[go: up one dir, main page]

JP2012032551A - Reflective lamination film - Google Patents

Reflective lamination film Download PDF

Info

Publication number
JP2012032551A
JP2012032551A JP2010171186A JP2010171186A JP2012032551A JP 2012032551 A JP2012032551 A JP 2012032551A JP 2010171186 A JP2010171186 A JP 2010171186A JP 2010171186 A JP2010171186 A JP 2010171186A JP 2012032551 A JP2012032551 A JP 2012032551A
Authority
JP
Japan
Prior art keywords
layer
reflective
refractive index
film
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010171186A
Other languages
Japanese (ja)
Inventor
Yuki Nakanishi
由貴 中西
Kazuhiro Kato
和広 加藤
Hideo Omoto
英雄 大本
Takao Tomioka
孝夫 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2010171186A priority Critical patent/JP2012032551A/en
Priority to PCT/JP2011/065773 priority patent/WO2012014664A1/en
Publication of JP2012032551A publication Critical patent/JP2012032551A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflective lamination film that achieves both of high reflectance and excellent durability simultaneously.SOLUTION: The reflective lamination film is deposited on a substrate, and includes a base layer on the substrate, a reflective layer containing Ag as a main component on the base layer, a protection layer on the reflective layer, and a transparent reflection increasing layer on the protection layer. The reflective layer contains N, the transparent reflection increasing layer is a laminate containing an Si oxynitride layer, and the laminate contains a low refractive index layer containing an Si oxynitride layer and a high refractive index layer.

Description

本発明は、可視光反射部材及び日射反射部材として適用可能な反射積層膜に関するものである。   The present invention relates to a reflective laminated film applicable as a visible light reflecting member and a solar reflective member.

従来、液晶ディスプレイのバックライトユニットやプロジェクションテレビの反射鏡、LED照明用反射部材、光記録媒体の反射層、薄膜太陽電池の裏面電極膜など、様々な用途において金属膜を光反射層とした反射部材が用いられている。   Conventionally, a reflective film made of a metal film as a light reflecting layer in various applications, such as a backlight unit of a liquid crystal display, a reflecting mirror of a projection television, a reflecting member for LED illumination, a reflecting layer of an optical recording medium, and a back electrode film of a thin film solar cell. A member is used.

金属膜を用いた光反射部材は、反射率、耐久性、コストなどをふまえて、目的に適合する様々な膜構成が取られるが、プロジェクションテレビ用の反射鏡のような、より高い反射率が求められる用途では、反射率の高い金属層と、該金属層の上層に形成される、金属層の保護と増反射を目的とした無機物の膜を含む反射積層膜が用いられることが多い(非特許文献1)。   A light reflecting member using a metal film has various film configurations suitable for the purpose based on reflectivity, durability, cost, etc., but has a higher reflectivity like a reflector for projection TV. In a required application, a reflective laminated film including a metal layer having a high reflectivity and an inorganic film formed on the metal layer for the purpose of protecting and enhancing the reflection of the metal layer is often used (Non- Patent Document 1).

上記反射積層膜の作製には、スパッタ法などの真空蒸着法が広く用いられており、金属層としてはAlやAgが利用される(特許文献1、特許文献2)。AgはAlに比べて高い反射率を有するため、反射率向上の観点からはAgの利用が望ましいとされるが、一方でAgは欠陥の発生や、膜の剥離等が生じやすいとされている(特許文献3)。   For the production of the reflective laminated film, a vacuum deposition method such as a sputtering method is widely used, and Al or Ag is used as the metal layer (Patent Documents 1 and 2). Since Ag has a higher reflectance than Al, it is desirable to use Ag from the viewpoint of improving the reflectance. On the other hand, Ag is likely to cause defects, film peeling, and the like. (Patent Document 3).

上記の課題を改善する方法として、Ag膜にAu、Pdなどの貴金属、もしくはCu、Alなどの金属を添加し、Ag膜を合金化する方法(特許文献4、特許文献5)、窒化珪素などの膜をAg層上部に保護層として積層する方法(特許文献6)等が提案されている。   As a method for improving the above problems, a method of alloying an Ag film by adding a noble metal such as Au or Pd or a metal such as Cu or Al to the Ag film (Patent Document 4, Patent Document 5), silicon nitride, or the like A method of laminating the above film as a protective layer on the Ag layer is proposed (Patent Document 6).

特開2002−267823号公報JP 2002-267823 A 特開2007−310335号公報JP 2007-310335 A 特開2006−010930号公報JP 2006-010930 A 特開2000−109943号公報JP 2000-109943 A 特開2001−221908号公報JP 2001-221908 A 国際公開WO2007/007570号パンフレットInternational Publication WO2007 / 007570 Pamphlet 特開2006−010929号公報JP 2006-010929 A

工業調査会 内田龍男、内池平樹(監修)、フラットパネルディスプレイ大事典(2001) 197頁Industrial Research Committee Tatsuo Uchida, Hioki Uchiike (supervised), Encyclopedia of Flat Panel Display (2001), page 197

前述したように、Ag膜は欠陥の発生や膜の剥離等が生じやすく、その原因のひとつとして、湿気、ハロゲンなどへの耐久性に乏しいことが挙げられる。従来のように、Ag膜にAuやPdなどの貴金属を添加し、Ag膜を合金化することによって耐久性の向上を図る方法では、耐久性は改善されるが、一方で、Ag膜の反射率が低下してしまうという問題があった。   As described above, the Ag film is liable to generate defects, peel off the film, and the like, and one of the causes is poor durability to moisture, halogen and the like. In the conventional method, durability is improved by adding a noble metal such as Au or Pd to the Ag film and alloying the Ag film, but the durability is improved. There was a problem that the rate would decrease.

かくして本発明は、高い反射率と良好な耐久性とを同時に実現せしめることが可能な反射積層膜を提供することを課題とした。   Thus, an object of the present invention is to provide a reflective laminated film capable of simultaneously realizing high reflectivity and good durability.

本発明者は、前述した課題に対して鋭意検討した結果、Nを含むAg膜は優れた反射率を維持したまま耐久性が大きく向上することを見出した。また、一方でAg上層の透明増反射層を構成する積層体の低屈折率層にSiの酸窒化物を用いることにより、耐久性をより向上できることを見出した。一般的にAg膜を用いた積層体では、積層体に用いる膜の内部応力を低くすることにより、Ag膜の耐久性を向上させているものが多いが、本発明のSiの酸窒化物はSiの酸化物よりも内部応力が高くなる傾向にあるのにも関わらず、上記の積層体に用いるとSiの酸化物膜よりも耐久性が向上することがわかった。   As a result of intensive studies on the above-mentioned problems, the present inventor has found that the durability of the Ag film containing N is greatly improved while maintaining an excellent reflectance. Moreover, it discovered that durability could be improved more by using Si oxynitride for the low refractive index layer of the laminated body which comprises the transparent increase reflection layer of Ag upper layer on the other hand. In general, in a laminated body using an Ag film, the durability of the Ag film is improved by reducing the internal stress of the film used in the laminated body, but the Si oxynitride of the present invention is In spite of the fact that the internal stress tends to be higher than that of the Si oxide, it has been found that the durability is improved as compared with the Si oxide film when used in the above laminate.

