[go: up one dir, main page]

JP2012137251A - Multitubular heat exchanger - Google Patents

Multitubular heat exchanger Download PDF

Info

Publication number
JP2012137251A
JP2012137251A JP2010290129A JP2010290129A JP2012137251A JP 2012137251 A JP2012137251 A JP 2012137251A JP 2010290129 A JP2010290129 A JP 2010290129A JP 2010290129 A JP2010290129 A JP 2010290129A JP 2012137251 A JP2012137251 A JP 2012137251A
Authority
JP
Japan
Prior art keywords
tube
tube portion
heat exchanger
pipe
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010290129A
Other languages
Japanese (ja)
Inventor
Tetsuya Suzuki
徹也 鈴木
Akihiro Sawamura
晶寛 澤村
Yasufumi Sakakibara
康文 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyasu Industries Co Ltd
Original Assignee
Maruyasu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyasu Industries Co Ltd filed Critical Maruyasu Industries Co Ltd
Priority to JP2010290129A priority Critical patent/JP2012137251A/en
Priority to EP11195749.4A priority patent/EP2469211A3/en
Publication of JP2012137251A publication Critical patent/JP2012137251A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multitubular heat exchanger free from formation of a recessed part forming a condensed water pool in the heat exchanger when used, between a thick tube part and a tapered tube part.SOLUTION: This heat exchanger includes a plurality of inner tubes 114, 114, ..., through which a first fluid passes, and an outer tube 117 through which a second fluid passes, and the inner tubes 114 include the thick tube parts 114a at both ends, a thin tube part 114b at the middle, and the tapered tube part 114c between the thin tube part 114b and the thick tube part 114a. In this multitubular heat exchanger, the inner tubes 114, 114, ..., are in sealed contact at the thick tube parts 114a and integrally held by the outer tube 117, so that a second fluid pass-through gap S is formed between the outside of each inner tube 114 and the inside of the outer tube 117. The inner tube 114 is tapered at one side in the vertical direction of the tapered tube part 114c, and its surface (bottom surface) to be on the downside when the inner tube 114 is used, is provided as a longitudinal flat surface.

Description

本発明は、第一流体が通過する内管(伝熱管)群と、第二流体が通過する外管(胴体)とを備え、複数本の伝熱管群が外管内に保持されてなる多管式熱交換器に関する。   The present invention includes an inner tube (heat transfer tube) group through which a first fluid passes and an outer tube (fuselage) through which a second fluid passes, and a plurality of heat transfer tube groups held in the outer tube. The present invention relates to a heat exchanger.

特に、伝熱管群に高速の高温ガス(気体)を、胴体に冷却水(液体)を通過させて熱交換を行う多管式熱交換器、例えば、排気再循環装置(以下「EGR装置」と略す。)等において、内燃機関の排気ガスを冷却水により冷却する排気冷却器(高度の熱交換能が要求される)等に好適な発明である。   In particular, a multi-tube heat exchanger for exchanging heat by passing high-speed high-temperature gas (gas) through the heat transfer tube group and cooling water (liquid) through the fuselage, for example, an exhaust gas recirculation device (hereinafter referred to as “EGR device”) The invention is suitable for an exhaust cooler (which requires a high degree of heat exchange capability) that cools the exhaust gas of the internal combustion engine with cooling water.

上記の如く高度の熱交換が要求されるものには、例えば、図1〜2に示すような外形を備えた多管式熱交換器が多用されている。そして、該熱交換器は、図3〜6に示すような内部構造を有していた。   As described above, for example, a multi-tubular heat exchanger having an outer shape as shown in FIGS. And this heat exchanger had an internal structure as shown in FIGS.

