JP2012211805A - Current detection circuit - Google Patents
Current detection circuit Download PDFInfo
- Publication number
- JP2012211805A JP2012211805A JP2011077192A JP2011077192A JP2012211805A JP 2012211805 A JP2012211805 A JP 2012211805A JP 2011077192 A JP2011077192 A JP 2011077192A JP 2011077192 A JP2011077192 A JP 2011077192A JP 2012211805 A JP2012211805 A JP 2012211805A
- Authority
- JP
- Japan
- Prior art keywords
- current
- sense
- voltage
- resistor
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 51
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 238000010586 diagram Methods 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Images
Landscapes
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
本発明は、MOSFETの電流検出回路を備えた集積回路に係り、特にセンスMOSFETを備えた過電流検出回路において、過電流保護開始ポイントを外部端子で設定する回路に関する。 The present invention relates to an integrated circuit including a MOSFET current detection circuit, and more particularly to a circuit for setting an overcurrent protection start point at an external terminal in an overcurrent detection circuit including a sense MOSFET.
従来、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の電流検出手段として、例えば米国特許4553084号(以下、従来技術という)のように、パワーMOSFETに流れる電流をセンスMOSFETとセンス抵抗を使って検出する電流検出回路がある。従来技術では、セルと呼ばれる小容量MOSFETを複数個並列接続してパワーMOSFETとし、これに同一半導体チップに設けられた単一のセルからなるセンスMOSFETを並列接続している。これら多数のセルは同一製造工程により製造され同一特性を有しているので、各セルに同一ゲート・ソース間電圧が印加されると、パワーMOSFETとセンスMOSFETのそれぞれの電流が、それらのセルの数の比に応じて流れる。例えば、パワーMOSFETとセンスMOSFETのセル数の比を3000:1とすると、電流は3000:1の比でそれぞれのMOSFETに分割されて流れる。センスMOSFETに流れる電流はパワーMOSFETに比例して流れるので、このセンスMOSFET電流をセンス抵抗を使って検出すれば、この検出信号は、負荷電流を制限するリミッタ用検出信号などとして利用することができる。 Conventionally, as a current detection means of a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor), a current flowing in a power MOSFET is detected by using a sense MOSFET and a sense resistor as in, for example, US Pat. There is a current detection circuit. In the prior art, a plurality of small capacity MOSFETs called cells are connected in parallel to form a power MOSFET, and a sense MOSFET composed of a single cell provided on the same semiconductor chip is connected in parallel. Since these many cells are manufactured by the same manufacturing process and have the same characteristics, when the same gate-source voltage is applied to each cell, the current of each of the power MOSFET and the sense MOSFET is changed to that cell. Flows according to the number ratio. For example, when the ratio of the number of cells of the power MOSFET and the sense MOSFET is 3000: 1, the current flows divided into the respective MOSFETs at a ratio of 3000: 1. Since the current flowing through the sense MOSFET flows in proportion to the power MOSFET, if this sense MOSFET current is detected using a sense resistor, this detection signal can be used as a limiter detection signal for limiting the load current. .
図3に、センスMOSFETを使用した従来の降圧型DC−DCコンバータの構成図を示す。図3において、符号Q1で示したものは、ハイサイドスイッチング素子としてのパワーMOSFETであり、符号Q2で示したものは、パワーMOSFETQ1の電流検出用センスMOSFETである。パワーMOSFETQ1とセンスMOSFETQ2のソース端子は互いに接続され、パワーMOSFETQ1のドレイン端子は直流電源VINに接続されている。センスMOSFETQ2のドレイン端子はセンス抵抗Rsを介して直流電源VINに接続されている。パワーMOSFETQ1とセンスMOSFETQ2のソース端子が接続された接続点はリアクトルLを介して出力端子に接続されている。また、パワーMOSFETQ1とセンスMOSFETQ2のソース端子が接続された接続点と接地端子間にはフライホイールダイオードSBDが接続され、出力端子と接地端子間には平滑コンデンサCと負荷が接続されている。リアクトルLと平滑コンデンサCは降圧型DC−DCコンバータの出力部において直流平滑回路を構成している。
センス抵抗Rsの両端は、電流検出回路OTA1(Operational Transconductance Amplifier:トランスコンダクタンスアンプ(電圧を電流に変換するアンプ))の反転端子(−)と非反転端子(+)に接続されている。電流検出回路OTAは、センス抵抗Rsの電圧降下を検出してN倍の電流信号として出力する。この電流信号は抵抗Rcに流して電流電圧変換され、電圧比較器COMP1の非反転端子に入力される。電圧比較器COMP1の反転端子には基準電圧Vcが接続され、電流信号電圧が基準電圧Vcを超えると電圧比較器COMP1の出力からHレベルの過電流検出信号(OCP信号)が出力され、図示しないDC−DCコンバータの制御回路に、ドライブ信号Sg1のパルス幅を狭めるようにフィードバックさせる。
また、ドライブ信号Sg1がバッファ回路Bfを介してパワーMOSFETQ1、センスMOSFETQ2のゲートに入力され、パワーMOSFETQ1、センスMOSFETQ2はオン・オフ制御される。