すなわち、本発明の反射積層膜は、基材上に成膜される反射積層膜であり、該反射積層膜は基材上に下地層、該下地層上にAgを主成分とする反射層、該反射層上に保護層、該保護層上に透明増反射層を有し、前記反射層がNを含むものであり、前記透明増反射層がSiの酸窒化物層を含む積層体であることを特徴とする。   That is, the reflective laminated film of the present invention is a reflective laminated film formed on a base material, and the reflective laminated film is a base layer on the base material, a reflective layer mainly composed of Ag on the base layer, A protective layer on the reflective layer; a transparent reflective layer on the protective layer; wherein the reflective layer includes N; and the transparent reflective layer is a laminate including an Si oxynitride layer. It is characterized by that.

また本発明の反射積層膜は、前記透明増反射層が、Siの酸窒化物からなる低屈折率層と、金属酸化物からなる高屈折率層とを含み、該高屈折率層の屈折率は、該低屈折率層の屈折率よりも0.4以上高いことを特徴とする。   Further, in the reflective laminated film of the present invention, the transparent increased reflection layer includes a low refractive index layer made of Si oxynitride and a high refractive index layer made of a metal oxide, and the refractive index of the high refractive index layer Is characterized by being 0.4 or more higher than the refractive index of the low refractive index layer.

また、本発明の反射積層膜は、前記保護層が、Zn、Sn、Ti、Al、NiCr、Cr、Zn合金、及びSn合金からなる群から選ばれる少なくともひとつを主成分とする金属、又は、金属元素に対してAl、Ga、及びSnからなる群から選ばれる少なくともひとつを1〜10質量%含むZn酸化物もしくはIn酸化物であることを特徴とする。AlまたはGaまたはSnが1質量%未満、あるいは10質量%を超える場合、酸化物層の応力が高くなることから、Ag膜との密着性が低下することがある。   Further, in the reflective laminated film of the present invention, the protective layer is a metal whose main component is at least one selected from the group consisting of Zn, Sn, Ti, Al, NiCr, Cr, Zn alloy, and Sn alloy, or It is a Zn oxide or In oxide containing 1 to 10% by mass of at least one selected from the group consisting of Al, Ga, and Sn with respect to the metal element. When Al, Ga, or Sn is less than 1% by mass or more than 10% by mass, the stress of the oxide layer becomes high, and the adhesion with the Ag film may be lowered.

また、本発明の反射積層膜は、前記下地層が、Al、Ti、Zn、In、Snの酸化物、酸窒化物、及び窒化物からなる群から選ばれる少なくともひとつを主成分とすることを特徴とする。   In the reflective laminated film of the present invention, the underlayer is mainly composed of at least one selected from the group consisting of oxides of Al, Ti, Zn, In, Sn, oxynitrides, and nitrides. Features.

また、本発明の反射積層膜は、その製造方法において、スパッタリング法を用いて、基材上に下地層を成膜する工程、該下地層上に希ガスとNとの混合ガス雰囲気下でAgを主成分とする反射層を成膜する工程、該反射層上に保護層を成膜する工程、該保護層上に、希ガスとNとOとを含む混合ガス雰囲気下でSi酸窒化物からなる低屈折率層を成膜する工程、及び該低屈折率層上に高屈折率層を成膜する工程、を含む透明増反射層を成膜する工程を含むことを特徴とする反射積層膜の製造方法である。 In addition, the reflective laminated film of the present invention includes a step of forming a base layer on a substrate using a sputtering method in the manufacturing method thereof, and a mixed gas atmosphere of a rare gas and N 2 on the base layer. A step of forming a reflective layer mainly composed of Ag, a step of forming a protective layer on the reflective layer, and a Si gas in a mixed gas atmosphere containing a rare gas, N 2 and O 2 on the protective layer. Including a step of forming a transparent reflective layer including a step of forming a low refractive index layer made of oxynitride and a step of forming a high refractive index layer on the low refractive index layer. The manufacturing method of the reflective laminated film.

また、本発明の反射積層膜の製造方法において、前記反射層を成膜する工程に用いる混合ガスは、Nを5〜40体積%含むことを特徴とする。 In the method of manufacturing the reflective multilayer film of the present invention, the gas mixture used in the step of depositing the reflective layer, characterized in that it comprises a N 2 5 to 40 vol%.

上記のNガス量は5体積%以上、40体積%以下としており、好ましくは10体積%以上、30体積%以下としてもよい。該Nガスの量が5体積%未満の場合、塩水に対する耐久性の向上は見られず、40体積%を超えると、塩水耐久性は大きく変化しないにも関わらず反射層の成膜速度が低下し続けるため、生産性が低下することがある。 The amount of N 2 gas is 5% by volume or more and 40% by volume or less, preferably 10% by volume or more and 30% by volume or less. When the amount of the N 2 gas is less than 5% by volume, no improvement in durability against salt water is observed, and when it exceeds 40% by volume, the deposition rate of the reflective layer is increased despite the fact that the salt water durability does not change greatly. Since it continues to decrease, productivity may decrease.

また、本発明の反射積層膜の製造方法において、前記低屈折率層を成膜する工程に用いる混合ガスは、希ガスを40〜70体積%含むことを特徴とする。   In the method for manufacturing a reflective laminated film of the present invention, the mixed gas used in the step of forming the low refractive index layer contains 40 to 70% by volume of a rare gas.

上記の希ガス量が40体積%未満の場合、膜の内部応力に起因して耐久性がやや低下することがあり、70体積%を超える場合、NおよびOの供給量の不足に起因して、窒素もしくは酸素が不足した酸窒化物が成膜され、膜の透明性が失われることがある。さらに、該希ガス量が40〜70体積%であり、かつ低屈折率膜が成膜されるように窒素と酸素のガス流量を調節した場合、膜の成膜速度が向上することがわかった。 When the amount of the rare gas is less than 40% by volume, the durability may be slightly lowered due to the internal stress of the film. When the amount is more than 70% by volume, the supply amount of N 2 and O 2 is insufficient. Thus, an oxynitride deficient in nitrogen or oxygen may be formed, and the transparency of the film may be lost. Furthermore, it was found that when the amount of the rare gas is 40 to 70% by volume and the gas flow rates of nitrogen and oxygen are adjusted so that a low refractive index film is formed, the film formation rate is improved. .

本発明の反射積層膜は、高い反射率と耐久性とを両立した反射積層膜である。また、本発明の好適な実施形態のひとつにおいて、反射積層膜の製造に用いるスパッタターゲットは、金属の添加を必要としないため、ターゲットの使用状態により、膜の組成ずれが起こる心配がないため、安定的に同一品質の製品を得ることが可能である。   The reflective laminated film of the present invention is a reflective laminated film having both high reflectivity and durability. Further, in one of the preferred embodiments of the present invention, the sputter target used for the production of the reflective laminated film does not require the addition of metal, so there is no fear that the composition deviation of the film will occur depending on the usage state of the target. It is possible to stably obtain products of the same quality.

本発明の反射積層膜の一実施形態を表す断面模式図。The cross-sectional schematic diagram showing one Embodiment of the reflective laminated film of this invention. 本発明の反射積層膜の一実施形態を表す断面模式図。The cross-sectional schematic diagram showing one Embodiment of the reflective laminated film of this invention. スパッタリング装置を上方から見た時の要部を示した平面図。The top view which showed the principal part when seeing a sputtering device from upper direction.