第一流体(高温ガス)が通過する複数本の内管群(伝熱管)14、14・・・と、該伝熱管群を保持して第二流体(冷却水)が通過間隙を形成する外管(胴体)17と、外管17の両端に取付けられる整流筒20、21を備えている。内管14は、両端に太管部14aを、中間に細管部14bを、該細管部14bと前記太管部14aとの間にテーパ管部14cを備えている。そして、各内管14は、太管部14aで密接して外管17に保持一体化され、内管14の外側と外管17の内側との間に第二流体通過隙間Sが形成されている。通常、内管14には、伝熱性の見地から伝熱フィン22が挿入されている。   A plurality of inner tube groups (heat transfer tubes) 14, 14... Through which the first fluid (hot gas) passes, and the second fluid (cooling water) that holds the heat transfer tube groups and forms a passage gap. A tube (body) 17 and rectifying cylinders 20 and 21 attached to both ends of the outer tube 17 are provided. The inner tube 14 includes a thick tube portion 14a at both ends, a thin tube portion 14b in the middle, and a tapered tube portion 14c between the thin tube portion 14b and the thick tube portion 14a. Each inner tube 14 is tightly held and integrated with the outer tube 17 by the thick tube portion 14 a, and a second fluid passage gap S is formed between the outer side of the inner tube 14 and the inner side of the outer tube 17. Yes. Usually, heat transfer fins 22 are inserted into the inner tube 14 from the viewpoint of heat transfer.

ここで、熱交換器は、通常、各部材相互を組み立て後、ロウ付け乃至溶接により一体化して製作する。   Here, the heat exchanger is usually manufactured by assembling each member and then integrating them by brazing or welding.

そして、上記組み立て作業性の見地から、内管14は受け内管部15と被せ内管部16、外管17は受け外管部18と被せ外管部19との分割構成とされている。   From the viewpoint of assembly workability, the inner tube 14 is divided into a receiving inner tube portion 15 and a covered inner tube portion 16, and the outer tube 17 is divided into a receiving outer tube portion 18 and a covered outer tube portion 19.

即ち、被せ内管部16に伝熱フィン22をセットした後、受け内管部15を嵌める。こうして調製した内管群14、14・・・を、受け外管部18および被せ外管部19にそれぞれ複数個ずつ嵌合させた後、被せ外管部19を反転させて、受け外管部18に被せる(図5参照)。   That is, after setting the heat transfer fins 22 in the covered inner tube portion 16, the receiving inner tube portion 15 is fitted. After the inner tube groups 14, 14... Thus prepared are fitted to the receiving outer tube portion 18 and the covered outer tube portion 19, respectively, the covered outer tube portion 19 is inverted to receive the outer tube portion. 18 (see FIG. 5).

その後、外管17の両端に整流筒20、21を嵌合させて熱交換器組み立て体として、ロウ付け炉を通過させて、一体化する。なおこの際、受け外管部18と被せ外管部19とは、スポット溶接等で予め一体化しておいてもよい。   Thereafter, the flow straightening cylinders 20 and 21 are fitted to both ends of the outer tube 17 to be integrated as a heat exchanger assembly through a brazing furnace. At this time, the receiving outer pipe portion 18 and the covering outer pipe portion 19 may be integrated in advance by spot welding or the like.

こうして調製した熱交換器を、EGR装置における排気冷却器として使用した場合、その傾斜角度がテーパ角度より小さいとき、内管14のテーパ管部14cと太管部14aとの境界部に水平面に対する凹部Cが形成される。該凹部Cに凝縮水が溜まり易い。この凝縮水溜りは、排気ガス等に硫化物等が含まれている場合、腐食を促進させる(図7および特許文献1段落0002参照)。   When the heat exchanger thus prepared is used as an exhaust cooler in an EGR device, when the inclination angle is smaller than the taper angle, a concave portion with respect to the horizontal plane is formed at the boundary between the tapered tube portion 14c and the thick tube portion 14a of the inner tube 14. C is formed. Condensed water tends to accumulate in the recess C. This condensate pool promotes corrosion when exhaust gas or the like contains sulfide or the like (see FIG. 7 and paragraph 0002 of Patent Document 1).

上記凝縮水溜りを発生させないようにするには、熱交換器を、図7に示すようにスロープ部の角度(例えば、15°)α以上に傾斜させる必要がある。しかし、エンジンルーム内のスペース有効利用の見地から、熱交換器を凝縮水溜りが発生しない角度以上に傾斜させる設定が困難な場合が発生する。   In order not to generate the condensate pool, it is necessary to incline the heat exchanger to an angle (for example, 15 °) α or more of the slope portion as shown in FIG. However, from the viewpoint of effective use of space in the engine room, there are cases where it is difficult to set the heat exchanger to be tilted beyond an angle at which no condensed water pool is generated.