FIG. 3 shows a configuration diagram of a conventional step-down DC-DC converter using a sense MOSFET. In FIG. 3, the reference numeral Q1 indicates a power MOSFET as a high-side switching element, and the reference numeral Q2 indicates a current detection sense MOSFET of the power MOSFET Q1. The source terminals of the power MOSFET Q1 and the sense MOSFET Q2 are connected to each other, and the drain terminal of the power MOSFET Q1 is connected to the DC power source VIN. The drain terminal of the sense MOSFET Q2 is connected to the DC power source VIN via the sense resistor Rs. A connection point where the source terminals of the power MOSFET Q1 and the sense MOSFET Q2 are connected is connected to the output terminal via the reactor L. A flywheel diode SBD is connected between the connection point where the source terminals of the power MOSFET Q1 and the sense MOSFET Q2 are connected to the ground terminal, and a smoothing capacitor C and a load are connected between the output terminal and the ground terminal. Reactor L and smoothing capacitor C constitute a DC smoothing circuit at the output of the step-down DC-DC converter.
Both ends of the sense resistor Rs are connected to an inversion terminal (−) and a non-inversion terminal (+) of a current detection circuit OTA1 (Operational Transconductance Amplifier: a transconductance amplifier). The current detection circuit OTA detects a voltage drop of the sense resistor Rs and outputs it as an N times current signal. This current signal is passed through the resistor Rc to be converted into a current and voltage, and is input to the non-inverting terminal of the voltage comparator COMP1. The reference voltage Vc is connected to the inverting terminal of the voltage comparator COMP1, and when the current signal voltage exceeds the reference voltage Vc, an H-level overcurrent detection signal (OCP signal) is output from the output of the voltage comparator COMP1, not shown. The control circuit of the DC-DC converter is fed back so as to narrow the pulse width of the drive signal Sg1.
In addition, the drive signal Sg1 is input to the gates of the power MOSFET Q1 and the sense MOSFET Q2 via the buffer circuit Bf, and the power MOSFET Q1 and the sense MOSFET Q2 are on / off controlled.
従来技術の集積回路に備えられた電流検出回路は、パワーMOSFETとセンスMOSFETのセル数の比とによる分割された電流を電圧変換した信号と、前記電圧変換した信号と比較する基準電圧とにより過電流保護開始ポイントが固定されてしまう。 The current detection circuit provided in the prior art integrated circuit has an overvoltage based on a signal obtained by voltage-converting the current divided by the ratio of the number of cells of the power MOSFET and the sense MOSFET and a reference voltage to be compared with the voltage-converted signal. Current protection start point is fixed.
従来技術の電流検出回路は、例えば、降圧型DC−DCコンバータのパワーMOSFET電流の検出に適用した場合を考えると、効率を考慮したスイッチング周波数、リアクトルのインダクタンス値、出力平滑コンデンサの容量、或いは定格出力電流等のファクターを最適化すると、固定された過電流保護開始ポイントでは適切な保護を行えない場合があった。
すなわち、接続される負荷の定格電力によっては、固定された過電流値では必要以上に過電流値が伸び、プリント基板のパターン幅を補強、部品の定格を1ランクアップするなどの対策が必要とされ、安価で小型化を行う妨げとなっていた。
For example, when the current detection circuit of the prior art is applied to the detection of the power MOSFET current of the step-down DC-DC converter, the switching frequency considering the efficiency, the inductance value of the reactor, the capacity of the output smoothing capacitor, or the rating When factors such as output current are optimized, there is a case where appropriate protection cannot be performed at a fixed overcurrent protection start point.
In other words, depending on the rated power of the connected load, the fixed overcurrent value increases the overcurrent value more than necessary, and measures such as reinforcing the printed circuit board pattern width and raising the component rating by one rank are required. Therefore, it has been a hindrance to downsizing at low cost.
