[go: up one dir, main page]

JP2012106897A - Glass composition for chemical strengthening - Google Patents

Glass composition for chemical strengthening Download PDF

Info

Publication number
JP2012106897A
JP2012106897A JP2010258916A JP2010258916A JP2012106897A JP 2012106897 A JP2012106897 A JP 2012106897A JP 2010258916 A JP2010258916 A JP 2010258916A JP 2010258916 A JP2010258916 A JP 2010258916A JP 2012106897 A JP2012106897 A JP 2012106897A
Authority
JP
Japan
Prior art keywords
glass
chemical strengthening
glass composition
ion exchange
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010258916A
Other languages
Japanese (ja)
Inventor
Tadashi Muramoto
正 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2010258916A priority Critical patent/JP2012106897A/en
Priority to PCT/JP2011/075776 priority patent/WO2012066989A1/en
Priority to TW100142418A priority patent/TW201228974A/en
Publication of JP2012106897A publication Critical patent/JP2012106897A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass composition having excellent heat resistance and excellent ion exchange capability, and capable of being imparted with high strength by a chemical strengthening treatment with ion exchange.SOLUTION: The glass composition contains, by mass, 53-62% SiO, 11-17% AlO, 0-5% LiO, 10-15% NaO, 3-9% KO, 0-4% MgO, 0-4% CaO, 0-6% SrO, 0-5% BaO, 1-4% ZrOand 2-6% TiO.

Description

本発明は、高耐熱性を有し、かつイオン交換に伴う化学強化処理により大きい強化層を付与することが可能なガラス組成物に関する。   The present invention relates to a glass composition having high heat resistance and capable of imparting a larger reinforcing layer to chemical strengthening treatment accompanying ion exchange.

ガラスは、高い表面平滑性や大きな表面強度などの優れた性質を持つため、タッチパネルやカラーフィルターなどのディスプレー用基板に広く使用されている。   Since glass has excellent properties such as high surface smoothness and large surface strength, it is widely used for display substrates such as touch panels and color filters.

しかし、ガラスは割れやすいという欠点がある。その対策として急冷やイオン交換による表面への圧縮応力の付与、いわゆる強化処理が行なわれてきた。強化処理のなかでも、イオン交換による化学強化処理は、他の強化処理と比較して、ガラスの板厚が薄くても強化しやすいため、ディスプレー基板材料などに対して好適な強化処理である。   However, glass has the disadvantage of being easily broken. As countermeasures, so-called strengthening treatment has been performed by applying compressive stress to the surface by rapid cooling or ion exchange. Among the tempering treatments, the chemical tempering treatment by ion exchange is a tempering treatment suitable for a display substrate material and the like because it is easily tempered even if the thickness of the glass is small compared to other tempering treatments.

化学強化処理は、ガラス中の表面付近のイオン(一般的にはNa)を、よりイオン半径の大きいイオンと交換することによって、ガラス表面に圧縮応力を与えるものであり、強化のしやすさや強度は、当然ガラスの組成に影響される。   The chemical strengthening treatment gives compressive stress to the glass surface by exchanging ions (generally Na) in the vicinity of the surface of the glass with ions having a larger ion radius. Is naturally influenced by the composition of the glass.

例えば、質量%で示して、SiO 58〜65%、Al 8〜15%、LiO 4〜10%、NaO 9〜13%、ZrO 0.5〜2%、ZnO 2〜5%、P 0.5〜2%、を含有した、化学強化用ガラスが開示されている(特許文献1参照)。 For example, shown in mass%, SiO 2 58~65%, Al 2 O 3 8~15%, Li 2 O 4~10%, Na 2 O 9~13%, ZrO 2 0.5~2%, ZnO A glass for chemical strengthening containing 2 to 5% and P 2 O 5 0.5 to 2% is disclosed (see Patent Document 1).

また例えば、質量%で示して、SiO 59〜68%、Al 9.5〜15%、LiO 0〜1%、NaO 3〜18%、KO 0〜3.5%、MgO 0〜15%、CaO 1〜15%、SrO 0〜4.5%、BaO 0〜1%、ZrO 1〜10%、TiO 0〜2%、を含有した、化学強化用ガラスが開示されている(特許文献2参照)。 Further, for example, shown in mass%, SiO 2 59~68%, Al 2 O 3 9.5~15%, Li 2 O 0~1%, Na 2 O 3~18%, K 2 O 0~3. 5%, 0~15% MgO, CaO 1~15%, SrO 0~4.5%, BaO 0~1%, ZrO 2 1~10%, TiO 2 0~2%, containing, for chemical strengthening Glass is disclosed (see Patent Document 2).