なお、本発明の特許性に影響を与えるものではないが、熱交換器の凝縮水対策に関連する先行技術文献として特許文献1〜3等を挙げることができる。   In addition, although it does not affect the patentability of this invention, patent documents 1-3 etc. can be mentioned as prior art literature relevant to the condensed water countermeasure of a heat exchanger.

特許文献1には、EGRガスの熱交換器等を、ステンレス鋼を用いてロウ付けで製作する際の、ロウ付けに関する技術が記載されている。   Patent Document 1 describes a technique related to brazing when an EGR gas heat exchanger or the like is manufactured by brazing using stainless steel.

特許文献2・3には、冷暖房兼用の空気調和機の室外機に用いられる、扁平チューブとコルゲートフィンで構成される熱交換器における、凝縮水の水はけ性を確保する技術が記載されている。   Patent Documents 2 and 3 describe a technique for ensuring drainage of condensed water in a heat exchanger composed of flat tubes and corrugated fins, which is used in an outdoor unit of an air conditioner that also serves as an air conditioner.

特開2002−28775号公報JP 2002-28775 A 特開2005−37002号公報JP 2005-37002 A 特開2004−317002号公報JP 2004-317002 A

本発明は、上記にかんがみて、使用時において熱交換器に凝縮水溜りを形成する凹部を太管部とテーパ管部との間に形成させない多管式熱交換器を提供することを目的とする。   In view of the above, an object of the present invention is to provide a multi-tube heat exchanger that does not form a concave portion that forms a condensate pool in the heat exchanger between the thick tube portion and the taper tube portion in use. To do.

本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果下記構成の多管式熱交換器に想到した。なお、参考のために、括弧付きで図符号を付す。   In order to solve the above-mentioned problems, the present inventors have made extensive efforts to develop them, and as a result, have arrived at a multi-tube heat exchanger having the following configuration. For reference, a figure symbol is attached with parentheses.

第一流体が通過する複数本の内管群(114、114・・・)と、第二流体が通過する外管(117)とを備え、
前記内管(114)は両端に太管部(114a)を、中間に細管部(114b)を、該細管部(114b)と前記太管部(114a)との間にテーパ管部(114c)を備え、
前記内管(114)が、前記太管部(114a)で密接して前記外管(117)に保持一体化されて内管(114)の外側と前記外管(117)の内側との間に第二流体通過隙間(S)が形成されている構成の多管式熱交換器において、
前記内管(114)が、テーパ管部(114c)の上下方向で片テーパとされ、前記内管(114)の使用時に下側となる面(底面)が長手方向にフラット面とされていることを特徴とする。
A plurality of inner tube groups (114, 114 ...) through which the first fluid passes, and an outer tube (117) through which the second fluid passes,
The inner tube (114) has a thick tube portion (114a) at both ends, a thin tube portion (114b) in the middle, and a tapered tube portion (114c) between the thin tube portion (114b) and the thick tube portion (114a). With
The inner pipe (114) is held and integrated with the outer pipe (117) in intimate contact with the thick pipe section (114a), so that it is between the outer side of the inner pipe (114) and the inner side of the outer pipe (117). In the multi-tube heat exchanger having a configuration in which the second fluid passage gap (S) is formed in
The inner tube (114) has a single taper in the vertical direction of the tapered tube portion (114c), and the lower surface (bottom surface) when the inner tube (114) is used is a flat surface in the longitudinal direction. It is characterized by that.

上記内管使用時に下側となる面(底面)がフラット面とされているため、使用に際して、傾斜角度が片テーパのテーパ角度に関係なく、内管のテーパ管部と太管部との境界部に水平面に対する凹部が形成されることがない。したがって、凝縮水(凝縮液)溜りが発生することなく、結果的に凝縮水の溜りに起因する高度の防錆対策が不要となる。また、冷凍機等に適用した場合、凝縮水が氷結して第一流体の流れを阻害することによる熱交換性能の低下も防止できる。   Since the lower surface (bottom surface) when using the inner pipe is a flat surface, the boundary between the tapered pipe portion and the thick pipe portion of the inner pipe can be used regardless of the taper angle of the single taper during use. A concave portion with respect to a horizontal plane is not formed in the portion. Therefore, no condensate (condensate) pool is generated, and as a result, a high degree of rust prevention measures due to the condensate pool are not required. In addition, when applied to a refrigerator or the like, it is possible to prevent a decrease in heat exchange performance due to condensed water that freezes and hinders the flow of the first fluid.