本発明の目的は、上記問題点に鑑み、従来技術の問題を解決し、集積回路における過電流保護開始ポイントを外部端子により設定可能な電流検出回路を提供することにある。 In view of the above problems, an object of the present invention is to solve the problems of the prior art and provide a current detection circuit capable of setting an overcurrent protection start point in an integrated circuit by an external terminal.
本発明の電流検出回路は、外付け抵抗が接続される外部端子を有する集積回路に組み込まれた過電流検出回路であって、負荷に電力を供給するパワーMOSFETと、パワーMOSFETに並列接続されたセンスMOSFETとセンス抵抗の直列体とを備え、センス抵抗に流れる電流を検出して増幅する電流増幅器と、電流増幅器の出力電流信号を電圧信号に変換するセンス電流電圧変換回路と、外部端子に接続された前記外付け抵抗の抵抗値に応じた基準電流を生成する基準電流生成回路と、基準電流生成回路によって生成された基準電流を基準電圧に変換する電流電圧変換回路と、センス電流電圧変換回路の電圧信号を該電流電圧変換回路によって変換された基準電圧と比較することで、過電流検知信号を生成することを特徴とする。
また、外付け抵抗が接続される外部端子を有する集積回路に組み込まれた過電流検出回路であって、負荷に電力を供給するパワーMOSFETと、パワーMOSFETに並列接続されたセンスMOSFETとセンス抵抗の直列体とを備え、センス抵抗に流れる電流を検出して増幅する電流増幅器と、電流増幅器の出力電流信号を電圧信号に変換するセンス電流電圧変換回路と、外部端子に接続された外付け抵抗の抵抗値に応じた基準電流を生成する基準電流生成回路と、定電流源を備え、定電流源の定電流値から外付け抵抗の抵抗値に応じた基準電流を減算し、減算された電流を基準電圧に変換する電流電圧変換回路と、センス電流電圧変換回路の電圧信号を電流電圧変換回路によって変換された基準電圧と比較することで、過電流検知信号を生成することを特徴とする。
A current detection circuit of the present invention is an overcurrent detection circuit incorporated in an integrated circuit having an external terminal to which an external resistor is connected, and is connected in parallel to a power MOSFET that supplies power to a load. A sense amplifier and a series body of a sense resistor, a current amplifier that detects and amplifies the current flowing through the sense resistor, a sense current voltage conversion circuit that converts an output current signal of the current amplifier into a voltage signal, and is connected to an external terminal A reference current generation circuit that generates a reference current according to the resistance value of the external resistor, a current-voltage conversion circuit that converts the reference current generated by the reference current generation circuit into a reference voltage, and a sense current-voltage conversion circuit The overcurrent detection signal is generated by comparing the voltage signal with the reference voltage converted by the current-voltage conversion circuit.
An overcurrent detection circuit incorporated in an integrated circuit having an external terminal to which an external resistor is connected, the power MOSFET supplying power to a load, a sense MOSFET connected in parallel to the power MOSFET, and a sense resistor A current amplifier for detecting and amplifying the current flowing through the sense resistor, a sense current voltage conversion circuit for converting the output current signal of the current amplifier into a voltage signal, and an external resistor connected to the external terminal. A reference current generation circuit that generates a reference current according to the resistance value and a constant current source are provided. The reference current according to the resistance value of the external resistor is subtracted from the constant current value of the constant current source, and the subtracted current is obtained. By comparing the voltage signal of the current-voltage conversion circuit that converts to the reference voltage and the voltage signal of the sense current-voltage conversion circuit with the reference voltage converted by the current-voltage conversion circuit, an overcurrent detection signal Generated and characterized in that.
本発明によれば、集積回路の外部端子を1ピン使用することで、過電流保護開始ポイントを自由に設定できる電流検出回路を提供することができる。
また、外部抵抗が解放状態になっても、過電流保護開始ポイントを最小設定値にすることで負荷及びDC−DCコンバータを保護することができる。
According to the present invention, it is possible to provide a current detection circuit that can freely set an overcurrent protection start point by using one pin of an external terminal of an integrated circuit.
Even if the external resistance is released, the load and the DC-DC converter can be protected by setting the overcurrent protection start point to the minimum set value.
