiment, as shown in FIG. 3, a rough crushing step A for roughly crushing resin waste materials for automobiles, a metal removing step for removing metal foreign matters from the coarsely crushed material obtained by the rough crushing step A B, crushing step C for crushing the coarsely crushed material after metal removal step B, foreign matter sorting step D for sorting and removing residual foreign matter from the crushed product obtained by crushing step C, and cyclic compound C 5 H 3 F The film is regenerated through a coating film removing step E for removing the coating film by 7 .

処理対象である樹脂製廃材としては、廃車から取り外された、バンパー、ロッカーモール、エアスポイラー、ライセンスガーニッシュ等の樹脂製の外装廃材や、インストルメントパネル、ピラーガーニッシュ、シートのサイドシールド等の樹脂製の内装廃材など、表面にカラーコーティング用の塗膜を有するものであれば特に限定されない。これら内外装廃材は、代表的にはポリプロピレン(PP)製であるが、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS)製や、ABSとポリカーポネート(PC)との共重合樹脂製のものもある。   Resin waste materials to be treated include resin exterior waste materials such as bumpers, rocker moldings, air spoilers, and license garnishes that have been removed from scrap cars, and resin panels such as instrument panels, pillar garnishes, and seat side shields. The interior waste material is not particularly limited as long as it has a coating film for color coating on the surface. These interior and exterior waste materials are typically made of polypropylene (PP), but some are made of acrylonitrile / butadiene / styrene copolymer resin (ABS) or made of copolymer resin of ABS and polycarbonate (PC). is there.

先ず、樹脂製廃材の再生ラインについて説明する。樹脂製廃材は、図外の破砕機によって大まかに破砕された粗破砕物として、図1の切出し機10に投入される(粗破砕工程A)。ここでの粗破砕物は、図4の代表的な異物を含むとともに、樹脂製廃材の表面には塗膜が付いたままである。切出し機10から排出された粗破砕物は、金属除去工程Bにおける鉄選別機のマグネットコンベア12によって搬送され、その間に粗破砕物に混じっている鉄をマグネットコンベア12で吸着して除去する(鉄除去工程B)。鉄が除去された粗破砕物は、マグネットコンベア12からコンベア13aに移送されて一方向へ搬送される。このとき、コンベア13aによって門型の非鉄金属選別機13を粗破砕物が通過することにより、アルミニウムなどの導電体内に例えば電磁誘導現象による渦電流を発生させ、それに伴う運動力を利用してアルミニウムなどの非鉄金属を粗破砕物から選別除去する(非鉄金属除去工程B)。 First, the resin waste material regeneration line will be described. The resin waste material is put into the cutting machine 10 of FIG. 1 as a roughly crushed material roughly crushed by a crusher outside the figure (coarse crushing step A). The coarsely crushed material here contains the typical foreign matter shown in FIG. 4 and the surface of the resin waste material is still coated. The coarsely crushed material discharged from the cutting machine 10 is transported by the magnetic conveyor 12 of the iron sorter in the metal removal step B, and the iron mixed in the coarsely crushed material is adsorbed and removed by the magnetic conveyor 12 (iron). Removal step B 1 ). The roughly crushed material from which iron has been removed is transferred from the magnet conveyor 12 to the conveyor 13a and conveyed in one direction. At this time, the coarsely crushed material passes through the gate-type non-ferrous metal sorter 13 by the conveyor 13a, thereby generating an eddy current due to, for example, an electromagnetic induction phenomenon in a conductor such as aluminum, and using the associated kinetic force, the aluminum The nonferrous metal such as is selectively removed from the coarsely crushed material (nonferrous metal removal step B 2 ).

