[go: up one dir, main page]

JP2012169552A - Cooling mechanism, processing chamber, component in processing chamber, and cooling method - Google Patents

Cooling mechanism, processing chamber, component in processing chamber, and cooling method Download PDF

Info

Publication number
JP2012169552A
JP2012169552A JP2011031213A JP2011031213A JP2012169552A JP 2012169552 A JP2012169552 A JP 2012169552A JP 2011031213 A JP2011031213 A JP 2011031213A JP 2011031213 A JP2011031213 A JP 2011031213A JP 2012169552 A JP2012169552 A JP 2012169552A
Authority
JP
Japan
Prior art keywords
decompression chamber
temperature
cooled
heat medium
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2011031213A
Other languages
Japanese (ja)
Inventor
Kazuai Matsuzaki
和愛 松▲崎▼
Junji Oikawa
純史 及川
Sumie Nagaseki
澄江 永関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2011031213A priority Critical patent/JP2012169552A/en
Priority to US13/372,813 priority patent/US20120204576A1/en
Priority to CN2012100356214A priority patent/CN102646614A/en
Priority to KR1020120015782A priority patent/KR101336487B1/en
Publication of JP2012169552A publication Critical patent/JP2012169552A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling mechanism and a cooling method which allow the cutting of heat medium required for vacuum evaporation cooling, and the efficient cooling of a member to be cooled.SOLUTION: The cooling mechanism 6 for cooling a member to be cooled to a target temperature comprises: a decompression chamber 60 thermally connected with the member to be cooled; a spray part 64 for spraying an interior surface of the decompression chamber 60 with a liquid-phase heat medium having a temperature equal to or lower than the target temperature; a power source 68 for electric field generation for generating an electric field for depositing the heat medium sprayed from the spray part 64 on the interior surface of the decompression chamber 60; and an evacuation part for evacuating the decompression chamber 60 so that the internal pressure of the decompression chamber 60 is equal to or lower than a saturation vapor pressure of the heat medium at the target temperature.

Description

本発明は、被冷却部材の温度を目標温度に冷却し維持するよう制御する冷却機構及び冷却方法、並びに該冷却機構を構成する処理室及び処理室内部品に関する。   The present invention relates to a cooling mechanism and a cooling method for controlling to cool and maintain a temperature of a member to be cooled to a target temperature, and a processing chamber and processing chamber components constituting the cooling mechanism.

半導体製造装置には、しばしば被処理体としての半導体ウエハにエッチングなどの処理を施すためにプラズマを用いるが、このプラズマにより、半導体ウエハや処理室内壁面が不必要に加熱され高温になることがある。また、半導体ウエハを処理する際に高温にすることが必要な半導体製造装置も使用されるが、このような装置であっても、処理後には搬送など他の処理のために冷却する必要がある。それゆえ、半導体製造装置は、半導体ウエハ、処理室壁面、高温部材等を冷却する冷却機構を備える。冷却機構は、例えば、半導体ウエハが載置される載置台の内部に形成された流路に冷却用の液体(以下、熱媒体という)を循環させることによって冷却を行っている(例えば、特許文献1,2)。熱媒体を循環させる冷却方式を強制対流伝熱方式という。   In a semiconductor manufacturing apparatus, plasma is often used to perform processing such as etching on a semiconductor wafer as an object to be processed. This plasma may unnecessarily heat the semiconductor wafer or the processing chamber wall surface, resulting in a high temperature. . Also, a semiconductor manufacturing apparatus that requires a high temperature when processing a semiconductor wafer is used, but even such an apparatus needs to be cooled for other processing such as conveyance after processing. . Therefore, the semiconductor manufacturing apparatus includes a cooling mechanism for cooling the semiconductor wafer, the processing chamber wall surface, the high temperature member, and the like. The cooling mechanism performs cooling by, for example, circulating a cooling liquid (hereinafter referred to as a heat medium) through a flow path formed inside a mounting table on which a semiconductor wafer is mounted (for example, patent document). 1, 2). A cooling system that circulates the heat medium is called a forced convection heat transfer system.

ところが、強制対流伝熱方式の冷却では、流路伝熱特性に一定の限界があるため、半導体ウエハ等の均一な冷却が困難であり、温度制御の応答性も悪いという問題があった。もちろん、熱媒体と冷却部との間の熱交換量を大きくすべく、流路内にフィン等を設けて流路伝熱特性を上昇させることも考えられるが、流路伝熱特性と、圧力損失とは相反する関係にあるため、流路伝熱特性を上昇させると、流路の圧力損失が大きくなり、熱媒体を送出するポンプの消費エネルギーが増大するという問題が発生する。逆に、省エネを図るべく、圧力損失を低減させると、熱媒体の入側及び出側の温度差が大きくなり、流路伝熱特性が低下して、半導体ウエハの均一な冷却が困難になる。   However, in forced convection heat transfer type cooling, there is a certain limit to the flow path heat transfer characteristics, so that there is a problem that uniform cooling of a semiconductor wafer or the like is difficult and temperature control response is poor. Of course, in order to increase the amount of heat exchange between the heat medium and the cooling unit, it may be possible to increase the heat transfer characteristics of the flow path by providing fins or the like in the flow path. Since there is a contradictory relationship with the loss, if the heat transfer characteristic of the flow path is increased, the pressure loss of the flow path increases, and there is a problem that the energy consumption of the pump that sends out the heat medium increases. Conversely, if the pressure loss is reduced to save energy, the temperature difference between the inlet side and outlet side of the heat medium increases, the heat transfer characteristics of the flow path deteriorate, and it becomes difficult to uniformly cool the semiconductor wafer. .

特開2001−44176号公報JP 2001-44176 A 特開平7−235588号公報JP 7-235588 A

上述の問題を解決すべく、本願発明者は、載置台に形成された減圧室の内面(内部側壁面、内部天面、内部底面)のうち、冷却を行いたい部分に液相の熱媒体を吹き付け、該内面において熱媒体の相変化が誘起されるように減圧室内の圧力を制御することにより、従来の冷却方法に比べて、半導体ウエハの均一な冷却、高伝熱、高応答性、省エネルギー化を実現することができる冷却機構を考案している。このような熱媒体の相変化を利用した冷却方式を、相変化伝熱方式又は真空気化冷却方式という。   In order to solve the above-mentioned problems, the present inventor applied a liquid phase heat medium to a portion to be cooled among the inner surfaces (inner side wall surface, inner top surface, inner bottom surface) of the decompression chamber formed on the mounting table. By controlling the pressure in the decompression chamber so that the phase change of the heat medium is induced on the inner surface by spraying, compared with the conventional cooling method, uniform cooling of the semiconductor wafer, high heat transfer, high response, energy saving We have devised a cooling mechanism that can be realized. Such a cooling method using the phase change of the heat medium is called a phase change heat transfer method or a vacuum vaporization cooling method.

ところが、実験を試みたところ、単純に低圧の減圧室の内面に熱媒体を吹き付ける構成では、積極的に熱媒体を減圧室の内面に誘導する機構が存在しないため偶発的に内面に付着するに任せるしか無く、それゆえ液相の熱媒体が内面に付着し難く、理論上必要とされる熱媒体の量より多量の熱媒体を減圧室内に供給する必要があるという新たな問題に直面した。
また、熱媒体の量を増加させれば、減圧室の内面に液相の熱媒体を付着させることは可能であるが、減圧室内に供給された多量の熱媒体を十分に真空引きできない状態に陥った場合、減圧室の内面に付着した熱媒体が相変化を起こしにくくなり、効果的に載置台を冷却することができなくなるという問題があった。
However, when an experiment was attempted, in the configuration in which the heat medium is simply sprayed on the inner surface of the low pressure decompression chamber, there is no mechanism that actively guides the heat medium to the inner surface of the decompression chamber, so that it accidentally adheres to the inner surface. Therefore, the liquid phase heat medium is difficult to adhere to the inner surface, and a new problem has been faced in that it is necessary to supply a larger amount of heat medium than the theoretically required amount of the heat medium.
Further, if the amount of the heat medium is increased, it is possible to attach a liquid phase heat medium to the inner surface of the decompression chamber, but the large amount of heat medium supplied into the decompression chamber cannot be evacuated sufficiently. When it falls, there is a problem that the heat medium attached to the inner surface of the decompression chamber is less likely to cause a phase change, and the mounting table cannot be effectively cooled.

本発明は斯かる事情に鑑みてなされたものであり、その目的は、被冷却部材に対して熱的に接続された減圧室内に噴霧された熱媒体を、電界によって該減圧室の内面に引き込むことによって、真空気化冷却に必要な熱媒体量を削減し、高効率に被冷却部材を冷却することができる冷却機構及び冷却方法、並びに該冷却機構を構成する処理室及び処理室内部材を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to draw a heat medium sprayed into a decompression chamber thermally connected to a member to be cooled into the inner surface of the decompression chamber by an electric field. Accordingly, there are provided a cooling mechanism and a cooling method capable of reducing the amount of a heat medium necessary for vacuum vaporization cooling and cooling a member to be cooled with high efficiency, and a processing chamber and a processing chamber member constituting the cooling mechanism. There is.

本発明に係る冷却機構は、被冷却部材の温度を目標温度に冷却する冷却機構において、前記被冷却部材に対して熱的に接続された減圧室と、該減圧室の内面に前記目標温度以下の液相の熱媒体を噴霧する噴霧部と、該噴霧部から噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させる電界発生部と、前記減圧室の内圧が前記目標温度における前記熱媒体の飽和蒸気圧以下になるように、前記減圧室を排気する排気部とを備えることを特徴とする。   The cooling mechanism according to the present invention is a cooling mechanism that cools the temperature of a member to be cooled to a target temperature, a decompression chamber that is thermally connected to the member to be cooled, and an inner surface of the decompression chamber that is equal to or lower than the target temperature. A spray section for spraying a liquid phase heat medium, an electric field generating section for generating an electric field for attaching the heat medium sprayed from the spray section to the inner surface of the decompression chamber, and an internal pressure of the decompression chamber is the target And an exhaust section that exhausts the decompression chamber so as to be equal to or lower than a saturated vapor pressure of the heat medium at a temperature.

本発明に係る冷却機構は、前記噴霧部は、前記熱媒体を前記減圧室に噴霧するためのノズルを有し、該ノズルと、前記熱媒体との摩擦によって該熱媒体を帯電させるようにしてあることを特徴とする。   In the cooling mechanism according to the present invention, the spray unit has a nozzle for spraying the heat medium onto the decompression chamber, and the heat medium is charged by friction between the nozzle and the heat medium. It is characterized by being.

本発明に係る冷却機構は、前記噴霧部に電圧を印加する電圧印加部を備えることを特徴とする。   The cooling mechanism according to the present invention includes a voltage application unit that applies a voltage to the spray unit.

本発明に係る冷却機構は、前記減圧室は、前記被冷却部材の内部に形成されていることを特徴とする。   The cooling mechanism according to the present invention is characterized in that the decompression chamber is formed inside the member to be cooled.

本発明に係る冷却機構は、前記減圧室は、前記被冷却部材の外部に配されており、前記減圧室及び被冷却部材は接触していることを特徴とする。   The cooling mechanism according to the present invention is characterized in that the decompression chamber is disposed outside the member to be cooled, and the decompression chamber and the member to be cooled are in contact with each other.

本発明に係る冷却機構は、前記被冷却部材は、基板に所定の処理を行う基板処理装置の処理室であることを特徴とする。   The cooling mechanism according to the present invention is characterized in that the member to be cooled is a processing chamber of a substrate processing apparatus that performs predetermined processing on a substrate.

本発明に係る冷却機構は、前記被冷却部材は、基板に所定の処理を行う基板処理装置の処理室内に配されている処理室内部品であることを特徴とする。   The cooling mechanism according to the present invention is characterized in that the member to be cooled is a processing chamber part disposed in a processing chamber of a substrate processing apparatus that performs a predetermined process on a substrate.

本発明に係る冷却機構は、前記処理室内部品は、前記処理室内に基板を載置するための載置台であることを特徴とする。   The cooling mechanism according to the present invention is characterized in that the processing chamber component is a mounting table for mounting a substrate in the processing chamber.

