JP2012212574A - Optical lens, and lighting device - Google Patents
Optical lens, and lighting device Download PDFInfo
- Publication number
- JP2012212574A JP2012212574A JP2011077963A JP2011077963A JP2012212574A JP 2012212574 A JP2012212574 A JP 2012212574A JP 2011077963 A JP2011077963 A JP 2011077963A JP 2011077963 A JP2011077963 A JP 2011077963A JP 2012212574 A JP2012212574 A JP 2012212574A
- Authority
- JP
- Japan
- Prior art keywords
- optical lens
- light
- curve
- cross
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
本発明は、光源から放射された光の配光を制御する光学レンズ及びそれを用いた照明装置に関する。 The present invention relates to an optical lens that controls light distribution of light emitted from a light source, and an illumination device using the same.
発光ダイオード(以下、LED)は、低電力で高輝度の発光が可能であり、表示等や照明器具等の様々な電気機器の光源として使用されている。近年では、赤色LED及び緑色LEDに加えて、青色LEDが実用化され、これらRGB3色のLEDを組み合わせることにより、様々な光色を発光することができる。また、青色LEDと黄色系蛍光体とを組み合わせた、いわゆる白色LEDが他分野で利用されている。 Light emitting diodes (hereinafter referred to as LEDs) are capable of emitting light with low power and high luminance, and are used as light sources for various electric devices such as displays and lighting equipment. In recent years, blue LEDs have been put into practical use in addition to red LEDs and green LEDs, and various light colors can be emitted by combining these RGB three-color LEDs. In addition, so-called white LEDs in which blue LEDs and yellow phosphors are combined are used in other fields.
LEDは、蛍光灯等の従来の光源に比べて長寿命であり、交換やメンテナンスの手間が少ないことから、信号機や各種表示灯の光源として利用されている。また、LEDを、高速道路や一般道路等の道路照明の光源として用いたものが知られている(例えば、特許文献1参照)。上記特許文献1に記載の照明装置においては、LEDからの光を収束させる第1及び第2の収束部と、これらを橋渡しする発散部とを有する光学レンズを用いることにより、道路の広い範囲に光が照射されるようになされている。 LEDs are used as light sources for traffic lights and various display lamps because they have a longer life than conventional light sources such as fluorescent lamps and require less replacement and maintenance. Moreover, what uses LED as a light source of road illuminations, such as a highway and a general road, is known (for example, refer patent document 1). In the illuminating device described in Patent Document 1, by using an optical lens having first and second converging parts for converging light from LEDs and a diverging part for bridging them, it can be applied to a wide range of roads. Light is irradiated.
ところで、トンネル用照明装置の技術分野においては、図14に示すように、車両等が走行する方向に平行な面をB断面といい、このB断面に直交するする面をA断面という。トンネル用照明装置においては、B断面に沿う方向への光の照射範囲が広いことが望まれ、一方、A断面に沿う方向については、路面の所定範囲を照明できればよく、また、輝度低下を抑制するためには、光の照射範囲はある程度制限されている方が好ましい。 By the way, in the technical field of the tunnel illumination device, as shown in FIG. 14, a plane parallel to the direction in which the vehicle or the like travels is called a B section, and a plane orthogonal to the B section is called an A section. In the tunnel lighting device, it is desired that the light irradiation range in the direction along the B cross section is wide. On the other hand, in the direction along the A cross section, it is only necessary to illuminate a predetermined range of the road surface, and the luminance reduction is suppressed. In order to achieve this, it is preferable that the light irradiation range be limited to some extent.
そこで、図15(a)(b)に示すような、半楕円形状の光学レンズ103を用いることにより、A断面方向及びB断面方向の夫々の光の照射範囲を制御することができる。この光学レンズ103を用いた照明装置の配光曲線を図16に示す。光学レンズ103を用いることにより、B断面に沿う方向には、広い範囲に光を照射することができ、また、A断面に沿う方向には、B断面に比べて狭い範囲に光を照射することができる。 Therefore, by using a semi-elliptical optical lens 103 as shown in FIGS. 15A and 15B, the light irradiation range in the A cross-sectional direction and the B cross-sectional direction can be controlled. A light distribution curve of an illuminating device using the optical lens 103 is shown in FIG. By using the optical lens 103, light can be irradiated over a wide range in the direction along the B cross section, and light can be irradiated over a narrow range compared with the B cross section in the direction along the A cross section. Can do.
しかしながら、上記光学レンズ103を用いた場合、A断面に沿う配光曲線は、配光角度10〜20°における膨らみが大きく(上記図16中L1で示す領域)、一方、配光角度30〜40°における膨らみが小さい(図中L2で示す領域)。このような配光によれば、車線中心部の輝度は高くなるが、路肩近傍の輝度が低くなり、トンネル内の路面全体の輝度が不均一となり、光ムラを生じる虞がある。また、A断面に沿う光が、光学レンズ3の側面から一部漏れており(図中L3で示す領域)、光利用効率を低下させていた。 However, when the optical lens 103 is used, the light distribution curve along the A section has a large bulge at a light distribution angle of 10 to 20 ° (region indicated by L1 in FIG. 16), while the light distribution angle is 30 to 40. Swelling at ° is small (region indicated by L2 in the figure). According to such a light distribution, the luminance at the center of the lane increases, but the luminance near the road shoulder decreases, the luminance of the entire road surface in the tunnel becomes non-uniform, and there is a possibility of causing light unevenness. Further, a part of the light along the A cross section leaked from the side surface of the optical lens 3 (region indicated by L3 in the figure), and the light use efficiency was lowered.
また、上記特許文献1に記載の照明装置は、光学レンズからは広い範囲に均等に光が照射されるが、照射面においては、その距離や配置等に応じて光ムラを生じることがある。 In the illumination device described in Patent Document 1, light is evenly irradiated over a wide range from the optical lens. However, unevenness of light may occur on the irradiation surface depending on the distance, arrangement, and the like.