以下、本発明の実施の形態の過電流検出回路を用いた降圧型DC−DCコンバータを、図面を参照しながら詳細に説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 Hereinafter, a step-down DC-DC converter using an overcurrent detection circuit according to an embodiment of the present invention will be described in detail with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
(実施形態1)
図1に、本発明による電流検出回路を降圧型DC−DCコンバータのパワーMOSFETの電流検出回路に適用した場合の実施形態1を示す。
(Embodiment 1)
FIG. 1 shows a first embodiment in which a current detection circuit according to the present invention is applied to a current detection circuit of a power MOSFET of a step-down DC-DC converter.
図1において、従来の過電流検出回路と異なるのは、電圧比較器COMP1の反転入力端子に接続されていた基準電圧Vcに相当する回路構成である。
基準電圧Vcに相当する電圧は、図示しない内部電源REGに接続された定電流源CC1と抵抗Rocpとの直列回路による抵抗Rocpの両端の電圧となる。
In FIG. 1, the circuit configuration corresponding to the reference voltage Vc connected to the inverting input terminal of the voltage comparator COMP1 is different from the conventional overcurrent detection circuit.
The voltage corresponding to the reference voltage Vc is a voltage across the resistor Rocp by a series circuit of a constant current source CC1 connected to an internal power supply REG (not shown) and the resistor Rocp.
ここで、抵抗Rocpと並列に、トランジスタQbとオペアンプOP1からなるバッファアンプB−AMPと外部抵抗Rsetとが接続され、定電流源CC1の電流I1をバッファアンプB−AMPに流れる電流I2は抵抗Rocpに流れる電流I3と分流している。 Here, in parallel with the resistor Rocp, the buffer amplifier B-AMP including the transistor Qb and the operational amplifier OP1 and the external resistor Rset are connected, and the current I2 flowing through the buffer amplifier B-AMP through the current I1 of the constant current source CC1 is the resistor Rocp. Is shunted with the current I3 flowing through the.
バッファアンプB−AMPのオペアンプOP1の非反転端子には基準電圧VREFが接続され、反転端子にはトランジスタQbのエミッタ端子が接続され、外部端子T2に接続されている。オペアンプOP1の出力端子とトランジスタQbのベース端子は接続されているので、オペアンプOP1とトランジスタQbは外部端子T2を出力とする電圧フォロア回路を構成することになる。また、バッファアンプB−AMPのトランジスタQbのコレクタは定電流源CC1と抵抗Rocpとの接続点に接続されている。 The reference voltage VREF is connected to the non-inverting terminal of the operational amplifier OP1 of the buffer amplifier B-AMP, the emitter terminal of the transistor Qb is connected to the inverting terminal, and the external terminal T2 is connected. Since the output terminal of the operational amplifier OP1 and the base terminal of the transistor Qb are connected, the operational amplifier OP1 and the transistor Qb constitute a voltage follower circuit that outputs the external terminal T2. The collector of the transistor Qb of the buffer amplifier B-AMP is connected to a connection point between the constant current source CC1 and the resistor Rocp.
内部電源REGに接続された定電流源CC1は定電流I1を供給し、抵抗Rocpには電流I3及びバッファアンプB−AMPには電流I2が流される。従って、過電流検出回路の基準電圧Vcに相当する抵抗Rocpの両端の電圧は、抵抗Rocpの抵抗値Rocpと電流I3との積になる。また、電流I3は、定電流I1からバッファアンプB−AMPに電流I2を差し引いた値になり、電流I2は基準電圧VREFを外部抵抗Rsetで除算した値になる。
従って、抵抗Rocpの両端の電圧Vocp_refは下式であらわされる。
Vocp_ref=(I1−I2)×Rocp
=(I1−(VREF/Rset))×Rocp・・・式1
但し、VREF/Rsetは、定電流源CC1からの電流I1を超える値にはならない。
パワーMOSFETQ1の電流Ipを検知するためのセンスMOSFETQ2を流れる電流Isは電流検出回路OTA1でN倍された電流Isnsとして出力され、抵抗Rsnsに流れる。抵抗Rsnsは比較器COMP1の非反転端子に接続されているので、抵抗Rsnsの電圧Vsnsは、過電流検出回路の基準電圧Vocp_refと比較される。
従って、電圧Vsnsが基準電圧Vocp_refを超えると、過電流と判断し、比較器COMP1の出力端子から過電流保護信号OCP(Hレベル信号)が図示しないDC−DCコンバータの制御回路へ出力されてドライブ信号Sg1のパルス幅を減縮し、過電流保護動作が行われる。
A constant current source CC1 connected to the internal power supply REG supplies a constant current I1, and a current I3 flows through the resistor Rocp and a current I2 flows through the buffer amplifier B-AMP. Accordingly, the voltage across the resistor Rocp corresponding to the reference voltage Vc of the overcurrent detection circuit is the product of the resistance value Rocp of the resistor Rocp and the current I3. The current I3 is a value obtained by subtracting the current I2 from the constant current I1 to the buffer amplifier B-AMP, and the current I2 is a value obtained by dividing the reference voltage VREF by the external resistance Rset.
