[go: up one dir, main page]

JP2012219177A - Polycarbonate resin composition and molded body - Google Patents

Polycarbonate resin composition and molded body Download PDF

Info

Publication number
JP2012219177A
JP2012219177A JP2011085970A JP2011085970A JP2012219177A JP 2012219177 A JP2012219177 A JP 2012219177A JP 2011085970 A JP2011085970 A JP 2011085970A JP 2011085970 A JP2011085970 A JP 2011085970A JP 2012219177 A JP2012219177 A JP 2012219177A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
mass
resin composition
parts
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011085970A
Other languages
Japanese (ja)
Other versions
JP5636329B2 (en
Inventor
Toshiki Kadota
敏樹 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2011085970A priority Critical patent/JP5636329B2/en
Publication of JP2012219177A publication Critical patent/JP2012219177A/en
Application granted granted Critical
Publication of JP5636329B2 publication Critical patent/JP5636329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polycarbonate resin material excellent in flame retardancy, also in impact resistance, low temperature impact resistance, weatherability and wet heat stability and further in chemical resistance.SOLUTION: The polycarbonate resin composition comprises 100 pts.mass of a polycarbonate resin (A) having 22,000-30,000 viscosity-average molecular weight, 0.001-1 pt.mass of an organic sulfonic acid metal salt (B), 0.001-1 pt.mass of a fluoropolymer (C), 0.5-6 pts.mass of graft copolymer (D) prepared by graft polymerizing a (meth)acrylate ester compound with a diene-based rubber and having 160-240 nm average particle size, 0.01-0.5 pt.mass of a UV ray absorber (E), and 0.00001-5 pts.mass of at least one masking agent (F) selected from titanium oxide (F-1) or carbon black (F-2).

Description

本発明は、ポリカーボネート樹脂組成物に関するものである。さらに詳しくは、難燃性、耐衝撃性、低温衝撃性、耐候性、耐熱変色性に優れ、さらに低金型汚染性にも優れるポリカーボネート樹脂組成物及び、それを成形してなる成形体に関するものである。   The present invention relates to a polycarbonate resin composition. More specifically, the present invention relates to a polycarbonate resin composition that is excellent in flame retardancy, impact resistance, low temperature impact resistance, weather resistance, heat discoloration resistance, and also excellent in low mold contamination, and a molded body formed by molding the same. It is.

ポリカーボネート樹脂は、耐熱性、機械的物性、電気的特性に優れた樹脂であり、例えば自動車材料、電気電子機器材料、住宅材料、その他の工業分野における部品製造用材料等に幅広く利用されている。特に、難燃化されたポリカーボネート樹脂組成物は、コンピューター、ノートブック型パソコン、携帯電話、プリンター、複写機等のOA・情報機器等の部材として好適に使用されている。   Polycarbonate resins are resins having excellent heat resistance, mechanical properties, and electrical characteristics, and are widely used, for example, as automotive materials, electrical and electronic equipment materials, housing materials, and other parts manufacturing materials in industrial fields. In particular, the flame-retardant polycarbonate resin composition is suitably used as a member of OA / information equipment such as computers, notebook computers, mobile phones, printers, and copying machines.

ポリカーボネート樹脂に難燃性を付与する手段としては、従来、ハロゲン系難燃剤をポリカーボネート樹脂に配合することがなされてきた。しかしながら、塩素や臭素を含有するハロゲン系難燃剤を配合したポリカーボネート樹脂組成物は、熱安定性の低下を招いたり、成形加工時における成形機のスクリューや成形金型の腐食を招いたりすることがあった。   As a means for imparting flame retardancy to a polycarbonate resin, conventionally, a halogen-based flame retardant has been added to the polycarbonate resin. However, a polycarbonate resin composition containing a halogen-based flame retardant containing chlorine or bromine may lead to a decrease in thermal stability or corrosion of a molding machine screw or molding die during molding processing. there were.

ハロゲン系化合物を用いることなく熱可塑性樹脂に難燃性を付与する手法として、リン酸系難燃剤を使用する手法が盛んに検討されており、(例えば、特許文献1参照)このようなリン系難燃剤を配合したポリカーボネート樹脂は、各種筐体やバッテリーパック等に広く用いられている。
しかしながら、リン系難燃剤の配合量を多くすると、ポリカーボネート樹脂本来の優れた耐熱性や優れた耐衝撃性が著しく低下する傾向にあり、また、リン系難燃剤を過剰に配合した場合は、廃棄時においては製品からリン系難燃剤がブリードアウトし、環境汚染を引き起こす可能性があり、また近年、人体へ危険性も指摘されている。
As a technique for imparting flame retardancy to a thermoplastic resin without using a halogen compound, a technique using a phosphoric acid flame retardant has been actively studied (for example, see Patent Document 1). Polycarbonate resins containing flame retardants are widely used in various cases and battery packs.
However, if the amount of the phosphorus flame retardant is increased, the excellent heat resistance and excellent impact resistance inherent in the polycarbonate resin tend to be remarkably reduced. If an excessive amount of the phosphorus flame retardant is added, it is discarded. In some cases, phosphorus-based flame retardants may bleed out of the product and cause environmental pollution. In recent years, danger to humans has been pointed out.