金属除去工程Bを通過した粗破砕物は、金属以外の異物を含むとともに塗膜が付いたまま、コンベア14によって粉砕工程Cに送られる。粉砕工程Cにおいては、防音室15a内に設置された粉砕機15によって粗破砕物が粉砕され、粉砕機15から排出された粉砕物はパイプ通路30内の空気流によって異物選別工程Dに搬送される。異物選別工程Dでは、図4の代表的な異物のうち、テープ類等の軽質な異物が風力選別機16によって除去され(風力選別工程D)、砂や残留金属類が水比重差選別漕17によって除去される(比重差選別工程D)。さらに、異物選別工程Dの途中、具体的には風力選別工程Dと比重差選別工程Dの間に、環式化合物Cを主体成分とする溶液が貯留された塗膜除去槽11に粉砕物を浸漬することで塗膜を除去する塗膜除去工程Eも有する。このようにして異物と共に塗膜も除去された粉砕物は、洗浄・脱水機18に送られて汚れを落とした後(洗浄・脱水工程F)、大粒径材選別機19で所定値以上の粒径の粉砕物が除去されて、粉砕物の粒径が整えられる(整粒工程G)。このように、整粒工程Gを経た後には、異物及び塗膜が除去されていると共に粒径が整えられた粉砕樹脂廃材が得られる。 The coarsely crushed material that has passed through the metal removing step B is sent to the pulverizing step C by the conveyor 14 while containing foreign substances other than metal and with a coating film attached. In the pulverization step C, the coarsely crushed material is pulverized by the pulverizer 15 installed in the soundproof chamber 15a, and the pulverized material discharged from the pulverizer 15 is conveyed to the foreign matter sorting step D by the air flow in the pipe passage 30. The In the foreign matter sorting step D, light foreign matters such as tapes are removed by the wind sorter 16 from the typical foreign matter shown in FIG. 4 (wind sorting step D 1 ), and sand and residual metals are sorted by water specific gravity difference. 17 (specific gravity difference sorting step D 2 ). Further, a coating film in which a solution containing the cyclic compound C 5 H 3 F 7 as a main component is stored during the foreign matter sorting step D, specifically, between the wind sorting step D 1 and the specific gravity difference sorting step D 2. It also has a coating film removal step E that removes the coating film by immersing the pulverized material in the removal tank 11. The pulverized material from which the coating film has been removed together with the foreign matters is sent to the cleaning / dehydrating machine 18 to remove the dirt (cleaning / dehydrating process F), and then the large particle size material sorting machine 19 exceeds the predetermined value. The pulverized product having a particle size is removed, and the particle size of the pulverized product is adjusted (granulation step G). Thus, after passing through the sizing step G, a crushed resin waste material in which the foreign matters and the coating film are removed and the particle size is adjusted is obtained.

大粒径材選別機19から送り出された粉砕樹脂廃材は、パイプ通路31内の空気流によって図2のストックタンク20に送り込まれる。一方、ストックタンク20の近傍には種々の添加材料を個別に入れた複数の仕込みホッパー26が設けられている。添加材料としては特に限定されないが、例えばバージン材(非再生樹脂)、ゴム材、タルク、及び顔料などから選ばれる1種又は2種以上が挙げられる。これらの添加材料と粉砕樹脂廃材とが個々の材料供給機21によって二軸押出し機22に混合供給される(混合成形工程H)。なお、添加材料としてバージン材、ゴム材、タルク、及び顔料を添加する場合は、各材料供給機21において粉砕樹脂廃材が50〜90重量%、バージン材とゴムとの合計が5〜40重量%、タルクと顔料との合計が5〜10重量%となるように混合することが好ましい。このような重量比で粉砕樹脂廃材と添加材料とを混合することにより、比重=1.05±0.02、メルトフロー=30±10g/10min、シャルピー衝撃=20±10KJ/m2の実用的な物性を有する再生樹脂となる。また、二軸押出し機22に供給する直前に各種添加材料と粉砕樹脂廃材とを混合することで、再生樹脂の性状が均一になる。 The ground resin waste material sent out from the large particle size material sorter 19 is sent into the stock tank 20 of FIG. 2 by the air flow in the pipe passage 31. On the other hand, in the vicinity of the stock tank 20, a plurality of preparation hoppers 26 each containing various additive materials are provided. Although it does not specifically limit as an additive material, For example, 1 type, or 2 or more types chosen from a virgin material (non-recycled resin), a rubber material, a talc, a pigment, etc. are mentioned. These additive materials and pulverized resin waste are mixed and supplied to the twin screw extruder 22 by the individual material feeders 21 (mixing molding step H). In addition, when adding a virgin material, a rubber material, a talc, and a pigment as an additive material, in each material supply machine 21, the grinding | pulverization resin waste material is 50 to 90 weight%, and the sum total of a virgin material and rubber | gum is 5 to 40 weight%. The talc and the pigment are preferably mixed so that the total amount is 5 to 10% by weight. By mixing the pulverized resin waste material and the additive material at such a weight ratio, the specific gravity is 1.05 ± 0.02, the melt flow is 30 ± 10 g / 10 min, and the Charpy impact is 20 ± 10 KJ / m 2 . Recycled resin having excellent physical properties. Further, by mixing the various additive materials and the pulverized resin waste immediately before being supplied to the twin screw extruder 22, the properties of the recycled resin become uniform.