Accordingly, the voltage Vocp_ref across the resistor Rocp is expressed by the following equation.
Vocp_ref = (I1-I2) × Rocp
= (I1− (VREF / Rset)) × Rocp Formula 1
However, VREF / Rset does not exceed the current I1 from the constant current source CC1.
The current Is flowing through the sense MOSFET Q2 for detecting the current Ip of the power MOSFET Q1 is output as the current Isns multiplied by N by the current detection circuit OTA1, and flows through the resistor Rsns. Since the resistor Rsns is connected to the non-inverting terminal of the comparator COMP1, the voltage Vsns of the resistor Rsns is compared with the reference voltage Vocp_ref of the overcurrent detection circuit.
Therefore, when the voltage Vsns exceeds the reference voltage Vocp_ref, it is determined as an overcurrent, and an overcurrent protection signal OCP (H level signal) is output from the output terminal of the comparator COMP1 to a control circuit of a DC-DC converter (not shown) and driven. The pulse width of the signal Sg1 is reduced, and the overcurrent protection operation is performed.
ここで、式1に示されているように、過電流検出回路の基準電圧Vocp_refは外部抵抗Rsetの抵抗値がパラメータとなっている。従って、外部抵抗Rsetの抵抗値を変えることにより過電流検出値を設定することが可能である。
式1から、外部抵抗Rsetの値が高抵抗になるにつれて,Vocp_ref=I1×Rocpとなる最大の過電流検知ポイントに近づき,逆に外部抵抗Rsetの値が低抵抗になるにつれて最小の過電流ポイントに近づく過電流検知の設定ができる。
Here, as shown in Expression 1, the reference voltage Vocp_ref of the overcurrent detection circuit has the resistance value of the external resistor Rset as a parameter. Accordingly, it is possible to set the overcurrent detection value by changing the resistance value of the external resistor Rset.
From Equation 1, as the value of the external resistance Rset becomes higher, it approaches the maximum overcurrent detection point where Vocp_ref = I1 × Rocp, and conversely, the minimum overcurrent point becomes lower as the value of the external resistance Rset becomes lower. Overcurrent detection approaching can be set.
(実施形態2)
図2は図1における外部抵抗Rsetの値による過電流検知の設定を逆となる構成例を示した図である。
具体的には、実施形態1の図1における外部抵抗Rsetに流れる電流I2の電流インバータに相当する回路を追加している。
(Embodiment 2)
FIG. 2 is a diagram showing a configuration example in which the setting of overcurrent detection based on the value of the external resistance Rset in FIG. 1 is reversed.
Specifically, a circuit corresponding to a current inverter of the current I2 flowing through the external resistor Rset in FIG. 1 of the first embodiment is added.
この電流インバータ回路C−INVは、MOSFETQ3,Q4からなるカレントミラー回路と定電流源CC2からなり、定電流源CC1とバッファアンプB−AMPとの接続点と抵抗Rocp間に接続されている。
図2に示すように、電流インバータ回路C−INVの定電流源CC2は内部電源REGに接続され、定電流源CC2の出力はバッファアンプB−AMPのトランジスタのコレクタとMOSFETQ3のドレインに接続されている。MOSFETQ3のドレインは、MOSFETQ3のゲート及びMOSFETQ4のゲートと接続されている。MOSFETQ4のドレインは、定電流源CC1と抵抗Rocpとの接続点に接続されている。また、MOSFETQ3,Q4の各ソースはGNDに接続されている。なお、MOSFETQ3,Q4からなるカレントミラー回路の電流比は1:1に設定されている。
The current inverter circuit C-INV includes a current mirror circuit including MOSFETs Q3 and Q4 and a constant current source CC2, and is connected between a connection point between the constant current source CC1 and the buffer amplifier B-AMP and a resistor Rocp.