一方、屋外で使用する製品にポリカーボネート樹脂を使用するニーズも高まってきており、例えば、電動自転車の駆動用電源に使用するバッテリーパック、太陽電池用部材、各種の携帯電子機器ハウジング等に使用することが期待されるが、上述のようなリン系難燃剤を配合したポリカーボネート樹脂は、湿熱安定性が極めて悪く、屋外で使用した場合や、湿度の高い環境下で使用した場合には劣化が激しく、製品寿命が短くなるという致命的な欠点を有していた。   On the other hand, there is a growing need to use polycarbonate resin for products used outdoors, for example, battery packs used for power sources for driving electric bicycles, solar cell components, and various portable electronic device housings. However, the polycarbonate resin blended with the phosphorus-based flame retardant as described above has extremely poor wet heat stability, and is severely degraded when used outdoors or in humid environments. It had a fatal defect that the product life was shortened.

また、ポリカーボネート樹脂は、長期にわたる使用により変色や物性低下を引き起こしてしまうという耐候性(耐光性)の点で欠点がある。ポリカーボネート樹脂に紫外線吸収剤を配合する従来からの手法(例えば、特許文献2または3参照)では、耐候性と難燃性のバランスは未だ十分とは言いがたく、また、耐衝撃性を高める目的でさらにエラストマーを配合することも検討されている(例えば、特許文献4参照)が、耐衝撃性、低温衝撃性、耐候性、湿熱安定性、耐薬品性についても不十分であり、エラストマーの配合が上述の耐候変色を低下させる要因となることもしばしばある。このように屋外使用用途に充分耐えうるポリカーボネート樹脂材料は今まで提案されていないというのが現状である。   Further, the polycarbonate resin has a defect in terms of weather resistance (light resistance) that causes discoloration and deterioration of physical properties due to long-term use. The conventional method of blending an ultraviolet absorber with a polycarbonate resin (see, for example, Patent Document 2 or 3) is still not sufficient in terms of the balance between weather resistance and flame retardancy, and is intended to increase impact resistance. (See, for example, Patent Document 4), however, impact resistance, low temperature impact resistance, weather resistance, wet heat stability, and chemical resistance are also insufficient. Is often a factor that reduces the weather discoloration described above. Thus, the present condition is that the polycarbonate resin material which can fully endure the use for outdoor use is not proposed until now.

こうした状況下、難燃性、強度、耐候性、耐熱変色性等のバランスに優れた、特には屋外設置用成形品に好適なポリカーボネート樹脂材料の開発が強く望まれていた。   Under such circumstances, there has been a strong demand for the development of a polycarbonate resin material that has an excellent balance of flame retardancy, strength, weather resistance, heat discoloration, and the like, and that is particularly suitable for molded products for outdoor installation.

特開昭59−202240号公報JP 59-202240 A 特開平7−216206号公報JP-A-7-216206 特表2003−534424号公報Special Table 2003-534424 特開2000−290487号公報JP 2000-290487 A

本発明の目的は、難燃性、耐衝撃性、低温衝撃性、耐候性、耐熱変色性、さらには低金型汚染性にも優れる樹脂組成物及びそれからなる樹脂成形品を提供することにある。   An object of the present invention is to provide a resin composition excellent in flame retardancy, impact resistance, low temperature impact resistance, weather resistance, heat discoloration resistance, and low mold contamination, and a resin molded product comprising the same. .

本発明者らは、特定のポリカーボネート樹脂に、有機スルホン酸金属塩、フルオロポリマー、ジエン系ゴムに(メタ)アクリル酸エステル化合物をグラフト重合させた特定のグラフト共重合体、紫外線吸収剤、酸化チタンまたはカーボンブラックを、それぞれ特定の範囲で含有するポリカーボネート樹脂組成物が、難燃性、耐衝撃性、低温衝撃性、耐候性、耐熱変色性にも優れることを見出し、本発明を完成させた。   The present inventors have developed a specific graft copolymer obtained by graft-polymerizing a specific polycarbonate resin with an organic sulfonic acid metal salt, a fluoropolymer, and a diene rubber with a (meth) acrylic acid ester compound, an ultraviolet absorber, and titanium oxide. Alternatively, the present inventors have found that a polycarbonate resin composition containing carbon black in a specific range is excellent in flame retardancy, impact resistance, low temperature impact resistance, weather resistance, and heat discoloration, and completed the present invention.