特開2000−7372号公報JP 2000-7372 A 特開2005−15328号公報JP 2005-15328 A

化学強化ガラスは、その強化層の大きさでガラス表面キズへの抵抗となり、強化層が大きい程キズへの抵抗が大きくなる。また、強化層はイオン交換におけるイオン交換量とも相関している。   Chemically strengthened glass has resistance to scratches on the glass surface due to the size of the strengthening layer, and the resistance to scratches increases as the strengthening layer increases. The reinforcing layer is also correlated with the amount of ion exchange in ion exchange.

当然強化のしやすさ、強化層の大きさはガラスの組成によって影響を受ける。例えば、特開2000−7372号公報に記載のものは、LiO、P、ZnOが必須で、多量に含むため、ガラス転移点が低く強化において反りが生じやすい。また、Pを含むために化学的耐久性に劣る。 Of course, the ease of strengthening and the size of the reinforcing layer are affected by the composition of the glass. For example, the one described in JP-A-2000-7372 requires Li 2 O, P 2 O 5 , and ZnO, and contains a large amount, so that the glass transition point is low and warping tends to occur during strengthening. Also, poor chemical durability to contain P 2 O 5.

また、特開2005−15328号公報に記載のものは、CaOが、請求範囲は広いものの、実施例では多量に含まれている。一般的に使用される硝酸カリウム液では、CaOの溶解により強化能が著しく低下することがわかっており、化学強化に向いた組成とは言い難い。   Moreover, although what is described in Unexamined-Japanese-Patent No. 2005-15328 is CaO, although a claim is wide, in the Example, it is contained in large quantities. In the potassium nitrate solution generally used, it is known that the strengthening ability is remarkably lowered by dissolution of CaO, and it is difficult to say that the composition is suitable for chemical strengthening.

本発明は、このような従来技術を鑑み、例えばタッチパネルディスプレー用ガラスとして使用しても表面キズに強く、さらに、化学強化処理により、大きな機械的強度を付与できるガラス組成物を提供することを目的とする。   In view of such conventional technology, the present invention aims to provide a glass composition that is resistant to surface scratches even when used as, for example, glass for a touch panel display, and that can impart a high mechanical strength by chemical strengthening treatment. And

本発明は、質量%で示して、SiO 53〜62%、Al 11〜17%、NaO 10〜15%、KO 3〜9%、CaO 0〜4%、MgO 0〜4%、SrO 0〜6%、BaO 0〜5%、ZrO 1〜4%、TiO 2〜5%、の成分を含むことを特徴とする。 The present invention is shown in mass%, SiO 2 53~62%, Al 2 O 3 11~17%, Na 2 O 10~15%, K 2 O 3~9%, CaO 0~4%, MgO 0 ~4%, SrO 0~6%, BaO 0~5%, ZrO 2 1~4%, characterized in that it comprises TiO 2 2 to 5%, of the components.

また本発明は、ガラス歪点の0.9倍の温度の硝酸カリウム溶液の化学強化処理においてイオン交換能(化学強化処理においてガラス表面積当たりのイオン交換重量)が0.2mg/cm以上となる上記のガラス組成物である。 In the present invention, the ion exchange capacity (ion exchange weight per glass surface area in the chemical strengthening treatment) is 0.2 mg / cm 2 or more in the chemical strengthening treatment of the potassium nitrate solution at a temperature 0.9 times the glass strain point. It is a glass composition.

また本発明は、ガラス転移点が580℃以上である上記のガラス組成物である。   Moreover, this invention is said glass composition whose glass transition point is 580 degreeC or more.

さらに本発明は、上記のガラス組成物を含むガラス物品をNaイオン半径より大きいイオン半径を有する一価の陽イオンを含む溶融塩に浸漬することにより、上記ガラス物品に含まれるNaイオンと上記一価の陽イオンとイオン交換して得た化学強化物品を提供するものである。   Further, according to the present invention, by immersing a glass article containing the above glass composition in a molten salt containing a monovalent cation having an ionic radius larger than the Na ion radius, the Na ion contained in the glass article and the above one. The present invention provides a chemically strengthened article obtained by ion exchange with a valent cation.