本発明の好適な実施形態のひとつを図1に示す。該反射積層膜は、基材として板ガラス3を用い、該板ガラス3上に下地層13、該下地層13上にAgを主成分とする反射層14、該反射層14上に保護層15、該保護層15上に透明増反射層19を有し、前記反射層14がNを含むものであり、前記透明増反射層19がSiの酸窒化物からなる低屈折率層16及び該低屈折率層上に高屈折率層17を含む積層体であることを特徴とする。   One preferred embodiment of the present invention is shown in FIG. The reflective laminated film uses a plate glass 3 as a substrate, a base layer 13 on the plate glass 3, a reflective layer 14 mainly composed of Ag on the base layer 13, a protective layer 15 on the reflective layer 14, The transparent increasing reflection layer 19 is provided on the protective layer 15, the reflection layer 14 contains N, and the transparent reflection increasing layer 19 is made of Si oxynitride and the low refractive index layer 16. It is a laminate comprising the high refractive index layer 17 on the layer.

前記下地層13は、Al、Ti、Zn、In、Snの酸化物、酸窒化物、及び窒化物からなる群から選ばれる少なくともひとつを主成分とした層であり、該板ガラス3と該反射層14との密着性を向上させるために用いられるものである。   The underlayer 13 is a layer mainly composed of at least one selected from the group consisting of oxides of Al, Ti, Zn, In, Sn, oxynitrides, and nitrides, and includes the plate glass 3 and the reflective layer. 14 is used to improve the adhesion to the material.

前記反射層14は、Nを含んだAgを用いるものである。該反射層14の厚みは特に限定されるものではないが、好ましくは50〜500nm、より好ましくは120nm以上、200nm以下としても良い。該厚みが50nm未満の場合、可視〜赤外光が該反射層14を透過するため、充分な反射率を得ることが出来なくなる。また、上限は特に限定する必要はないが、コスト面を考慮に入れると500nm以下としても差し支えない。   The reflective layer 14 uses Ag containing N. The thickness of the reflective layer 14 is not particularly limited, but is preferably 50 to 500 nm, more preferably 120 nm or more and 200 nm or less. When the thickness is less than 50 nm, visible to infrared light is transmitted through the reflective layer 14, so that sufficient reflectance cannot be obtained. The upper limit is not particularly limited, but it may be 500 nm or less in consideration of cost.

前記保護層15は、前記反射層14が成膜時に酸化されるのを抑制し、なおかつ前記反射層14と前記透明増反射層19との密着性を向上させるために設けられる層であり、Zn、Sn、Ti、Al、NiCr、Cr、Zn合金、及びSn合金からなる群から選ばれる少なくともひとつを主成分とする金属、又は、金属元素に対してAl、Ga、及びSnからなる群から選ばれる少なくともひとつを1〜10質量%含むZn酸化物もしくはIn酸化物であることが好ましい。特に該Zn酸化物、該In酸化物は、Ag膜との密着性が高く、かつ、金属を用いた場合に比べて高い反射率を維持しやすいため好ましい。また、該保護層15の厚みは特に限定されるものではないが、薄すぎる場合は前記透明増反射層19の成膜時に前記反射層14が酸化される恐れがあり、厚すぎる場合は反射率の低下に繋がるため、好ましくは2〜10nmとしてもよい。   The protective layer 15 is a layer provided to prevent the reflective layer 14 from being oxidized during film formation, and to improve the adhesion between the reflective layer 14 and the transparent enhanced reflective layer 19, and Zn , Sn, Ti, Al, NiCr, Cr, Zn alloy, and a metal mainly comprising at least one selected from the group consisting of Sn alloys, or a metal element selected from the group consisting of Al, Ga, and Sn Zn oxide or In oxide containing 1 to 10% by mass of at least one selected from the above is preferable. In particular, the Zn oxide and the In oxide are preferable because they have high adhesion to the Ag film and can easily maintain a high reflectance as compared with the case of using a metal. Further, the thickness of the protective layer 15 is not particularly limited. However, if the thickness is too thin, the reflective layer 14 may be oxidized during the formation of the transparent reflective layer 19. Therefore, the thickness may be preferably 2 to 10 nm.

前記透明増反射層19は、屈折率が異なる2種以上の層を含む層である。該透明増反射層19は基材側から低屈折率層16、高屈折率層17の順に積層されたものが好ましく、該低屈折率層16及び該高屈折率層17が複数回積層されたものでもよい。また、該透明増反射層19は該低屈折率層16及び該高屈折率層17以外でも、反射率や耐久性を損なわないのであれば他の層が介在するものであってもよい。   The transparent increased reflection layer 19 is a layer including two or more layers having different refractive indexes. The transparent enhanced reflection layer 19 is preferably laminated in the order of the low refractive index layer 16 and the high refractive index layer 17 from the substrate side, and the low refractive index layer 16 and the high refractive index layer 17 are laminated a plurality of times. It may be a thing. In addition to the low-refractive index layer 16 and the high-refractive index layer 17, the transparent increased reflection layer 19 may include other layers as long as the reflectance and durability are not impaired.

前記低屈折率層16と前記高屈折率層17の屈折率差は0.40以上であることが好ましく、さらに好ましくは0.50〜1.10としてもよい。なお、増反射効果を発現させたい波長域により、該低屈折率層16と該高屈折率層17の最適な厚みは変化するため、各層の厚みは目的の波長域における反射率が高まるように適宜決められればよい。 The refractive index difference between the low refractive index layer 16 and the high refractive index layer 17 is preferably 0.40 or more, and more preferably 0.50 to 1.10. Note that the optimum thickness of the low refractive index layer 16 and the high refractive index layer 17 varies depending on the wavelength range in which the enhanced reflection effect is desired, so that the thickness of each layer increases the reflectance in the target wavelength range. What is necessary is just to be decided suitably.

また、該低屈折率層16はSiの酸窒化物からなるものであり、該高屈折率層17は、屈折率が2.00以上、2.70以下の金属酸化物を用いるのが好ましく、例えばTi、Zr、Nb、Ta等の酸化物が挙げられる。 The low refractive index layer 16 is made of Si oxynitride, and the high refractive index layer 17 is preferably a metal oxide having a refractive index of 2.00 or more and 2.70 or less. Examples thereof include oxides such as Ti, Zr, Nb, and Ta.

該低屈折率層16の屈折率は、前記高屈折率層17との屈折率差を考慮して決定されればよいが、該高屈折率層17を上記の金属酸化物とした場合、十分な増反射効果を発現するためには、1.80以下であることが好ましく、さらに好ましくは1.46以上1.70以下としてもよい。 The refractive index of the low refractive index layer 16 may be determined in consideration of the refractive index difference from the high refractive index layer 17, but it is sufficient when the high refractive index layer 17 is made of the above metal oxide. In order to exhibit a good enhanced reflection effect, it is preferably 1.80 or less, more preferably 1.46 or more and 1.70 or less.

また、本発明の反射積層膜は、図2に示したように基材側から最も遠い空気と接する層となる最上層に、オーバーコート層18を形成してもよい。該オーバーコート層18を形成することにより、空気中の水蒸気の遮断、摩擦等の物理的な損傷への耐久性を向上させることが可能となる。該オーバーコート層18は、反射率を損なわないのであれば特に限定する必要はないが、特に窒化珪素を用いるのが好ましい。   Moreover, as shown in FIG. 2, the reflective laminated film of this invention may form the overcoat layer 18 in the uppermost layer used as the layer which contact | connects the air farthest from the base material side. By forming the overcoat layer 18, it is possible to improve durability against physical damage such as blocking of water vapor in the air and friction. The overcoat layer 18 is not particularly limited as long as the reflectance is not impaired, but silicon nitride is particularly preferably used.