本発明に係る冷却機構は、被冷却部材の温度を目標温度に冷却する冷却機構において、前記被冷却部材に対して熱的に接続された減圧室と、該減圧室の内面に前記目標温度以下の液相の熱媒体を噴霧する噴霧部と、該噴霧部から噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させる電界発生部と、前記被冷却部材の温度を検出する被冷却部材温度検出部と、該被冷却部材温度検出部にて検出された温度が目標温度になるように、前記減圧室を排気する排気部とを備えることを特徴とする。   The cooling mechanism according to the present invention is a cooling mechanism that cools the temperature of a member to be cooled to a target temperature, a decompression chamber that is thermally connected to the member to be cooled, and an inner surface of the decompression chamber that is equal to or lower than the target temperature. A spray part for spraying a liquid phase heat medium, an electric field generator for generating an electric field for attaching the heat medium sprayed from the spray part to the inner surface of the decompression chamber, and detecting the temperature of the member to be cooled A cooled member temperature detecting unit, and an exhaust unit that exhausts the decompression chamber so that the temperature detected by the cooled member temperature detecting unit becomes a target temperature.

本発明に係る処理室は、基板に所定の処理を行うための処理室において、壁内に形成された減圧室と、該減圧室の内面に目標温度以下の液相の熱媒体を噴霧する噴霧部と、該噴霧部から噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させる電界発生部とを備えることを特徴とする。   The processing chamber according to the present invention is a processing chamber for performing predetermined processing on a substrate, and a spray chamber for spraying a decompression chamber formed in a wall and a liquid phase heat medium having a target temperature or lower on the inner surface of the decompression chamber. And an electric field generation unit that generates an electric field for attaching the heat medium sprayed from the spray unit to the inner surface of the decompression chamber.

本発明に係る処理室内部品は、基板に所定の処理を行う基板処理装置の処理室内に配されるべき処理室内部品において、内部に形成された減圧室と、該減圧室の内面に目標温度以下の液相の熱媒体を噴霧する噴霧部と、該噴霧部から噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させる電界発生部とを備えることを特徴とする。   A processing chamber component according to the present invention is a processing chamber component to be disposed in a processing chamber of a substrate processing apparatus that performs predetermined processing on a substrate, and a decompression chamber formed therein, and an inner surface of the decompression chamber at a target temperature or lower. A spraying section for spraying the liquid phase heat medium, and an electric field generating section for generating an electric field for attaching the heat medium sprayed from the spraying section to the inner surface of the decompression chamber.

本発明に係る冷却方法は、被冷却部材に対して熱的に接続された減圧室を用いて、該被冷却部材の温度を目標温度に冷却する冷却方法において、前記減圧室の内面に前記目標温度以下の液相の熱媒体を噴霧するステップと、噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させるステップと、前記減圧室の内圧が前記目標温度における前記熱媒体の飽和蒸気圧以下になるように、前記減圧室を排気するステップとを有することを特徴とする。   The cooling method according to the present invention is the cooling method in which the temperature of the member to be cooled is cooled to the target temperature by using the decompression chamber thermally connected to the member to be cooled. Spraying a liquid phase heat medium having a temperature equal to or lower than the temperature; generating an electric field for attaching the sprayed heat medium to the inner surface of the decompression chamber; and the heat medium having an internal pressure in the decompression chamber at the target temperature. And evacuating the decompression chamber so as to be equal to or lower than the saturated vapor pressure.

本発明に係る冷却方法は、前記減圧室を排気するステップにおいて、前記減圧室の内圧が前記目標温度における前記熱媒体の飽和蒸気圧と等しくなるように、前記減圧室を排気することを特徴とする。   The cooling method according to the present invention is characterized in that, in the step of exhausting the decompression chamber, the decompression chamber is exhausted so that an internal pressure of the decompression chamber becomes equal to a saturated vapor pressure of the heat medium at the target temperature. To do.

本発明に係る冷却方法は、被冷却部材に対して熱的に接続された減圧室を用いて、該被冷却部材の温度を目標温度に冷却する冷却方法において、前記減圧室の内面に前記目標温度以下の液相の熱媒体を噴霧するステップと、噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させるステップと、前記被冷却部材の温度を検出するステップと、検出された温度が目標温度になるように、前記減圧室を排気するステップとを有することを特徴とする。   The cooling method according to the present invention is the cooling method in which the temperature of the member to be cooled is cooled to the target temperature by using the decompression chamber thermally connected to the member to be cooled. Spraying a liquid phase heat medium below temperature, generating an electric field for attaching the sprayed heat medium to the inner surface of the decompression chamber, detecting the temperature of the member to be cooled, and detecting Evacuating the decompression chamber so that the measured temperature becomes a target temperature.

本発明にあっては、被冷却部材に対して冷却用の減圧室が熱的に接続されている。減圧室の内面、即ち被冷却面には目標温度以下の液相の熱媒体が噴霧される。噴霧された熱媒体は、電界発生部で発生した電界によって減圧室の内面に引き付けられ、付着する。排気部は、減圧室の内圧が目標温度における熱媒体の飽和蒸気圧以下又は該飽和蒸気圧と等しくなるように、減圧室を排気する。このため、減圧室の内面に付着する前の熱媒体は液相であり、内面に付着した熱媒体は目標温度超に上昇するため、気相に相変化する。
従って、被冷却部材を、熱媒体の潜熱によって冷却することが可能になる。また、クーロン力によって、熱媒体を効果的に減圧室の内面に付着させることが可能である。よって、単に熱媒体を吹き付ける構成に比べて、真空気化冷却に必要な熱媒体を削減することが可能である。更に、単に熱媒体を吹き付ける構成に比べて、余分な熱媒体を噴霧する必要が無いため、減圧室を十分に減圧することができ、効果的に被冷却部材を冷却することが可能である。更に、熱媒体の送出量を削減することができるため、熱媒体を送出するポンプの消費エネルギーも削減することが可能である。
なお、本発明に係る冷却方法は、液相の熱媒体を噴霧するステップと、電界を発生させるステップと、減圧室を排気するステップとで構成されるが、各ステップは任意の手順で実行すれば良く、略同時的に実行しても良い。
In the present invention, the decompression chamber for cooling is thermally connected to the member to be cooled. The liquid phase heat medium below the target temperature is sprayed on the inner surface of the decompression chamber, that is, the surface to be cooled. The sprayed heat medium is attracted to and adhered to the inner surface of the decompression chamber by the electric field generated by the electric field generation unit. The exhaust unit exhausts the decompression chamber so that the internal pressure of the decompression chamber is equal to or lower than the saturated vapor pressure of the heat medium at the target temperature. For this reason, the heat medium before adhering to the inner surface of the decompression chamber is in a liquid phase, and the heat medium adhering to the inner surface rises above the target temperature, so that the phase changes to the gas phase.
Therefore, the member to be cooled can be cooled by the latent heat of the heat medium. In addition, the heat medium can be effectively attached to the inner surface of the decompression chamber by the Coulomb force. Therefore, it is possible to reduce the heat medium required for vacuum vaporization cooling as compared with the configuration in which the heat medium is simply sprayed. Furthermore, since it is not necessary to spray an excessive heat medium as compared with the configuration in which the heat medium is simply sprayed, the decompression chamber can be sufficiently decompressed, and the member to be cooled can be effectively cooled. Furthermore, since the amount of heat medium delivered can be reduced, the energy consumption of the pump that delivers the heat medium can also be reduced.
The cooling method according to the present invention includes a step of spraying a liquid phase heat medium, a step of generating an electric field, and a step of exhausting the decompression chamber, but each step may be executed by an arbitrary procedure. And may be executed substantially simultaneously.

本発明にあっては、噴霧部のノズルと、熱媒体との摩擦によって、熱媒体を帯電させる。噴霧され、帯電した熱媒体の粒子は、クーロン力によって互いに反発し合うため、微細な粒子状のまま減圧室の内面に引き付けられ、付着する。つまり、噴霧された熱媒体が帯電していない場合、熱媒体の粒子が表面張力によって集合してしまい、減圧室の内面に到達しにくくなるが、熱媒体が帯電していると、熱媒体粒子の集合を防ぐことができる。従って、効果的に熱媒体を減圧室の内面に付着させることが可能である。   In the present invention, the heat medium is charged by friction between the nozzle of the spray section and the heat medium. Since the sprayed and charged particles of the heat medium repel each other by the Coulomb force, they are attracted and adhered to the inner surface of the decompression chamber in the form of fine particles. That is, when the sprayed heat medium is not charged, the particles of the heat medium are aggregated due to surface tension and are difficult to reach the inner surface of the decompression chamber, but if the heat medium is charged, the heat medium particles Can be prevented. Therefore, it is possible to effectively adhere the heat medium to the inner surface of the decompression chamber.

本発明にあっては、電圧印加部によって、噴霧部に電圧を印加することにより、熱媒体を帯電させることが可能である。熱媒体を帯電させることによって得られる作用は上述の通りである。   In the present invention, the heating medium can be charged by applying a voltage to the spraying section by the voltage applying section. The action obtained by charging the heat medium is as described above.

本発明にあっては、減圧室は被冷却部材の内部に形成されている。従って、被冷却部材を効果的に冷却することが可能である。また、冷却機構を小型化することが可能である。   In the present invention, the decompression chamber is formed inside the member to be cooled. Therefore, the member to be cooled can be effectively cooled. In addition, the cooling mechanism can be reduced in size.

本発明にあっては、減圧室は被冷却部材の外部に配されており、減圧室と被冷却部材とが接触することによって、熱的に接続されている。従って、減圧室を内部に形成することが難しい被冷却部材を冷却することが可能である。   In the present invention, the decompression chamber is disposed outside the member to be cooled, and is thermally connected by contacting the decompression chamber and the member to be cooled. Therefore, it is possible to cool the member to be cooled which is difficult to form the decompression chamber inside.

本発明にあっては、基板に所定の処理を行う基板処理装置の処理室を冷却する。   In the present invention, the processing chamber of the substrate processing apparatus that performs a predetermined process on the substrate is cooled.

本発明にあっては、基板に所定の処理を行う基板処理装置の処理室内に配された処理室内部品を冷却する。   In the present invention, the processing chamber components arranged in the processing chamber of the substrate processing apparatus that performs predetermined processing on the substrate are cooled.

本発明にあっては、基板処理装置の処理室内に基板を載置する載置台を冷却する。   In the present invention, the mounting table for mounting the substrate in the processing chamber of the substrate processing apparatus is cooled.

本発明にあっては、被冷却部材の温度を被冷却部材温度検出部にて検出し、排気部は、検出された温度が目標温度以下になるように、減圧室を排気する。
なお、本発明に係る冷却方法は、液相の熱媒体を噴霧するステップと、電界を発生させるステップと、温度を検出するステップと、減圧室を排気するステップとで構成されるが、各ステップは任意の手順で実行すれば良く、略同時的に実行しても良い。
In the present invention, the temperature of the member to be cooled is detected by the member to be cooled temperature detection unit, and the exhaust unit exhausts the decompression chamber so that the detected temperature is equal to or lower than the target temperature.
The cooling method according to the present invention includes a step of spraying a liquid phase heat medium, a step of generating an electric field, a step of detecting temperature, and a step of exhausting the decompression chamber. May be executed in an arbitrary procedure, and may be executed almost simultaneously.

本発明によれば、被冷却部材に対して熱的に接続された減圧室内に噴霧された熱媒体を、電界によって該減圧室の内面に引き込むことによって、真空気化冷却に必要な熱媒体を削減し、高効率に被冷却部材を冷却することができる。   According to the present invention, the heat medium sprayed in the decompression chamber thermally connected to the member to be cooled is drawn into the inner surface of the decompression chamber by an electric field, thereby reducing the heat medium necessary for vacuum vaporization cooling. In addition, the member to be cooled can be cooled with high efficiency.