本発明のガラス組成物は、化学強化することにより大きな化学強化層を得ることできる。また、ガラスを高温に加熱しても熱による変形が生じ難い。   The glass composition of the present invention can obtain a large chemically strengthened layer by chemically strengthening. Further, even when the glass is heated to a high temperature, deformation due to heat hardly occurs.

本発明のガラス組成物は、質量%で示して、
SiO 53〜62%、Al 11〜17%、NaO 10〜15%、KO 3〜9%、CaO 0〜4%、MgO 0〜4%、SrO 0〜6%、BaO 0〜5%、ZrO 1〜4%、TiO 2〜5%、からなることが好ましい。この好ましいガラス組成を有するガラス組成物は、化学強化処理することによって、より確実に大きな化学強化層を付与できる。
The glass composition of the present invention is expressed in mass%,
SiO 2 53~62%, Al 2 O 3 11~17%, Na 2 O 10~15%, K 2 O 3~9%, CaO 0~4%, 0~4% MgO, SrO 0~6%, BaO 0~5%, ZrO 2 1~4% , TiO 2 2~5%, preferably made of. A glass composition having this preferred glass composition can be more reliably provided with a large chemical strengthening layer by chemical strengthening treatment.

本ガラス組成物、ガラス転移点が少なくとも580℃であることが好ましい。このガラス組成物は、例えば、化学強化するときの溶融塩中の加熱など高温の熱処理を受けても、ガラスの変形が生じにくい。   The glass composition preferably has a glass transition point of at least 580 ° C. Even if this glass composition is subjected to a high-temperature heat treatment such as heating in a molten salt during chemical strengthening, for example, the glass is not easily deformed.

本発明の化学強化ガラス物品によれば、ガラス物品の表面に大きな強化層が形成されるので、機械的強度が増し、外部から衝撃が加えられたときに、ガラスの破壊を防止することができる。   According to the chemically strengthened glass article of the present invention, since a large reinforcing layer is formed on the surface of the glass article, the mechanical strength is increased and the glass can be prevented from being broken when an impact is applied from the outside. .

さらにまた、本発明の化学強化ガラス物品は、ガラス物品の表面により大きな強化層が形成されるため外部からのこすれや、引っかきによるキズによる強度低下が少なく表面キズに強い。   Furthermore, the chemically tempered glass article of the present invention is resistant to surface scratches, since a large tempered layer is formed on the surface of the glass article, so that there is little deterioration in strength due to scratching from the outside or scratches due to scratching.

以下、本発明のガラス組成物について、組成の限定理由を説明する。なお、以下の記述において、組成を示す%表示は全て質量%である。   Hereinafter, the reasons for limiting the composition of the glass composition of the present invention will be described. In the following description, all percentages indicating the composition are mass%.

SiOは、ガラスを形成する成分で、質量%で53〜62%含有することが好ましい。SiOが53%より少ないと、化学的耐久性が悪く。62%より多いと、ガラスの溶融温度が高くなり均質なガラスを得難くなるため不適である。 SiO 2 is a component for forming a glass preferably contains 53 to 62% by mass%. If the SiO 2 content is less than 53%, the chemical durability is poor. If it exceeds 62%, the melting temperature of the glass becomes high and it becomes difficult to obtain a homogeneous glass.

Alは、SiOと同様にガラスの主成分であるとともに、イオン交換速度を速め、ガラスの耐水性を向上させる成分であり、質量%で11〜17%含有することが好ましい。Alが11%より少ないと、その効果は出しにくくなる。一方、17%より多いと、ガラス融液の粘度が高くなり均質なガラスを得難くなるため不適である。さらに望ましくは11〜15%である。 Al 2 O 3 is a component that is the main component of glass like SiO 2 and is a component that increases the ion exchange rate and improves the water resistance of the glass, and is preferably contained in an amount of 11 to 17% by mass. If Al 2 O 3 is less than 11%, it is difficult to obtain the effect. On the other hand, if it exceeds 17%, the viscosity of the glass melt becomes high and it becomes difficult to obtain a homogeneous glass, which is not suitable. More desirably, it is 11 to 15%.