すなわち、本発明の第1の発明によれば、粘度平均分子量[Mv]が22,000〜30,000のポリカーボネート樹脂(A)100質量部に対し、有機スルホン酸金属塩(B)0.001〜1質量部、フルオロポリマー(C)0.001〜1質量部、ジエン系ゴムに(メタ)アクリル酸エステル化合物をグラフト重合させてなる平均粒径が160〜240nmのグラフト共重合体(D)0.5〜6質量部、紫外線吸収剤(E)0.01〜0.5質量部、酸化チタン(F−1)またはカーボンブラック(F−2)から選ばれる少なくとも1種の隠蔽剤(F)0.00001〜5質量部を含有することを特徴とするポリカーボネート樹脂組成物が提供される。   That is, according to 1st invention of this invention, with respect to 100 mass parts of polycarbonate resin (A) whose viscosity average molecular weight [Mv] is 22,000-30,000, organosulfonic acid metal salt (B) 0.001. 1 to 1 part by mass, fluoropolymer (C) 0.001 to 1 part by mass, graft copolymer (D) having an average particle size of 160 to 240 nm obtained by graft polymerization of a (meth) acrylic ester compound to a diene rubber 0.5 to 6 parts by mass, 0.01 to 0.5 parts by mass of ultraviolet absorber (E), at least one concealing agent selected from titanium oxide (F-1) or carbon black (F-2) (F ) A polycarbonate resin composition characterized by containing 0.00001 to 5 parts by mass is provided.

また、本発明の第2の発明によれば、第1の発明において、グラフト共重合体(D)は、硫黄含有量が100〜1,500ppmであることを特徴とするポリカーボネート樹脂組成物が提供される。   According to the second invention of the present invention, there is provided a polycarbonate resin composition characterized in that, in the first invention, the graft copolymer (D) has a sulfur content of 100 to 1,500 ppm. Is done.

また、本発明の第3の発明によれば、第1または第2の発明において、有機スルホン酸金属塩(B)が、含フッ素脂肪族スルホン酸アルカリ金属塩であることを特徴とするポリカーボネート樹脂組成物が提供される。   According to the third invention of the present invention, in the first or second invention, the organic sulfonic acid metal salt (B) is a fluorine-containing aliphatic sulfonic acid alkali metal salt. A composition is provided.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、紫外線吸収剤(E)が、少なくとも500g/molの分子量を有することを特徴とするポリカーボネート樹脂組成物が提供される。   According to a fourth aspect of the present invention, there is provided a polycarbonate resin composition according to any one of the first to third aspects, wherein the ultraviolet absorber (E) has a molecular weight of at least 500 g / mol. Provided.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明のポリカーボネート樹脂組成物を成形してなることを特徴とする成形体が提供される。   Moreover, according to the 5th invention of this invention, the molded object formed by shape | molding the polycarbonate resin composition of the invention in any one of 1-4 is provided.

また、本発明の第6の発明によれば、第5の発明において、成形体が、二次電池装置用部材であることを特徴とする成形体が提供される。   According to a sixth aspect of the present invention, there is provided the molded body according to the fifth aspect, wherein the molded body is a member for a secondary battery device.

また、本発明の第7の発明によれば、第6の発明において、電動自転車用または電動自動車用電池装置用部材であることを特徴とする成形体が提供される。   According to a seventh aspect of the present invention, there is provided the molded body according to the sixth aspect, which is a member for a battery device for an electric bicycle or an electric automobile.

また、本発明の第8の発明によれば、第6または第7の発明において、電動自転車用または電動自動車用バッテリーケースであることを特徴とする成形体が提供される。   According to an eighth aspect of the present invention, there is provided the molded body according to the sixth or seventh aspect, which is a battery case for an electric bicycle or an electric automobile.

また、本発明の第9の発明によれば、第5または第6の発明において、屋外設置蓄電池用二次電池装置用部材であることを特徴とする成形体が提供される。   According to a ninth aspect of the present invention, there is provided a molded body characterized in that in the fifth or sixth aspect, the member is a member for a secondary battery device for an outdoor installation storage battery.

また、本発明の第10の発明によれば、第5の発明において、太陽電池モジュール用部材であることを特徴とする成形体が提供される。   According to a tenth aspect of the present invention, in the fifth aspect, there is provided a molded body that is a member for a solar cell module.

さらに、本発明の第11の発明によれば、第5の発明において、ノートブックパソコン、PDA、携帯電話、携帯オーディオプレーヤー、デジタルカメラ、電子ブック、電子辞書、無線機からなる群より選ばれる携帯電子機器のハウジングであることを特徴とする成形体が提供される。   Further, according to an eleventh aspect of the present invention, in the fifth aspect, the portable device selected from the group consisting of a notebook computer, a PDA, a mobile phone, a portable audio player, a digital camera, an electronic book, an electronic dictionary, and a radio device. A molded body is provided which is a housing of an electronic device.

本発明のポリカーボネート樹脂組成物は、難燃性、耐衝撃性、低温衝撃性、耐候性、耐熱変色性、さらには低金型汚染性にも優れる。このため、本発明のポリカーボネート樹脂組成物を成形してなる成形品は、難燃性、耐衝撃性、低温衝撃性、耐候性、湿熱安定性、耐薬品性を必要とするOA機器部品、電子電気機器部品、携帯電子機器部品、自動車・自転車機器部品、産業用機器部品等に好適に使用することができる。   The polycarbonate resin composition of the present invention is excellent in flame retardancy, impact resistance, low temperature impact resistance, weather resistance, heat discoloration resistance, and low mold contamination. For this reason, the molded product formed by molding the polycarbonate resin composition of the present invention is an OA equipment component that requires flame resistance, impact resistance, low temperature impact resistance, weather resistance, wet heat stability, chemical resistance, electronic It can be suitably used for electrical equipment parts, portable electronic equipment parts, automobile / bicycle equipment parts, industrial equipment parts, and the like.