該オーバーコート層18に窒化珪素を用いた場合、その厚みは1〜40nmとするのが好ましく、より好ましくは2〜15nmとしてもよい。該オーバーコート層18は、膜厚が厚いほど水蒸気の遮断性能が高くなるものの、反射率は低くなる傾向にあるため、厚みが1nm未満の場合、水蒸気を遮断できないことがあり、40nm以上の場合、反射率の低下が大きくなることがある。   When silicon nitride is used for the overcoat layer 18, the thickness is preferably 1 to 40 nm, and more preferably 2 to 15 nm. Although the overcoat layer 18 has a higher water vapor blocking performance as the film thickness increases, the reflectance tends to be lower. Therefore, when the thickness is less than 1 nm, the water vapor may not be blocked. In some cases, the decrease in reflectivity is increased.

本発明における「基材上」とは、基材に接するものでも、基材との間に他の層が介在するものであってもよい。また、各層の間には耐久性及び反射率を損なわないのであれば、他の層が介在するものでもよい。   In the present invention, “on the substrate” may be in contact with the substrate or may have another layer interposed between the substrate and the substrate. Further, other layers may be interposed between the layers as long as the durability and the reflectance are not impaired.

本発明における基材には板ガラスが好適に用いられる。ガラスに特に制限はないが、石英ガラスやソーダ石灰ケイ酸塩ガラスからなるフロート板ガラス、無アルカリガラス、ホウケイ酸塩ガラス、低膨張ガラス、ゼロ膨張ガラス、低膨張結晶化ガラス、ゼロ膨張結晶化ガラス、TFT用ガラス、PDP用ガラス、光学フィルム用基板ガラス等が挙げられる。なお、基材には目的に応じて高分子フィルムを用いてもよい。   A plate glass is suitably used for the substrate in the present invention. There are no particular restrictions on the glass, but float plate glass made of quartz glass or soda lime silicate glass, alkali-free glass, borosilicate glass, low expansion glass, zero expansion glass, low expansion crystallized glass, zero expansion crystallized glass , TFT glass, PDP glass, optical film substrate glass, and the like. In addition, you may use a polymer film for a base material according to the objective.

また、図1に示した本発明の反射積層膜の好適な実施形態の製造方法を以下に示す。該反射積層膜はスパッタリング法で成膜されるものであり、図3に示されるようなスパッタ成膜機にて成膜を行うことが好ましい。以下に図3を参照しながら説明する。   Moreover, the manufacturing method of suitable embodiment of the reflection laminated film of this invention shown in FIG. 1 is shown below. The reflective laminated film is formed by a sputtering method, and is preferably formed by a sputtering film forming machine as shown in FIG. This will be described with reference to FIG.

まず、該スパッタ成膜機内の所定の位置にターゲット1、基材3を設置する。基材3は基板ホルダー2で保持される。該基材3を保持した後、メインバルブ6を開放し、真空ポンプ5を用いて、真空チャンバー8内を排気する。   First, the target 1 and the base material 3 are installed at predetermined positions in the sputter film forming machine. The base material 3 is held by the substrate holder 2. After holding the substrate 3, the main valve 6 is opened, and the vacuum chamber 8 is evacuated using the vacuum pump 5.

基材3を保持した基板ホルダー2は移動可能な構造となっており、基板ホルダーの移動速度を調節することで、成膜時の層の厚みを変えることが可能である。該移動速度は一定とし、基材が装置内を移動している間は変更しないことが好ましい。   The substrate holder 2 holding the base 3 has a movable structure, and the thickness of the layer during film formation can be changed by adjusting the moving speed of the substrate holder. It is preferable that the moving speed be constant and not changed while the substrate is moving in the apparatus.

次に、真空チャンバー8内にガス導入管7より、ターゲット1に応じた導入ガスをマスフローコントローラー(図示せず)により導入し、真空チャンバー8内の圧力を調整する。また、真空ポンプの種類は適宜選択されれば良く、特に限定されるものではない。   Next, an introduction gas corresponding to the target 1 is introduced from the gas introduction pipe 7 into the vacuum chamber 8 by a mass flow controller (not shown), and the pressure in the vacuum chamber 8 is adjusted. Moreover, the kind of vacuum pump should just be selected suitably, and is not specifically limited.

前記反射層14を成膜する場合、使用するターゲットにはAg金属ターゲットを用い、ガス導入管7から希ガスとNの混合ガスを導入して成膜する。また、導入ガスは成膜される反射膜に影響を及ぼさない程度であれば、希ガス、Nガス以外の任意の第3成分を含んでもよい。該混合ガスは、好適な耐久性と生産性を両立するために、Nが5〜40体積%含まれることが好ましい。 When forming the reflective layer 14, an Ag metal target is used as the target to be used, and a mixed gas of a rare gas and N 2 is introduced from the gas introduction pipe 7. Further, the introduced gas may contain an optional third component other than the rare gas and N 2 gas as long as it does not affect the reflective film to be formed. The mixed gas preferably contains 5 to 40% by volume of N 2 in order to achieve both favorable durability and productivity.

前記保護層15を成膜する場合、Oを含むガスを導入すると、放電時に発生する酸素プラズマにより、下層に成膜された該反射層14のAgが酸化されることがあるため、Agに影響を及ぼさない程度にOの量が調整されているガスか、Oを含まないガスを用いて成膜される。 When the protective layer 15 is formed, if a gas containing O 2 is introduced, Ag of the reflective layer 14 formed in the lower layer may be oxidized by oxygen plasma generated during discharge. The film is formed using a gas in which the amount of O 2 is adjusted to such an extent that it does not affect or a gas not containing O 2 .

該透明増反射層19の低屈折率層16を成膜する場合、使用するターゲットはSiを含むセラミックターゲット、Siターゲット、どちらを用いても構わない。導入するガスは、希ガス/(希ガス+N+O)×100で表される希ガスの量が、40〜70体積%とし、NガスとOガスの混合比は、所望の屈折率の膜が得られるように決定されればよい。 When forming the low refractive index layer 16 of the transparent reflection increasing layer 19, the target to be used may be either a ceramic target containing Si or an Si target. The amount of the rare gas represented by the rare gas / (rare gas + N 2 + O 2 ) × 100 is 40 to 70% by volume, and the mixing ratio of the N 2 gas and the O 2 gas is a desired refractive index. It is only necessary to be determined so as to obtain a rate film.

また、前記の反射層14及び低屈折率層16を成膜する際に真空チャンバー8内に導入する希ガスは、He、Ne、Ar、Kr、Xeのいずれも用いることができるが、スパッタリング率やコストの面からArが最も好適に用いられる。   In addition, any of He, Ne, Ar, Kr, and Xe can be used as the rare gas introduced into the vacuum chamber 8 when the reflective layer 14 and the low refractive index layer 16 are formed. In view of cost and cost, Ar is most preferably used.

次にDC電源10を用いてターゲットに電力を投入し、搬送ロール12を作動させることにより、該基材ホルダー2に固定された該板ガラス3を搬送させる。   Next, power is applied to the target using the DC power source 10 and the transport roll 12 is operated to transport the plate glass 3 fixed to the base material holder 2.