LiOは、溶融塩中でLiイオンがNaイオン、Kイオンなどの他の陽イオンとイオン交換されることによりガラスの強度を向上させる成分である。しかし、その含有率が多いとガラスの耐熱性を損ねるという欠点をもつ。したがって、LiOの含有率は5%以下が望ましい。 Li 2 O is a component that improves the strength of the glass by allowing Li ions to be ion exchanged with other cations such as Na ions and K ions in the molten salt. However, when the content is large, there is a drawback that the heat resistance of the glass is impaired. Therefore, the content of Li 2 O is desirably 5% or less.

NaOは、溶融塩中でNaイオンがKイオンなど他の陽イオンとイオン交換されることによりガラスの強度を向上させる成分であるとともに溶融性を高める成分である。10%以下では、その効果が十分でなく、溶融性も悪い。一方、15%を越えると化学的耐久性が悪化する。 Na 2 O is a component that improves the strength of the glass while improving the strength of the glass by ion exchange of Na ions with other cations such as K ions in the molten salt. If it is 10% or less, the effect is not sufficient and the meltability is poor. On the other hand, if it exceeds 15%, chemical durability deteriorates.

Oは、NaOと同様にガラスの溶解性を向上させる成分であり、そのために3%以上が好ましい。しかし、通常、化学強化は硝酸カリウム溶融塩が用いられているためKOの含有量が9%を越えると、十分なイオン交換が起こらない。したがって9%以下が好ましい。 K 2 O is a component that improves the solubility of glass in the same manner as Na 2 O, and therefore, 3% or more is preferable. However, normally, chemical strengthening uses potassium nitrate molten salt, so if the content of K 2 O exceeds 9%, sufficient ion exchange does not occur. Therefore, 9% or less is preferable.

MgOは、ガラスの粘性を下げて溶解性を向上させる成分であるが、ガラスの失透温度を上昇させるため、質量%で0〜4%含有することが好ましい。   MgO is a component that lowers the viscosity of the glass and improves the solubility, but in order to increase the devitrification temperature of the glass, it is preferable to contain 0 to 4% by mass.

CaOもMgOと同様に、ガラスの粘性を下げて溶解性を向上させる成分であるが、ガラスの失透温度を上昇させるそのため、質量%で0〜5%含有することが好ましい。   CaO, like MgO, is a component that lowers the viscosity of the glass and improves the solubility, but it raises the devitrification temperature of the glass. Therefore, it is preferable to contain 0 to 5% by mass.

SrOもMgO、CaOと同様に、ガラスの粘性を下げて溶解性を向上させる成分であるが、SrOはガラス中のアルカリ成分の移動を妨げるため、質量%で0〜6%含有することが好ましい。   SrO, like MgO and CaO, is a component that lowers the viscosity of the glass and improves the solubility. However, SrO is preferably contained in an amount of 0 to 6% by mass in order to prevent the movement of alkali components in the glass. .

BaOもMgO、CaOと同様に、ガラスの粘性を下げて溶解性を向上させる成分であるが、BaOはガラス中のアルカリ成分の移動を妨げるため、質量%で5%以下が好ましい。   BaO, like MgO and CaO, is a component that lowers the viscosity of the glass and improves the solubility. However, since BaO hinders the movement of the alkali component in the glass, it is preferably 5% by mass or less.

ZrOは、イオン交換速度を速めガラスの耐水性も向上させる成分であり、1%以下では、その効果が十分ではなく、4%を越えると溶融温度が高くなることから1〜4%の含有が好ましい。 ZrO 2 is a component that increases the ion exchange rate and improves the water resistance of the glass, and if it is 1% or less, its effect is not sufficient, and if it exceeds 4%, the melting temperature becomes high. Is preferred.

TiOは、ガラスの粘性を下げて溶解性を向上させる成分であるが、アルカリ成分ほど化学的耐久性を悪くしないので2%以上は必須であり、TiOの含有量が5%を越えると失透温度が上昇して成形性を妨げるため、質量%で2〜5%が好ましい。より好ましくは4〜5%である。 TiO 2 is a component that lowers the viscosity of the glass and improves the solubility, but it does not deteriorate the chemical durability as much as the alkali component, so 2% or more is essential, and when the content of TiO 2 exceeds 5% Since devitrification temperature rises and a moldability is prevented, 2 to 5% by mass is preferable. More preferably, it is 4 to 5%.