[1.発明の概要]
本発明のポリカーボネート樹脂組成物は、粘度平均分子量[Mv]が22,000〜30,000のポリカーボネート樹脂(A)100質量部に対し、
有機スルホン酸金属塩(B)0.001〜1質量部、
フルオロポリマー(C)0.001〜1質量部、
ジエン系ゴムに(メタ)アクリル酸エステル化合物をグラフト重合させてなる平均粒径が160〜240nmのグラフト共重合体(D)0.5〜6質量部、
紫外線吸収剤(E)0.01〜0.5質量部、
酸化チタン(F−1)またはカーボンブラック(F−2)から選ばれる少なくとも1種の隠蔽剤(F)0.00001〜5質量部を含有することを特徴とする。
[1. Summary of the Invention]
The polycarbonate resin composition of the present invention has a viscosity average molecular weight [Mv] of 22,000 to 30,000, relative to 100 parts by mass of the polycarbonate resin (A).
0.001 to 1 part by mass of organic sulfonic acid metal salt (B),
0.001-1 part by mass of fluoropolymer (C),
0.5 to 6 parts by mass of a graft copolymer (D) having an average particle size of 160 to 240 nm obtained by graft polymerization of a (meth) acrylic acid ester compound to a diene rubber,
UV absorber (E) 0.01 to 0.5 parts by mass,
It contains 0.00001 to 5 parts by mass of at least one concealing agent (F) selected from titanium oxide (F-1) or carbon black (F-2).

以下、本発明の内容について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定して解釈されるものではない。
なお、本願明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
Hereinafter, the contents of the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments and specific examples of the present invention, but the present invention is interpreted to be limited to such embodiments and specific examples. is not.
In the specification of the present application, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.

[2.ポリカーボネート樹脂(A)]
・ポリカーボネート樹脂(A)の分子量
ポリカーボネート樹脂(A)の分子量は、溶液粘度から換算した粘度平均分子量[Mv]が、22,000〜30,000の範囲にあることが必要である。本発明においては、このような従来射出成形用途において適用されてきた分子量より高い分子量範囲とする。粘度平均分子量を22,000以上とすることにより本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、30,000以下とすることにより本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。粘度平均分子量[Mv]は、好ましくは22,500以上であり、好ましくは28,000以下、より好ましくは27,000以下である。
なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
[2. Polycarbonate resin (A)]
-Molecular weight of polycarbonate resin (A) As for the molecular weight of polycarbonate resin (A), the viscosity average molecular weight [Mv] converted from solution viscosity needs to be in the range of 22,000-30,000. In the present invention, the molecular weight range is higher than the molecular weight that has been applied in such conventional injection molding applications. By setting the viscosity average molecular weight to 22,000 or more, the mechanical strength of the polycarbonate resin composition of the present invention can be further improved, and by setting the viscosity average molecular weight to 30,000 or less, the fluidity of the polycarbonate resin composition of the present invention is lowered. It is possible to improve the moldability and to improve the molding processability and to perform the molding process easily. The viscosity average molecular weight [Mv] is preferably 22,500 or more, preferably 28,000 or less, more preferably 27,000 or less.
Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.

なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10−4Mv0.83 から算出される値を意味する。 The viscosity average molecular weight [Mv] is obtained by using methylene chloride as a solvent and obtaining an intrinsic viscosity [η] (unit: dl / g) at a temperature of 20 ° C. using an Ubbelohde viscometer. , Η = 1.23 × 10 −4 Mv 0.83 .

ポリカーボネート樹脂は、下記一般式(1)で表される、炭酸結合を有する基本構造の重合体である。ポリカーボネート樹脂は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
なお、式(1)中、Xは、一般には炭化水素基であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXを用いてもよい。

Figure 2012219177
The polycarbonate resin is a polymer having a basic structure having a carbonic acid bond represented by the following general formula (1). One type of polycarbonate resin may be used, or two or more types may be used in any combination and in any ratio.
In formula (1), X 1 is generally a hydrocarbon group, but X 1 into which a hetero atom or a hetero bond is introduced may be used for imparting various properties.
Figure 2012219177

また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。   The polycarbonate resin can be classified into an aromatic polycarbonate resin in which carbon directly bonded to a carbonic acid bond is aromatic carbon and an aliphatic polycarbonate resin in which aliphatic carbon is aliphatic carbon, either of which can be used. Of these, aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.

ポリカーボネート樹脂の具体的な種類に制限は無いが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしても良い。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いても良い。またポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。   Although there is no restriction | limiting in the specific kind of polycarbonate resin, For example, the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned. At this time, in addition to the dihydroxy compound and the carbonate precursor, a polyhydroxy compound or the like may be reacted. Alternatively, a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used. The polycarbonate polymer may be linear or branched. Further, the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units. At this time, the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer. In general, such a polycarbonate polymer is a thermoplastic resin.

芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例としては、
1,2−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4−ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5−ジヒドロキシビフェニル、2,2’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
2,2’−ジヒドロキシ−1,1’−ビナフチル、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジヒドロキシナフタレン類;
Among monomers used as raw materials for aromatic polycarbonate resins, examples of aromatic dihydroxy compounds include:
Dihydroxybenzenes such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene;
Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl;
2,2′-dihydroxy-1,1′-binaphthyl, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, , 7-dihydroxynaphthalene, dihydroxynaphthalene such as 2,7-dihydroxynaphthalene;

2,2’−ジヒドロキシジフェニルエーテル、3,3’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエーテル、1,4−ビス(3−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類; 2,2′-dihydroxydiphenyl ether, 3,3′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) Dihydroxy diaryl ethers such as benzene and 1,3-bis (4-hydroxyphenoxy) benzene;

2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1−ビス(4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メトキシ−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−メトキシ−4−ヒドロキシフェニル)プロパン、
1,1−ビス(3−tert−ブチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、
2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
α,α’−ビス(4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、
1,3−ビス[2−(4−ヒドロキシフェニル)−2−プロピル]ベンゼン、
ビス(4−ヒドロキシフェニル)メタン、
ビス(4−ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4−ヒドロキシフェニル)フェニルメタン、
ビス(4−ヒドロキシフェニル)(4−プロペニルフェニル)メタン、
ビス(4−ヒドロキシフェニル)ジフェニルメタン、
ビス(4−ヒドロキシフェニル)ナフチルメタン、
1−ビス(4−ヒドロキシフェニル)エタン、
2−ビス(4−ヒドロキシフェニル)エタン、
1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、
1,1−ビス(4−ヒドロキシフェニル)−1−ナフチルエタン、
1−ビス(4−ヒドロキシフェニル)ブタン、
2−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ペンタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
1−ビス(4−ヒドロキシフェニル)オクタン、
2−ビス(4−ヒドロキシフェニル)オクタン、
1−ビス(4−ヒドロキシフェニル)ヘキサン、
2−ビス(4−ヒドロキシフェニル)ヘキサン、
4,4−ビス(4−ヒドロキシフェニル)ヘプタン、
2,2−ビス(4−ヒドロキシフェニル)ノナン、
10−ビス(4−ヒドロキシフェニル)デカン、
1−ビス(4−ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
2,2-bis (4-hydroxyphenyl) propane (ie, bisphenol A),
1,1-bis (4-hydroxyphenyl) propane,
2,2-bis (3-methyl-4-hydroxyphenyl) propane,
2,2-bis (3-methoxy-4-hydroxyphenyl) propane,
2- (4-hydroxyphenyl) -2- (3-methoxy-4-hydroxyphenyl) propane,
1,1-bis (3-tert-butyl-4-hydroxyphenyl) propane,
2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane,
2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane,
2- (4-hydroxyphenyl) -2- (3-cyclohexyl-4-hydroxyphenyl) propane,
α, α′-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene,
1,3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene,
Bis (4-hydroxyphenyl) methane,
Bis (4-hydroxyphenyl) cyclohexylmethane,
Bis (4-hydroxyphenyl) phenylmethane,
Bis (4-hydroxyphenyl) (4-propenylphenyl) methane,
Bis (4-hydroxyphenyl) diphenylmethane,
Bis (4-hydroxyphenyl) naphthylmethane,
1-bis (4-hydroxyphenyl) ethane,
2-bis (4-hydroxyphenyl) ethane,
1,1-bis (4-hydroxyphenyl) -1-phenylethane,
1,1-bis (4-hydroxyphenyl) -1-naphthylethane,
1-bis (4-hydroxyphenyl) butane,
2-bis (4-hydroxyphenyl) butane,
2,2-bis (4-hydroxyphenyl) pentane,
1,1-bis (4-hydroxyphenyl) hexane,
2,2-bis (4-hydroxyphenyl) hexane,
1-bis (4-hydroxyphenyl) octane,
2-bis (4-hydroxyphenyl) octane,
1-bis (4-hydroxyphenyl) hexane,
2-bis (4-hydroxyphenyl) hexane,
4,4-bis (4-hydroxyphenyl) heptane,
2,2-bis (4-hydroxyphenyl) nonane,
10-bis (4-hydroxyphenyl) decane,
1-bis (4-hydroxyphenyl) dodecane,
Bis (hydroxyaryl) alkanes such as;

1−ビス(4−ヒドロキシフェニル)シクロペンタン、
1−ビス(4−ヒドロキシフェニル)シクロヘキサン、
4−ビス(4−ヒドロキシフェニル)シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3−ジメチルシクロヘキサン、
1−ビス(4−ヒドロキシフェニル)−3,4−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,5−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−プロピル−5−メチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−フェニルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
1-bis (4-hydroxyphenyl) cyclopentane,
1-bis (4-hydroxyphenyl) cyclohexane,
4-bis (4-hydroxyphenyl) cyclohexane,
1,1-bis (4-hydroxyphenyl) -3,3-dimethylcyclohexane,
1-bis (4-hydroxyphenyl) -3,4-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,5-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane,
1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3-propyl-5-methylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane,
1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane,
1,1-bis (4-hydroxyphenyl) -3-phenylcyclohexane,
1,1-bis (4-hydroxyphenyl) -4-phenylcyclohexane,
Bis (hydroxyaryl) cycloalkanes such as;