As shown in FIG. 2, the constant current source CC2 of the current inverter circuit C-INV is connected to the internal power supply REG, and the output of the constant current source CC2 is connected to the collector of the buffer amplifier B-AMP transistor and the drain of the MOSFET Q3. Yes. The drain of the MOSFET Q3 is connected to the gate of the MOSFET Q3 and the gate of the MOSFET Q4. The drain of the MOSFET Q4 is connected to a connection point between the constant current source CC1 and the resistor Rocp. Each source of MOSFETs Q3 and Q4 is connected to GND. Note that the current ratio of the current mirror circuit composed of the MOSFETs Q3 and Q4 is set to 1: 1.
定電流源CC2の電流I4はバッファアンプB−AMPに流れる電流I2とカレントミラー回路のMOSFETQ3に流れる電流I5とに分流され、電流I5は電流I1から電流I2を減算した電流が流れることになる。
I5=I4−I2・・・式2
カレントミラー回路のMOSFETQ4に流れる電流はMOSFETQ3に流れる電流と同じ電流値I5が流れ、定電流源CC1の電流I1を分流する。定電流源CC1の電流I1はMOSFETQ4に流れる電流I5と抵抗Rocpに流れる電流I3とに分流されているので、抵抗Rocpに流れる電流I3は下式となる。
I3=I1−I5・・・式3
但し、電流I5は定電流源CC1からの電流I1を超える値にはならない。
定電流源CC1の電流I1と定電流源CC2の電流I4を同じ電流値に設定して、式2と3を整理すると、
I3=I1−(I4−I2)=I1−(I1−I2)=I2・・・式5
従って、抵抗Rocpの両端の電圧Vocp_refは下式であらわされる。
Vocp_ref=I2×Rocp
=(VREF/Rset)×Rocp・・・式6
The current I4 of the constant current source CC2 is divided into a current I2 flowing through the buffer amplifier B-AMP and a current I5 flowing through the MOSFET Q3 of the current mirror circuit, and a current obtained by subtracting the current I2 from the current I1 flows.
I5 = I4-I2 Formula 2
The current flowing through MOSFET Q4 of the current mirror circuit has the same current value I5 as the current flowing through MOSFET Q3, and shunts current I1 of constant current source CC1. Since the current I1 of the constant current source CC1 is divided into the current I5 flowing through the MOSFET Q4 and the current I3 flowing through the resistor Rocp, the current I3 flowing through the resistor Rocp is expressed by the following equation.
I3 = I1-I5 Formula 3
However, the current I5 does not exceed the current I1 from the constant current source CC1.
When the current I1 of the constant current source CC1 and the current I4 of the constant current source CC2 are set to the same current value, and formulas 2 and 3 are arranged,
I3 = I1- (I4-I2) = I1- (I1-I2) = I2 Formula 5
Accordingly, the voltage Vocp_ref across the resistor Rocp is expressed by the following equation.
Vocp_ref = I2 × Rocp
= (VREF / Rset) × Rocp Equation 6
式6から明らかなように、外部抵抗Rsetの抵抗値が高抵抗になるにつれて最小の過電流検出ポイントに近づき、外部抵抗Rsetの抵抗値が低抵抗になるにつれて最大の過電流検出ポイントに近づく設定とすることが可能になる。
すなわち、外部抵抗が何らかの要因により解放状態になっても、過電流検出ポイントは最小値に設定されるので、負荷の損傷又はDC−DCコンバータの破損を防止することができる。
As is clear from Equation 6, the minimum overcurrent detection point approaches as the resistance value of the external resistor Rset increases, and the maximum overcurrent detection point approaches as the resistance value of the external resistor Rset decreases. It becomes possible.
In other words, even if the external resistance is released due to some factor, the overcurrent detection point is set to the minimum value, so that damage to the load or DC-DC converter can be prevented.
以上、具体的な実施例により本発明を説明したが、これは例示であって、本発明の趣旨を逸脱しない範囲で変更して実施できることは言うまでもない。上記実施形態では、本発明を降圧型DC−DCコンバータのパワーMOSFETの電流検出回路に適用した例を説明したが、昇圧型DC−DCコンバータのパワーMOSFETの電流検出回路に適用してもよく、直流/交流変換のインバータ回路に適用するなど、上記実施例には限定されない。 Although the present invention has been described above by way of specific examples, it is needless to say that this is an exemplification, and modifications can be made without departing from the spirit of the present invention. In the above embodiment, an example in which the present invention is applied to the current detection circuit of the power MOSFET of the step-down DC-DC converter has been described. However, the present invention may be applied to a current detection circuit of the power MOSFET of the step-up DC-DC converter. The present invention is not limited to the above-described embodiments, such as being applied to a DC / AC conversion inverter circuit.