二軸押出し機22は、周知のように所定の温度に加熱されるハウジング内で平行な二軸のスクリューが回転駆動する構造である。この二軸押出し機22に供給された粉砕樹脂廃材と添加材料との混合材は、溶融混練されてペースト状になり、分離フィルター23を経て二軸押出し機22から押し出される。このとき、ペースト状の混合材は、分離フィルター23によって粒径が100μm程度の微細な異物が除去された後に複数の細紐状に押出し成形される。細紐状の成形品は、切断工程Iに向けて途切れることなく連続して送られ、切断機24によってペレット状に切断される。この再生樹脂ペレットは、パイプ通路32内の空気流によって製品タンク25に送り込まれ、この製品タンク25内にストックされる。   As is well known, the twin-screw extruder 22 has a structure in which parallel twin-screws are rotationally driven in a housing heated to a predetermined temperature. The mixed material of the pulverized resin waste material and the additive material supplied to the twin screw extruder 22 is melt-kneaded to form a paste, and is extruded from the twin screw extruder 22 through the separation filter 23. At this time, the paste-like mixed material is extruded into a plurality of fine string shapes after fine foreign matters having a particle size of about 100 μm are removed by the separation filter 23. The thin string-shaped molded product is continuously fed toward the cutting step I without being interrupted, and is cut into pellets by the cutting machine 24. The recycled resin pellets are fed into the product tank 25 by the air flow in the pipe passage 32 and stocked in the product tank 25.

上述のように、粉砕工程Cにおいて粉砕された粉砕物には、塗膜以外にも図4で示すような各種の異物が含まれている。そこで、異物選別工程Dにおいて、まず風力選別機16で軽量物を除去し(風力選別工程D)、次に水比重差選別漕17で重量物を除去する(比重差選別工程D)ことにより、異物を効率よく除去することができる。すなわち、先に水比重差選別漕17を用いると、風力選別機16を用いる前に乾燥工程が必要になるので効率が劣る。 As described above, the pulverized product pulverized in the pulverizing step C includes various foreign substances as shown in FIG. 4 in addition to the coating film. Therefore, in the foreign matter sorting process D, first, the light weight is removed by the wind sorter 16 (wind sorting process D 1 ), and then the heavy object is removed by the water specific gravity difference sorting basket 17 (specific gravity difference sorting process D 2 ). Thus, foreign matters can be efficiently removed. That is, when the water specific gravity difference sorting basket 17 is used first, a drying process is required before the wind power sorter 16 is used, so the efficiency is inferior.

さらに、本実施形態では、風力選別工程Dと比重差選別工程Dとの間で塗膜を除去している(塗膜除去工程E)。塗膜除去工程Eで使用する環式化合物C溶液としては、例えば日本ゼオン社製のゼオローラ(登録商標)Hシリーズを好適に使用できる。環式化合物Cであれば、PP等の樹脂基材を劣化させること無く、自動車用の塗料として従来から使用されているウレタン系塗料、アクリル系塗料、アクリルウレタン系塗料など種々の塗料(塗膜)を除去することができる。塗膜除去工程Eでは、基本的には粉砕樹脂廃材を環式化合物C溶液に浸漬するだけでよい。これにより、塗膜が基材から剥離する。塗膜剥離工程Eは、常温で行うこともできるが、反応を促進させるため30〜90℃程度に加温して行うことが好ましい。浸漬時間は、塗料の種類や処理温度に応じて適宜調整すればよい。 Further, in this embodiment, to remove the coating with the wind sorting step D 1 and the difference in specific gravity sorting step D 2 (film removal step E). As the cyclic compound C 5 H 3 F 7 solution used in the coating film removing step E, for example, ZEOLOR (registered trademark) H series manufactured by ZEON CORPORATION can be suitably used. If it is cyclic compound C 5 H 3 F 7 , various types of urethane paints, acrylic paints, acrylic urethane paints and the like conventionally used as paints for automobiles are used without deteriorating the resin base material such as PP. The paint (coating film) can be removed. In the coating film removal step E, basically, the pulverized resin waste material may be simply immersed in the cyclic compound C 5 H 3 F 7 solution. Thereby, a coating film peels from a base material. Although the coating film peeling process E can also be performed at normal temperature, in order to accelerate reaction, it is preferable to carry out by heating to about 30-90 degreeC. What is necessary is just to adjust immersion time suitably according to the kind and process temperature of a coating material.