ターゲットへの電力の投入には直流電源、交流電源、または交流と直流を重畳した電源、いずれの電源も用いられるが、直流電源は連続生産性に優れていることから好適に用いられる。また、SiO、Si等の誘電体を成膜する場合、直流電源を用いるとターゲットのエロージョン周辺部に堆積した誘電体の電気的破壊に起因する異常放電が生じる恐れがあるため、交流電源、もしくは直流電源にパルスを印加した電源を用いるのが好ましい。 Either a DC power supply, an AC power supply, or a power supply in which AC and DC are superimposed is used for supplying power to the target, but the DC power supply is preferably used because of its excellent continuous productivity. In addition, when a dielectric such as SiO 2 or Si 3 N 4 is formed, if a direct current power source is used, abnormal discharge due to electrical breakdown of the dielectric deposited around the erosion of the target may occur. It is preferable to use an AC power source or a power source in which a pulse is applied to a DC power source.

前記反射層14、前記低屈折率層16以外の膜を成膜する場合、使用するターゲットは所望の膜に合わせて適宜選択されればよく、セラミックターゲット、金属ターゲット等、いずれを用いても差し支えない。また、いずれのターゲットを用いる場合においても、成膜したい膜種に応じて導入ガスは適宜選択されれば良く、特に限定されるものではない。また、導入ガスは反射率や耐久性等を損なわない程度であれば、任意の第3成分を含んでもよい。   When a film other than the reflective layer 14 and the low refractive index layer 16 is formed, a target to be used may be appropriately selected according to a desired film, and any of a ceramic target and a metal target may be used. Absent. In addition, in any case of using any target, the introduced gas may be appropriately selected according to the type of film to be formed, and is not particularly limited. The introduced gas may contain an optional third component as long as it does not impair the reflectivity, durability, and the like.

本発明の反射積層体は、高い反射率と耐久性を有し、液晶ディスプレイやプロジェクションテレビ等の表示素子の反射部材や、集光用反射鏡として好適に利用される。   The reflective laminate of the present invention has high reflectivity and durability, and is suitably used as a reflective member for a display element such as a liquid crystal display or a projection television, or a condensing reflecting mirror.

まず、Nを含む反射層の耐久性の検討を行った。以下に参考例として示す。   First, the durability of the reflective layer containing N was examined. A reference example is shown below.

板ガラス上に、厚み30nmのAlをドープしたZnO(以下、AZOと記載することもある)層、厚み150nmのAg層を順次図3に示すようなスパッタリング装置を用いて成膜した。板ガラスは厚み3mmのソーダライムガラスを用いた。   On a plate glass, a ZnO layer doped with Al having a thickness of 30 nm (hereinafter also referred to as AZO) and an Ag layer having a thickness of 150 nm were sequentially formed using a sputtering apparatus as shown in FIG. As the plate glass, soda lime glass having a thickness of 3 mm was used.

参考例1
真空チャンバー8内にターゲット1を設置し、板ガラス3を基材ホルダー2に保持させた後、真空チャンバー8内を真空ポンプ5を用いて排気した。なお、1層成膜し終える毎に導入したガスをポンプで排気し、次に成膜する膜種に応じたガスを新たに導入した。
Reference example 1
After setting the target 1 in the vacuum chamber 8 and holding the plate glass 3 on the substrate holder 2, the inside of the vacuum chamber 8 was evacuated using the vacuum pump 5. The gas introduced every time one layer was formed was exhausted by a pump, and a gas corresponding to the type of film to be formed next was newly introduced.

まず、板ガラス上にAZO層を成膜した。AZO層の成膜では、ターゲット1としてZnAl(Al4質量%含有Zn)ターゲットを用い、ガス導入管7よりOガスを導入し、その圧力を開閉バルブ6により0.3Paに調節した。更に、DC電源の出力電力を1.0kWとして、板ガラス3上にAZO膜を得た。 First, an AZO layer was formed on a plate glass. In forming the AZO layer, a ZnAl (Al 4 mass% containing Zn) target was used as the target 1, O 2 gas was introduced from the gas introduction pipe 7, and the pressure was adjusted to 0.3 Pa by the opening / closing valve 6. Furthermore, the output power of the DC power source was set to 1.0 kW, and an AZO film was obtained on the plate glass 3.

次に、Ag層の成膜を行った。Ag層の成膜では、ターゲット1としてAgターゲットを用い、ガス導入管7よりArとNガスとの混合ガス(Nガス20体積%)を導入し、その圧力を開閉バルブ6により0.3Paに調節した。更に、DC電源の出力電力を0.36kWとして、板ガラス3上にAg膜を得た。 Next, an Ag layer was formed. In the formation of the Ag layer, an Ag target is used as the target 1, a mixed gas of Ar and N 2 gas (20% by volume of N 2 gas) is introduced from the gas introduction pipe 7, and the pressure is reduced to 0. The pressure was adjusted to 3 Pa. Further, the output power of the DC power source was set to 0.36 kW, and an Ag film was obtained on the plate glass 3.

参考例2
Ag膜を成膜する際に導入する混合ガスをArガスとした以外は参考例1と同様の方法で成膜を行った。
Reference example 2
Film formation was performed in the same manner as in Reference Example 1 except that the Ar gas was used as the mixed gas introduced when forming the Ag film.

(塩水浸漬試験)
参考例1、2で得られたサンプルを、濃度5質量%の塩水に基材ごと浸漬した。浸漬を開始してから1時間後、5時間後にそれぞれサンプルを塩水より取出し、純水で表面を洗浄後にエアーガンで水滴を除いた。水滴除去後、目視における外観観察、及び分光光度計(U−4000、日立製作所製)を用いて、膜面側から光を入射して反射率を測定した。また、可視光反射率および日射反射率をJISR3106(1998)に記載の方法で算出した。その反射率を測定した結果を表1に示す。
(Salt water immersion test)
The samples obtained in Reference Examples 1 and 2 were immersed together with the base material in salt water having a concentration of 5% by mass. After 1 hour and 5 hours from the start of immersion, each sample was taken out from salt water, the surface was washed with pure water, and then water droplets were removed with an air gun. After removing the water droplets, the reflectance was measured by entering light from the film surface side using visual observation and a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.). Further, the visible light reflectance and the solar reflectance were calculated by the method described in JIS R3106 (1998). The results of measuring the reflectance are shown in Table 1.

塩水浸漬試験の結果、Ag層にNを含まない参考例2は、1時間後に膜面に白濁が見られ、5時間後には白濁の程度がより強くなった。また、表1の反射率を比較しても、Ag層にNを含む参考例1は、塩水浸漬試験後も高い可視光反射率及び日射反射率を維持していた。   As a result of the salt water immersion test, in Reference Example 2 in which N was not contained in the Ag layer, white turbidity was observed after 1 hour, and the degree of white turbidity became stronger after 5 hours. Moreover, even if the reflectance of Table 1 was compared, Reference Example 1 containing N in the Ag layer maintained high visible light reflectance and solar reflectance even after the salt water immersion test.

上記の結果を踏まえて、以下に本発明の実施例を示す。   Based on the above results, examples of the present invention will be described below.