9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類; Cardostructure-containing bisphenols such as 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene;

4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類; Dihydroxy diaryl sulfides such as 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide;

4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類; Dihydroxydiaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide;

4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;等が挙げられる。 Dihydroxydiaryl sulfones such as 4,4'-dihydroxydiphenyl sulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone;

これらの中でもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4−ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Among these, bis (hydroxyaryl) alkanes are preferable, and bis (4-hydroxyphenyl) alkanes are preferable, and 2,2-bis (4-hydroxyphenyl) propane (ie, from the viewpoint of impact resistance and heat resistance). Bisphenol A) is preferred.
In addition, 1 type may be used for an aromatic dihydroxy compound and it may use 2 or more types together by arbitrary combinations and a ratio.

また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、エタン−1,2−ジオール、プロパン−1,2−ジオール、プロパン−1,3−ジオール、2,2−ジメチルプロパン−1,3−ジオール、2−メチル−2−プロピルプロパン−1,3−ジオール、ブタン−1,4−ジオール、ペンタン−1,5−ジオール、ヘキサン−1,6−ジオール、デカン−1,10−ジオール等のアルカンジオール類;   Examples of the monomer that is a raw material for the aliphatic polycarbonate resin include ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1, 3-diol, 2-methyl-2-propylpropane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol Alkanediols such as

シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,4−ジオール、1,4−シクロヘキサンジメタノール、4−(2−ヒドロキシエチル)シクロヘキサノール、2,2,4,4−テトラメチル−シクロブタン−1,3−ジオール等のシクロアルカンジオール類; Cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol, 1,4-cyclohexanedimethanol, 4- (2-hydroxyethyl) cyclohexanol, 2,2,4, Cycloalkanediols such as 4-tetramethyl-cyclobutane-1,3-diol;

2,2’−オキシジエタノール(即ち、エチレングリコール)、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類; Glycols such as 2,2'-oxydiethanol (ie, ethylene glycol), diethylene glycol, triethylene glycol, propylene glycol, spiroglycol, etc .;

1,2−ベンゼンジメタノール、1,3−ベンゼンジメタノール、1,4−ベンゼンジメタノール、1,4−ベンゼンジエタノール、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、2,3−ビス(ヒドロキシメチル)ナフタレン、1,6−ビス(ヒドロキシエトキシ)ナフタレン、4,4’−ビフェニルジメタノール、4,4’−ビフェニルジエタノール、1,4−ビス(2−ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2−ヒドロキシエチル)エーテル、ビスフェノールSビス(2−ヒドロキシエチル)エーテル等のアラルキルジオール類; 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 1,4-benzenediethanol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4-bis ( 2-hydroxyethoxy) benzene, 2,3-bis (hydroxymethyl) naphthalene, 1,6-bis (hydroxyethoxy) naphthalene, 4,4′-biphenyldimethanol, 4,4′-biphenyldiethanol, 1,4- Aralkyl diols such as bis (2-hydroxyethoxy) biphenyl, bisphenol A bis (2-hydroxyethyl) ether, bisphenol S bis (2-hydroxyethyl) ether;

1,2−エポキシエタン(即ち、エチレンオキシド)、1,2−エポキシプロパン(即ち、プロピレンオキシド)、1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,4−エポキシシクロヘキサン、1−メチル−1,2−エポキシシクロヘキサン、2,3−エポキシノルボルナン、1,3−エポキシプロパン等の環状エーテル類;等が挙げられる。 1,2-epoxyethane (ie ethylene oxide), 1,2-epoxypropane (ie propylene oxide), 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,4-epoxycyclohexane, 1-methyl And cyclic ethers such as -1,2-epoxycyclohexane, 2,3-epoxynorbornane, and 1,3-epoxypropane;

芳香族ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   Among the monomers used as the raw material for the aromatic polycarbonate resin, carbonyl halides, carbonate esters and the like are used as examples of the carbonate precursor. In addition, 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.

カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。   Specific examples of carbonyl halides include phosgene; haloformates such as bischloroformate of dihydroxy compounds and monochloroformate of dihydroxy compounds.

カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。   Specific examples of the carbonate ester include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as

・ポリカーボネート樹脂の製造方法
ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。以下、これらの方法のうち特に好適なものについて具体的に説明する。
-Manufacturing method of polycarbonate resin The manufacturing method of polycarbonate resin is not specifically limited, Arbitrary methods are employable. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer. Hereinafter, a particularly preferable one of these methods will be specifically described.

・・界面重合法
まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
.. Interfacial polymerization method First, the case where a polycarbonate resin is produced by the interfacial polymerization method will be described. In the interfacial polymerization method, a dihydroxy compound and a carbonate precursor (preferably phosgene) are reacted in the presence of an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher. Polycarbonate resin is obtained by interfacial polymerization in the presence. In the reaction system, a molecular weight adjusting agent (terminal terminator) may be present as necessary, or an antioxidant may be present to prevent the oxidation of the dihydroxy compound.