本発明は、上記課題に鑑みてなされたものであり、主としてトンネル用照明に用いられ、光源から放射された光を所定方向に配光制御して、照射面(路面)における光ムラを抑制することができる光学レンズ及びそれを用いた照明装置を提供することを目的とする。 The present invention has been made in view of the above problems, and is mainly used for tunnel illumination. Light distribution from a light source is controlled in a predetermined direction to suppress light unevenness on an irradiation surface (road surface). It is an object of the present invention to provide an optical lens that can be used and an illumination device using the same.
上記課題を解決するため、本発明に係る光学レンズは、光源からの光が入射される入射面と、前記入射面に入射した光を出射する出射面とを有し、前記光源からの光を拡散して出射する光学レンズであって、前記出射面は、凸状の外郭形状を成し、前記入射面の中央部を通る法線を含む一平面における前記出射面の断面形状が、曲率半径の異なる複数の曲線から成り、前記入射面の中央部と対峙する位置に、曲率半径の大きな第1の曲線が配され、前記第1の曲線の両側に、該第1の曲線より曲率半径が小さい第2の曲線が夫々配されていることを特徴とする。 In order to solve the above-described problems, an optical lens according to the present invention has an incident surface on which light from a light source is incident and an output surface that emits light incident on the incident surface, and emits light from the light source. An optical lens that diffuses and emits, wherein the exit surface has a convex outer shape, and a cross-sectional shape of the exit surface in a plane including a normal passing through a central portion of the entrance surface has a radius of curvature. A first curve having a large curvature radius is arranged at a position facing the central portion of the incident surface, and the radius of curvature is larger than that of the first curve on both sides of the first curve. A small second curve is arranged, respectively.
上記光学レンズにおいて、前記第1の曲線及び前記第2の曲線の境界が、滑らかに連続していることが好ましい。 In the optical lens, it is preferable that a boundary between the first curve and the second curve is smoothly continuous.
上記光学レンズにおいて、前記第2の曲線の前記入射面と連続する端部が、前記入射面の中央部寄りに屈曲していることが好ましい。 In the optical lens, it is preferable that an end portion of the second curved line that is continuous with the incident surface is bent toward a center portion of the incident surface.
上記光学レンズにおいて、前記入射面は、その中央部に凹部を有することが好ましい。 In the optical lens, it is preferable that the incident surface has a concave portion at a central portion thereof.
上記光学レンズにおいて、前記一平面と直交する平面における前記凹部の断面形状が、前記平面における前記出射面の断面形状を成す曲線とは軌道が異なる曲線から成ることが好ましい。 In the optical lens, it is preferable that a cross-sectional shape of the recess in a plane orthogonal to the one plane is a curve having a different trajectory from a curve forming a cross-sectional shape of the exit surface in the plane.
上記光学レンズにおいて、前記出射面は、前記一平面と直交する平面視において、その両端領域にグレア抑制加工が施されていることが好ましい。 In the optical lens, it is preferable that the exit surface is subjected to glare suppression processing in both end regions in a plan view orthogonal to the one plane.
上記光学レンズ、照明装置に用いられることが好ましい。 It is preferably used for the optical lens and the illumination device.
本発明によれば、出射面の断面形状が、曲率半径の大きな第1の曲線と、この第1の曲線の両側に配された第2の曲線によって成るので、出射面における第1の曲線によって模られる箇所からの光の一部が抑制される。一方、出射面の第2の曲線2によって模られる箇所からの光の一部が促進されるので、照射面における光ムラを抑制することができる。 According to the present invention, the cross-sectional shape of the exit surface is constituted by the first curve having a large radius of curvature and the second curves arranged on both sides of the first curve. A part of the light from the simulated place is suppressed. On the other hand, since a part of the light from the location imitated by the second curve 2 on the emission surface is promoted, unevenness of light on the irradiation surface can be suppressed.
本発明の一実施形態に係る照明装置について、図1乃至図10を参照して説明する。本実施形態の照明装置1は、図1に示すように、光源20を有する光源ユニット2と、この光源ユニット2上に配置される光学レンズ3と、光源ユニット2及び光学レンズ3とを保持する保持板4と、を備える。なお、照明装置1は、街路灯等の種々の照明装置として用いられ得るが、以下、トンネル用照明装置として利用される例を説明する。また、上述したように、トンネルにおいて、車両等が走行する方向に平行な面をB断面といい、このB断面に直交するする面をA断面という。本例においては、上記図1に示したように、光源ユニット2及び光学レンズ3が、長手方向及び短手方向を有するように形成され、その長手方向がトンネルのB断面に沿うように配置された構成について説明する。 An illumination device according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the illumination device 1 of the present embodiment holds a light source unit 2 having a light source 20, an optical lens 3 disposed on the light source unit 2, and the light source unit 2 and the optical lens 3. Holding plate 4. In addition, although the illuminating device 1 can be used as various illuminating devices, such as a street lamp, the example utilized as an illuminating device for tunnels is demonstrated below. Further, as described above, in the tunnel, a plane parallel to the traveling direction of the vehicle or the like is referred to as a B section, and a plane orthogonal to the B section is referred to as an A section. In this example, as shown in FIG. 1, the light source unit 2 and the optical lens 3 are formed so as to have a longitudinal direction and a lateral direction, and the longitudinal direction thereof is arranged along the B cross section of the tunnel. The configuration will be described.