また、必要に応じて清澄剤としてAs、Sb、SnOを合計で質量%で1%まで含有してもよい。 It may also contain up to 1% in mass% in total of As 2 O 3, Sb 2 O 3, SnO 2 as a fining agent, if necessary.

以下、実施例に基づき、説明する。本発明のガラス組成物の実施例を1〜11に示したガラス組成を有するガラスを溶融実験によりにより作製し、得られたガラスの溶融温度、作業温度、熱膨張係数、ガラス転移点、歪点、失透温度、化学強化能の測定結果を表1に示す。また、比較例を表2に示した。

Figure 2012106897
Figure 2012106897
Hereinafter, a description will be given based on examples. Glass having the glass composition shown in Examples 1 to 11 of the glass composition of the present invention was prepared by melting experiments, and the melting temperature, working temperature, thermal expansion coefficient, glass transition point, and strain point of the obtained glass were obtained. Table 1 shows the measurement results of devitrification temperature and chemical strengthening ability. Comparative examples are shown in Table 2.
Figure 2012106897
Figure 2012106897

実施例1〜10および比較例1〜4のガラス作製および得られたガラスの物性は、以下の手順にしたがって実施した。   The glass preparation of Examples 1-10 and Comparative Examples 1-4, and the physical property of the obtained glass were implemented according to the following procedures.

(ガラスの作製)
表1、または表2に示すガラス組成となるように、通常のガラス原料であるシリカ、アルミナ、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酸化チタニウム、珪酸ジルコニウムを用いてガラス原料(バッチ)を調合した。調合したバッチを混合した後、白金ルツボに投入し、電気炉内において1600℃で3時間加熱保持後白金棒で2度撹拌した。再度2時間加熱保持したのち1500℃でカーボン板上に流しだし、ただちに650℃の徐冷炉へ投入し550℃まで4時間で降温後炉内放冷し、ガラスブロックとした。
(Production of glass)
Conventional glass materials such as silica, alumina, lithium carbonate, sodium carbonate, potassium carbonate, magnesium oxide, calcium carbonate, strontium carbonate, barium carbonate, titanium oxide, silicic acid so as to have the glass composition shown in Table 1 or Table 2 Glass raw material (batch) was prepared using zirconium. After mixing the prepared batch, the mixture was put into a platinum crucible, heated in an electric furnace at 1600 ° C. for 3 hours, and then stirred twice with a platinum rod. After heating and holding again for 2 hours, it was poured onto a carbon plate at 1500 ° C., immediately put into a 650 ° C. slow cooling furnace, cooled to 550 ° C. in 4 hours, and then allowed to cool in the furnace to obtain a glass block.

(物性測定)
試料ガラスをΦ5mm、長さ20mmの円柱状に加工し、示差熱膨張計(株式会社RIGAKU製サーモプラス、TMA8310)を用いて、JIS R3102、3103に準拠して30℃〜300℃の熱膨張係数およびガラス転移点を測定した。
(Physical property measurement)
Sample glass is processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, and a thermal expansion coefficient of 30 ° C. to 300 ° C. according to JIS R3102, 3103 using a differential thermal dilatometer (Thermoplus manufactured by RIGAKU Corporation, TMA8310). And the glass transition point was measured.

高温粘度のlogη=2と4はオプト製球引き上げ粘度計BVB−13LHを用いて測定した。   The high temperature viscosities log η = 2 and 4 were measured using an Opto ball pulling viscometer BVB-13LH.

ビームベンディング式粘度計BBVM−900(オプト社製)を用いて撓み速度を測定して歪点を求めた。(JIS R3103−2に準拠)
温度傾斜炉(英興製)を用いて所定の温度で2時間保持後、偏光顕微鏡ECLIPSE E600 POL(Nikon製)を用いて結晶の有無を確認し失透温度を測定した。
The bending point was measured using a beam bending viscometer BBVM-900 (manufactured by Opto) to determine the strain point. (Conforms to JIS R3103-2)
After holding at a predetermined temperature for 2 hours using a temperature gradient furnace (manufactured by Eiko), the presence or absence of crystals was confirmed using a polarizing microscope ECLIPSE E600 POL (manufactured by Nikon), and the devitrification temperature was measured.