本発明の実施の形態に係る冷却機構を有する半導体製造装置の一構成を示す模式図である。It is a mimetic diagram showing one composition of a semiconductor manufacturing device which has a cooling mechanism concerning an embodiment of the invention. 排気部及び冷水製造器の構成を示す模式図である。It is a schematic diagram which shows the structure of an exhaust part and a cold water manufacturing device. 冷却に係る制御部の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the control part which concerns on cooling. 真空気化冷却条件を概念的に示す状態図である。It is a state figure which shows vacuum evaporation cooling conditions notionally. 変形例1に係る冷却機構を有する半導体製造装置の一構成例を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration example of a semiconductor manufacturing apparatus having a cooling mechanism according to Modification 1; 変形例2に係る冷却機構を有する半導体製造装置の一構成例を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration example of a semiconductor manufacturing apparatus having a cooling mechanism according to Modification 2. 変形例3に係る冷却機構を有する半導体製造装置の一構成例を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration example of a semiconductor manufacturing apparatus having a cooling mechanism according to Modification 3. 変形例4に係る冷却機構を有する半導体製造装置の一構成例を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration example of a semiconductor manufacturing apparatus having a cooling mechanism according to Modification Example 4.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。
図1は、本発明の実施の形態に係る冷却機構6を有する半導体製造装置の一構成を示す模式図である。本実施の形態に係る半導体製造装置は、例えば、平行平板型のプラズマエッチング装置である。なお、平行平板型のプラズマエッチング装置は、プラズマ処理装置の一例であり、これに限定されるものでは無い。半導体製造装置は、中空円筒状の処理室1を備える。処理室1は、例えばアルミニウム製であり、接地されている。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a schematic diagram showing one configuration of a semiconductor manufacturing apparatus having a cooling mechanism 6 according to an embodiment of the present invention. The semiconductor manufacturing apparatus according to the present embodiment is, for example, a parallel plate type plasma etching apparatus. The parallel plate type plasma etching apparatus is an example of a plasma processing apparatus, and is not limited thereto. The semiconductor manufacturing apparatus includes a hollow cylindrical processing chamber 1. The processing chamber 1 is made of, for example, aluminum and is grounded.

処理室1の底面略中央部には、半導体ウエハWを載置すると共に、下部電極として機能する円盤状の載置台2が円盤状絶縁体21を介して設けられている。載置台2は、例えばアルミニウム製であり、減圧室60を内部に有する。減圧室60は、被冷却部材である載置台2を目標温度に冷却する冷却機構6の各構成部に接続されており、冷却機構6の一部を構成している。冷却機構6によって載置台2を冷却することにより、載置台2上に載置された半導体ウエハWがプロセス温度に冷却される。また、載置台2には、バイアス電圧を発生させるための高周波を印加する高周波電源4が接続されている。ここで、目標温度とは、被冷却部材である載置台2の制御の目標となる温度であり、理想的には半導体ウエハWについて制御されるべきプロセス温度と一致するが、載置台2と半導体ウエハWとの熱抵抗などを考慮した場合、プロセス温度よりも低く設定してもよい。   A disk-shaped mounting table 2 that functions as a lower electrode and is provided with a disk-shaped insulator 21 on the bottom surface of the processing chamber 1 at a substantially central portion. The mounting table 2 is made of aluminum, for example, and has a decompression chamber 60 inside. The decompression chamber 60 is connected to each component of the cooling mechanism 6 that cools the mounting table 2 that is a member to be cooled to a target temperature, and constitutes a part of the cooling mechanism 6. By cooling the mounting table 2 by the cooling mechanism 6, the semiconductor wafer W mounted on the mounting table 2 is cooled to the process temperature. The mounting table 2 is connected to a high frequency power source 4 that applies a high frequency for generating a bias voltage. Here, the target temperature is a temperature that is a target of control of the mounting table 2 that is a member to be cooled, and ideally matches the process temperature to be controlled for the semiconductor wafer W. In consideration of the thermal resistance with the wafer W, the temperature may be set lower than the process temperature.

また、処理室1の天面略中央部には、載置台2と対向するように上部電極3が設けられている。処理室1と上部電極3との間には、環状絶縁体14が介装されている。上部電極3にはプラズマ発生用の高周波電源5が接続されている。また、上部電極3は中空状に形成されており、載置台2に対向する面に図示しない複数のプロセスガス供給孔を備えたガスシャワーヘッドを構成している。上部電極3の上面中央には、上部電極3へプロセスガスを供給するプロセスガス供給管31が設けられており、上部電極3はガスシャワーヘッドとしての機能により処理室1内にプロセスガスを供給する。   In addition, an upper electrode 3 is provided at a substantially central portion of the top surface of the processing chamber 1 so as to face the mounting table 2. An annular insulator 14 is interposed between the processing chamber 1 and the upper electrode 3. A high frequency power source 5 for generating plasma is connected to the upper electrode 3. The upper electrode 3 is formed in a hollow shape, and constitutes a gas shower head having a plurality of process gas supply holes (not shown) on the surface facing the mounting table 2. A process gas supply pipe 31 for supplying a process gas to the upper electrode 3 is provided at the center of the upper surface of the upper electrode 3. The upper electrode 3 supplies a process gas into the processing chamber 1 by a function as a gas shower head. .

更に、排気機構として、例えば、処理室1の底面寄り側面部分には、排気管12が接続されており、排気管12の下流に設けられた図示しない真空ポンプによって、処理室1内を真空排気するように構成されている。なお、排気機構は、処理室1の底部から排気する構造としてもよい。
更にまた、処理室1の側面には、半導体ウエハWの搬送口11が形成されており、搬送口11はゲートバルブ13によって開閉可能に構成されている。
Further, as an exhaust mechanism, for example, an exhaust pipe 12 is connected to a side surface near the bottom surface of the processing chamber 1, and the inside of the processing chamber 1 is evacuated by a vacuum pump (not shown) provided downstream of the exhaust pipe 12. Is configured to do. The exhaust mechanism may be structured to exhaust from the bottom of the processing chamber 1.
Furthermore, a transfer port 11 for the semiconductor wafer W is formed on the side surface of the processing chamber 1, and the transfer port 11 can be opened and closed by a gate valve 13.

載置台2に形成された減圧室60は、円形の底面部、周面部及び円形の天面部を有する円柱状である。底面部は、減圧室60内部の気体及び水を排出する排出口を適宜箇所に形成している。   The decompression chamber 60 formed on the mounting table 2 has a cylindrical shape having a circular bottom surface portion, a peripheral surface portion, and a circular top surface portion. The bottom surface portion has a discharge port for discharging the gas and water inside the decompression chamber 60 where appropriate.

冷却機構6は、各構成部の動作を制御する制御部61を備える。制御部61は、例えばCPUを備えたマイクロコンピュータであり、CPUには、制御部61の動作に必要なコンピュータプログラムや、半導体製造プロセスに必要なプロセス温度等の各種情報を記憶した記憶部、各種情報及び制御信号を入出力するための入出力部等が接続されている。   The cooling mechanism 6 includes a controller 61 that controls the operation of each component. The control unit 61 is, for example, a microcomputer including a CPU. The CPU stores a computer program necessary for the operation of the control unit 61, a storage unit that stores various information such as a process temperature necessary for a semiconductor manufacturing process, An input / output unit for inputting / outputting information and control signals is connected.

また、冷却機構6は、被冷却部材である載置台2の冷却に必要な、温度制御器62、噴霧部64、排気部65、冷水製造器651、水供給ポンプ66、流量制御弁67及び電界発生用電源68を備える。排気部65としては、以下の実施形態においてはエゼクタ真空ポンプを使用した例について主に説明するが、後述の通り水を分離するセパレータとロータリーポンプとを組み合わせてもよく、また同等の機能を持つものであれば他の排気装置であってもよい。   The cooling mechanism 6 includes a temperature controller 62, a spray unit 64, an exhaust unit 65, a cold water producing device 651, a water supply pump 66, a flow control valve 67, and an electric field necessary for cooling the mounting table 2 that is a member to be cooled. A power supply 68 for generation is provided. In the following embodiment, an example of using an ejector vacuum pump will be mainly described as the exhaust unit 65. However, as will be described later, a separator for separating water and a rotary pump may be combined, and an equivalent function is provided. Other exhaust devices may be used as long as they are appropriate.

温度制御器62は、後述の冷水製造器651から供給された冷水の温度を、制御部61からの制御信号に従って噴霧温度に制御し、温度制御された水を、配管63aを通じて、噴霧部64へ供給する。ここで、噴霧温度は、噴霧されミスト状となった水が凍結する温度よりは高く、且つ、減圧室の内面に到達するまでに蒸発する温度よりは低くなければならない。ミスト状となった水が蒸発する下限温度は、即ち前記の目標温度であるので、言い換えれば、噴霧温度は、凍結温度よりは高く、目標温度以下とする必要がある。なお、被冷却部材である載置台の内壁はミストが気化する際の気化熱により冷却されるので、冷却の効果はミスト自身の温度には依存しない。   The temperature controller 62 controls the temperature of the cold water supplied from the cold water producer 651 described later to the spray temperature according to the control signal from the control unit 61, and the temperature-controlled water is supplied to the spray unit 64 through the pipe 63a. Supply. Here, the spraying temperature must be higher than the temperature at which the sprayed mist water freezes and lower than the temperature at which it evaporates before reaching the inner surface of the decompression chamber. Since the lower limit temperature at which the mist of water evaporates is the target temperature, in other words, the spray temperature must be higher than the freezing temperature and lower than the target temperature. In addition, since the inner wall of the mounting table which is a member to be cooled is cooled by the heat of vaporization when the mist is vaporized, the cooling effect does not depend on the temperature of the mist itself.

噴霧部64は、減圧室60の周面部に設けられており、配管63aを通じて温度制御器62に接続されている。噴霧部64は、温度制御器62から供給された噴霧温度の液相の水(熱媒体)を減圧室60の内面、例えば天面部に噴霧するためのミストノズル(ノズル)64aを有し、ミストノズル64aと、水との摩擦によって該熱媒体を帯電させるようにしてある。例えば、ミストノズル64aをステンレス又は樹脂等で形成することによって、噴霧される水を帯電させることが可能である。帯電する電荷の大きさ及び極性は、ミストノズル64aを形成する材質と水とが帯電列においてどのような位置関係にあるかに依存し、帯電列における位置が離れているほど大きな電荷量で帯電し、また、水がミストノズルの材質よりも帯電列上負側に位置すれば負に帯電し、正側に位置すれば正に帯電する。また、ミストノズルと水との摩擦により水だけでなくミストノズルにも電荷が発生するので、ミストノズルが帯電し続けることを防ぐために、噴霧部64は接地されている。   The spray part 64 is provided in the peripheral surface part of the decompression chamber 60, and is connected to the temperature controller 62 through the piping 63a. The spray unit 64 includes a mist nozzle (nozzle) 64a for spraying liquid phase water (heat medium) supplied from the temperature controller 62 onto the inner surface of the decompression chamber 60, for example, the top surface portion. The heat medium is charged by friction between the nozzle 64a and water. For example, the sprayed water can be charged by forming the mist nozzle 64a from stainless steel or resin. The magnitude and polarity of the charge to be charged depends on the positional relationship between the material forming the mist nozzle 64a and water in the charge train, and the charge amount increases as the position in the charge train increases. In addition, when water is located on the negative side of the charging column with respect to the material of the mist nozzle, it is negatively charged, and when it is located on the positive side, it is positively charged. Further, since the electric charge is generated not only in the water but also in the mist nozzle due to the friction between the mist nozzle and water, the spray unit 64 is grounded to prevent the mist nozzle from continuing to be charged.