光源ユニット2は、上記光源20に加えて、光源20を搭載するベース部材21と、ベース部材21が取り付けられる取付枠22と、を備える。光源20は、複数のLEDチップ(不図示)がマトリクス状に配置され、それらLEDチップの光出射面に蛍光体を含有する波長変換部材が被覆されたものである。LEDチップには、例えば、青色光を放射するGaN系青色LEDチップ等が用いられる。波長変換部材には、例えば、シリコーン樹脂等の透光性樹脂に、YAG系黄色蛍光体が含有されたもの等が用いられる。ベース部材21は、その中央領域に掘り込み形成された凹状部と、この凹状部の底面にはLEDチップのアノード電極及びカソード電極に電気的に接続される配線パターン(不図示)とを備える。この配線パターンは、ベース部材21の裏面側に設けられた電極取出部(不図示)に接続される。ベース部材21は、ネジ止め又は接着等により取付枠22に固定される。取付枠22は、ベース部材21の取付位置に、ベース部材21の電極取出部に接続された配線を収納する収納部(不図示)と、上記配線を照明装置1外に取り出す配線口(不図示)とを備える。また、取付枠22のベース部材21の取付位置の周縁部、本例においては、当該周縁部の長手方向の両端部に、光源ユニット2を保持板4に固定するネジ51を挿通させるためのネジ孔23が形成されている。 In addition to the light source 20, the light source unit 2 includes a base member 21 on which the light source 20 is mounted, and an attachment frame 22 to which the base member 21 is attached. In the light source 20, a plurality of LED chips (not shown) are arranged in a matrix, and the wavelength conversion member containing a phosphor is coated on the light emission surface of the LED chips. For example, a GaN blue LED chip that emits blue light is used as the LED chip. As the wavelength conversion member, for example, a translucent resin such as a silicone resin containing a YAG yellow phosphor is used. The base member 21 includes a concave portion formed by digging in a central region thereof, and a wiring pattern (not shown) electrically connected to the anode electrode and the cathode electrode of the LED chip on the bottom surface of the concave portion. This wiring pattern is connected to an electrode extraction portion (not shown) provided on the back side of the base member 21. The base member 21 is fixed to the mounting frame 22 by screwing or bonding. The mounting frame 22 has a storage portion (not shown) for storing the wiring connected to the electrode extraction portion of the base member 21 at the mounting position of the base member 21 and a wiring port (not shown) for taking out the wiring out of the lighting device 1. ). Moreover, the screw | thread for inserting the screw | thread 51 which fixes the light source unit 2 to the holding plate 4 in the peripheral part of the attachment position of the base member 21 of the attachment frame 22, in this example, the both ends of the longitudinal direction of the said peripheral part. A hole 23 is formed.
光学レンズ3は、光源20からの光が入射される入射面31と、この入射面31に入射された光を出射する出射面32とを有する。出射面32は、入射面31に入射された光を拡散して出射できるように、凸状の外郭形状を成す。これら入射面31及び出射面32が、光学レンズ3のレンズ本体部30を構成する。レンズ本体部30は、B断面方向の幅が、A断面方向の幅より大きくなるように形成されている。なお、後述する取付脚部35を含め、光学レンズ3は、アクリル樹脂、ポリカーボネート樹脂又はガラス等、透光性に優れた材料から形成される。 The optical lens 3 has an incident surface 31 on which light from the light source 20 is incident, and an output surface 32 that emits light incident on the incident surface 31. The exit surface 32 has a convex outer shape so that the light incident on the entrance surface 31 can be diffused and emitted. The entrance surface 31 and the exit surface 32 constitute the lens body 30 of the optical lens 3. The lens body 30 is formed so that the width in the B cross-sectional direction is larger than the width in the A cross-sectional direction. In addition, the optical lens 3 including the attachment leg part 35 mentioned later is formed from the material excellent in translucency, such as an acrylic resin, a polycarbonate resin, or glass.
入射面31には、図2(a)(b)に示すように、光源ユニット2のベース部材21を収容する光源収納部33が掘り込まれ、光源収納部33の中央部における光源20と対向する箇所に、凹部34が更に掘り込み形成されている。光源収納部33には、ネジ51のネジ頭を収納する凹部36が形成されている。 As shown in FIGS. 2A and 2B, a light source housing portion 33 that houses the base member 21 of the light source unit 2 is dug in the incident surface 31, and faces the light source 20 in the center portion of the light source housing portion 33. A recessed portion 34 is further dug and formed at the place to be formed. The light source storage portion 33 is formed with a recess 36 for storing the screw head of the screw 51.
レンズ本体部30の長手方向の両端部には、取付脚部35が夫々延設されている。これら取付脚部35は、レンズ本体部30の短手方向に互い違いに設けられる。取付脚部35は、レンズ本体部30から水平に延びた延設部35aと、この延設部35aをレンズ本体部30に接続する垂辺部35cとを有し、延設部35aと光源収納部33とが垂辺部35bを介して段違い構造となるように形成されている。また、垂辺部35bは、光源ユニット2(特に取付枠22)の形状に合せて、光源収納部33の中央が広くなるように、斜めに切りかかれている。また、垂辺部35bの高さは、取付枠22の長手方向の長さ及び取付枠22の厚さに対応するように形成されている。延設部35aには、光学レンズ3を保持板4に固定するネジ52を挿通させるためのネジ孔37が形成されている。保持板4は、ネジ51,52が挿通される固定孔41,42と、トンネルの側壁又は天井等に固定するための任意の保持構造(不図示)とを備える。 At both end portions of the lens body 30 in the longitudinal direction, attachment leg portions 35 are respectively extended. These mounting legs 35 are provided alternately in the lateral direction of the lens body 30. The mounting leg portion 35 includes an extending portion 35a that extends horizontally from the lens body portion 30 and a vertical portion 35c that connects the extending portion 35a to the lens body portion 30. The extending portion 35a and the light source housing The part 33 is formed so as to have a stepped structure through the vertical part 35b. In addition, the vertical part 35b is cut obliquely so that the center of the light source storage part 33 is wide according to the shape of the light source unit 2 (particularly the mounting frame 22). Further, the height of the perpendicular portion 35 b is formed so as to correspond to the length in the longitudinal direction of the mounting frame 22 and the thickness of the mounting frame 22. A screw hole 37 for inserting a screw 52 for fixing the optical lens 3 to the holding plate 4 is formed in the extending portion 35a. The holding plate 4 includes fixing holes 41 and 42 through which the screws 51 and 52 are inserted, and an arbitrary holding structure (not shown) for fixing to the side wall or ceiling of the tunnel.