イオン交換能は、NaがKに交換したことによるガラス表面積当たりの増加重量をイオン交換能とした。増加量が多い方が、イオン交換能が高いことになる。 The ion exchange capacity was defined as the increased weight per glass surface area due to the exchange of Na + for K + . The larger the amount of increase, the higher the ion exchange capacity.

ガラスを約40×40×3mmに光学研磨し、歪点の0.9倍の温度の硝酸カリウム中で4時間イオン交換処理して、処理前後の重量(0.1mg単位)と寸法を測定し、表面積当たりの増加重量を算出した。   The glass is optically polished to about 40 × 40 × 3 mm, ion-exchanged in potassium nitrate at a temperature 0.9 times the strain point for 4 hours, and the weight (0.1 mg unit) and dimensions before and after the treatment are measured. The increased weight per surface area was calculated.

表1および表2に示すように、本発明における実施例1〜10のガラス転移点は580℃以上で耐熱性がある。また、化学強化能も0.2mg/cm以上とイオン交換し易いガラスであり、イオン交換量が多いとそのガラス表面からの内部へのイオン交換層も深くなり表面のキズに強いガラスといえる。 As shown in Table 1 and Table 2, the glass transition points of Examples 1 to 10 in the present invention are heat resistant at 580 ° C. or higher. In addition, the glass has a chemical strengthening ability of 0.2 mg / cm 2 or more and is easy to ion-exchange. If the amount of ion exchange is large, the ion exchange layer from the glass surface to the inside becomes deep and it can be said that the glass is strong against scratches on the surface. .

これに対し、比較例1は、一般的なフロートガラスであるが、その化学強化能は0.06mg/cmと低くキズに弱いガラスといえる。
また、比較例2は、特開2000−7372号公報の実施例4のガラスであるが、ガラス転移点が450℃と低く耐熱性が低い。
また、比較例3は、特開2005−15328号公報の実施例5のガラスであるが、化学強化能が0.17mg/cmと少ない。
On the other hand, Comparative Example 1 is a general float glass, but its chemical strengthening ability is as low as 0.06 mg / cm 2 and can be said to be a weak glass.
Moreover, although the comparative example 2 is the glass of Example 4 of Unexamined-Japanese-Patent No. 2000-7372, a glass transition point is as low as 450 degreeC and heat resistance is low.
Moreover, although the comparative example 3 is the glass of Example 5 of Unexamined-Japanese-Patent No. 2005-15328, chemical strengthening ability is as few as 0.17 mg / cm < 2 >.

比較例4は、BaOが8.9%と多く化学強化能が0.17mg/cmと少ない。 Comparative Example 4 has a high BaO content of 8.9% and a low chemical strengthening ability of 0.17 mg / cm 2 .

(産業上の利用可能性)
本発明は、例えばタッチパネル等のディスプレー基板で、キズなどの外的表面キズに強く、さらに、化学強化処理により、大きな機械的強度を付与できるガラス組成物を提供するものである。
(Industrial applicability)
The present invention provides a glass composition that is resistant to external surface scratches such as scratches on a display substrate such as a touch panel, and that can impart high mechanical strength by chemical strengthening treatment.

Claims (4)