VIN 直流電源
Q1 パワーMOSFET
Q2 センスMOSFET
Q3,Q4 MOSFET
Qb トランジスタ
Rs センス抵抗
SBD フライホイールダイオード
C 平滑コンデンサ
L リアクトル
OTA1 電流検出回路
OP1 オペアンプ
Bf バッファ回路
CC1,CC2 定電流源
VREF,Vc 基準電圧
REG 内部電源
Rsns,Rocp,Rset 抵抗
VIN DC power supply Q1 Power MOSFET
Q2 sense MOSFET
Q3, Q4 MOSFET
Qb transistor Rs sense resistor SBD flywheel diode C smoothing capacitor L reactor OTA1 current detection circuit OP1 operational amplifier Bf buffer circuit CC1, CC2 constant current source VREF, Vc reference voltage REG internal power supply Rsns, Rocp, Rset resistance
Claims (2)
負荷に電力を供給するパワーMOSFETと、
前記パワーMOSFETに並列接続されたセンスMOSFETとセンス抵抗の直列体とを備え、
前記センス抵抗に流れる電流を検出して増幅する電流増幅器と、
前記電流増幅器の出力電流信号を電圧信号に変換するセンス電流電圧変換回路と、
前記外部端子に接続された前記外付け抵抗の抵抗値に応じた基準電流を生成する基準電流生成回路と、
該基準電流生成回路によって生成された前記基準電流を基準電圧に変換する電流電圧変換回路と、
前記センス電流電圧変換回路の電圧信号を該電流電圧変換回路によって変換された前記基準電圧と比較することで、過電流検知信号を生成することを特徴とする過電流検出回路。 An overcurrent detection circuit incorporated in an integrated circuit having an external terminal to which an external resistor is connected,
A power MOSFET for supplying power to the load;
A sense MOSFET connected in parallel to the power MOSFET and a series body of a sense resistor;
A current amplifier for detecting and amplifying the current flowing through the sense resistor;
A sense current voltage conversion circuit for converting an output current signal of the current amplifier into a voltage signal;
A reference current generating circuit that generates a reference current according to a resistance value of the external resistor connected to the external terminal;
A current-voltage conversion circuit that converts the reference current generated by the reference current generation circuit into a reference voltage;
An overcurrent detection circuit that generates an overcurrent detection signal by comparing a voltage signal of the sense current / voltage conversion circuit with the reference voltage converted by the current / voltage conversion circuit.
負荷に電力を供給するパワーMOSFETと、
前記パワーMOSFETに並列接続されたセンスMOSFETとセンス抵抗の直列体とを備え、
前記センス抵抗に流れる電流を検出して増幅する電流増幅器と、
前記電流増幅器の出力電流信号を電圧信号に変換するセンス電流電圧変換回路と、
前記外部端子に接続された前記外付け抵抗の抵抗値に応じた基準電流を生成する基準電流生成回路と、
定電流源を備え、
前記定電流源の定電流値から前記外付け抵抗の抵抗値に応じた基準電流を減算し、減算された電流を基準電圧に変換する電流電圧変換回路と、
前記センス電流電圧変換回路の電圧信号を該電流電圧変換回路によって変換された前記基準電圧と比較することで、過電流検知信号を生成することを特徴とする過電流検出回路。 An overcurrent detection circuit incorporated in an integrated circuit having an external terminal to which an external resistor is connected,
A power MOSFET for supplying power to the load;
A sense MOSFET connected in parallel to the power MOSFET and a series body of a sense resistor;
A current amplifier for detecting and amplifying the current flowing through the sense resistor;
A sense current voltage conversion circuit for converting an output current signal of the current amplifier into a voltage signal;
A reference current generating circuit that generates a reference current according to a resistance value of the external resistor connected to the external terminal;
With a constant current source,
A current-voltage conversion circuit that subtracts a reference current corresponding to a resistance value of the external resistor from a constant current value of the constant current source, and converts the subtracted current into a reference voltage;
An overcurrent detection circuit that generates an overcurrent detection signal by comparing a voltage signal of the sense current / voltage conversion circuit with the reference voltage converted by the current / voltage conversion circuit.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011077192A JP2012211805A (en) | 2011-03-31 | 2011-03-31 | Current detection circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011077192A JP2012211805A (en) | 2011-03-31 | 2011-03-31 | Current detection circuit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2012211805A true JP2012211805A (en) | 2012-11-01 |
Family
ID=47265885
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2011077192A Pending JP2012211805A (en) | 2011-03-31 | 2011-03-31 | Current detection circuit |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2012211805A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20180126042A (en) | 2016-04-28 | 2018-11-26 | 로무 가부시키가이샤 | Overcurrent protection circuit |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62128204A (en) * | 1985-11-28 | 1987-06-10 | Mitsubishi Electric Corp | constant current circuit |