電界発生用電源(電界発生部)68は、噴霧部64から噴霧された水を減圧室60の内面、例えば天面部に付着させるための電界を発生させる直流電源である。例えば、減圧室60の天側には、非接地状態にある線状又はシート状の導電性部材(電界発生部)68aが設けられており、該導電性部材68aに電圧を印加することによって、減圧室60の内部から天面部へ向かう電界、又は減圧室60の天面部から内部へ向かう電界を発生させることができる。導電性部材68aの設置の仕方としては、減圧室60の天側に導電性部材68aを設置してこれを減圧室60の天井部とし、天井部と、その他の部分とを絶縁し、減圧室60の天井部に電圧を印加するように構成しても良い。その際、導電性部材68aと載置台2とが直流電流が導通しないよう、導電性部材68aが設置される減圧室60の天側の内面は絶縁被膜等の絶縁部材68bで直流的に絶縁しておく必要がある。また、導電性部材68aが噴霧された水に対して露出されることを避けたい場合には、導電性部材68aの減圧室60に向いた面を誘電体から成る被膜等で覆い、更に減圧室60の内部の底側などにこれと対となる接地電極を設けるようにして電界を発生させるようにしても良い。この場合、接地電極を誘電材料で挟んだ構造とし、噴霧された水にも露出せず載置台2とも直流的に絶縁が保てるようにするのがよい。
電界は、噴霧部64から噴霧された水が減圧室60の天面部に引き付けられるように発生させる。水が正に帯電している場合、減圧室60の内部の静電ポテンシャルの方が天面部の静電ポテンシャルよりも高くなるような電界を発生させ、水が負に帯電している場合、減圧室60の内部の静電ポテンシャルの方が天面部の静電ポテンシャルよりも低くなるような電界を発生させれば良い。
The electric field generating power source (electric field generating unit) 68 is a DC power source that generates an electric field for attaching water sprayed from the spray unit 64 to the inner surface of the decompression chamber 60, for example, the top surface. For example, a linear or sheet-like conductive member (electric field generating portion) 68a in a non-grounded state is provided on the top side of the decompression chamber 60, and by applying a voltage to the conductive member 68a, An electric field directed from the inside of the decompression chamber 60 toward the top surface portion or an electric field directed from the top surface portion of the decompression chamber 60 toward the inside can be generated. As a method of installing the conductive member 68a, the conductive member 68a is installed on the top side of the decompression chamber 60, which is used as a ceiling portion of the decompression chamber 60, and the ceiling portion and other portions are insulated from each other. You may comprise so that a voltage may be applied to 60 ceiling parts. At this time, the inner surface on the top side of the decompression chamber 60 in which the conductive member 68a is installed is DC-insulated by an insulating member 68b such as an insulating film so that no direct current is conducted between the conductive member 68a and the mounting table 2. It is necessary to keep. When it is desired to avoid the conductive member 68a from being exposed to the sprayed water, the surface of the conductive member 68a facing the decompression chamber 60 is covered with a film made of a dielectric, and the decompression chamber. An electric field may be generated by providing a ground electrode paired therewith on the bottom side of the interior of 60 or the like. In this case, it is preferable to have a structure in which the ground electrode is sandwiched between dielectric materials, so that the grounding electrode 2 is not exposed to the sprayed water and can be insulated from the mounting table 2 in a direct current manner.
The electric field is generated so that the water sprayed from the spraying part 64 is attracted to the top surface part of the decompression chamber 60. When water is positively charged, an electric field is generated such that the electrostatic potential inside the decompression chamber 60 is higher than the electrostatic potential of the top surface, and when water is negatively charged, the pressure is reduced. An electric field may be generated so that the electrostatic potential inside the chamber 60 is lower than the electrostatic potential of the top surface portion.

図2は、排気部65及び冷水製造器651の構成を示す模式図である。排気部65は、一般に液体を気化させて蒸気とし、蒸気を高速で噴出する際に生じる吸引力によって内部を排気すべき容器内に存在する気体を吸引し排気するもので、本願におけるエゼクタ真空ポンプの場合においては液体として水を利用する。エゼクタ真空ポンプとしての排気部65は、配管63dを通じて供給された水を貯留する貯水槽65dと、配管65g,65iを通じて貯水槽65dの水を圧送する圧送ポンプ65hと、圧送された水から水蒸気を生成する真空容器65jと、真空容器65jから配管65kを通じて供給された水蒸気を噴射するエゼクタノズル65bと、エゼクタノズル65bが配された吸込み室65aと、ディフューザ65cとを接続して構成され、吸込み室65aは配管63bと連通している。特に貯水槽65dには、載置台2の減圧室60から排出された水蒸気を凝縮するための凝縮器65eが設けられている。また、貯水槽65dの適宜箇所には、オーバーフロー管65fが設けられている。   FIG. 2 is a schematic diagram illustrating the configuration of the exhaust unit 65 and the cold water producer 651. The exhaust unit 65 generally vaporizes a liquid to form a vapor, and sucks and exhausts the gas present in the container to be evacuated by a suction force generated when the vapor is ejected at a high speed. In this case, water is used as the liquid. The exhaust unit 65 serving as an ejector vacuum pump includes a water storage tank 65d that stores water supplied through the pipe 63d, a pumping pump 65h that pumps water from the water storage tank 65d through the pipes 65g and 65i, and steam from the pumped water. A vacuum chamber 65j to be generated, an ejector nozzle 65b for injecting water vapor supplied from the vacuum vessel 65j through the pipe 65k, a suction chamber 65a in which the ejector nozzle 65b is disposed, and a diffuser 65c are connected to each other, and the suction chamber 65a communicates with the pipe 63b. In particular, the water storage tank 65d is provided with a condenser 65e for condensing the water vapor discharged from the decompression chamber 60 of the mounting table 2. In addition, an overflow pipe 65f is provided at an appropriate location of the water storage tank 65d.

このように構成された排気部65は、貯水槽65dの水を圧送ポンプ65hでエゼクタノズル65bへ供給し、ディフューザ65c及び貯水槽65dを経て循環させることによって、吸込み室65aで真空吸引力を得るものである。排気部65は、該真空吸引力によって、減圧室60から、該減圧室60内の気体及び減圧室60内に残留する液体の温調媒体、即ち水を排出させる。より詳細には、排気部65は、載置台2の冷却を行う場合、気化した水蒸気のみならず、気化しなかった液体の水も減圧室60内から排出させる。また、排気部65は、載置台2の加熱を行う場合、水蒸気だけではなく、凝縮した液体の水も減圧室60内から排出させる。   The exhaust part 65 configured as described above obtains a vacuum suction force in the suction chamber 65a by supplying water from the water storage tank 65d to the ejector nozzle 65b by the pressure feed pump 65h and circulating it through the diffuser 65c and the water storage tank 65d. Is. The exhaust unit 65 discharges the gas in the decompression chamber 60 and the liquid temperature control medium remaining in the decompression chamber 60, that is, water, from the decompression chamber 60 by the vacuum suction force. More specifically, when cooling the mounting table 2, the exhaust unit 65 discharges not only vaporized water vapor but also liquid water that has not been vaporized from the decompression chamber 60. Further, when heating the mounting table 2, the exhaust unit 65 discharges not only water vapor but also condensed liquid water from the decompression chamber 60.

冷水製造器651は、吸込み室65aと連通した冷水貯留槽651aと、貯水槽65dから冷水貯留槽651aへ水を供給するための配管651fと、配管651fに設けられたフロート弁651gと、配管651bを通じて冷水貯留槽651aの水を圧送する冷水製造用圧送ポンプ651cと、圧送された水を冷却する冷凍室651dと、冷水貯留槽651a内に配された蒸発器651eとを備える。蒸発器651eから噴射された水の一部は水蒸気として蒸発し、蒸発の際、該蒸発に必要な潜熱を残りの水から奪うことによって、該水を冷却する。
冷水貯留槽651aは、配管63cと連通しており、配管63cを通じて、冷水貯留槽651aから温度制御器62へ冷水が送出されるように構成されている。
The cold water producer 651 includes a cold water storage tank 651a communicating with the suction chamber 65a, a pipe 651f for supplying water from the water storage tank 65d to the cold water storage tank 651a, a float valve 651g provided in the pipe 651f, and a pipe 651b. A chilled water production pump 651c for pumping the water in the cold water storage tank 651a, a freezing chamber 651d for cooling the pumped water, and an evaporator 651e disposed in the cold water storage tank 651a. A part of the water jetted from the evaporator 651e evaporates as water vapor, and the water is cooled by removing the latent heat necessary for the evaporation from the remaining water.
The cold water storage tank 651a communicates with the pipe 63c, and is configured such that cold water is sent from the cold water storage tank 651a to the temperature controller 62 through the pipe 63c.

水供給ポンプ66は、配管63cに介設されている。水供給ポンプ66は、例えばダイアフラム式のポンプであり、制御部61からの制御信号に従って駆動し、冷水製造器651で冷却された水を温度制御器62へ送出する。   The water supply pump 66 is interposed in the pipe 63c. The water supply pump 66 is, for example, a diaphragm pump, is driven according to a control signal from the control unit 61, and sends the water cooled by the cold water maker 651 to the temperature controller 62.

流量制御弁67は、水供給ポンプ66よりも温度制御器62側の配管63cに介設されている。流量制御弁67は、制御部61からの制御信号に従って、水供給ポンプ66から送出された水の流量を制御し、流量制御された水を温度制御器62へ送出する。   The flow rate control valve 67 is interposed in the pipe 63 c closer to the temperature controller 62 than the water supply pump 66. The flow control valve 67 controls the flow rate of water sent from the water supply pump 66 in accordance with a control signal from the control unit 61, and sends the flow-controlled water to the temperature controller 62.

冷却機構6は、更に被冷却部材温度検出部69a、圧力検出部69b、及び流量検出部69c、水温検出部69dを備える。被冷却部材温度検出部69aは、例えば被冷却部材である載置台2の適宜箇所に埋没した熱電対温度計であり、載置台2の温度を検出し、検出した温度の情報を制御部61へ出力する。圧力検出部69bは、配管63bに接続されており、減圧室60内部の圧力を検出し、検出した圧力の情報を制御部61へ出力する。流量検出部69cは、配管63cを流れる水の流量を検出し、検出した流量の情報を制御部61へ出力する。水温検出部69dは、配管63cを流れ温度制御器62によって温度制御されノズルにより噴出される水の温度を検出し、検出した水温の情報を制御部61へ出力する。制御部61は、入出力部を介して載置台温度、圧力、流量、水温の情報を取り込み、取り込んだ情報に基づいて冷却に係る処理を実行し、排気部65、水供給ポンプ66及び流量制御弁67の動作を制御する制御信号を各部へ出力する。なお、半導体ウエハWは、載置台2上に熱伝達効率よく載置され、載置台2を介して温度制御が行われることになる。   The cooling mechanism 6 further includes a member-to-be-cooled temperature detector 69a, a pressure detector 69b, a flow rate detector 69c, and a water temperature detector 69d. The member-to-be-cooled temperature detection unit 69a is a thermocouple thermometer buried in an appropriate location of the mounting table 2 that is a member to be cooled, for example, detects the temperature of the mounting table 2, and sends information on the detected temperature to the control unit 61. Output. The pressure detection unit 69 b is connected to the pipe 63 b, detects the pressure inside the decompression chamber 60, and outputs information on the detected pressure to the control unit 61. The flow rate detection unit 69 c detects the flow rate of the water flowing through the pipe 63 c and outputs information on the detected flow rate to the control unit 61. The water temperature detection unit 69d detects the temperature of the water that is flown through the pipe 63c and is temperature-controlled by the temperature controller 62 and ejected from the nozzle, and outputs the detected water temperature information to the control unit 61. The control unit 61 takes in information on the mounting table temperature, pressure, flow rate, and water temperature via the input / output unit, executes a process related to cooling based on the taken-in information, and performs an exhaust unit 65, a water supply pump 66, and a flow rate control. A control signal for controlling the operation of the valve 67 is output to each part. The semiconductor wafer W is mounted on the mounting table 2 with high heat transfer efficiency, and temperature control is performed via the mounting table 2.

図3は、冷却に係る制御部61の処理手順を示すフローチャートである。ここでは、理想的な場合として、目標温度がプロセス温度に等しいとする。制御部61は、排気部65及び水供給ポンプ66等を駆動させる。また、電界発生用電源68によって減圧室60内にミスト引き込み用の電界を発生させておく(ステップS11)。そして、制御部61は、図示しない記憶部から、温度制御の目的である半導体製造プロセスに必要なプロセス温度を読み出す(ステップS12)。次いで、制御部61は、被冷却部材温度検出部69aにて、載置台2の温度を検出する(ステップS13)。   FIG. 3 is a flowchart showing a processing procedure of the control unit 61 related to cooling. Here, as an ideal case, it is assumed that the target temperature is equal to the process temperature. The control unit 61 drives the exhaust unit 65, the water supply pump 66, and the like. Further, an electric field for drawing mist is generated in the decompression chamber 60 by the electric field generating power source 68 (step S11). And the control part 61 reads process temperature required for the semiconductor manufacturing process which is the objective of temperature control from the memory | storage part which is not shown in figure (step S12). Next, the controller 61 detects the temperature of the mounting table 2 at the member-to-be-cooled temperature detector 69a (step S13).