塗膜除去工程Eを風力選別工程Dの後に行う利点は、風力選別工程Dの後に比重差選別工程Dを行う上記利点と同様である。また、塗膜除去工程Eを比重差選別工程Dの前に行えば、次のような利点がある。すなわち、粉砕物には異物だけでなく、粉砕工程Cで生じた樹脂製廃材の微粉末や、粉砕によって一部剥離した塗膜なども含まれている。これをそのまま水比重差選別漕17に送り込むと、樹脂製廃材の微粉末が漕内に蓄積され、定期的に蓄積粉末を取り除く作業が余分に必要となる。これに対し、塗膜除去工程Eを比重差選別工程Dの前に行えば、このような不具合を解消することができる。さらに、塗膜除去工程Eでは粉砕物を処理溶液に晒すため、塗膜除去工程Eを洗浄・脱水工程Fより前に行っていれば、効率良く処理できる。なお、金属除去工程B、異物選別工程D及び分離フィルター23を用いた結果の異物除去率は、図4の「除去率」の欄に示すとおりである。 The advantage of performing the coating film removing step E after the wind sorting step D 1 is the same as the above advantage of performing the specific gravity difference sorting step D 2 after the wind sorting step D 1 . Further, by performing the coating removing step E before the difference in specific gravity sorting process D 2, it has the following advantages. That is, the pulverized product includes not only foreign substances but also fine powder of resin waste material generated in the pulverizing step C, and a coating film partially peeled off by pulverization. If this is sent to the water specific gravity difference sorting basket 17 as it is, the fine powder of the resin waste material is accumulated in the basket, and it is necessary to regularly remove the accumulated powder. In contrast, by performing the coating removing step E before the difference in specific gravity sorting process D 2, it is possible to solve such problems. Furthermore, since the pulverized product is exposed to the treatment solution in the coating film removing step E, if the coating film removing step E is performed before the cleaning / dehydrating step F, the processing can be efficiently performed. In addition, the foreign matter removal rate as a result of using the metal removal step B, the foreign matter sorting step D, and the separation filter 23 is as shown in the column “Removal rate” in FIG.

(変形例)
上記実施形態では、塗膜除去工程Eを比重差選別工程Dの前に行ったが、図5に示すように、比重差選別工程Dの後に行うこともできる。この場合でも、風力選別工程Dと洗浄・脱水工程Fとの間で塗膜除去工程Eを行っているので、上記実施形態と同様に効率良く処理できる。また、粗破砕工程Aと粉砕工程Cの間に行っても良い。
(Modification)
In the above embodiment has been film removal step E before the difference in specific gravity sorting process D 2, as shown in FIG. 5 may be performed after the difference in specific gravity sorting process D 2. In this case, since the performing film removal step E between the washing and dewatering step F and wind screening process D 1, it can be efficiently processed in the same manner as the above embodiment. Moreover, you may perform between the rough crushing process A and the crushing process C.