| JPH11330927A (en) * | 1998-05-20 | 1999-11-30 | Matsushita Electron Corp | Semiconductor device |
| JP2000010643A (en) * | 1998-06-19 | 2000-01-14 | Toyota Motor Corp | Constant current source |
| JP2010093339A (en) * | 2008-10-03 | 2010-04-22 | Sanken Electric Co Ltd | Load drive circuit |
-
2011
- 2011-03-31 JP JP2011077192A patent/JP2012211805A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62128204A (en) * | 1985-11-28 | 1987-06-10 | Mitsubishi Electric Corp | constant current circuit |
| JPH11330927A (en) * | 1998-05-20 | 1999-11-30 | Matsushita Electron Corp | Semiconductor device |
| JP2000010643A (en) * | 1998-06-19 | 2000-01-14 | Toyota Motor Corp | Constant current source |
| JP2010093339A (en) * | 2008-10-03 | 2010-04-22 | Sanken Electric Co Ltd | Load drive circuit |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20180126042A (en) | 2016-04-28 | 2018-11-26 | 로무 가부시키가이샤 | Overcurrent protection circuit |
| KR20200022533A (en) | 2016-04-28 | 2020-03-03 | 로무 가부시키가이샤 | Overcurrent protection circuit |
| US10790657B2 (en) | 2016-04-28 | 2020-09-29 | Rohm Co., Ltd. | Overcurrent protection circuit |
| US11183829B2 (en) | 2016-04-28 | 2021-11-23 | Rohm Co., Ltd. | Overcurrent protection circuit |
| US11637420B2 (en) | 2016-04-28 | 2023-04-25 | Rohm Co., Ltd. | Overcurrent protection circuit |
| US11843235B2 (en) | 2016-04-28 | 2023-12-12 | Rohm Co., Ltd. | Overcurrent protection circuit |
| DE112017001822B4 (en) | 2016-04-28 | 2024-12-12 | Rohm Co. Ltd. | OVERCURRENT PROTECTION CIRCUIT |
| US12184054B2 (en) | 2016-04-28 | 2024-12-31 | Rohm Co., Ltd. | Overcurrent protection circuit |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9559586B2 (en) | Switch mode power supply, control circuit and associated control method | |
| US9229035B2 (en) | Current detection circuit and switch regulator using the same | |
| US8018694B1 (en) | Over-current protection for a power converter | |
| KR101017656B1 (en) | Synchronous Rectified Switching Regulator | |
| US8310845B2 (en) | Power supply circuit with a control terminal for different functional modes of operation | |
| US20200169170A1 (en) | Cot controlled multi-phase converter and control circuit thereof | |
| US9425689B2 (en) | Load regulation compensation module and switching converter comprising the same | |
| JP5118940B2 (en) | Power supply | |
| TWI549409B (en) | Voltage converting controller and method of voltage converting control | |
| JP2016163438A (en) | Switching power supply | |
| TW200427198A (en) | DC to DC converter having fast transient-response of loading and method of the same | |
| CN114696613A (en) | Oscillator of switch converter and switch converter | |
| TW201413411A (en) | DC-DC controller | |
| CN105874699A (en) | DC-Dc converter | |
| CN201352323Y (en) | High-efficient synchronous rectification depressurization-type voltage stabilizer | |
| TWI497883B (en) | Boost apparatus with over-current and over-voltage protection function | |
| TWI387192B (en) | Method for reducing energy loss in dc-dc converter and related control device and dc-dc converter | |
| CN111082663A (en) | Apparatus and method for controlling a switched mode power converter using a duty cycle state machine | |
| US11777405B2 (en) | Boost off time adaptive adjustment unit and power converter comprising the same | |
| US20170126128A1 (en) | Boost converter and the method thereof | |
| TW201251290A (en) | Buck DC-DC converter | |
| CN210640810U (en) | High-voltage BUCK switch converter and related integrated circuit | |
| JP2012211805A (en) | Current detection circuit | |
| CN101394104A (en) | USB charging circuit | |
| KR101822039B1 (en) | Power Converter For Improving Speed of Blocking Inductor Current |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130917 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140326 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140416 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140606 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140703 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141028 |