そして、制御部61は、プロセス温度を目標温度とし、被冷却部材温度検出部69aにて検出した載置台2の温度がプロセス温度超であるか否かを判定する(ステップS14)。以下、被冷却部材温度検出部69aにて検出した載置台2(被冷却部材)の温度を検出温度という。検出温度がプロセス温度以下である場合(ステップS14:NO)、すなわち目標温度以下である場合には、載置台2をこれ以上冷却する必要が無いので、制御部61は、流量制御弁67を閉状態に制御する(ステップS15)。   Then, the control unit 61 sets the process temperature as a target temperature, and determines whether or not the temperature of the mounting table 2 detected by the member-to-be-cooled temperature detecting unit 69a exceeds the process temperature (step S14). Hereinafter, the temperature of the mounting table 2 (cooled member) detected by the cooled member temperature detection unit 69a is referred to as a detected temperature. When the detected temperature is equal to or lower than the process temperature (step S14: NO), that is, when the detected temperature is equal to or lower than the target temperature, there is no need to cool the mounting table 2 any more, so the control unit 61 closes the flow control valve 67. The state is controlled (step S15).

検出温度がプロセス温度超であると判定した場合(ステップS14:YES)、制御部61は、天面部へ噴射されるべき水の設定水温及び設定流量を決定し(ステップS16)、減圧室60内の設定圧力を決定する(ステップS17)。ここで、設定水温、設定流量及び設定圧力について説明する。   When it is determined that the detected temperature is higher than the process temperature (step S14: YES), the control unit 61 determines a set water temperature and a set flow rate of water to be injected to the top surface (step S16), and the inside of the decompression chamber 60 Is determined (step S17). Here, the set water temperature, the set flow rate, and the set pressure will be described.

図4は、真空気化冷却条件を概念的に示す状態図である。横軸は温度、縦軸は圧力である。グラフ中の曲線は、水の飽和蒸気圧Psv(T)を示している。Psv(T)は温度Tの関数である。検出温度がプロセス温度T1超である場合、載置台2の温度を下げる必要があるため、制御部61は、プロセス温度T1よりも低い温度領域にあるハッチングで示した温度圧力範囲内で、プロセス温度T1(=目標温度)以下で設定される設定温度に対応した設定圧力を決定する。設定温度はプロセス温度T1と等しく設定してもよいが、載置台が目標温度(=プロセス温度T1)に収束するのを早めるためにプロセス温度T1よりも少し低めに設定してもよい。ノズルから噴出される水の設定水温は、前述の噴霧温度に制御されている。このとき、設定水温(=噴霧温度)は、噴出された水が途中で完全に蒸発してしまわないよう、上記の設定圧力を飽和蒸気圧とした時の水の温度、即ち、設定水温よりも低くしなければならない。ただし、低くし過ぎると凍ってしまうため、凍結しない温度とする必要がある。ノズルから噴出された水は目的とする減圧室60内の天面部に到達後、天面部により温度が上昇し、設定水温よりも高いため気化する。気化の際、気化熱として天面部から熱を奪い、天面部の温度を下げる。こうして天面部がプロセス温度T1まで冷却されるまで、噴霧から気化の一連の流れが繰り返される。なお、載置台2が目標温度に達すればそれよりも更に冷却する必要は無いため、理想的には減圧室60内の圧力をプロセス温度における飽和蒸気圧よりも低く設定する必要は無いが、現実的には、半導体ウエハWと、温度制御される載置台2との間の熱伝達において熱抵抗が存在し温度勾配が発生することも考えられるため、目標温度をプロセス温度よりも低く設定し、設定圧力をプロセス温度における飽和蒸気圧よりも低く、目標温度における飽和蒸気圧に等しい圧力に設定することがあってもよい。また、フィードバックを用いた温度制御においては目標とする温度の近辺を振動しながら目標温度に収束していくこともあることから、設定圧力が目標温度における飽和蒸気圧よりも低くなることがあっても良い。水の流量については、天面部に噴射された水の気化によって、減圧室60内の圧力が上記温度圧力範囲から外れないように決定すれば良い。つまり、真空ポンプで排気可能な水蒸気量より少ない水が噴射されるように設定流量を決定すれば良い。
具体的には、制御部61は、プロセス温度(=設定温度)と、設定水温と、設定流量と、設定圧力とを対応付けたテーブルを予め記憶しておき、ステップS12で読み出したプロセス温度と、前記テーブルとに基づいて、設定水温、設定流量及び設定圧力を決定すれば良い。
FIG. 4 is a state diagram conceptually showing vacuum vaporization cooling conditions. The horizontal axis is temperature, and the vertical axis is pressure. The curve in the graph shows the saturated vapor pressure Psv (T) of water. Psv (T) is a function of temperature T. When the detected temperature is higher than the process temperature T1, it is necessary to lower the temperature of the mounting table 2. Therefore, the control unit 61 has a process temperature within the temperature and pressure range indicated by hatching in a temperature region lower than the process temperature T1. A set pressure corresponding to a set temperature set below T1 (= target temperature) is determined. The set temperature may be set equal to the process temperature T1, but may be set slightly lower than the process temperature T1 in order to speed up the stage to converge to the target temperature (= process temperature T1). The set water temperature of the water ejected from the nozzle is controlled to the spray temperature described above. At this time, the set water temperature (= spray temperature) is higher than the water temperature when the set pressure is the saturated vapor pressure, that is, the set water temperature so that the jetted water does not completely evaporate in the middle. Must be low. However, if it is too low, it will freeze, so it must be at a temperature that will not freeze. After the water ejected from the nozzle reaches the top surface in the target decompression chamber 60, the temperature rises by the top surface and vaporizes because it is higher than the set water temperature. During vaporization, heat is removed from the top surface as the heat of vaporization, and the temperature of the top surface is lowered. Thus, a series of flow from spraying to vaporization is repeated until the top surface is cooled to the process temperature T1. Note that if the mounting table 2 reaches the target temperature, it is not necessary to further cool it, so ideally the pressure in the decompression chamber 60 does not need to be set lower than the saturated vapor pressure at the process temperature. Specifically, since it is considered that a thermal resistance exists in the heat transfer between the semiconductor wafer W and the temperature-controlled mounting table 2 and a temperature gradient is generated, the target temperature is set lower than the process temperature, The set pressure may be set lower than the saturated vapor pressure at the process temperature and equal to the saturated vapor pressure at the target temperature. Also, in temperature control using feedback, the set pressure may be lower than the saturated vapor pressure at the target temperature because it may converge to the target temperature while vibrating in the vicinity of the target temperature. Also good. About the flow volume of water, what is necessary is just to determine so that the pressure in the decompression chamber 60 may not remove | deviate from the said temperature-pressure range by vaporization of the water injected to the top | upper surface part. That is, the set flow rate may be determined so that less water than the amount of water vapor that can be exhausted by the vacuum pump is injected.
Specifically, the control unit 61 stores in advance a table in which the process temperature (= set temperature), the set water temperature, the set flow rate, and the set pressure are associated, and the process temperature read in step S12 The set water temperature, the set flow rate, and the set pressure may be determined based on the table.

ステップS17の処理を終えた制御部61は、設定流量に基づいて、流量制御弁67の開度を制御し、流量を設定流量になるように制御する(ステップS18)。   The control part 61 which finished the process of step S17 controls the opening degree of the flow control valve 67 based on the set flow rate, and controls the flow rate to be the set flow rate (step S18).

次いで、制御部61は、水の温度を該設定水温(=噴霧温度)に一致させるべく、設定水温に基づいて、水温検出部69dにより水温を検出しながら温度制御器62の動作をフィードバック制御し、水温を設定水温になるように制御する(ステップS19)。そして、制御部61は、減圧室60内の圧力を設定圧力に一致させるべく、設定圧力に基づいて、圧力検出部69bにより圧力を検出しながら排気部65の動作をフィードバック制御し、圧力が設定圧力になるように制御する(ステップS20)。ステップS18の制御、ステップS19及びステップS20のフィードバック制御によって設定流量、設定水温、設定圧力に到達した後は、この設定流量、設定水温、設定圧力により載置台2をプロセス温度まで冷却し、必要に応じ冷却処理を定常状態として、半導体ウエハWに半導体製造プロセスを施している間プロセス温度を維持し続ける。冷却が進み、載置台2の温度が目標温度よりも下がろうとした時は、設定圧力においては目標温度以下の水は蒸発しないため、それ以上冷却が進まず過冷却となることは無い。   Next, the control unit 61 feedback-controls the operation of the temperature controller 62 while detecting the water temperature by the water temperature detection unit 69d based on the set water temperature so that the water temperature matches the set water temperature (= spray temperature). The water temperature is controlled to be the set water temperature (step S19). Then, the control unit 61 feedback-controls the operation of the exhaust unit 65 while detecting the pressure by the pressure detection unit 69b based on the set pressure so that the pressure in the decompression chamber 60 matches the set pressure, and the pressure is set. Control is performed so that the pressure is reached (step S20). After reaching the set flow rate, the set water temperature, and the set pressure by the control in step S18 and the feedback control in step S19 and step S20, the mounting table 2 is cooled to the process temperature by using the set flow rate, the set water temperature, and the set pressure. Accordingly, the cooling process is set to a steady state, and the process temperature is continuously maintained while the semiconductor wafer W is subjected to the semiconductor manufacturing process. When the cooling proceeds and the temperature of the mounting table 2 is about to fall below the target temperature, the water below the target temperature does not evaporate at the set pressure, so that the cooling does not proceed any further and the subcooling does not occur.

所定のプロセス条件における半導体ウエハWへの半導体製造プロセス、例えばエッチングプロセスなどのプラズマ処理が終了し、これに伴い冷却に係るステップS20又はステップS15の処理を終えた場合、制御部61は、他のプロセス温度により半導体製造プロセスを行う次プロセスへ移行するか否かを判定する(ステップS21)。次プロセスへ移行すると判定した場合(ステップS21:YES)、制御部61は、処理をステップS12へ戻し、新たなプロセス温度を取得して上記の冷却処理を繰り返す。   When the plasma processing such as a semiconductor manufacturing process on the semiconductor wafer W under a predetermined process condition, for example, an etching process is completed, and the processing in step S20 or step S15 related to cooling is completed, the control unit 61 It is determined whether or not to proceed to the next process in which the semiconductor manufacturing process is performed based on the process temperature (step S21). When it determines with transfering to the next process (step S21: YES), the control part 61 returns a process to step S12, acquires a new process temperature, and repeats said cooling process.

次プロセスへ移行しないと判定した場合(ステップS21:NO)、制御部61は、プラズマ処理を終了するか否かを判定する(ステップS22)。同一のプロセス条件により他の新たな半導体ウエハWの処理を続ける場合など、プラズマ処理を終了しないと判定した場合(ステップS22:NO)、制御部61は、処理をステップS13へ戻す。プラズマ処理を終了すると判定した場合(ステップS22:YES)、制御部61は、冷却に係る処理を終了する。なお、上記において処理をステップS13へ戻す際、載置台2の温度が変化していないことが明らかで改めて設定水温、設定流量、設定圧力を決める必要が無い時は、ステップS13ではなくステップS18に処理を戻してもよい。   When it determines with not transfering to the next process (step S21: NO), the control part 61 determines whether plasma processing is complete | finished (step S22). When it is determined that the plasma processing is not to be ended, such as when processing of another new semiconductor wafer W is continued under the same process conditions (step S22: NO), the control unit 61 returns the processing to step S13. When it determines with complete | finishing a plasma process (step S22: YES), the control part 61 complete | finishes the process which concerns on cooling. When the process returns to step S13 in the above, it is clear that the temperature of the mounting table 2 has not changed, and when it is not necessary to determine the set water temperature, the set flow rate, and the set pressure, the process goes to step S18 instead of step S13. Processing may be returned.