光学レンズ3は、図3に示すように、入射面31の中央部を通る法線NLを含む一平面、本例では、トンネルのA断面における出射面32の断面形状が、曲率半径の異なる複数の曲線C1,C2から成る。また、入射面31の中央部と対峙する位置に曲率半径の大きな第1の曲線C1が配され、第1の曲線C1の両側に、第1の曲線C1より曲率半径が小さい第2の曲線C2が夫々配されている。 As shown in FIG. 3, the optical lens 3 has a plane including the normal line NL passing through the central portion of the incident surface 31, and in this example, the cross-sectional shape of the exit surface 32 in the A cross section of the tunnel has a plurality of different curvature radii. Of the curves C1 and C2. In addition, a first curve C1 having a large curvature radius is disposed at a position facing the central portion of the incident surface 31, and a second curve C2 having a curvature radius smaller than that of the first curve C1 is provided on both sides of the first curve C1. Are arranged respectively.
第1の曲線C1及び第2の曲線C2は、必ずしも正円の一部を成す円弧に限られない。例えば、第1の曲線C1は、法線NL方向を長軸とする楕円の一部を成す円弧であることが好ましい。こうすれば、第1の曲線C1の頂点部P4が突出するので、法線NL方向に対する光の照射を多くすることができる。 The 1st curve C1 and the 2nd curve C2 are not necessarily restricted to the circular arc which comprises a part of perfect circle. For example, the first curve C1 is preferably an arc that forms a part of an ellipse whose major axis is the direction of the normal NL. By doing so, the apex portion P4 of the first curve C1 protrudes, so that it is possible to increase the light irradiation in the normal NL direction.
第1の曲線C1及び第2の曲線C2は、夫々曲率半径及び中心位置が異なるので、これらの交点P3には、図4の(A)に示すような僅かな段差が生じる。そこで、図4の(B)に示すように、これら曲率半径の異なる曲線C1,C2の境界は、逆R状部Mによって滑らかに連続するように加工が施されることが好ましい。こうすれば、曲線C1,C2の境界によって生じる光ムラを抑制することができ、より自然な配光制御が可能となる。 Since the first curve C1 and the second curve C2 have different radii of curvature and center positions, a slight step as shown in FIG. 4A occurs at the intersection P3. Therefore, as shown in FIG. 4B, it is preferable that the boundary between the curves C1 and C2 having different curvature radii is processed so as to be smoothly continuous by the inverted R-shaped portion M. By so doing, light unevenness caused by the boundary between the curves C1 and C2 can be suppressed, and more natural light distribution control becomes possible.
光学レンズ3の、第2の曲線C2の入射面31と連続する端部C2’について、図5(a)乃至(c)を参照して説明する。図5(a)は図5(c)のA1断面であり、図5(b)は図5(c)のA2断面である。端部C2’は、図5(a)に示すように、入射面31の中央部寄りに屈曲していることが好ましい。この構成によれば、凹部34(入射面31)に入射した光のうち、出射面32の端部C2’近傍へ向かう光の、その近傍に対する入射角が大きくなるので、この界面において全反射され易くなる。そのため、この端部C2’近傍を透過して、光学レンズ3の短手方向への漏れる光が少なくなり、光源20からの光を効率的に利用することができる。このような屈曲した端部C2’は、光学レンズ3のうち、光源20に近い位置、すなわち、図5(c)に示すB断面における中央部を通る断面A1において形成されていればよい。従って、光学レンズ3のうち、光源20から遠い位置、すなわち、図5(c)に示すB断面における入射面31の端部を通る断面A2においては、図5(b)に示すように、端部C2’は屈曲されていなくてもよい。 An end C2 'that is continuous with the incident surface 31 of the second curve C2 of the optical lens 3 will be described with reference to FIGS. FIG. 5A is an A1 cross section of FIG. 5C, and FIG. 5B is an A2 cross section of FIG. 5C. The end C2 'is preferably bent toward the center of the incident surface 31, as shown in FIG. According to this configuration, of the light incident on the concave portion 34 (incident surface 31), the light incident on the vicinity of the end C2 ′ of the output surface 32 has a large incident angle with respect to the vicinity thereof, and thus is totally reflected at this interface. It becomes easy. Therefore, light passing through the vicinity of the end C2 'and leaking in the short direction of the optical lens 3 is reduced, and the light from the light source 20 can be used efficiently. Such a bent end C2 'may be formed in the optical lens 3 at a position close to the light source 20, that is, in a cross section A1 passing through the central portion in the B cross section shown in FIG. Accordingly, in the optical lens 3 at a position far from the light source 20, that is, in the cross section A2 passing through the end portion of the incident surface 31 in the B cross section shown in FIG. 5C, the end as shown in FIG. The part C2 ′ may not be bent.
また、光学レンズ3は、図6に示すように、上述した入射面31の中央部を通る法線NLを含む一平面と直交する平面、本例では、トンネルのB断面に沿った凹部34の断面形状が、出射面32の断面形状を成す曲線C3とは軌道が異なる曲線C4から成る。すなわち、出射面32の断面形状を成す曲線C3は、正円S1の一部を構成する曲線(円弧)であり、一方、凹部34の断面形状を成す曲線C4は、楕円S2の一部を構成する曲線である。 Further, as shown in FIG. 6, the optical lens 3 has a plane orthogonal to one plane including the normal line NL passing through the central portion of the incident surface 31 described above, in this example, the concave portion 34 along the B cross section of the tunnel. The cross-sectional shape is a curve C4 having a different trajectory from the curve C3 that forms the cross-sectional shape of the exit surface 32. That is, the curve C3 that forms the cross-sectional shape of the exit surface 32 is a curve (arc) that forms part of the perfect circle S1, while the curve C4 that forms the cross-sectional shape of the recess 34 forms part of the ellipse S2. It is a curve to do.