実施例1
板ガラス3上に、厚み30nmのAlドープZnO(AZO)層13、厚み150nmのAg層14、厚み3nmのAZO層15、厚み55nmのSiの酸窒化物(以下SiONと記載することもある)層16、厚み45nmのTiO層17を、順次成膜した。板ガラス3には厚み3mmのソーダライムガラスを用いた。
Example 1
On the plate glass 3, an Al-doped ZnO (AZO) layer 13 having a thickness of 30 nm, an Ag layer 14 having a thickness of 150 nm, an AZO layer 15 having a thickness of 3 nm, and an Si oxynitride layer (hereinafter sometimes referred to as SiON) having a thickness of 55 nm. 16, TiO 2 layer 17 having a thickness of 45 nm was sequentially formed. The plate glass 3 was 3 mm thick soda lime glass.

真空チャンバー8内にターゲット1を設置し、板ガラス3を基材ホルダー2に保持させた後、真空チャンバー8内を、真空ポンプ5を用いて排気した。なお、1層成膜し終える毎に導入したガスをポンプで排気し、次に成膜する膜種に応じたガスを新たに導入した。   After setting the target 1 in the vacuum chamber 8 and holding the plate glass 3 on the substrate holder 2, the inside of the vacuum chamber 8 was evacuated using the vacuum pump 5. The gas introduced every time one layer was formed was exhausted by a pump, and a gas corresponding to the type of film to be formed next was newly introduced.

まず、下地層13を成膜した。下地層13であるAZO層の成膜では、ターゲットにはZnAlを用い、真空チャンバー8内の雰囲気ガスに、ガス導入管7よりOガスを導入し、成膜中の真空チャンバー8内の圧力は、開閉バルブ6により0.3Paに調節した。更に、DC電源の出力電力を1.0kWとして、AZO膜を得た。 First, the underlayer 13 was formed. In forming the AZO layer as the underlayer 13, ZnAl is used as a target, O 2 gas is introduced into the atmospheric gas in the vacuum chamber 8 from the gas introduction pipe 7, and the pressure in the vacuum chamber 8 during film formation is increased. Was adjusted to 0.3 Pa by the opening / closing valve 6. Furthermore, the output power of the DC power source was set to 1.0 kW to obtain an AZO film.

次に、反射層14を成膜した。反射層14であるAg層の成膜では、ターゲットにはAgを用い、真空チャンバー8内の雰囲気ガスに、ガス導入管7よりArとNとの混合ガス(Nガス20体積%)を導入した。成膜中の真空チャンバー8内の圧力は、開閉バルブ6により0.3Paに調節した。更に、DC電源の出力電力を0.36kWとし、Ag層を得た。 Next, the reflective layer 14 was formed. In the formation of the Ag layer as the reflective layer 14, Ag is used as a target, and a mixed gas of Ar and N 2 (N 2 gas 20 vol%) is supplied to the atmospheric gas in the vacuum chamber 8 from the gas introduction pipe 7. Introduced. The pressure in the vacuum chamber 8 during film formation was adjusted to 0.3 Pa by the opening / closing valve 6. Furthermore, the output power of the DC power source was 0.36 kW, and an Ag layer was obtained.

次に、保護層15を成膜した。保護層15であるAZO層の成膜では、ターゲットにはZnO−Alを用い、真空チャンバー8内の雰囲気ガスに、ガス導入管7よりArガスを導入し、成膜中の真空チャンバー8内の圧力は、開閉バルブ6により0.6Paに調節した。更に、DC電源の出力電力を0.50kWとし、AZO膜を得た。 Next, the protective layer 15 was formed. In forming the AZO layer as the protective layer 15, ZnO—Al 2 O 3 is used as a target, Ar gas is introduced into the atmospheric gas in the vacuum chamber 8 through the gas introduction pipe 7, and the vacuum chamber during film formation is formed. The pressure in 8 was adjusted to 0.6 Pa by the opening / closing valve 6. Furthermore, the output power of the DC power source was 0.50 kW, and an AZO film was obtained.

次に、低屈折率層16を成膜した。低屈折率層16であるSiON層の成膜では、ターゲットにはSiを用い、真空チャンバー8内の雰囲気ガスに、ガス導入管7よりAr、N、Oの混合ガス(Arガス65体積%、Nガス14体積%、Oガス21体積%)を導入した。成膜中の真空チャンバー8内の圧力は、開閉バルブ6により0.3Paに調節した。更に、DC電源の出力電力を2.0kWとし、DC電源に重畳して印加する交流パルスの周波数を20kHzとし、SiON層を得た。 Next, the low refractive index layer 16 was formed. In the formation of the SiON layer which is the low refractive index layer 16, Si is used as a target, and a mixed gas of Ar, N 2 and O 2 (Ar gas 65 volume) from the gas introduction pipe 7 is used as the atmospheric gas in the vacuum chamber 8. %, N 2 gas 14% by volume, O 2 gas 21% by volume). The pressure in the vacuum chamber 8 during film formation was adjusted to 0.3 Pa by the opening / closing valve 6. Furthermore, the output power of the DC power source was set to 2.0 kW, the frequency of the AC pulse applied in a superimposed manner on the DC power source was set to 20 kHz, and the SiON layer was obtained.

次に、高屈折率層17を成膜した。高屈折率層17であるTiO層の成膜では、ターゲットにはTiを用い、真空チャンバー8内の雰囲気ガスに、ガス導入管7よりOガスを導入し、成膜中の真空チャンバー8内の圧力は、開閉バルブ6により0.4Paに調節した。更に、DC電源の出力電力を3.0kWとし、DC電源に重畳して印加する交流パルスの周波数を20kHzとし、TiO膜を成膜した。 Next, a high refractive index layer 17 was formed. In the film formation of the TiO 2 layer which is the high refractive index layer 17, Ti is used as a target, O 2 gas is introduced into the atmospheric gas in the vacuum chamber 8 from the gas introduction pipe 7, and the vacuum chamber 8 during film formation is formed. The internal pressure was adjusted to 0.4 Pa by the opening / closing valve 6. Further, the output power of the DC power source was set to 3.0 kW, the frequency of the AC pulse applied superimposed on the DC power source was set to 20 kHz, and a TiO 2 film was formed.

実施例2
高屈折率層17上に、オーバーコート層18として厚み5nmのSi層を成膜し、低屈折率層16の厚みを49nm、高屈折率層17の厚みを41nmとした以外は、実施例1と同様の方法で成膜を行った。
Example 2
A 5 nm thick Si 3 N 4 layer was formed as an overcoat layer 18 on the high refractive index layer 17, except that the low refractive index layer 16 had a thickness of 49 nm and the high refractive index layer 17 had a thickness of 41 nm. Film formation was performed in the same manner as in Example 1.

なお、該Si層の成膜では、ターゲットにはSiを用い、真空チャンバー8内の雰囲気ガスに、ガス導入管7よりArとNとの混合ガス(Nガス70体積%)を導入し、成膜中の真空チャンバー8内の圧力は、開閉バルブ6により0.3Paに調節した。更に、DC電源の出力電力を2.0kWとし、DC電源に重畳して印加する交流パルスの周波数を20kHzとし、Si膜を得た。 In the formation of the Si 3 N 4 layer, Si is used as a target, and a mixed gas of Ar and N 2 (N 2 gas 70% by volume) from the gas introduction pipe 7 is used as the atmospheric gas in the vacuum chamber 8. The pressure in the vacuum chamber 8 during film formation was adjusted to 0.3 Pa by the opening / closing valve 6. Furthermore, the output power of the DC power source was set to 2.0 kW, the frequency of the AC pulse applied in a superimposed manner on the DC power source was set to 20 kHz, and a Si 3 N 4 film was obtained.