また、塗膜除去工程Eでは、場合によっては塗膜が完全に剥離しない場合もある。そこで、図6に示すように塗膜除去工程Eと同時に、又は図7に示すように塗膜除去工程Eの直後に、粉砕物へ力学的外部エネルギーを与えることが好ましい。これにより、環式化合物Cによる化学的な作用に加えて、力学的エネルギーによって塗膜を確実に除去することができる。力学的外部エネルギーとしては、振動、衝撃、摩擦などが挙げられる。粉砕物へ振動を与えるには、塗膜除去工程E中に超音波振動を与えたり、塗膜除去工程Eの後に振動機によって振動させることができる。粉砕物へ衝撃を与えるには、塗膜除去工程Eの後に、粉砕物をショットブラスト処理するなどが挙げられる。粉砕物へ摩擦を与えるには、塗膜除去工程E中に粉砕物を撹拌したり、塗膜除去工程Eの後にミキサーなどによって撹拌することもできる。なお、図5に示すような場合でも、塗膜除去工程E中、又は塗膜除去工程Eの直後に、粉砕物へ力学的外部エネルギーを与えることが好ましい。 In the coating film removing step E, the coating film may not be completely peeled off depending on the case. Therefore, it is preferable to apply mechanical external energy to the pulverized product simultaneously with the coating film removing step E as shown in FIG. 6 or immediately after the coating film removing step E as shown in FIG. Thus, in addition to the chemical action of the cyclic compound C 5 H 3 F 7, it is possible to reliably remove the coating by mechanical energy. Examples of mechanical external energy include vibration, impact, and friction. In order to give vibration to the pulverized product, ultrasonic vibration can be given during the coating film removal step E, or it can be vibrated by a vibrator after the coating film removal step E. In order to give an impact to the pulverized product, shot blasting of the pulverized product after the coating film removing step E can be mentioned. In order to give friction to the pulverized product, the pulverized product can be stirred during the coating film removing step E, or can be stirred with a mixer after the coating film removing step E. Even in the case shown in FIG. 5, it is preferable to give mechanical external energy to the pulverized product during the coating film removing step E or immediately after the coating film removing step E.

また、例えば特定の業者から指定の粉砕物を回収した場合は、粗破砕工程A〜粉砕工程Cを経ることなく、粉砕物を異物選別工程Dや塗膜剥離工程Eへ直接供給することもできる。この場合の粉砕物は、ストックタンク20とは別のストックタンクに送り込んで区別しておくこともある。   For example, when a specified pulverized product is collected from a specific supplier, the pulverized product can be directly supplied to the foreign matter sorting process D or the coating film peeling process E without going through the coarse crushing process A to the pulverizing process C. . The pulverized material in this case may be sent to a stock tank different from the stock tank 20 to be distinguished.

(評価試験1)
環式化合物Cによる塗膜除去について、その効果を評価した。環式化合物Cとして、日本ゼオン社製のゼオローラHTAを使用した。評価試料には、表1に示す各種色の塗膜を有する、5cm角に切り出したPP製の自動車バンパー廃材を使用した。これら試料1〜6を、十分量のゼオローラHTAへ表1に示す条件で浸漬した際の塗膜の状態を目視にて観察した。その結果も表1に示す。
(Evaluation Test 1)
For coating removal by cyclic compound C 5 H 3 F 7, to evaluate their effectiveness. As the cyclic compound C 5 H 3 F 7 , Zeorora HTA manufactured by Nippon Zeon Co., Ltd. was used. As an evaluation sample, PP automobile bumper waste material cut into 5 cm square having various color coating films shown in Table 1 was used. The state of the coating film when these samples 1 to 6 were immersed in a sufficient amount of Zeolora HTA under the conditions shown in Table 1 was visually observed. The results are also shown in Table 1.

Figure 2012030467
Figure 2012030467

表1の結果から、環式化合物Cによって樹脂基材を変質させることなく、各種塗膜を的確に除去することができることがわかる。但し、試料4〜6のように条件によっては塗膜が残存しているものもあった。そこで、試料4〜6を粉砕してから50℃のゼオローラHTAに10時間浸漬した後、市販のミキサー(ナショナル製 MX-X103)によって撹拌してみたところ、粉砕試料同士が擦り合わされることで、ほぼ全ての塗膜を除去することができていた。これにより、力学的エネルギーを与えれば、確実に塗膜を除去できることがわかった。また、表1の結果から、浸漬条件としては、溶液温度が高い方が好ましく、また浸漬時間も長い方が好ましいことがわかった。 From the results in Table 1, it can be seen that various coating films can be removed accurately without changing the resin base material by the cyclic compound C 5 H 3 F 7 . However, some of the coating films remained depending on the conditions as in Samples 4 to 6. Therefore, after crushing samples 4 to 6 and immersing them in 50 ° C. Zeolora HTA for 10 hours and then stirring with a commercially available mixer (National MX-X103), the crushed samples were rubbed together. Almost all the coating film could be removed. Thus, it was found that the coating film can be surely removed by applying mechanical energy. Moreover, from the results of Table 1, it was found that the immersion conditions are preferably higher in solution temperature and longer in immersion time.