このように、凹部34を入射面32に設けることにより、出射面32における光の屈折に加えて、入射面31(凹部34)における光の屈折を制御して、より詳細に配光を制御することができる。また、B断面に沿う凹部34の断面形状が、上述したように、出射面32の断面形状を成す曲線C3とは軌道が異なる曲線C4から成されることにより、B断面に沿った方向の配光を制御することができる。つまり、光学レンズ3は、A断面に沿う出射面32の断面形状によって、A断面に沿った方向の配光を制御することができ、B断面に沿う凹部34の断面形状によって、B断面に沿った方向の配光を制御することができる。 As described above, by providing the concave portion 34 on the incident surface 32, in addition to the light refraction at the emission surface 32, the light refraction at the incident surface 31 (the concave portion 34) is controlled to control the light distribution in more detail. be able to. Further, as described above, the cross-sectional shape of the recess 34 along the B cross-section is formed by the curve C4 having a different trajectory from the curve C3 forming the cross-sectional shape of the emission surface 32, whereby the arrangement in the direction along the B cross-section is made. Light can be controlled. That is, the optical lens 3 can control the light distribution in the direction along the A cross section by the cross sectional shape of the emission surface 32 along the A cross section, and along the B cross section by the cross sectional shape of the recess 34 along the B cross section. The light distribution in different directions can be controlled.
ここで、凹部34の形状について、図7及び図8を参照してより詳細に説明する。まず、レンズ本体部30内に、図7に示すような、仮想上の回転切片5を作製する。この回転切片5は、曲率半径の異なる複数の曲線又は楕円により構成されている。そして、この回転切片5を、図8に示すように、楕円軌道S3に沿ってスイープして得られた仮想立体50の表面に沿って、レンズ本体部30を、入射面31(光源収納部33)側から刳り貫くことにより、凹部34の外殻表面が形成される。 Here, the shape of the recessed part 34 is demonstrated in detail with reference to FIG.7 and FIG.8. First, an imaginary rotating piece 5 as shown in FIG. The rotating segment 5 is composed of a plurality of curves or ellipses having different radii of curvature. Then, as shown in FIG. 8, the lens body 30 is moved along the surface of the virtual solid 50 obtained by sweeping the rotating segment 5 along the elliptical orbit S <b> 3, and the incident surface 31 (the light source storage unit 33). The outer shell surface of the concave portion 34 is formed by punching from the side.
上述のように構成された本実施形態の光学レンズ3を用いた照明装置1の配光曲線を図9及び図10に示す。図9は、上記図4の(A)に示したように、出射面32のB断面に沿った断面形状において、第1の曲線C1と第2の曲線C2との境界に段差がある光学レンズ3を用いたときの配光曲線を示す。図10は、上記図4の(B)に示したように、第1の曲線C1と第2の曲線C2との境界が、逆R状部Mによって滑らかに連続している光学レンズ3を用いた時の配光曲線を示す。 9 and 10 show light distribution curves of the illumination device 1 using the optical lens 3 of the present embodiment configured as described above. FIG. 9 shows an optical lens having a step at the boundary between the first curve C1 and the second curve C2 in the cross-sectional shape along the B cross section of the emission surface 32 as shown in FIG. A light distribution curve when 3 is used is shown. 10 uses the optical lens 3 in which the boundary between the first curve C1 and the second curve C2 is smoothly continuous by the inverted R-shaped portion M, as shown in FIG. 4B. The light distribution curve when
上記図15に示したような、従来の光学レンズ103を用いた場合、上記図16に示したように、A断面に沿う配光曲線において、配光角度10〜20°における膨らみが大きく(同図中L1)、一方、配光角度30〜40°における膨らみが小さくなった(図中L2)。また、A断面に沿う光の一部が、光学レンズ3の側方へ漏れていた(図中L3)。 When the conventional optical lens 103 as shown in FIG. 15 is used, as shown in FIG. 16, the bulge at a light distribution angle of 10 to 20 ° is large in the light distribution curve along the A section (same as above). On the other hand, the bulge at a light distribution angle of 30 to 40 ° was reduced (L2 in the figure). Further, a part of the light along the A section leaked to the side of the optical lens 3 (L3 in the figure).
これに対して、本実施形態の光学レンズ3を用いた場合、図9に示すように、A断面に沿う配光曲線において、配光角度10〜20°における膨らみが小さくなり(同図中L1)、一方、配光角度30〜40°における膨らみが大きくなった(図中L2)。更に、光学レンズ3の側方への光の漏れも抑制された(図中L3)。 On the other hand, when the optical lens 3 of this embodiment is used, as shown in FIG. 9, in the light distribution curve along the A cross section, the bulge at a light distribution angle of 10 to 20 ° is reduced (L1 in the figure). On the other hand, the swelling at a light distribution angle of 30 to 40 ° increased (L2 in the figure). Furthermore, light leakage to the side of the optical lens 3 was also suppressed (L3 in the figure).
このように、光学レンズ3によれば、A断面に沿う配光曲線において、出射面32のうち、第1の曲線C1によって模られた箇所(図3参照)によって、配光角度10〜20°における膨らみを小さくすることができる。つまり、第1の曲線C1によって模られた箇所は、出射光を狭角の配光制御する狭角部として機能し、この狭角に配光された光の輝度を僅かに抑制する。また、出射面32のうち、第2の曲線C2によって模られた箇所によって、配光角度30〜40°における膨らみを大きくすることができる。つまり、第1の曲線C1によって模られた箇所は、出射光を狭角の配光制御する広角部として機能し、この広角に配光された光の輝度を促進する。このように、出射面32として狭角部と広角部とを有する光学レンズを用いて配光制御することにより、照明装置1は、トンネル内の車線中央部の輝度が高くなり過ぎず、また、路肩近傍の輝度が低くなり過ぎず、路面全体に対して光を均一に照射することができる。 Thus, according to the optical lens 3, in the light distribution curve along the A cross section, the light distribution angle of 10 to 20 ° is determined by the portion (see FIG. 3) imitated by the first curve C1 in the emission surface 32. The bulge in can be reduced. That is, the portion imitated by the first curve C1 functions as a narrow angle portion for controlling the light distribution of the emitted light at a narrow angle, and slightly suppresses the luminance of the light distributed at the narrow angle. Moreover, the bulge in the light distribution angle of 30-40 degrees can be enlarged according to the location simulated by the 2nd curve C2 among the output surfaces 32. FIG. That is, the portion imitated by the first curve C1 functions as a wide angle portion for controlling the light distribution of the narrow angle, and promotes the luminance of the light distributed at the wide angle. Thus, by controlling the light distribution using an optical lens having a narrow-angle part and a wide-angle part as the exit surface 32, the illumination device 1 does not have excessively high luminance at the center of the lane in the tunnel, The brightness near the road shoulder does not become too low, and the entire road surface can be irradiated with light uniformly.