上記構成において、前記外管(117)が受け外管部(118)と被せ外管部(119)とからなる分割構成であって、前記受け外管部(118)が前記内管群(114、114・・・)の全てを積み重ね保持して前記被せ外管部(119)で閉じられ一体化されている構成とすることが望ましい。   The said structure WHEREIN: The said outer pipe | tube (117) is a division | segmentation structure which consists of a receiving outer pipe part (118) and a covering outer pipe part (119), Comprising: The said receiving outer pipe part (118) is said inner pipe group (114). , 114... Are all stacked and held, and are closed and integrated by the covered outer tube portion (119).

前記の従来の受け外管部に対して被せ外管部を反転組み立てる場合に比して、熱交換器の組み立て作業性が向上する。受け外管部に前記内管群の全てを積み重ね保持した後、前記被せ外管部を嵌着して閉じて、内管群の外管に対する組み立てができるためである(図5・12参照)。   Compared to the case where the outer tube portion is inverted and assembled with respect to the conventional receiving outer tube portion, the assembly workability of the heat exchanger is improved. This is because, after all of the inner tube group is stacked and held on the receiving outer tube portion, the covering outer tube portion is fitted and closed, and the inner tube group can be assembled to the outer tube (see FIGS. 5 and 12). .

従来の多管式熱交換器の一例を示す正面図である。It is a front view which shows an example of the conventional multitubular heat exchanger. 同じく側面図である。It is a side view similarly. 図1の3−3線矢視断面図である。FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 1. 図3の4−4線矢視断面図である。FIG. 4 is a sectional view taken along line 4-4 in FIG. 3. 図1の5−5線矢視断面図および該断面図を用いての熱交換器の組み立て説明図である。FIG. 5 is a sectional view taken along line 5-5 in FIG. 1 and an assembly explanatory diagram of a heat exchanger using the sectional view. 図1の6−6線矢視断面図である。FIG. 6 is a cross-sectional view taken along line 6-6 in FIG. 従来の熱交換器の内管の凝縮水溜り発生および解消させるための説明図Explanatory drawing for eliminating and eliminating condensate pool in the inner pipe of a conventional heat exchanger 本発明の多管式熱交換器の一例を示す正面図である。It is a front view which shows an example of the multitubular heat exchanger of this invention. 同じく側面図である。It is a side view similarly. 図8の10−10線矢視断面図である。FIG. 10 is a cross-sectional view taken along line 10-10 in FIG. 8. 図10の11−11線矢視断面図である。It is an 11-11 line arrow directional cross-sectional view of FIG. 図8の12−12線矢視断面図および該断面図を利用しての熱交換器の組み立て説明図である。FIG. 12 is a cross-sectional view taken along line 12-12 in FIG. 8 and an assembly explanatory diagram of a heat exchanger using the cross-sectional view. 図8の13−13線矢視断面図である。It is a 13-13 line arrow directional cross-sectional view of FIG. 本発明の一実施形態における熱交換器の内管おける凝縮水溜り解消の説明図である。It is explanatory drawing of condensate water pool elimination in the inner tube | pipe of the heat exchanger in one Embodiment of this invention.

次に、本発明の多管式熱交換器の一実施形態を、図例に基づいて説明する。ここでは、EGRガス(排気ガス)に適用する熱交換器を例に採り説明する。なお、従来例に対応する部分の図符号は、百位を「1」とし、下二桁を同一番号として、それらの説明の全部又は一部を省略した。   Next, an embodiment of the multi-tube heat exchanger according to the present invention will be described based on the drawings. Here, a heat exchanger applied to EGR gas (exhaust gas) will be described as an example. In addition, as for the figure code | symbol of the part corresponding to a prior art example, the hundreds place was made into "1", the last two digits were made the same number, and those description was abbreviate | omitted all or one part.

排気ガス(第一流体)が通過する複数本の内管群114、114・・と、冷却水(第二流体)が通過する外管117とを備えている。   A plurality of inner tube groups 114, 114... Through which exhaust gas (first fluid) passes and an outer tube 117 through which cooling water (second fluid) passes are provided.