質量%で示して、
SiO 53〜62%、
Al 11〜17%、
NaO 10〜15%、
O 3〜9%、
CaO 0〜4%、
MgO 0〜4%、
SrO 0〜6%、
BaO 0〜5%、
ZrO 1〜4%、
TiO 2〜5%、
を含むガラス組成物。
Indicated by mass%
SiO 2 53~62%,
Al 2 O 3 11-17%,
Na 2 O 10-15%,
K 2 O 3-9%,
CaO 0-4%,
MgO 0-4%,
SrO 0-6%,
BaO 0-5%,
ZrO 2 1-4%,
TiO 2 2-5%,
A glass composition comprising:
ガラス歪点の0.9倍の温度の硝酸カリウム溶液の化学強化処理においてイオン交換能(化学強化処理においてガラス表面積当たりのイオン交換重量)が0.2mg/cm以上となる請求項1に記載のガラス組成物。 The ion exchange capacity (ion exchange weight per glass surface area in the chemical strengthening treatment) is 0.2 mg / cm 2 or more in the chemical strengthening treatment of a potassium nitrate solution having a temperature 0.9 times the glass strain point. Glass composition. ガラス転移点が580℃以上の請求項1または2に記載のガラス組成物。   The glass composition of Claim 1 or 2 whose glass transition point is 580 degreeC or more. 請求項1〜3のいずれか1項に記載のガラス組成物を含むガラス物品をNaイオン半径より大きいイオン半径を有する一価の陽イオンを含む溶融塩に浸漬することにより、前記ガラス物品に含まれるNaイオンと前記一価の陽イオンとをイオン交換した化学強化ガラス物品。   The glass article containing the glass composition according to any one of claims 1 to 3 is contained in the glass article by immersing the glass article in a molten salt containing a monovalent cation having an ionic radius larger than the Na ion radius. Chemically tempered glass article obtained by ion-exchange of Na ions and the monovalent cations
JP2010258916A 2010-11-19 2010-11-19 Glass composition for chemical strengthening Pending JP2012106897A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010258916A JP2012106897A (en) 2010-11-19 2010-11-19 Glass composition for chemical strengthening
PCT/JP2011/075776 WO2012066989A1 (en) 2010-11-19 2011-11-09 Glass composition for chemical strengthening
TW100142418A TW201228974A (en) 2010-11-19 2011-11-18 Glass composition for chemical strengthening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258916A JP2012106897A (en) 2010-11-19 2010-11-19 Glass composition for chemical strengthening

Publications (1)

Publication Number Publication Date
JP2012106897A true JP2012106897A (en) 2012-06-07

Family

ID=46083923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258916A Pending JP2012106897A (en) 2010-11-19 2010-11-19 Glass composition for chemical strengthening

Country Status (3)

Country Link
JP (1) JP2012106897A (en)
TW (1) TW201228974A (en)
WO (1) WO2012066989A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515359A (en) * 2015-03-20 2018-06-14 コーニング インコーポレイテッド Method for ink jet printing decoration on a substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990445B (en) * 2014-05-14 2017-04-05 裴舜尧 Ultra-thin integrated touch screen tempering ion-exchange catalyst and using method
CN106746741B (en) * 2014-12-23 2020-04-10 深圳南玻应用技术有限公司 Aluminosilicate glass, method for strengthening aluminosilicate glass, and strengthened glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP5429684B2 (en) * 2008-11-11 2014-02-26 日本電気硝子株式会社 Tempered glass substrate and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515359A (en) * 2015-03-20 2018-06-14 コーニング インコーポレイテッド Method for ink jet printing decoration on a substrate
US10611176B2 (en) 2015-03-20 2020-04-07 Corning Incorporated Method of inkjet printing decorations on substrates

Also Published As

Publication number Publication date
WO2012066989A1 (en) 2012-05-24
TW201228974A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP7184073B2 (en) glass for chemical strengthening
CN115385571B (en) Chemically strengthened glass and glass for chemical strengthening
JP5977841B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
CN113423670B (en) Ion-exchangeable lithium-containing aluminosilicate glass
JP6491688B2 (en) Ion exchangeable Li-containing glass composition for 3D shaping
JP5957097B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
CN105073668B (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
CN101337770B (en) High-strength aluminosilicate glass and its chemical tempering method
TWI861887B (en) High strength glass-ceramics having petalite and lithium silicate structures
JP5764084B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, cover glass for display and method for producing tempered glass article
TW201742841A (en) Glass compositions that retain high compressive stress after post-ion exchange heat treatment
TW201245079A (en) Method for producing chemically tempered glass, and glass for chemical tempering
JP2012106897A (en) Glass composition for chemical strengthening
JP2008308376A (en) Substrate glass for display device
JP2017078011A (en) Glass plate for chemical strengthening and manufacturing method of glass plate for chemical strengthening
JP5092564B2 (en) Substrate glass for display devices
JP2017114718A (en) Glass sheet for chemical reinforcement and manufacturing method of glass sheet for chemical reinforcement
TWI609849B (en) Touch protection glass composition
WO2017068857A1 (en) Glass sheet for chemical reinforcement and method for producing chemically reinforced glass sheet
JP4972946B2 (en) Substrate glass for display devices
WO2023286668A1 (en) Glass plate for tempering, and tempered glass plate
WO2023210506A1 (en) Reinforced glass plate, method for manufacturing reinforced glass plate, and glass plate to be reinforced
JP2018145017A (en) Glass sheet for chemical strengthening and manufacturing method of glass sheet for chemical strengthening