実施の形態に係る冷却機構6及び冷却方法、並びに冷却機構6を構成する載置台2にあっては、減圧室60の天面部に吹き付けた水を低温で蒸発させ蒸発潜熱で載置台2を冷却するので、従来の冷却方法に比べて、半導体ウエハWの均一な冷却及び高応答性を実現することができる。   In the cooling mechanism 6 and the cooling method according to the embodiment, and the mounting table 2 constituting the cooling mechanism 6, water sprayed on the top surface of the decompression chamber 60 is evaporated at a low temperature, and the mounting table 2 is cooled by latent heat of evaporation. Therefore, compared with the conventional cooling method, uniform cooling and high responsiveness of the semiconductor wafer W can be realized.

また、減圧室60内に噴霧された水を電界によって効率的に天面部に引き込むことができ、真空気化冷却に必要な水を削減し、高効率に載置台2を冷却することができる。真空気化冷却に必要な水量を削減することによって、省エネルギー化を図ることができる。   Moreover, the water sprayed in the decompression chamber 60 can be efficiently drawn into the top surface portion by the electric field, the water required for vacuum vaporization cooling can be reduced, and the mounting table 2 can be cooled with high efficiency. It is possible to save energy by reducing the amount of water required for vacuum vaporization cooling.

更に、電界を用いず単に熱媒体を吹き付ける構成に比べて、余分な水を噴霧する必要が無いため、減圧室60を十分に減圧することができ、効果的に載置台2を冷却することが可能である。   Furthermore, since it is not necessary to spray excess water as compared with a configuration in which a heat medium is simply sprayed without using an electric field, the decompression chamber 60 can be sufficiently decompressed, and the mounting table 2 can be effectively cooled. Is possible.

更にまた、噴霧部64から噴霧される水は、ミストノズル64aとの摩擦によって帯電するため、霧状の水粒子は、クーロン力によって互いに反発し合う。このため、噴霧された水は、微細な粒子状のまま減圧室60の天面部に引き付けられ、付着する。従って、効果的に水を減圧室60の内面に付着させ、載置台2を冷却することができる。   Furthermore, since the water sprayed from the spray part 64 is charged by friction with the mist nozzle 64a, the mist-like water particles repel each other by the Coulomb force. For this reason, the sprayed water is attracted and adhered to the top surface portion of the decompression chamber 60 in the form of fine particles. Therefore, water can be effectively adhered to the inner surface of the decompression chamber 60 and the mounting table 2 can be cooled.

更にまた、載置台2の内部に減圧室60を構成しているため、載置台2を効率的に冷却することができ、また冷却機構6の省スペース化を図ることができる。   Furthermore, since the decompression chamber 60 is configured inside the mounting table 2, the mounting table 2 can be efficiently cooled, and the space for the cooling mechanism 6 can be saved.

なお、実施の形態では、載置台2の内部に減圧室60を設ける例を説明したが、処理室1の内部に配されるべき他の処理室内部品に減圧室を設け、本実施の形態に係る冷却機構を構成しても良い。処理室の壁内に減圧室を設ける例は後述する。   In the embodiment, the example in which the decompression chamber 60 is provided in the mounting table 2 has been described. However, the decompression chamber is provided in another processing chamber part to be arranged in the processing chamber 1, and the present embodiment is used. Such a cooling mechanism may be configured. An example of providing a decompression chamber in the wall of the processing chamber will be described later.

(変形例1)
図5は、変形例1に係る冷却機構106を有する半導体製造装置の一構成例を示す模式図である。変形例1に係る半導体製造装置及び冷却機構106は、実施の形態と同様の構成であり、更に、噴霧部64に電圧を印加する電圧印加部164bを備える。電圧印加部164bは、噴霧部64から噴霧される水を帯電させるための直流電源である。電界発生用電源68によって、減圧室60の内部から天面部に向かう電界が発生している場合、噴霧部64に正電位を印加し、減圧室60の天面から内部に向かう電界が発生している場合、噴霧部64に負電位を印加する。
(Modification 1)
FIG. 5 is a schematic diagram illustrating a configuration example of a semiconductor manufacturing apparatus having the cooling mechanism 106 according to the first modification. The semiconductor manufacturing apparatus and cooling mechanism 106 according to Modification 1 have the same configuration as that of the embodiment, and further include a voltage application unit 164b that applies a voltage to the spray unit 64. The voltage application unit 164b is a direct current power source for charging water sprayed from the spray unit 64. When the electric field generating power supply 68 generates an electric field from the inside of the decompression chamber 60 toward the top surface, a positive potential is applied to the spraying portion 64 to generate an electric field from the top surface of the decompression chamber 60 to the inside. If so, a negative potential is applied to the spray section 64.

変形例1にあっては、噴霧部64に電圧を印加することによって、噴霧部64から噴霧される水を効果的に帯電させ、水を減圧室60の天面部に引き込み、付着させることができる。   In the first modification, by applying a voltage to the spray unit 64, the water sprayed from the spray unit 64 can be effectively charged, and the water can be drawn into and attached to the top surface of the decompression chamber 60. .

(変形例2)
図6は、変形例2に係る冷却機構206を有する半導体製造装置の一構成例を示す模式図である。変形例2に係る半導体製造装置及び冷却機構206は、実施の形態と同様の構成であり、処理室(被冷却部材)201の壁内部にも減圧室260及び噴霧部264を設け、該処理室201の内壁の所望の場所を冷却するように構成してある点が実施の形態と異なる。冷却する処理室201の内壁の所望の場所は、内壁の一部であってもよいし、全部であってもよい。以下では、主に上記相異点について説明する。
(Modification 2)
FIG. 6 is a schematic diagram illustrating a configuration example of a semiconductor manufacturing apparatus having the cooling mechanism 206 according to the second modification. The semiconductor manufacturing apparatus and cooling mechanism 206 according to Modification 2 have the same configuration as that of the embodiment, and a decompression chamber 260 and a spray unit 264 are also provided inside the processing chamber (cooled member) 201, and the processing chamber The point which is comprised so that the desired location of the inner wall of 201 may be cooled differs from embodiment. A desired place on the inner wall of the processing chamber 201 to be cooled may be a part of the inner wall or all of the inner wall. Below, the said difference is mainly demonstrated.

変形例2に係る半導体製造装置の処理室201は、該処理室201を冷却するための減圧室260を壁内部に有する。なお、作図の便宜上、処理室201に一部に減圧室260が形成されているが、あくまで一例であり、処理室201の全周に亘って減圧室260を設けても良いし、天側の一部、その他の部分に減圧室260を設けても良い。即ち、処理室201の内壁のうち冷却が必要とされる箇所に対応する部分に減圧室260を設ければよい。また、減圧室260は必ずしも処理室201の壁の内部に納まる必要は無く、外部に向って突出する構造となっていても良い。減圧室260の底部には、減圧室260内部の気体及び水を排出する排出口を適宜箇所に形成しており、該排出口には配管263bを通じて排気部65に接続されている。   The processing chamber 201 of the semiconductor manufacturing apparatus according to Modification 2 has a decompression chamber 260 for cooling the processing chamber 201 inside the wall. For convenience of drawing, the decompression chamber 260 is partially formed in the processing chamber 201. However, the decompression chamber 260 is only an example, and the decompression chamber 260 may be provided over the entire circumference of the processing chamber 201. The decompression chamber 260 may be provided in some or other portions. In other words, the decompression chamber 260 may be provided in a portion corresponding to a location where cooling is required on the inner wall of the processing chamber 201. Further, the decompression chamber 260 does not necessarily need to be housed inside the wall of the processing chamber 201, and may be structured to protrude outward. At the bottom of the decompression chamber 260, a discharge port for discharging the gas and water inside the decompression chamber 260 is formed at appropriate places, and the discharge port is connected to the exhaust unit 65 through a pipe 263b.

噴霧部264は、減圧室260の外周側に設けられており、配管63aを通じて温度制御器62に接続されている。噴霧部264は、ミストノズル264aを有しており、具体的構成は実施の形態と同様である。   The spray unit 264 is provided on the outer peripheral side of the decompression chamber 260 and is connected to the temperature controller 62 through the pipe 63a. The spray unit 264 has a mist nozzle 264a, and the specific configuration is the same as in the embodiment.

電界発生用電源268は、噴霧部264から噴霧された水を減圧室260の内面、例えば、内周側の面に付着させるための電界を発生させる直流電源である。減圧室260の内周側の壁内には、非接地状態にある線状又はシート状の導電性部材268cが設けられており、該導電性部材268cに電圧を印加することによって、高い電位から低い電位に向う方向を電界の向きとして、減圧室260の外周側から内周側へ向かう電界、又は減圧室260の内周側から外周側へ向かう電界を発生させることができる。導電性部材268cと載置台2とが直流電流が導通しないよう、導電性部材268cが設置される減圧室260の壁内には絶縁被膜等の絶縁部材268dが設けられている。
また、電界発生用電源268は、実施の形態と同様、導電性部材268a及び絶縁性部材268bを備え、減圧室60の天面部へ熱媒体である水を引き込む電界を発生させる。
The electric field generating power source 268 is a DC power source that generates an electric field for attaching water sprayed from the spraying section 264 to the inner surface of the decompression chamber 260, for example, the inner peripheral surface. A linear or sheet-like conductive member 268c in an ungrounded state is provided in the inner peripheral wall of the decompression chamber 260. By applying a voltage to the conductive member 268c, a high potential can be obtained. The electric field directed from the outer peripheral side to the inner peripheral side of the decompression chamber 260 or the electric field directed from the inner peripheral side to the outer peripheral side of the decompression chamber 260 can be generated with the direction toward the lower potential as the direction of the electric field. An insulating member 268d such as an insulating film is provided in the wall of the decompression chamber 260 where the conductive member 268c is installed so that a direct current does not flow between the conductive member 268c and the mounting table 2.
Similarly to the embodiment, the electric field generating power source 268 includes a conductive member 268a and an insulating member 268b, and generates an electric field that draws water as a heat medium into the top surface portion of the decompression chamber 60.

変形例2にあっては、処理室201の内壁の冷却が必要な箇所を冷却することができ、プラズマ処理により処理室壁が高温になることを防ぐことができるほか、高温により成膜を行うCVD用のガスの使用時であれば低温にすることにより処理室内面に堆積物が成長することを防ぐことができ、また、反応生成物が低温の部位に堆積しやすいエッチングプロセスにおいては、内壁に更に内壁との熱伝達よく取り外し可能な保護壁を設けることにより反応生成物を積極的に保護壁へ堆積させ他の箇所への堆積を抑制することができる。
変形例2においては、冷却する内壁部が天板であってもよい。一般に、サセプタや側壁などを冷却する場合には、目的とする場所以外が不要に冷却され冷却効率が下がるのを防ぐために、極力、ミストが減圧室底部に液体と成って溜まるのを防がなければならない。しかし天板を冷却する場合には冷却の目的とする場所がまさに減圧室の底部であるため、ミストを底部に向って吹き付けてもよく、重力によりミストが落下するに任せてもよい。
In the second modification, a portion where the inner wall of the processing chamber 201 needs to be cooled can be cooled, the plasma processing can prevent the processing chamber wall from becoming high temperature, and film formation is performed at a high temperature. When using a gas for CVD, it is possible to prevent deposits from growing on the inner surface of the processing chamber by lowering the temperature, and in an etching process in which reaction products are likely to deposit at low temperature sites, the inner wall Further, by providing a protective wall that can be removed with good heat transfer with the inner wall, the reaction product can be positively deposited on the protective wall to suppress the deposition on other places.
In the modification 2, the inner wall part to cool may be a top plate. In general, when cooling susceptors and side walls, the mist should be prevented from accumulating as a liquid at the bottom of the decompression chamber as much as possible in order to prevent unnecessary cooling of the area other than the intended location and reduction in cooling efficiency. I must. However, when the top plate is cooled, the target location for cooling is exactly the bottom of the decompression chamber. Therefore, the mist may be sprayed toward the bottom, or the mist may be dropped by gravity.