内管114は両端に太管部114aを、中間に細管部114bを、該細管部114bと太管部114aとの間にテーパ管部114cを備えている。そして、内管114が、太管部114aで密接して外管117に保持一体化されて内管114の外側と前記外管117の内側との間に第二流体通過隙間Sが形成されている。   The inner tube 114 includes a thick tube portion 114a at both ends, a thin tube portion 114b in the middle, and a tapered tube portion 114c between the thin tube portion 114b and the thick tube portion 114a. Then, the inner tube 114 is closely held and integrated with the outer tube 117 by the thick tube portion 114a, and a second fluid passage gap S is formed between the outer side of the inner tube 114 and the inner side of the outer tube 117. Yes.

上記において、内管114は、受け内管部115と被せ内管部116とからなる分割構成であって、前記内管114に伝熱フィン122が挿入一体化されている。なお、伝熱フィンを備えない構成の場合は、内管の構成は引き抜き形成体や、シームレス管で形成してもよい。その場合は、伝熱効率向上のため、内側に縦渦流が発生する突起部を形成する構成としてもよい(特開2002−350081・181468号公報の要約等参照)。   In the above description, the inner tube 114 has a divided configuration including a receiving inner tube portion 115 and a covered inner tube portion 116, and heat transfer fins 122 are inserted and integrated into the inner tube 114. In the case of a configuration that does not include heat transfer fins, the configuration of the inner tube may be formed of a drawing formed body or a seamless tube. In that case, it is good also as a structure which forms the protrusion part which a longitudinal vortex generate | occur | produces inside for the heat-transfer efficiency improvement (refer the summary etc. of Unexamined-Japanese-Patent No. 2002-350081 / 181468).

ここまでは、従来例と実質的に同一である。   Up to this point, it is substantially the same as the conventional example.

そして、上記構成において、内管114が、テーパ管部114cの上下方向で片テーパとされ、前記内管114の使用時に下側となる面(底面)が長手方向にフラット面とされている。   And in the said structure, the inner pipe | tube 114 is made into one taper in the up-down direction of the taper pipe part 114c, and the surface (bottom face) used as the lower side at the time of use of the said inner pipe | tube 114 is made into the flat surface in a longitudinal direction.

そして、外管117が、受け外管部118と被せ外管部119との分割体であることは同じであるが、断面形状が異なる。即ち、受け外管部118が内管群114、114・・・の全てを保持可能な深さのU字形断面とされ、内管群114、114・・・の全て(図例では5本)を積み重ね保持して前記被せ外管部で閉じられ一体化されているものである。   And it is the same that the outer tube | pipe 117 is a division body of the receiving outer tube | pipe part 118 and the covering outer tube | pipe part 119, However, A cross-sectional shape differs. That is, the receiving outer pipe portion 118 has a U-shaped cross section having a depth capable of holding all of the inner tube groups 114, 114..., And all of the inner tube groups 114, 114. Are stacked and held, and are closed and integrated by the covering outer tube portion.

なお、外管117の両端には、整流筒120、121が接続一体化される。該整流筒も凝縮水が発生した場合の水はけ性を考慮して、使用時下側面(底面)となる側が直線状断面となるように円形の接続口120a、121aが偏在させて形成してある。なお、図例中、117aは、整流筒120、121を外管117に嵌合組み立てする際の位置決め凸部である。   The rectifying cylinders 120 and 121 are connected and integrated at both ends of the outer tube 117. In consideration of drainability when condensed water is generated, the flow straightening cylinder is formed with the circular connection ports 120a and 121a unevenly distributed so that the side which becomes the lower side surface (bottom surface) in use has a linear cross section. . In the illustrated example, reference numeral 117a denotes a positioning convex portion for fitting and assembling the rectifying cylinders 120 and 121 to the outer tube 117.

次に、上記構成の熱交換器の製造方法について説明する。   Next, the manufacturing method of the heat exchanger of the said structure is demonstrated.

熱交換器の各部材の材質は、通常、ステンレスを用い、板厚は、外管および整流筒:0.5〜3mm(望ましくは1〜2mm)、内管及び伝熱フィン:0.05〜1mm(望ましくは0.1〜0.8mm)とする。   The material of each member of the heat exchanger is usually stainless steel, and the plate thickness is 0.5 to 3 mm (preferably 1 to 2 mm) for the outer tube and the rectifying cylinder, and 0.05 to 3 mm for the inner tube and the heat transfer fin. 1 mm (preferably 0.1 to 0.8 mm).