(評価試験2)
次に、環式化合物Cによって塗膜が除去された樹脂製廃材から再生された樹脂の物性について評価した。当該評価試験には、塗膜を残したままの粉砕樹脂廃材100%(試料7)と、環式化合物Cによって完全に塗膜を剥離した粉砕樹脂廃材100%(試料8)と、PPバージン材100%(試料9)とを使用して80×10×4mm寸法の板状に成形し、当該成形試料7〜9のシャルピー衝撃値を評価した。その結果を表2に示す。なお、シャルピー衝撃値はISO179の規定に準拠して行い、衝撃ヘッド速度2.9±10%(m/s)、ハンマヘッド衝撃エネルギー2.0(J)における衝撃値を測定した。
(Evaluation test 2)
Next, physical properties of the resin regenerated from the resin waste material from which the coating film was removed by the cyclic compound C 5 H 3 F 7 were evaluated. In the evaluation test, the ground resin waste material 100% with the coating film remaining (sample 7) and the ground resin waste material 100% with the cyclic compound C 5 H 3 F 7 completely peeled off (sample 8) And PP virgin material 100% (sample 9) were molded into a plate shape having a size of 80 × 10 × 4 mm, and the Charpy impact values of the molded samples 7 to 9 were evaluated. The results are shown in Table 2. The Charpy impact value was determined in accordance with ISO 179, and the impact value at an impact head speed of 2.9 ± 10% (m / s) and a hammer head impact energy of 2.0 (J) was measured.

Figure 2012030467
Figure 2012030467

表2の結果から、塗膜を残したまま再生した試料7では、バージン材100%の試料9と比べて物性が大きく低下していた。これに対し、塗膜を完全に除去して再生した試料8では、試料9と同等の物性を有していた。   From the results shown in Table 2, the physical properties of Sample 7 regenerated while leaving the coating film were greatly reduced compared to Sample 9 of 100% virgin material. On the other hand, Sample 8 that was regenerated by completely removing the coating film had the same physical properties as Sample 9.

10 切出し機
11 塗膜除去槽
12 マグネットコンベア
13 非鉄金属選別機
15 粉砕機
16 風力選別機
17 水比重差選別漕
18 洗浄・脱水機
19 大粒径材選別機
20 ストックタンク
21 材料供給機
22 二軸押出し機
23 分離フィルター
24 切断機
26 仕込みホッパー
A 粗破砕工程
B 金属除去工程
鉄除去工程
非鉄金属除去工程
C 粉砕工程
D 異物選別工程
風力選別工程
比重差選別工程
E 塗膜除去工程
DESCRIPTION OF SYMBOLS 10 Cutting machine 11 Coating film removal tank 12 Magnet conveyor 13 Non-ferrous metal sorter 15 Crusher 16 Wind sorter 17 Water specific gravity difference sorter 18 Washing / dehydrator 19 Large grain size sorter 20 Stock tank 21 Material supply machine 22 Shaft extruder 23 Separation filter 24 Cutting machine 26 Feeding hopper A Coarse crushing process B Metal removal process B 1 Iron removal process B 2 Nonferrous metal removal process C Grinding process D Foreign matter sorting process D 1 Wind sorting process D 2 Specific gravity difference sorting process E Coating removal process

Claims (3)

塗膜を有する自動車用樹脂製廃材から異物を除去して、再度新たな樹脂材料として再生する自動車用樹脂製廃材の再生方法であって、
環式化合物C537によって前記塗膜を除去する塗膜除去工程を有することを特徴とする、自動車用樹脂製廃材の再生方法。
A method for recycling automobile resin waste material that removes foreign matters from automobile resin waste material having a coating film and regenerates it as a new resin material again,
A method for recycling a resin waste material for automobiles, comprising a coating film removing step of removing the coating film with a cyclic compound C 5 H 3 F 7 .
前記自動車用樹脂製廃材を粗破砕する粗破砕工程と、
前記粗破砕工程によって得られた粗破砕物の中から金属製の異物を除去する金属除去工程と、
前記金属除去工程後の粗破砕物を粉砕する粉砕工程と、
前記粉砕工程によって得られた粉砕物の中から残留異物を選別除去する異物選別工程とを有し、
前記塗膜除去工程を、少なくとも前記粗破砕工程の後に有することを特徴とする、請求項1に記載の自動車用樹脂製廃材の再生方法。
A rough crushing step for roughly crushing the automobile resin waste material,
A metal removal step of removing metal foreign matter from the coarsely crushed material obtained by the coarse crushing step;
A crushing step of crushing the coarsely crushed material after the metal removal step;
A foreign matter sorting step for sorting and removing residual foreign matter from the pulverized product obtained by the grinding step,
The method for recycling a resin waste material for an automobile according to claim 1, wherein the coating film removing step is included at least after the rough crushing step.
前記塗膜除去工程中、又は前記塗膜除去工程の直後に、前記自動車用樹脂製廃材に力学的外部エネルギーを与えることを特徴とする、請求項1または請求項2に記載の自動車用樹脂製廃材の再生方法。