(変形例3)
図7は、変形例3に係る冷却機構306を有する半導体製造装置の一構成例を示す模式図である。変形例3に係る冷却機構306は、被冷却部材としての載置台2及び処理室(被冷却部材)301を冷却するための第1及び第2減圧室360,370をその外部に有する。
(Modification 3)
FIG. 7 is a schematic diagram illustrating a configuration example of a semiconductor manufacturing apparatus having the cooling mechanism 306 according to the third modification. The cooling mechanism 306 according to Modification 3 includes first and second decompression chambers 360 and 370 for cooling the mounting table 2 and the processing chamber (cooled member) 301 as the cooled members.

第1減圧室360は、中空円柱状をなし、処理室301の底面略中央部に固定され、天側には円盤状絶縁体21を介して載置台2が固定されている。第1減圧室360は、実施の形態で説明した減圧室60と同様の構成であり、第1減圧室360の周面部に第1噴霧部364が設けられている。また、第1減圧室360の天側には、第1絶縁部材368bで絶縁され、非接地状態にある第1導電性部材368aが設けられており、第1導電性部材368aには電界発生用電源368によって電圧が印加されている。更に、第1減圧室360の底面部には、第1減圧室360内部の気体及び水を排出する排出口が形成されており、該排出口から排出された気体及び水は、配管363bを通じて、排気部65に供給される。   The first decompression chamber 360 has a hollow cylindrical shape, and is fixed to a substantially central portion of the bottom surface of the processing chamber 301, and the mounting table 2 is fixed to the top side via a disk-shaped insulator 21. The first decompression chamber 360 has the same configuration as that of the decompression chamber 60 described in the embodiment, and a first spray unit 364 is provided on the peripheral surface portion of the first decompression chamber 360. In addition, a first conductive member 368a that is insulated by a first insulating member 368b and is not grounded is provided on the top side of the first decompression chamber 360, and the first conductive member 368a is provided for generating an electric field. A voltage is applied by a power source 368. Furthermore, a discharge port for discharging the gas and water inside the first pressure reduction chamber 360 is formed in the bottom surface portion of the first pressure reduction chamber 360, and the gas and water discharged from the discharge port pass through the pipe 363b. It is supplied to the exhaust part 65.

第2減圧室370は、変形例2に係る減圧室260を処理室301の外周側に設けたような構成であり、第2噴霧部371が設けられている。また、第2減圧室370の内周側の壁内には、第2絶縁部材368dで絶縁され、非接触状態にある第2導電性部材368cが設けられており、第2導電性部材368cには電界発生用電源368によって電圧が印加されている。更に、第2減圧室370の底面部には、第2減圧室370内部の気体及び水を排出する排出口が形成されており、該排出口から排出された気体及び水は、配管363bを通じて、排気部65に供給される。   The second decompression chamber 370 has a configuration in which the decompression chamber 260 according to Modification 2 is provided on the outer peripheral side of the processing chamber 301, and a second spray unit 371 is provided. In addition, a second conductive member 368c that is insulated by the second insulating member 368d and is in a non-contact state is provided in the inner peripheral wall of the second decompression chamber 370, and the second conductive member 368c is provided with the second conductive member 368c. The voltage is applied by the electric field generating power source 368. Furthermore, a discharge port for discharging the gas and water inside the second pressure reduction chamber 370 is formed in the bottom surface portion of the second pressure reduction chamber 370, and the gas and water discharged from the discharge port pass through the pipe 363b. It is supplied to the exhaust part 65.

変形例3にあっては、実施の形態と同様の効果を奏する。   In the third modification, the same effect as in the embodiment can be obtained.

(変形例4)
図8は、変形例4に係る冷却機構を有する半導体製造装置の一構成例を示す模式図である。上記の実施の形態においては排気部としてエゼクタポンプを用いた場合を説明したが、エゼクタポンプの代わりに、図8に示すようにロータリーポンプ465を使用しても良い。この場合、ロータリーポンプ465の上流側に、液体となった水を分離するセパレータ465aを設置する。セパレータ465aで分離された水は、一旦ドレインタンク465bにて貯水した後、水供給ポンプ66を通して再び噴霧ノズルへ循環させてもよいし、そのまま排出してもよい。あるいは、ドレインタンク465bを用いないで直接排出してもよい。水供給ポンプ66を通じて再循環させる場合にも、流量調整の必要が無いようであればドレインタンク465bを経由せず直接循環させてもよいが、ドレインタンク465bを用いれば必要以上の水を排出することができるというメリットがある。また、水供給ポンプ66へは、前記セパレータ465aからの水とは別に、配管63dを通じて不足分の水を供給してもよい。あるいは、セパレータ465aからの水の循環だけで十分にまかなえる時は、定常的には配管63dを通じて水を供給しなくてもよい。セパレータ465aの下流側に用いるポンプは、ロータリーポンプに限らず、大気から低真空度の圧力において使用できるポンプであればよい。
(Modification 4)
FIG. 8 is a schematic diagram illustrating a configuration example of a semiconductor manufacturing apparatus having a cooling mechanism according to the fourth modification. In the above embodiment, the case where the ejector pump is used as the exhaust part has been described. However, instead of the ejector pump, a rotary pump 465 may be used as shown in FIG. In this case, a separator 465 a that separates the water that has become liquid is installed upstream of the rotary pump 465. The water separated by the separator 465a may be temporarily stored in the drain tank 465b and then circulated again to the spray nozzle through the water supply pump 66 or may be discharged as it is. Alternatively, it may be discharged directly without using the drain tank 465b. Even when recirculation is performed through the water supply pump 66, if there is no need to adjust the flow rate, it may be directly circulated without passing through the drain tank 465b. However, if the drain tank 465b is used, excessive water is discharged. There is an advantage that you can. In addition to the water from the separator 465a, a deficient amount of water may be supplied to the water supply pump 66 through the pipe 63d. Alternatively, when it is sufficient to circulate only the water from the separator 465a, it is not necessary to constantly supply water through the pipe 63d. The pump used on the downstream side of the separator 465a is not limited to the rotary pump, and may be any pump that can be used from the atmosphere at a low vacuum pressure.

今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 処理室
2 載置台
3 上部電極
4,5 高周波電源
6 冷却機構
60、260 減圧室
360 第1減圧室
370 第2減圧室
61 制御部
62 温度制御器
64 噴霧部
64a ミストノズル
364 第1噴霧部
371 第2噴霧部
65 排気部
68 電界発生用電源(電界発生部)
68a 導電性部材(電界発生部)
368a 第1導電性部材
368c 第2導電性部材
164b 電圧印加部
69a 被冷却部材温度検出部
69b 圧力検出部
69c 流量検出部
W 半導体ウエハ
DESCRIPTION OF SYMBOLS 1 Processing chamber 2 Mounting stand 3 Upper electrode 4,5 High frequency power supply 6 Cooling mechanism 60,260 Decompression chamber 360 1st decompression chamber 370 2nd decompression chamber 61 Control part 62 Temperature controller 64 Spray part 64a Mist nozzle 364 1st spray part 371 Second spraying part 65 Exhaust part 68 Electric field generating power source (electric field generating part)
68a Conductive member (electric field generator)
368a First conductive member 368c Second conductive member 164b Voltage application unit 69a Cooled member temperature detection unit 69b Pressure detection unit 69c Flow rate detection unit W Semiconductor wafer

Claims (14)

被冷却部材の温度を目標温度に冷却する冷却機構において、
前記被冷却部材に対して熱的に接続された減圧室と、
該減圧室の内面に前記目標温度以下の液相の熱媒体を噴霧する噴霧部と、
該噴霧部から噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させる電界発生部と、
前記減圧室の内圧が前記目標温度における前記熱媒体の飽和蒸気圧以下になるように、前記減圧室を排気する排気部と
を備えることを特徴とする冷却機構。
In the cooling mechanism that cools the temperature of the member to be cooled to the target temperature,
A decompression chamber thermally connected to the member to be cooled;
A spraying section for spraying a liquid phase heat medium having a temperature equal to or lower than the target temperature onto the inner surface of the decompression chamber;
An electric field generator for generating an electric field for attaching the heat medium sprayed from the spray section to the inner surface of the decompression chamber;
A cooling mechanism, comprising: an exhaust unit that exhausts the decompression chamber so that an internal pressure of the decompression chamber is equal to or lower than a saturated vapor pressure of the heat medium at the target temperature.
前記噴霧部は、
前記熱媒体を前記減圧室に噴霧するためのノズルを有し、該ノズルと、前記熱媒体との摩擦によって該熱媒体を帯電させるようにしてある
ことを特徴とする請求項1に記載の冷却機構。
The spray section is
The cooling according to claim 1, further comprising a nozzle for spraying the heat medium to the decompression chamber, wherein the heat medium is charged by friction between the nozzle and the heat medium. mechanism.
前記噴霧部に電圧を印加する電圧印加部を備える
ことを特徴とする請求項1又は請求項2に記載の冷却機構。
The cooling mechanism according to claim 1, further comprising: a voltage applying unit that applies a voltage to the spraying unit.
前記減圧室は、
前記被冷却部材の内部に形成されている
ことを特徴とする請求項1乃至請求項3のいずれか一つに記載の冷却機構。
The decompression chamber is
The cooling mechanism according to any one of claims 1 to 3, wherein the cooling mechanism is formed inside the member to be cooled.
前記減圧室は、
前記被冷却部材の外部に配されており、前記減圧室及び被冷却部材は接触している
ことを特徴とする請求項1乃至請求項3のいずれか一つに記載の冷却機構。
The decompression chamber is
The cooling mechanism according to any one of claims 1 to 3, wherein the cooling mechanism is arranged outside the member to be cooled, and the decompression chamber and the member to be cooled are in contact with each other.
前記被冷却部材は、
基板に所定の処理を行う基板処理装置の処理室である
ことを特徴とする請求項1乃至請求項5のいずれか一つに記載の冷却機構。
The member to be cooled is
The cooling mechanism according to any one of claims 1 to 5, wherein the cooling mechanism is a processing chamber of a substrate processing apparatus that performs predetermined processing on a substrate.
前記被冷却部材は、
基板に所定の処理を行う基板処理装置の処理室内に配されている処理室内部品である
ことを特徴とする請求項1乃至請求項5のいずれか一つに記載の冷却機構。
The member to be cooled is
The cooling mechanism according to any one of claims 1 to 5, wherein the cooling mechanism is a processing chamber component disposed in a processing chamber of a substrate processing apparatus that performs predetermined processing on a substrate.
前記処理室内部品は、
前記処理室内に基板を載置するための載置台である
ことを特徴とする請求項7に記載の冷却機構。
The processing chamber parts are:
The cooling mechanism according to claim 7, wherein the cooling mechanism is a mounting table for mounting a substrate in the processing chamber.
被冷却部材の温度を目標温度に冷却する冷却機構において、
前記被冷却部材に対して熱的に接続された減圧室と、
該減圧室の内面に前記目標温度以下の液相の熱媒体を噴霧する噴霧部と、
該噴霧部から噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させる電界発生部と、
前記被冷却部材の温度を検出する被冷却部材温度検出部と、
該被冷却部材温度検出部にて検出された温度が目標温度になるように、前記減圧室を排気する排気部と
を備えることを特徴とする冷却機構。
In the cooling mechanism that cools the temperature of the member to be cooled to the target temperature,
A decompression chamber thermally connected to the member to be cooled;
A spraying section for spraying a liquid phase heat medium having a temperature equal to or lower than the target temperature onto the inner surface of the decompression chamber;
An electric field generator for generating an electric field for attaching the heat medium sprayed from the spray section to the inner surface of the decompression chamber;
A member-to-be-cooled temperature detector that detects the temperature of the member to be cooled;
A cooling mechanism comprising: an exhaust unit that exhausts the decompression chamber so that the temperature detected by the member-to-be-cooled temperature detection unit becomes a target temperature.
基板に所定の処理を行うための処理室において、
壁内に形成された減圧室と、
該減圧室の内面に目標温度以下の液相の熱媒体を噴霧する噴霧部と、
該噴霧部から噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させる電界発生部と
を備えることを特徴とする処理室。
In a processing chamber for performing predetermined processing on a substrate,
A decompression chamber formed in the wall;
A spray section for spraying a liquid phase heat medium having a target temperature or lower onto the inner surface of the decompression chamber;
An electric field generating unit that generates an electric field for causing the heat medium sprayed from the spraying unit to adhere to the inner surface of the decompression chamber.
基板に所定の処理を行う基板処理装置の処理室内に配されるべき処理室内部品において、
内部に形成された減圧室と、
該減圧室の内面に目標温度以下の液相の熱媒体を噴霧する噴霧部と、
該噴霧部から噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させる電界発生部と
を備えることを特徴とする処理室内部品。
In processing chamber components to be placed in a processing chamber of a substrate processing apparatus that performs predetermined processing on a substrate,
A decompression chamber formed inside,
A spray section for spraying a liquid phase heat medium having a target temperature or lower onto the inner surface of the decompression chamber;
A processing chamber component comprising: an electric field generating unit that generates an electric field for attaching the heat medium sprayed from the spraying unit to the inner surface of the decompression chamber.
被冷却部材に対して熱的に接続された減圧室を用いて、該被冷却部材の温度を目標温度に冷却する冷却方法において、
前記減圧室の内面に前記目標温度以下の液相の熱媒体を噴霧するステップと、
噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させるステップと、
前記減圧室の内圧が前記目標温度における前記熱媒体の飽和蒸気圧以下になるように、前記減圧室を排気するステップと
を有することを特徴とする冷却方法。
In a cooling method for cooling the temperature of the member to be cooled to a target temperature using a decompression chamber thermally connected to the member to be cooled,
Spraying a liquid phase heat medium below the target temperature on the inner surface of the decompression chamber;
Generating an electric field for attaching the sprayed heat medium to the inner surface of the decompression chamber;
Evacuating the decompression chamber so that the internal pressure of the decompression chamber is equal to or lower than the saturated vapor pressure of the heat medium at the target temperature.
前記減圧室を排気するステップにおいて、
前記減圧室の内圧が前記目標温度における前記熱媒体の飽和蒸気圧と等しくなるように、前記減圧室を排気する
ことを特徴とする請求項12に記載の冷却方法。
In the step of exhausting the decompression chamber,
The cooling method according to claim 12, wherein the decompression chamber is exhausted so that an internal pressure of the decompression chamber becomes equal to a saturated vapor pressure of the heat medium at the target temperature.
被冷却部材に対して熱的に接続された減圧室を用いて、該被冷却部材の温度を目標温度に冷却する冷却方法において、
前記減圧室の内面に前記目標温度以下の液相の熱媒体を噴霧するステップと、
噴霧された熱媒体を前記減圧室の内面に付着させるための電界を発生させるステップと、
前記被冷却部材の温度を検出するステップと、
検出された温度が目標温度になるように、前記減圧室を排気するステップと
を有することを特徴とする冷却方法。
In a cooling method for cooling the temperature of the member to be cooled to a target temperature using a decompression chamber thermally connected to the member to be cooled,
Spraying a liquid phase heat medium below the target temperature on the inner surface of the decompression chamber;
Generating an electric field for attaching the sprayed heat medium to the inner surface of the decompression chamber;
Detecting the temperature of the member to be cooled;
Evacuating the decompression chamber so that the detected temperature becomes a target temperature.
JP2011031213A 2011-02-16 2011-02-16 Cooling mechanism, processing chamber, component in processing chamber, and cooling method Ceased JP2012169552A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011031213A JP2012169552A (en) 2011-02-16 2011-02-16 Cooling mechanism, processing chamber, component in processing chamber, and cooling method
US13/372,813 US20120204576A1 (en) 2011-02-16 2012-02-14 Cooling unit, processing chamber, part in the processing chamber, and cooling method
CN2012100356214A CN102646614A (en) 2011-02-16 2012-02-16 Cooling unit, processing chamber, part in processing chamber, and cooling method
KR1020120015782A KR101336487B1 (en) 2011-02-16 2012-02-16 Cooling unit, processing chamber, part in the processing chamber, and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031213A JP2012169552A (en) 2011-02-16 2011-02-16 Cooling mechanism, processing chamber, component in processing chamber, and cooling method