ジヒドロキシ化合物及びカーボネート前駆体は、前述のとおりである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。   The dihydroxy compound and the carbonate precursor are as described above. Of the carbonate precursors, phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.

反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   Examples of the organic solvent inert to the reaction include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene; It is done. In addition, 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.

アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   Examples of the alkali compound contained in the alkaline aqueous solution include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred. In addition, an alkali compound may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

アルカリ水溶液中のアルカリ化合物の濃度に制限は無いが、通常、反応のアルカリ水溶液中のpHを10〜12にコントロールするために、5〜10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10〜12、好ましくは10〜11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。   Although there is no restriction | limiting in the density | concentration of the alkali compound in alkaline aqueous solution, Usually, in order to control pH in the alkaline aqueous solution of reaction to 10-12, it is used at 5-10 mass%. For example, when phosgene is blown, the molar ratio of the bisphenol compound and the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11. Among these, it is preferable that the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.

重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’−ジメチルシクロヘキシルアミン、N,N’−ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’−ジメチルアニリン、N,N’−ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   Examples of the polymerization catalyst include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine. Formula tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. Pyridine; guanine; guanidine salt; and the like. In addition, 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.

分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m−メチルフェノール、p−メチルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−tert−ブチルフェノール、p−長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロパニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;0−オキシン安息香酸、2−メチル−6−ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   Examples of the molecular weight regulator include aromatic phenols having a monohydric phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol; mercaptans; phthalimides and the like. Of these, aromatic phenols are preferred. Specific examples of such aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol. Examples thereof include substituted phenols; vinyl group-containing phenols such as isopropanyl phenol; epoxy group-containing phenols; carboxyl group-containing phenols such as 0-oxine benzoic acid and 2-methyl-6-hydroxyphenylacetic acid; In addition, a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、ポリカーボネート樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。   The usage-amount of a molecular weight regulator is 0.5 mol or more normally with respect to 100 mol of dihydroxy compounds, Preferably it is 1 mol or more, and is 50 mol or less normally, Preferably it is 30 mol or less. By making the usage-amount of a molecular weight modifier into this range, the thermal stability and hydrolysis resistance of a polycarbonate resin composition can be improved.

反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
なお、反応温度は通常0〜40℃であり、反応時間は通常は数分(例えば、10分)〜数時間(例えば、6時間)である。
In the reaction, the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set. For example, when phosgene is used as the carbonate precursor, the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
In addition, reaction temperature is 0-40 degreeC normally, and reaction time is normally several minutes (for example, 10 minutes)-several hours (for example, 6 hours).

・・溶融エステル交換法
次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
-Melt transesterification method Next, the case where a polycarbonate resin is manufactured by the melt transesterification method is demonstrated. In the melt transesterification method, for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.

ジヒドロキシ化合物は、前述の通りである。
一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−tert−ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
The dihydroxy compound is as described above.
On the other hand, examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is more preferable. In addition, 1 type may be used for carbonic acid diester, and it may use 2 or more types together by arbitrary combinations and a ratio.

ジヒドロキシ化合物と炭酸ジエステルとの比率は、所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。   The ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin is obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound, and above all, 1.01 mol or more. It is more preferable. The upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.

ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。   In the polycarbonate resin, the amount of terminal hydroxyl groups tends to have a great influence on thermal stability, hydrolysis stability, color tone and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method. In the transesterification reaction, a polycarbonate resin in which the amount of terminal hydroxyl groups is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound; the degree of vacuum during the transesterification reaction, and the like. In addition, the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.

炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
When adjusting the amount of terminal hydroxyl groups by adjusting the mixing ratio of the carbonic acid diester and the dihydroxy compound, the mixing ratio is as described above.
Further, as a more aggressive adjustment method, there may be mentioned a method in which a terminal terminator is mixed separately during the reaction. Examples of the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like. In addition, 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.

溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   When producing a polycarbonate resin by the melt transesterification method, a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among them, it is preferable to use, for example, an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.

溶融エステル交換法において、反応温度は通常100〜320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。   In the melt transesterification method, the reaction temperature is usually 100 to 320 ° C. The pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less. As a specific operation, a melt polycondensation reaction may be performed under the above-mentioned conditions while removing a by-product such as an aromatic hydroxy compound.

溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂及びポリカーボネート樹脂組成物の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。   The melt polycondensation reaction can be performed by either a batch method or a continuous method. When performing by a batch type, the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily. However, considering the stability of the polycarbonate resin and the polycarbonate resin composition, the melt polycondensation reaction is preferably carried out continuously.

溶融エステル交換法においては、必要に応じて、触媒失活剤を用いても良い。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   In the melt transesterification method, a catalyst deactivator may be used as necessary. As the catalyst deactivator, a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof. In addition, a catalyst deactivator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、芳香族ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。   The amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to aromatic polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.