The automotive resin product according to claim 1 or 2, wherein mechanical external energy is given to the automotive resin waste material during the coating film removing step or immediately after the coating film removing step. How to recycle waste materials.

JP2010171522A 2010-07-30 2010-07-30 Method for recycling waste material of automobile resin Pending JP2012030467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171522A JP2012030467A (en) 2010-07-30 2010-07-30 Method for recycling waste material of automobile resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171522A JP2012030467A (en) 2010-07-30 2010-07-30 Method for recycling waste material of automobile resin

Publications (1)

Publication Number Publication Date
JP2012030467A true JP2012030467A (en) 2012-02-16

Family

ID=45844496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171522A Pending JP2012030467A (en) 2010-07-30 2010-07-30 Method for recycling waste material of automobile resin

Country Status (1)

Country Link
JP (1) JP2012030467A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215919A (en) * 2012-04-05 2013-10-24 Kojima Sangyo Kk Resin recycling method
US11305309B2 (en) 2017-10-20 2022-04-19 Yamaguchi Prefectural Industrial Technology Institute Method and device for removing coating on coated plastic article
JP2023536526A (en) * 2020-08-07 2023-08-25 アーペーカー アクチェンゲゼルシャフト Plastic pretreatment and solvent-based plastic recycling method
JP2024098630A (en) * 2023-01-11 2024-07-24 株式会社日本選別化工 Waste plastic recycling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215919A (en) * 2012-04-05 2013-10-24 Kojima Sangyo Kk Resin recycling method
US11305309B2 (en) 2017-10-20 2022-04-19 Yamaguchi Prefectural Industrial Technology Institute Method and device for removing coating on coated plastic article
JP2023536526A (en) * 2020-08-07 2023-08-25 アーペーカー アクチェンゲゼルシャフト Plastic pretreatment and solvent-based plastic recycling method
JP2024098630A (en) * 2023-01-11 2024-07-24 株式会社日本選別化工 Waste plastic recycling system

Similar Documents

Publication Publication Date Title
CN102256761B (en) The method respectively having valency material is separated by the plastic wastes particularly pulverized mixed
EP1058609B1 (en) Method and installation for separating all categories of polymer materials
US20130264734A1 (en) Methods of recycling waste resin products
WO1995026826A1 (en) Automobile shredder residue (asr) separation and recycling system
CN1713961A (en) Plastic material with enhanced magnetic susceptibility and methods for its manufacture and isolation
JP2002059082A (en) Reusable plastic production method and apparatus
JPH0623748A (en) Recycling method for plastic products having coating film
CN1196529C (en) Apparatus and method for sorting crushing residues and use of the resulting particle fraction
JP2012030467A (en) Method for recycling waste material of automobile resin
US6474574B1 (en) Process for removing paint from polymeric materials
JP2562797B2 (en) Chemical / mechanical paint decomposition method for synthetic resin
JP2011020298A (en) Method for recycling resin-made bumper
JP2004122576A (en) Recycling of waste plastic
JP3542985B2 (en) Method and apparatus for stabilizing material properties of recovered bumper
JP2004122575A (en) Recycling of waste plastic
JPH07164443A (en) Modifying method for polypropylene and wooden powder composite material
JP2002028927A (en) Method for collecting resin particulates and resin particulates
CN1401469A (en) Regenerated plastic material, electric and electronic machinery using same, plastic material reuse method and method for mfg. regenerated plastic material
Fabrizi et al. Wire separation from automotive shredder residue
CN120752123A (en) Method for recycling lacquered plastics
JP2025039420A (en) Sorting system, sorting method, and control program
JP2025039422A (en) Sorting system, sorting method, and control program
JPH11320561A (en) Recycling treatment method for resin material
JP2025039419A (en) Sorting system, sorting method, and control program
JP4353144B2 (en) Projection material and blasting method