Publications (1)

Publication Number Publication Date
JP2012169552A true JP2012169552A (en) 2012-09-06

Family

ID=46635824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031213A Ceased JP2012169552A (en) 2011-02-16 2011-02-16 Cooling mechanism, processing chamber, component in processing chamber, and cooling method

Country Status (4)

Country Link
US (1) US20120204576A1 (en)
JP (1) JP2012169552A (en)
KR (1) KR101336487B1 (en)
CN (1) CN102646614A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076966A1 (en) * 2011-11-22 2013-05-30 株式会社神戸製鋼所 Plasma generation source and vacuum plasma processing apparatus provided with same
CN104862667A (en) * 2014-02-26 2015-08-26 甘志银 Symmetrical vapor deposition equipment reaction cavity
JP2022507367A (en) * 2018-11-20 2022-01-18 ラム リサーチ コーポレーション Two-phase cooling in semiconductor manufacturing
JP2024529054A (en) * 2021-08-06 2024-08-01 ライボルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling device, cooling method for cooling element and layer deposition device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762704B2 (en) * 2010-08-20 2015-08-12 東京エレクトロン株式会社 Substrate processing apparatus and temperature control method
US9506338B2 (en) * 2013-06-26 2016-11-29 Baker Hughes Incorporated Downhole cooling with electrocaloric effect
JP6444698B2 (en) * 2014-11-17 2018-12-26 東芝メモリ株式会社 Substrate processing apparatus and substrate processing method
CN107352501B (en) * 2017-07-05 2019-04-19 中北大学 TMAH Silicon Atomized Vapor Etching System
US10867812B2 (en) 2017-08-30 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor manufacturing system and control method
CN108300962A (en) * 2018-01-30 2018-07-20 武汉华星光电半导体显示技术有限公司 Evaporated device and evaporation coating method
US10541386B2 (en) 2018-01-30 2020-01-21 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Evaporation deposition equipment and evaporation deposition method
CN108842143A (en) * 2018-07-09 2018-11-20 上海新昇半导体科技有限公司 Epitaxial furnace cooling system and cooling means
JP7190386B2 (en) * 2019-03-28 2022-12-15 芝浦メカトロニクス株式会社 Deposition equipment
CN110181391A (en) * 2019-06-03 2019-08-30 西安奕斯伟硅片技术有限公司 The temprature control method of lapping liquid feeder, milling apparatus and lapping liquid
CN115003418B (en) * 2020-01-21 2024-11-29 株式会社尼康 Mist film forming apparatus and mist film forming method
KR102514452B1 (en) 2020-09-29 2023-03-30 세메스 주식회사 Cooling unit, substrate treating apparatus including the same, and substrate treating method using the same
CN119314913A (en) * 2024-12-17 2025-01-14 青岛四方思锐智能技术有限公司 A method, system, device and storage medium for cooling a wafer boat box

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192644A (en) * 1989-12-21 1991-08-22 Hitachi Ltd Manufacturing device for semiconductor
JPH0526043A (en) * 1991-07-18 1993-02-02 Toyota Motor Corp Cooling device for internal combustion engine
JP2001304638A (en) * 2000-04-17 2001-10-31 Matsushita Seiko Co Ltd Generation method and apparatus for air ion
JP2005197600A (en) * 2004-01-09 2005-07-21 Tokyo Electron Ltd Semiconductor production system
JP2005214578A (en) * 2004-02-02 2005-08-11 Mitsubishi Electric Corp Heat exchanger and air conditioner outdoor unit equipped with the same
JP2009218420A (en) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd Wafer holding body, and semiconductor manufacturing apparatus
WO2010113875A1 (en) * 2009-03-31 2010-10-07 東京エレクトロン株式会社 Semiconductor fabrication apparatus and temperature adjustment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068538A (en) * 1999-06-21 2001-03-16 Tokyo Electron Ltd Electrode structure, mounting base structure, plasma treatment system, and processing unit
JP4256031B2 (en) * 1999-07-27 2009-04-22 東京エレクトロン株式会社 Processing apparatus and temperature control method thereof
JP2005079415A (en) * 2003-09-02 2005-03-24 Hitachi High-Technologies Corp Plasma processing equipment
JP2007250967A (en) * 2006-03-17 2007-09-27 Tokyo Electron Ltd Plasma treating apparatus and method, and focus ring
CN100564785C (en) * 2006-04-26 2009-12-02 张明辉 Process method of multi-stage atomization spraying anti-rust oil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192644A (en) * 1989-12-21 1991-08-22 Hitachi Ltd Manufacturing device for semiconductor
JPH0526043A (en) * 1991-07-18 1993-02-02 Toyota Motor Corp Cooling device for internal combustion engine
JP2001304638A (en) * 2000-04-17 2001-10-31 Matsushita Seiko Co Ltd Generation method and apparatus for air ion
JP2005197600A (en) * 2004-01-09 2005-07-21 Tokyo Electron Ltd Semiconductor production system
JP2005214578A (en) * 2004-02-02 2005-08-11 Mitsubishi Electric Corp Heat exchanger and air conditioner outdoor unit equipped with the same
JP2009218420A (en) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd Wafer holding body, and semiconductor manufacturing apparatus
WO2010113875A1 (en) * 2009-03-31 2010-10-07 東京エレクトロン株式会社 Semiconductor fabrication apparatus and temperature adjustment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076966A1 (en) * 2011-11-22 2013-05-30 株式会社神戸製鋼所 Plasma generation source and vacuum plasma processing apparatus provided with same
CN104862667A (en) * 2014-02-26 2015-08-26 甘志银 Symmetrical vapor deposition equipment reaction cavity
JP2022507367A (en) * 2018-11-20 2022-01-18 ラム リサーチ コーポレーション Two-phase cooling in semiconductor manufacturing
JP7571017B2 (en) 2018-11-20 2024-10-22 ラム リサーチ コーポレーション Two-Phase Cooling in Semiconductor Manufacturing
JP2024529054A (en) * 2021-08-06 2024-08-01 ライボルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling device, cooling method for cooling element and layer deposition device
JP7685113B2 (en) 2021-08-06 2025-05-28 ライボルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling device, cooling method for cooling element and layer deposition device

Also Published As

Publication number Publication date
CN102646614A (en) 2012-08-22
US20120204576A1 (en) 2012-08-16
KR20120094446A (en) 2012-08-24
KR101336487B1 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
JP2012169552A (en) Cooling mechanism, processing chamber, component in processing chamber, and cooling method
US8818545B2 (en) Semiconductor fabrication apparatus and temperature adjustment method
CN101320675B (en) Plasma processing device, electrode temperature adjusting device and method
US9984908B2 (en) Temperature control system, semiconductor manufacturing device, and temperature control method
US8426764B2 (en) Plasma processing apparatus and plasma processing method
US9984907B2 (en) Evacuation method and vacuum processing apparatus
KR101934322B1 (en) Stage temperature control device and substrate processing device
US10541158B2 (en) Temperature adjustment method using wet surface in a processing chamber
US10591194B2 (en) Temperature control method
US20080023448A1 (en) Plasma processing apparatus capable of adjusting temperature of sample stand
TWI831774B (en) Plasma processing apparatus and power supply control method
JP2019029373A (en) Substrate processing apparatus and method of operating substrate processing apparatus
TWI788536B (en) Condensation suppressing method and processing system
JP2010272873A (en) Plasma processing apparatus and plasma processing method
US20180240684A1 (en) Substrate processing apparatus and substrate processing method
US20110045182A1 (en) Substrate processing apparatus, trap device, control method for substrate processing apparatus, and control method for trap device
KR20210053955A (en) Temperature control system
US6385977B1 (en) ESRF chamber cooling system and process
CN110349826B (en) Cleaning method
JP2016042471A (en) Mechanism and method for cooling plasma generating source
JP2016162794A (en) Vacuum processing apparatus
KR20210055058A (en) How to adjust the temperature
JP2025065937A (en) Plasma processing system, plasma processing apparatus and cooling control method
TW202531376A (en) Substrate processing device and cooling method
JPH03233929A (en) Plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20150630