先ず、被せ内管部116に伝熱フィン122をセット(挿入組み立て)した後、受け内管部115を嵌めて組み立てる。このとき各部材の接合の態様は、ロウ付けとする。これらの材質を上記の如くステンレスとする場合、通常、銅ロウ又はニッケルロウを使用する。   First, after setting (inserting and assembling) the heat transfer fins 122 in the covered inner tube portion 116, the receiving inner tube portion 115 is fitted and assembled. At this time, the joining mode of each member is brazing. When these materials are made of stainless steel as described above, copper brazing or nickel brazing is usually used.

こうして調製した複数本(図例では5本)の内管群114、114・・・を全て受け外管部118にセットした後、被せ外管部119を被せる。内管群114、114・・・相互および内管114と外管117の接合は、上記と同様ロウ付けとする。   A plurality of inner tube groups 114, 114... Thus prepared are all set on the receiving outer tube portion 118, and then the covered outer tube portion 119 is covered. The inner tube groups 114, 114... And the joint between the inner tube 114 and the outer tube 117 are brazed in the same manner as described above.

なお、受け外管部115と被せ外管部116との接合も、通常、上記と同様ロウ付けとする。   In addition, joining of the receiving outer pipe part 115 and the covering outer pipe part 116 is also normally brazed similarly to the above.

更に、外管117に対して整流筒120、121を挿入して、上記と同様、ロウ付けとする。   Further, the rectifying cylinders 120 and 121 are inserted into the outer tube 117 and brazed as described above.

そして、上記熱交換器組み立て体は、ロウ付け炉(真空炉)を通過させて、各部材相互をロウ付け一体化する。ロウ付け時の加熱・冷却条件は、ロウ材の種類及び熱容量を考慮して設定する。   And the said heat exchanger assembly passes a brazing furnace (vacuum furnace), and each member is brazed and integrated. The heating and cooling conditions during brazing are set in consideration of the type of brazing material and the heat capacity.

こうして、製造した多管式熱交換器は、フラット面となる側を下側にしてEGR装置の配管系に組み付ける。   Thus, the manufactured multi-tube heat exchanger is assembled to the piping system of the EGR apparatus with the flat surface side facing down.

この実施形態の熱交換器は、内管の下側(底部側)に従来のような太管部114aとテーパ管部114cとの境界部に凹部が形成されず、凝縮水溜りが発生することがない(図14)。したがって、熱交換器の組み付け傾斜角度の設定自由度が拡大する。   In the heat exchanger of this embodiment, a concavity is not formed at the boundary between the thick tube portion 114a and the tapered tube portion 114c as in the prior art on the lower side (bottom side) of the inner tube, and a condensate pool is generated. There is no (FIG. 14). Accordingly, the degree of freedom in setting the assembly angle of the heat exchanger is expanded.

14、114 内管(伝熱管)
14a、114a 太管部
14b、114b 細管部
14c、114c テーパ管部
15、115 受け内管部
16、116 被せ内管部
17、117 外管
18、118 受け外管部
19、119 被せ外管部
20、120 整流筒
21、121 整流筒
22、122 伝熱フィン
S 第二流体通過隙間
C 凹部(凝縮水溜り)
14, 114 Inner pipe (heat transfer pipe)
14a, 114a Thick tube portion 14b, 114b Narrow tube portion 14c, 114c Tapered tube portion 15, 115 Receiving inner tube portion 16, 116 Covered inner tube portion 17, 117 Outer tube 18, 118 Receiving outer tube portion 19, 119 Covered outer tube portion 20, 120 Rectifier cylinder 21, 121 Rectifier cylinder 22, 122 Heat transfer fin S Second fluid passage gap C Concavity (condensate pool)

Claims (4)