なお、図9に示す配光曲線においては、図中L2で示す領域に、第1の曲線C1と第2の曲線C2との境界に段差に起因する光ムラが見られる。これに対して、第1の曲線C1と第2の曲線C2との境界を滑らかに連続させた光学レンズ3を用いた場合、図10に示すように、A断面に沿う配光曲線において、図中L2で示す領域の光ムラが低減された。 In the light distribution curve shown in FIG. 9, light unevenness due to a step is seen at the boundary between the first curve C1 and the second curve C2 in the region indicated by L2. On the other hand, when the optical lens 3 in which the boundary between the first curve C1 and the second curve C2 is smoothly continued is used, as shown in FIG. The light unevenness in the region indicated by the middle L2 was reduced.
次に、本実施形態の光学レンズ3を用いた照明装置1の器具評価を行なった。なお、この器具評価においては、出射面32を模る第1の曲線C1及び第2の曲線C2が滑らかに連続するように構成された構成、すなわち図4の(A)に示した構成であり、図10に示した配向曲線となる光学レンズ3を用いた。その結果を下記の表1に示す。 Next, the fixture evaluation of the illuminating device 1 using the optical lens 3 of this embodiment was performed. In addition, in this instrument evaluation, it is the structure comprised so that the 1st curve C1 and 2nd curve C2 imitating the output surface 32 may continue smoothly, ie, the structure shown to (A) of FIG. The optical lens 3 having the orientation curve shown in FIG. 10 was used. The results are shown in Table 1 below.
上記表1において、U0(総合均斉度)は、路面上の対象物の見え方を左右する指標であり、Lmin(車道最小部分輝度)/Lr(車道平均路面輝度)によって表される。トンネル照明においては、U0は0.4以上が好ましいとされる。Ul(車線軸均斉度)は、前方方向の明暗による不快の程度を左右する指標であり、Lmin(l)(車線中心線上の最小部分輝度)/Lr(車線中心線上の最大部分輝度)によって表される。Ulは0.6以上が好ましいとされる。Ti値(グレア)は、光の眩しさを左右する指標であり、トンネル照明における相対閾値は15%以下(規格値)が好ましいとされる。 In Table 1 above, U0 (total uniformity) is an index that affects the appearance of an object on the road surface, and is represented by Lmin (roadway minimum partial brightness) / Lr (roadway average road surface brightness). In tunnel illumination, U0 is preferably 0.4 or more. Ul (lane axis uniformity) is an index that determines the degree of discomfort due to light and darkness in the forward direction, and is expressed by Lmin (l) (minimum partial luminance on the lane center line) / Lr (maximum partial luminance on the lane center line). Is done. Ul is preferably 0.6 or more. The Ti value (glare) is an index that affects the glare of light, and the relative threshold value in tunnel illumination is preferably 15% or less (standard value).
上記表1に示した結果は、U0及びUlのいずれの地点の評価においても、目標配向を満たすものであった。一方、グレアに関しては、目標を満たさなかったものの、規格値である15%以下に抑えることができた。また、照明率についても、目標を上回り、光学レンズ3により、光利用効率が向上することが示された。 The results shown in Table 1 above met the target orientation in the evaluation at any point of U0 and Ul. On the other hand, with respect to glare, although the target was not satisfied, it was possible to suppress it to a standard value of 15% or less. Further, the illumination rate exceeded the target, and it was shown that the light utilization efficiency is improved by the optical lens 3.
上述した図5(a)において、第2の曲線C2の入射面31と連続する端部C2’が、入射面31の中央部寄りに屈曲している光学レンズ3を示した。ここで、図11(a)に示すように、端部C2’が、入射面31の中央部寄りに屈曲していない光学レンズ3を用いた場合の配光曲線を、図11(b)に示す。この光学レンズ3によれば、上記図A断面の配光曲線が、図中L4で示される領域において若干広がるが、図中L5で示される領域のボリュームが少なくなった。この結果は、光学レンズ3に入射した光が、僅かながら出射面32の端部C2’近傍から外部に放射をされているので、光が照射される範囲が広がる一方で、前面方向に対する輝度が低下したことを示す。これに対して、端部C2’を入射面31の中央部寄りに屈曲させることにより、この輝度低下を抑制することができる。 In FIG. 5A described above, the optical lens 3 in which the end C2 'continuous with the incident surface 31 of the second curve C2 is bent toward the center of the incident surface 31 is shown. Here, as shown in FIG. 11A, the light distribution curve when the optical lens 3 whose end C2 ′ is not bent toward the center of the incident surface 31 is used is shown in FIG. Show. According to this optical lens 3, the light distribution curve of the cross section of FIG. A slightly spreads in the region indicated by L4 in the drawing, but the volume of the region indicated by L5 in the drawing is reduced. As a result, the light incident on the optical lens 3 is slightly radiated to the outside from the vicinity of the end portion C2 ′ of the emission surface 32, so that the light irradiation range is widened, but the luminance with respect to the front direction is increased. Indicates that it has declined. On the other hand, the lowering of the luminance can be suppressed by bending the end C2 'toward the center of the incident surface 31.