比較例1
低屈折率層16として、厚み55nmのSiO層を成膜した以外は、実施例1と同様の方法で成膜を行った。なお、該低屈折率層16は、ターゲットとしてSiを用い、真空チャンバー8内の雰囲気ガスに、ガス導入管7よりArとOとの混合ガス(Oガス70体積%)を導入し、成膜中の真空チャンバー8内の圧力は、開閉バルブ6により0.3Paに調節した。更に、DC電源の出力電力を2.0kWとし、DC電源に重畳して印加する交流パルスの周波数を20kHzとし、SiO膜を得た。
Comparative Example 1
The low refractive index layer 16 was formed in the same manner as in Example 1 except that a 55 nm thick SiO 2 layer was formed. The low refractive index layer 16 uses Si as a target, and introduces a mixed gas of Ar and O 2 (70% by volume of O 2 gas) from the gas introduction pipe 7 into the atmosphere gas in the vacuum chamber 8. The pressure in the vacuum chamber 8 during film formation was adjusted to 0.3 Pa by the opening / closing valve 6. Furthermore, the output power of the DC power source was set to 2.0 kW, the frequency of the AC pulse applied in a superimposed manner on the DC power source was set to 20 kHz, and an SiO 2 film was obtained.

(光学特性の評価)
分光光度計(U−4000、日立製作所製)を用いて、各サンプルについて、膜面側から光を入射して反射率を測定した。また、可視光反射率および日射反射率をJISR3106(1998)に記載の方法で算出した。
(Evaluation of optical properties)
Using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.), the reflectance of each sample was measured by entering light from the film surface side. Further, the visible light reflectance and the solar reflectance were calculated by the method described in JIS R3106 (1998).

(耐久性の評価)
反射積層膜を15cm×4cmの大きさに切断し、塩水噴霧試験を行った。塩水は濃度5質量%、温度35℃とした。試験日数は3日間、5日間とし、試験終了後は純水で表面をすすいだ後にエアーガンで水滴を除いた。試験を行ったサンプルは目視における外観観察、顕微鏡における欠陥観察、分光光度計による反射率測定を行った。
(Durability evaluation)
The reflective laminated film was cut into a size of 15 cm × 4 cm, and a salt spray test was performed. The salt water had a concentration of 5% by mass and a temperature of 35 ° C. The test days were 3 days and 5 days. After the test was completed, the surface was rinsed with pure water, and then water drops were removed with an air gun. The tested sample was subjected to visual appearance observation, defect observation with a microscope, and reflectance measurement with a spectrophotometer.

表2に各サンプルの膜構成、可視光反射率、日射反射率を示した。膜構成において括弧内に示した数字は層の厚みを表し、単位はnmである。なお、Nを含むガス雰囲気で成膜したAg層は、Ag−Nと記載した。 Table 2 shows the film configuration, visible light reflectance, and solar reflectance of each sample. The numbers shown in parentheses in the film structure represent the thickness of the layer, and the unit is nm. Note that an Ag layer formed in a gas atmosphere containing N 2 was described as Ag—N.

各実施例と各比較例の反射率は同等であったことから、反射層及び低屈折率層にNを含んでも、従来の金属を添加した反射積層膜のように、光学特性の変化が見られないことが示された。
Since each example and each comparative example had the same reflectivity, even if N was contained in the reflective layer and the low refractive index layer, the change in optical characteristics was observed as in the case of the reflective laminated film to which a conventional metal was added. It was shown that it was not possible.

表3に各サンプルの塩水噴霧試験後の欠陥数、欠陥形状および可視光反射率、日射反射率を示した。なお、膜の外観と欠陥形状は顕微鏡で観察した結果であり、膜の外観については、ほとんど目立たない場合は○、多く見られる場合は×とし、欠陥形状については、膜の剥離が見られない場合は○、円形状や多角形状などの膜の剥離を伴う欠陥が発生している場合は×とした。   Table 3 shows the number of defects, defect shape, visible light reflectance, and solar reflectance after the salt spray test of each sample. The appearance and defect shape of the film are the results of observation with a microscope. The appearance of the film is ○ when it is almost inconspicuous, and x when it is frequently seen. No peeling of the film is seen for the defect shape. In the case of ◯, the case where a defect accompanied by peeling of the film such as a circular shape or a polygonal shape is indicated as x.

SiON層を有する実施例1及び実施例2の反射膜では、膜の剥離を伴うような欠陥は見られなかったのに対し、SiO層を用いた比較例1では時間の経過と共に膜の剥離を伴った円形や多角形状の欠陥が観察された。 In the reflective film of Example 1 and Example 2 having the SiON layer, no defect accompanied with film peeling was found, whereas in Comparative Example 1 using the SiO 2 layer, film peeling with time. Circular or polygonal defects accompanied with a were observed.

以上より、Nを含むAg層とSiON層を用いた高反射積層膜は、高い反射率と、良好な耐久性を併せ持つことがわかった。   From the above, it was found that the highly reflective laminated film using the Ag layer containing N and the SiON layer has both high reflectance and good durability.

1 ターゲット
2 基材ホルダー
3 板ガラス
4 カソードマグネット
5 真空ポンプ
6 開閉バルブ
7 ガス導入管
8 真空チャンバー
9 電源コード
10 DC電源
11 バッキングプレート
12 搬送ロール
13 下地層
14 反射層
15 保護層
16 低屈折率膜層
17 高屈折率膜層
18 オーバーコート層
19 透明増反射層
DESCRIPTION OF SYMBOLS 1 Target 2 Base material holder 3 Plate glass 4 Cathode magnet 5 Vacuum pump 6 On-off valve 7 Gas introduction pipe 8 Vacuum chamber 9 Power supply cord 10 DC power supply 11 Backing plate 12 Transport roll 13 Underlayer 14 Reflective layer 15 Protective layer 16 Low refractive index film Layer 17 High refractive index film layer 18 Overcoat layer 19 Transparent reflective layer

Claims (7)