第一流体が通過する複数本の内管(以下、「内管群」という。)と、第二流体が通過する外管とを備え、
前記内管は両端に太管部を、中間に細管部を、該細管部と前記太管部との間にテーパ管部を備え、
前記内管が、前記太管部で密接して前記外管に保持一体化されて前記内管の外側と前記外管の内側との間に第二流体通過隙間が形成されている構成の多管式熱交換器において、
前記内管が、テーパ管部の上下方向で片テーパとされ、前記内管の使用時に下側となる面(底面)が長手方向にフラット面とされていることを特徴とする多管式熱交換器。
A plurality of inner pipes through which the first fluid passes (hereinafter referred to as “inner pipe group”) and an outer pipe through which the second fluid passes;
The inner tube includes a thick tube portion at both ends, a thin tube portion in the middle, and a tapered tube portion between the thin tube portion and the thick tube portion,
The inner pipe is closely held and integrated with the outer pipe in close contact with the thick pipe portion, and a second fluid passage gap is formed between the outer side of the inner pipe and the inner side of the outer pipe. In tube heat exchangers,
A multi-tubular heat characterized in that the inner pipe has a single taper in the vertical direction of the taper pipe portion, and the lower surface (bottom surface) when the inner pipe is used is a flat surface in the longitudinal direction. Exchanger.
前記外管が受け外管部と被せ外管部とからなる分割構成であって、前記受け外管部が前記内管群の全てを積み重ね保持して前記被せ外管部で閉じられ一体化されていることを特徴とする請求項1記載の多管式熱交換器。   The outer tube has a divided configuration including a receiving outer tube portion and a covering outer tube portion, and the receiving outer tube portion is stacked and held by the entire outer tube group, and is closed and integrated with the covering outer tube portion. The multitubular heat exchanger according to claim 1, wherein 前記内管が受け内管部と被せ内管部とからなる分割構成であって、前記内管に伝熱フィンが保持一体化されていることを特徴とする請求項1又は2記載の多管式熱交換器。   The multi-tube according to claim 1 or 2, wherein the inner tube has a divided structure including a receiving inner tube portion and a covered inner tube portion, and heat transfer fins are held and integrated with the inner tube. Type heat exchanger. 請求項2又は3記載の多管式熱交換器の組み立て方法であって、前記受け外管部に前記内管群の全てを積み重ね保持した後、前記被せ外管部を嵌着して閉じる工程を含むことを特徴とする多管式熱交換器の組み立て方法。   4. The method of assembling a multi-tube heat exchanger according to claim 2 or 3, wherein all of the inner tube group is stacked and held on the receiving outer tube portion, and then the covered outer tube portion is fitted and closed. A method for assembling a multi-tubular heat exchanger.
JP2010290129A 2010-12-27 2010-12-27 Multitubular heat exchanger Pending JP2012137251A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010290129A JP2012137251A (en) 2010-12-27 2010-12-27 Multitubular heat exchanger
EP11195749.4A EP2469211A3 (en) 2010-12-27 2011-12-27 Multitubular heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010290129A JP2012137251A (en) 2010-12-27 2010-12-27 Multitubular heat exchanger

Publications (1)

Publication Number Publication Date
JP2012137251A true JP2012137251A (en) 2012-07-19

Family

ID=45444488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010290129A Pending JP2012137251A (en) 2010-12-27 2010-12-27 Multitubular heat exchanger

Country Status (2)