次に、本実施形態の変形例に係る光学レンズについて、図12及び図13を参照して説明する。この変形例に係る光学レンズ3は、図12(a)(b)に示すように、出射面32が、入射面31の中央部を通る法線NLを含む一平面と直交する平面視、すなわちB断面から見たときに、その両端領域Gに、グレア抑制加工が施されているものである。この構成によれば、B断面に沿った配光曲線において、特に広角に配光される光をグレアを抑制することができる。 Next, an optical lens according to a modification of this embodiment will be described with reference to FIGS. As shown in FIGS. 12A and 12B, the optical lens 3 according to this modification has a plan view in which the exit surface 32 is orthogonal to one plane including the normal NL passing through the center of the entrance surface 31, that is, When viewed from the B cross section, glare suppression processing is applied to both end regions G thereof. According to this configuration, in the light distribution curve along the B section, it is possible to suppress glare particularly in light distributed at a wide angle.
例えば、図13に示すように、トンネルT内を走行する自動車に乗るドライバDは、前方に位置する照明装置1から光L1を受ける。しかし、この変形例においては、光L1はグレア抑制加工を施された出射面32から出射されているので、ドライバDに対して眩しさによる不快感を与え難くすることができる。一方、A断面に沿った方向へは、グレア抑制加工を施されていない出射面32から光L2が出射されるので、ドライバDは、前方の照射物を明確に視認することができる。 For example, as shown in FIG. 13, a driver D who gets on a car traveling in a tunnel T receives light L <b> 1 from the illumination device 1 located in front. However, in this modification, the light L1 is emitted from the emission surface 32 that has been subjected to the glare suppression process, so that it is possible to make it difficult for the driver D to feel discomfort due to glare. On the other hand, since the light L2 is emitted from the emission surface 32 that has not been subjected to the glare suppression process in the direction along the A cross section, the driver D can clearly see the irradiated object in front.
なお、本発明は、上記実施形態に限らず、種々の変形が可能である。例えば、光学レンズ3の出射面において、第1の曲線C1の両側に配される一対の第2の曲線C2は、その曲率半径が第1の曲線C1よりも小さければよく、第2の曲線C2同士の曲率半径は、必ずしも一致していなくてもよい。すなわち、トンネルのA断面に沿う出射面32の断面形状は、法線NLに対して比対称であってもよい。また、第2の曲線C2の外側に、曲率半径の異なる更なる曲線が配されていてもよい。 In addition, this invention is not restricted to the said embodiment, A various deformation | transformation is possible. For example, the pair of second curves C2 disposed on both sides of the first curve C1 on the exit surface of the optical lens 3 only needs to have a radius of curvature smaller than that of the first curve C1, and the second curve C2 The curvature radii of each other do not necessarily coincide with each other. That is, the cross-sectional shape of the emission surface 32 along the A cross section of the tunnel may be symmetrical with respect to the normal line NL. Further, a further curve having a different radius of curvature may be arranged outside the second curve C2.
1 照明装置
20 光源
3 光学レンズ
31 入射面
32 出射面
34 凹部
C1 第1の曲線
C2 第2の曲線
NL 入射面の中央部を通る法線
DESCRIPTION OF SYMBOLS 1 Illuminating device 20 Light source 3 Optical lens 31 Incident surface 32 Outgoing surface 34 Recessed part C1 1st curve C2 2nd curve NL Normal line which passes along the center part of an incident surface
Claims (7)
前記出射面は、凸状の外郭形状を成し、
前記入射面の中央部を通る法線を含む一平面における前記出射面の断面形状が、曲率半径の異なる複数の曲線から成り、前記入射面の中央部と対峙する位置に、曲率半径の大きな第1の曲線が配され、前記第1の曲線の両側に、該第1の曲線より曲率半径が小さい第2の曲線が夫々配されていることを特徴とする光学レンズ。 An optical lens that has an incident surface on which light from a light source is incident and an output surface that emits light incident on the incident surface, and diffuses and emits light from the light source,
The exit surface has a convex outer shape,
A cross-sectional shape of the exit surface in one plane including a normal line passing through the central portion of the entrance surface is composed of a plurality of curves having different curvature radii, and is located at a position facing the center portion of the entrance surface and having a large curvature radius. An optical lens, wherein a first curve is arranged, and a second curve having a radius of curvature smaller than that of the first curve is arranged on both sides of the first curve.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011077963A JP2012212574A (en) | 2011-03-31 | 2011-03-31 | Optical lens, and lighting device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011077963A JP2012212574A (en) | 2011-03-31 | 2011-03-31 | Optical lens, and lighting device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2012212574A true JP2012212574A (en) | 2012-11-01 |
Family
ID=47266382
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2011077963A Pending JP2012212574A (en) | 2011-03-31 | 2011-03-31 | Optical lens, and lighting device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2012212574A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016024326A (en) * | 2014-07-18 | 2016-02-08 | 岩崎電気株式会社 | Illumination lens and illumination device |
| WO2017065455A1 (en) * | 2015-10-13 | 2017-04-20 | 엘지이노텍(주) | Lens and lighting device including same |
| WO2019013183A1 (en) * | 2017-07-14 | 2019-01-17 | 株式会社エンプラス | Light flux control member, light emitting device, surface light source device, and display apparatus |
| CN110596892A (en) * | 2019-09-19 | 2019-12-20 | 杭州昌松光学有限公司 | A square lens, a light emitting structure and a lamp thereof |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003123509A (en) * | 2001-10-05 | 2003-04-25 | Stanley Electric Co Ltd | Projector type headlamp |
| JP2006092983A (en) * | 2004-09-27 | 2006-04-06 | Enplas Corp | Light emitting device, surface light source device, display device, and light flux controlling member |
| JP2006222038A (en) * | 2005-02-14 | 2006-08-24 | Ichikoh Ind Ltd | head lamp |
| JP2006228689A (en) * | 2005-02-21 | 2006-08-31 | Matsushita Electric Works Ltd | Optical component and lighting device equipped with optical component |