基材上に成膜される反射積層膜であり、該反射積層膜は基材上に下地層、該下地層上にAgを主成分とする反射層、該反射層上に保護層、該保護層上に透明増反射層を有し、前記反射層がNを含むものであり、前記透明増反射層がSiの酸窒化物層を含む積層体であることを特徴とする反射積層膜。 A reflective laminated film formed on a base material, the reflective laminated film being a base layer on the base material, a reflective layer mainly composed of Ag on the base layer, a protective layer on the reflective layer, and the protective layer A reflective multilayer film comprising a transparent enhanced reflective layer on a layer, wherein the reflective layer contains N, and the transparent enhanced reflective layer is a laminate including a Si oxynitride layer. 前記透明増反射層が、Siの酸窒化物からなる低屈折率層と、金属酸化物からなる高屈折率層とを含み、該高屈折率層の屈折率は、該低屈折率層の屈折率よりも0.4以上高いことを特徴とする請求項1に記載の反射積層膜。 The transparent increased reflection layer includes a low refractive index layer made of Si oxynitride and a high refractive index layer made of a metal oxide, and the refractive index of the high refractive index layer is the refractive index of the low refractive index layer. The reflective laminated film according to claim 1, wherein the reflective laminated film is 0.4 or more higher than the rate. 前記保護層が、Zn、Sn、Ti、Al、NiCr、Cr、Zn合金、及びSn合金からなる群から選ばれる少なくともひとつを主成分とする金属、又は、金属元素に対してAl、Ga、及びSnからなる群から選ばれる少なくともひとつを1〜10質量%含むZn酸化物もしくはIn酸化物であることを特徴とする請求項1又は請求項2に記載の反射積層膜。 The protective layer is made of at least one metal selected from the group consisting of Zn, Sn, Ti, Al, NiCr, Cr, Zn alloy, and Sn alloy, or Al, Ga, and metal elements. The reflective laminated film according to claim 1, wherein the reflective laminated film is a Zn oxide or an In oxide containing 1 to 10% by mass of at least one selected from the group consisting of Sn. 前記下地層が、Al、Ti、Zn、In、Snの酸化物、酸窒化物、及び窒化物からなる群から選ばれる少なくともひとつを主成分とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載の反射積層膜。 4. The underlayer mainly comprises at least one selected from the group consisting of oxides of Al, Ti, Zn, In, Sn, oxynitrides, and nitrides. The reflective laminated film according to any one of the above. 請求項1乃至請求項4のいずれか1項に記載された反射積層膜の製造方法であって、スパッタリング法を用いて、
基材上に下地層を成膜する工程、
該下地層上に希ガスとNとの混合ガス中でAgを主成分とする反射層を成膜する工程、
該反射層上に保護層を成膜する工程、
該保護層上に、希ガスとNとOとを含む混合ガス中でSi酸窒化物からなる低屈折率層を成膜する工程、
及び該低屈折率層上に高屈折率層を成膜する工程、を含む透明増反射層を成膜する工程を含むことを特徴とする反射積層膜の製造方法。
A method for producing a reflective laminated film according to any one of claims 1 to 4, wherein a sputtering method is used.
Forming a base layer on a substrate;
Forming a reflective layer mainly composed of Ag in a mixed gas of a rare gas and N 2 on the underlayer;
Forming a protective layer on the reflective layer;
Forming a low refractive index layer made of Si oxynitride in a mixed gas containing a rare gas, N 2 and O 2 on the protective layer;
And a step of forming a transparent reflection-enhancing layer including a step of forming a high refractive index layer on the low refractive index layer.
前記反射層を成膜する工程に用いる混合ガスは、Nが5〜40体積%含まれることを特徴とする請求項5に記載の反射積層膜の製造方法。 Mixed gas used in the step of forming the reflective layer, the manufacturing method of the reflective multilayer film according to claim 5, characterized in that N 2 is contained 5 to 40% by volume. 前記低屈折率層を成膜する工程に用いる混合ガスは、希ガスを40〜70体積%含むことを特徴とする請求項5又は請求項6に記載の反射積層膜の製造方法。 The method for producing a reflective laminated film according to claim 5 or 6, wherein the mixed gas used in the step of forming the low refractive index layer contains 40 to 70% by volume of a rare gas.
JP2010171186A 2010-07-29 2010-07-29 Reflective lamination film Pending JP2012032551A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010171186A JP2012032551A (en) 2010-07-29 2010-07-29 Reflective lamination film
PCT/JP2011/065773 WO2012014664A1 (en) 2010-07-29 2011-07-11 Reflective laminated film and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171186A JP2012032551A (en) 2010-07-29 2010-07-29 Reflective lamination film

Publications (1)

Publication Number Publication Date
JP2012032551A true JP2012032551A (en) 2012-02-16

Family

ID=45529881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171186A Pending JP2012032551A (en) 2010-07-29 2010-07-29 Reflective lamination film

Country Status (2)

Country Link
JP (1) JP2012032551A (en)
WO (1) WO2012014664A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180185A1 (en) * 2012-06-01 2013-12-05 旭硝子株式会社 Highly reflecting mirror
JP2016125191A (en) * 2014-12-26 2016-07-11 セントラル硝子株式会社 Fire door
JP2017101297A (en) * 2015-12-02 2017-06-08 中部電力株式会社 Thermal barrier film
JP2017181780A (en) * 2016-03-30 2017-10-05 大日本印刷株式会社 Parallax barrier member
CN111763919A (en) * 2020-09-03 2020-10-13 宁波瑞凌新能源科技有限公司 Reflecting film and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738979B (en) * 2019-03-07 2021-02-23 合肥京东方光电科技有限公司 Reflector plate and backlight module
CN116694245B (en) * 2023-06-05 2023-12-15 佛山纳诺特科技有限公司 Vehicle cover and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013269A1 (en) * 2005-07-29 2007-02-01 Asahi Glass Company, Limited Laminated body for reflection film
JP2007310335A (en) * 2006-04-21 2007-11-29 Central Glass Co Ltd Front surface mirror

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240928A (en) * 2002-02-22 2003-08-27 Canon Inc Film formation method
JP2007140371A (en) * 2005-11-22 2007-06-07 Central Glass Co Ltd Surface mirror

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013269A1 (en) * 2005-07-29 2007-02-01 Asahi Glass Company, Limited Laminated body for reflection film
JP2007310335A (en) * 2006-04-21 2007-11-29 Central Glass Co Ltd Front surface mirror

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180185A1 (en) * 2012-06-01 2013-12-05 旭硝子株式会社 Highly reflecting mirror
JP2016125191A (en) * 2014-12-26 2016-07-11 セントラル硝子株式会社 Fire door
JP2017101297A (en) * 2015-12-02 2017-06-08 中部電力株式会社 Thermal barrier film
JP2017181780A (en) * 2016-03-30 2017-10-05 大日本印刷株式会社 Parallax barrier member
CN111763919A (en) * 2020-09-03 2020-10-13 宁波瑞凌新能源科技有限公司 Reflecting film and preparation method and application thereof

Also Published As

Publication number Publication date
WO2012014664A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
CN100403067C (en) high reflective mirror
JP6490810B2 (en) Temperature and corrosion resistant surface reflectors
CN109683223B (en) Transparent member
TWI695184B (en) Substrate with low reflection film
WO2012014664A1 (en) Reflective laminated film and method for producing same
CN106536440B (en) Cover glass
JP5262110B2 (en) Base with antireflection film
CN109851232B (en) Method for manufacturing low reflection film on both sides
KR20080031174A (en) Reflective Film Stack
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
US20060068227A1 (en) Ag-based reflection film and method for preparing the same
CN105152549A (en) Coated glass and preparation method thereof
JP2012128135A (en) Optical article and method for manufacturing the same
CN113391382B (en) Substrate with low reflection film and method for manufacturing the same
JP2015502559A (en) Multilayer system for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and its manufacturing method
CN101233434A (en) Laminate for reflective film
KR20020045484A (en) Heat-resistant reflecting layer, laminate formed of the reflecting layer, and liquid crystal display device having the reflecting layer or the laminate
JP2007310335A (en) Front surface mirror
JP4428152B2 (en) High reflector
JP2011158888A (en) Reflector and visible light reflection member using the reflector
JP2006010930A (en) High reflector
JP2018083748A (en) SUBSTRATE WITH LOW REFLECTIVE FILM AND METHOD FOR PRODUCING THE SAME
JP2006010929A (en) High reflector
JP6287502B2 (en) Low radiation window material
JP2006337770A (en) Surface mirror

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106