Country Link
EP (1) EP2469211A3 (en)
JP (1) JP2012137251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055711A (en) * 2012-09-12 2014-03-27 T Rad Co Ltd Tank coupling structure for header-plate-less heat exchanger
JP2014185799A (en) * 2013-03-22 2014-10-02 Toyota Motor Corp Heat exchanger
WO2015037687A1 (en) * 2013-09-13 2015-03-19 株式会社ティラド Tank structure for header-plate-less heat exchanger
WO2015037688A1 (en) * 2013-09-13 2015-03-19 株式会社ティラド Tank structure for header-plate-less heat exchanger
JP2015169379A (en) * 2014-03-07 2015-09-28 株式会社ティラド Seal structure of tank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109473B2 (en) * 2011-11-30 2017-04-05 東京ラヂエーター製造株式会社 EGR cooler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225190A (en) * 2006-02-23 2007-09-06 Maruyasu Industries Co Ltd Heat exchanger
JP2009516122A (en) * 2005-11-18 2009-04-16 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger for internal combustion engine
JP2009228930A (en) * 2008-03-19 2009-10-08 T Rad Co Ltd Heat exchanger
JP2010203631A (en) * 2009-02-27 2010-09-16 Tokyo Radiator Mfg Co Ltd U-turn tube
JP2010243125A (en) * 2009-04-09 2010-10-28 Maruyasu Industries Co Ltd Multi-tube heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028775A (en) 2000-05-10 2002-01-29 Denso Corp Method for manufacturing corrosion resistant heat exchanger
JP3939090B2 (en) 2000-12-12 2007-06-27 マルヤス工業株式会社 Multi-tube heat exchanger
JP3774843B2 (en) 2001-05-25 2006-05-17 マルヤス工業株式会社 Multi-tube heat exchanger
JP2004317002A (en) 2003-04-15 2004-11-11 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005037002A (en) 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Heat exchanger
JP4602714B2 (en) * 2004-08-19 2010-12-22 株式会社ティラド Heat exchanger
CA2503424A1 (en) * 2005-04-01 2006-10-01 Dana Canada Corporation Stacked-tube heat exchanger
DE102006043951A1 (en) * 2005-09-16 2007-05-03 Behr Gmbh & Co. Kg Heat exchanger e.g. exhaust gas cooler or intercooler, for motor vehicle, has gas pipes with ends, which open out at one side of pipes to form rectangular cross section, where pipe ends are soldered with pipe bases
JP2010048536A (en) * 2008-08-25 2010-03-04 Denso Corp Heat exchanger
JP5321271B2 (en) * 2009-06-17 2013-10-23 株式会社デンソー Heat exchanger for high temperature gas cooling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516122A (en) * 2005-11-18 2009-04-16 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger for internal combustion engine
JP2007225190A (en) * 2006-02-23 2007-09-06 Maruyasu Industries Co Ltd Heat exchanger
JP2009228930A (en) * 2008-03-19 2009-10-08 T Rad Co Ltd Heat exchanger
JP2010203631A (en) * 2009-02-27 2010-09-16 Tokyo Radiator Mfg Co Ltd U-turn tube
JP2010243125A (en) * 2009-04-09 2010-10-28 Maruyasu Industries Co Ltd Multi-tube heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055711A (en) * 2012-09-12 2014-03-27 T Rad Co Ltd Tank coupling structure for header-plate-less heat exchanger
JP2014185799A (en) * 2013-03-22 2014-10-02 Toyota Motor Corp Heat exchanger
WO2015037687A1 (en) * 2013-09-13 2015-03-19 株式会社ティラド Tank structure for header-plate-less heat exchanger
WO2015037688A1 (en) * 2013-09-13 2015-03-19 株式会社ティラド Tank structure for header-plate-less heat exchanger
JP2015055458A (en) * 2013-09-13 2015-03-23 株式会社ティラド Tank structure of header-plateless heat exchanger
US9995540B2 (en) 2013-09-13 2018-06-12 T.Rad Co., Ltd. Tank structure for header-plate-less heat exchanger
JP2015169379A (en) * 2014-03-07 2015-09-28 株式会社ティラド Seal structure of tank

Also Published As

Publication number Publication date
EP2469211A3 (en) 2014-03-05
EP2469211A2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US10914527B2 (en) Tube bundle heat exchanger
US9459052B2 (en) Coaxial gas-liquid heat exchanger with thermal expansion connector
CN1961192B (en) Brazed radiating fin heat exchanger
US6513582B2 (en) Heat exchanger and fluid pipe therefor
JP2012137251A (en) Multitubular heat exchanger
JP2017075741A (en) Heat exchanger
JP2009121758A (en) Heat exchanger and refrigeration system
JP2014214955A (en) Heat exchanger
WO2019189924A1 (en) Header-plateless heat exchanger
JP6341530B2 (en) Multi-tube heat exchanger
US20070131400A1 (en) Heat exchanger for gases, especially for engine exhaust gases
CN113383205B (en) Heat exchanger
JP7244440B2 (en) Header plateless heat exchanger
JP2013164215A (en) Fin tube-type heat exchanger
JP2009150587A (en) Heat exchanger
JP2001041680A (en) Multitubular egr gas cooler and its manufacture
JP6083272B2 (en) Heat exchanger
JP2011099620A (en) Heat exchanger
WO2019131569A1 (en) Header plateless type heat exchanger
CN220472420U (en) Enclasping type air conditioner aluminum fin
JP2006078033A (en) Heat exchanger
JP7349821B2 (en) Heat exchanger
JP4681435B2 (en) Connection structure of heat exchanger
JP2023022417A (en) corrugated fin heat exchanger
JP2009150572A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715