| JP2007095390A (en) * | 2005-09-27 | 2007-04-12 | Matsushita Electric Works Ltd | Illumination method using underground illumination device and underground illumination device |
| JP2007294187A (en) * | 2006-04-24 | 2007-11-08 | Enplas Corp | Lighting device and lens of lighting device |
| JP2008288410A (en) * | 2007-05-18 | 2008-11-27 | Toshiba Corp | Semiconductor light emitting device and manufacturing method thereof |
| JP2010067415A (en) * | 2008-09-09 | 2010-03-25 | Stanley Electric Co Ltd | Led lighting fixture |
| JP2010177028A (en) * | 2009-01-29 | 2010-08-12 | Panasonic Electric Works Co Ltd | Optical lens, and road luminaire |
| JP2010262818A (en) * | 2009-05-06 | 2010-11-18 | Stanley Electric Co Ltd | Tunnel lighting system |
-
2011
- 2011-03-31 JP JP2011077963A patent/JP2012212574A/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003123509A (en) * | 2001-10-05 | 2003-04-25 | Stanley Electric Co Ltd | Projector type headlamp |
| JP2006092983A (en) * | 2004-09-27 | 2006-04-06 | Enplas Corp | Light emitting device, surface light source device, display device, and light flux controlling member |
| JP2006222038A (en) * | 2005-02-14 | 2006-08-24 | Ichikoh Ind Ltd | head lamp |
| JP2006228689A (en) * | 2005-02-21 | 2006-08-31 | Matsushita Electric Works Ltd | Optical component and lighting device equipped with optical component |
| JP2007095390A (en) * | 2005-09-27 | 2007-04-12 | Matsushita Electric Works Ltd | Illumination method using underground illumination device and underground illumination device |
| JP2007294187A (en) * | 2006-04-24 | 2007-11-08 | Enplas Corp | Lighting device and lens of lighting device |
| JP2008288410A (en) * | 2007-05-18 | 2008-11-27 | Toshiba Corp | Semiconductor light emitting device and manufacturing method thereof |
| JP2010067415A (en) * | 2008-09-09 | 2010-03-25 | Stanley Electric Co Ltd | Led lighting fixture |
| JP2010177028A (en) * | 2009-01-29 | 2010-08-12 | Panasonic Electric Works Co Ltd | Optical lens, and road luminaire |
| JP2010262818A (en) * | 2009-05-06 | 2010-11-18 | Stanley Electric Co Ltd | Tunnel lighting system |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016024326A (en) * | 2014-07-18 | 2016-02-08 | 岩崎電気株式会社 | Illumination lens and illumination device |
| WO2017065455A1 (en) * | 2015-10-13 | 2017-04-20 | 엘지이노텍(주) | Lens and lighting device including same |
| KR20170043229A (en) * | 2015-10-13 | 2017-04-21 | 엘지이노텍 주식회사 | Lens and lighting apparatus including the same |
| US10408418B2 (en) | 2015-10-13 | 2019-09-10 | Lg Innotek Co., Ltd. | Lens and lighting device including same |
| CN108139063B (en) * | 2015-10-13 | 2019-12-13 | Lg 伊诺特有限公司 | Lens and lighting device comprising same |
| KR102457293B1 (en) | 2015-10-13 | 2022-10-24 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Lens and lighting apparatus including the same |
| WO2019013183A1 (en) * | 2017-07-14 | 2019-01-17 | 株式会社エンプラス | Light flux control member, light emitting device, surface light source device, and display apparatus |
| CN110869668A (en) * | 2017-07-14 | 2020-03-06 | 恩普乐股份有限公司 | Light flux controlling member, light emitting device, surface light source device, and display device |
| US10830413B2 (en) | 2017-07-14 | 2020-11-10 | Enplas Corporation | Luminous flux control member, light emitting device, surface light source device, and display device |
| CN110869668B (en) * | 2017-07-14 | 2021-03-12 | 恩普乐股份有限公司 | Light beam control member, light-emitting device, surface light source device, and display device |
| CN110596892A (en) * | 2019-09-19 | 2019-12-20 | 杭州昌松光学有限公司 | A square lens, a light emitting structure and a lamp thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2012212047A (en) | Optical lens and illumination device | |
| WO2013035788A1 (en) | Illumination device and illumination stand | |
| KR101207517B1 (en) | LED light diffusing lens for improving illumination efficiency of LED street lamp | |
| KR20110109767A (en) | Light emitting device and its lens | |
| JP2020510969A (en) | Lighting device with light guide | |
| JP6222445B2 (en) | Lighting device | |
| TWI506229B (en) | Light emitting apparatus and lens | |
| AU2011298550B2 (en) | Method for designing uniform illumination reflector | |
| CN103511935B (en) | Lighting device | |
| JP2015170524A (en) | Lighting device | |
| JP2012212574A (en) | Optical lens, and lighting device | |
| JP2013200993A (en) | Light guide plate, lighting device, and light stand | |
| US20190004238A1 (en) | Optical module and illumination apparatus | |
| JP6518893B2 (en) | Light distribution and dispersion control type LED lighting device | |
| JP5588217B2 (en) | Lighting device | |
| WO2013141020A1 (en) | Light guide plate, illumination device, and illumination stand | |
| US20140347856A1 (en) | Outdoor luminaire | |
| CN105156990B (en) | LED street lamp lens unit, LED street lamp lens module and street lamp with LED street lamp lens module | |
| CN101684930A (en) | Light-emitting diode lamp tube device | |
| JP2015038826A (en) | Street light | |
| CN210601478U (en) | Windowsill lamp reflector with Fresnel structure | |
| JP6181376B2 (en) | Lighting device | |
| CN103574497B (en) | Quadrangular micromirror LED traffic light optical face cover | |
| JP2015035306A (en) | Lighting device | |
| CN205065402U (en) | Large Angle LED Light |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140108 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140919 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141008 |
|
| RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20141023 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150224 |