・ポリカーボネート樹脂に関するその他の事項
ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1,000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これにより本発明のポリカーボネート樹脂組成物の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、本発明のポリカーボネート樹脂組成物の機械的特性をより向上させることができる。
-Other matter regarding polycarbonate resin Although the terminal hydroxyl group density | concentration of polycarbonate resin is arbitrary and may be suitably selected and determined, it is 1,000 ppm or less normally, Preferably it is 800 ppm or less, More preferably, it is 600 ppm or less. Thereby, the residence heat stability and color tone of the polycarbonate resin composition of the present invention can be further improved. In addition, the lower limit is usually 10 ppm or more, preferably 30 ppm or more, more preferably 40 ppm or more, particularly for polycarbonate resins produced by the melt transesterification method. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of the polycarbonate resin composition of this invention can be improved more.

なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。   In addition, the unit of a terminal hydroxyl group density | concentration represents the mass of the terminal hydroxyl group with respect to the mass of polycarbonate resin in ppm. The measurement method is colorimetric determination (method described in Macromol. Chem. 88 215 (1965)) by the titanium tetrachloride / acetic acid method.

ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。   The polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination. Further, for example, for the purpose of further improving flame retardancy and impact resistance, a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy A monomer, oligomer or polymer having a copolymer; a monomer, oligomer or polymer having a dihydroxyanthraquinone structure for the purpose of improving thermal oxidation stability; A copolymer with an oligomer or polymer having an olefin structure; a copolymer with a polyester resin oligomer or polymer for the purpose of improving chemical resistance; Good.

また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1,500以上、好ましくは2,000以上であり、また、通常9,500以下、好ましくは9,000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。   Further, in order to improve the appearance of the molded product and improve the fluidity, the polycarbonate resin may contain a polycarbonate oligomer. The viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less. Furthermore, the polycarbonate ligomer contained is preferably 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).

さらにポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。前記の使用済みの製品としては、例えば、光学ディスク等の光記録媒体;導光板;自動車窓ガラス、自動車ヘッドランプレンズ、風防等の車両透明部材;水ボトル等の容器;メガネレンズ;防音壁、ガラス窓、波板等の建築部材などが挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品またはそれらを溶融して得たペレット等も使用可能である。
ただし、再生されたポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂のうち80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
Further, the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin). Examples of the used products include: optical recording media such as optical disks; light guide plates; vehicle window glass, vehicle headlamp lenses, windshields and other vehicle transparent members; water bottles and other containers; eyeglass lenses; Examples include architectural members such as glass windows and corrugated sheets. Also, non-conforming products, pulverized products obtained from sprues, runners, etc., or pellets obtained by melting them can be used.
However, the regenerated polycarbonate resin is preferably 80% by mass or less, more preferably 50% by mass or less, among the polycarbonate resins contained in the polycarbonate resin composition of the present invention. Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.

[3.有機スルホン酸金属塩(B)]
本発明の樹脂組成物には、有機スルホン酸金属塩(B)を使用する。
有機スルホン酸金属塩が有する金属の種類としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等のアルカリ金属;マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等のアルカリ土類金属;並びに、アルミニウム(Al)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブテン(Mo)等が挙げられる。これらの中でもアルカリ金属又はアルカリ土類金属が好ましい。ポリカーボネート樹脂の燃焼時の炭化層形成を促進し、難燃性をより高めることができると共に、ポリカーボネート樹脂が有する耐衝撃性等の機械的物性、耐熱性、電気的特性などの性質を良好に維持できる。
アルカリ金属又はアルカリ土類金属のうち、アルカリ金属がさらに好ましく、ナトリウム、カリウム、セシウムまたはリチウムがより好ましく、さらにはナトリウム、カリウム、セシウムが、特にはナトリウム、カリウムが好ましい。
[3. Organic sulfonic acid metal salt (B)]
An organic sulfonic acid metal salt (B) is used in the resin composition of the present invention.
The types of metals possessed by organic sulfonic acid metal salts include alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs); magnesium (Mg), calcium (Ca ), Alkaline earth metals such as strontium (Sr), barium (Ba); and aluminum (Al), titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), Zinc (Zn), zirconium (Zr), molybdenum (Mo), etc. are mentioned. Among these, alkali metals or alkaline earth metals are preferable. Promotes the formation of a carbonized layer during the combustion of polycarbonate resin, further enhances flame retardancy, and maintains good properties such as impact resistance and other mechanical properties, heat resistance, and electrical properties of polycarbonate resin it can.
Of the alkali metals or alkaline earth metals, alkali metals are more preferred, sodium, potassium, cesium or lithium are more preferred, sodium, potassium and cesium are more preferred, and sodium and potassium are particularly preferred.

好ましい有機スルホン酸金属塩(B)の例を挙げると、有機スルホン酸リチウム(Li)塩、有機スルホン酸ナトリウム(Na)塩、有機スルホン酸カリウム(K)塩、有機スルホン酸ルビジウム(Rb)塩、有機スルホン酸セシウム(Cs)塩、有機スルホン酸マグネシウム(Mg)塩、有機スルホン酸カルシウム(Ca)塩、有機スルホン酸ストロンチウム(Sr)塩、有機スルホン酸バリウム(Ba)塩、等が挙げられる。この中でも特に、有機スルホン酸ナトリウム(Na)塩、有機スルホン酸カリウム(K)塩化合物、有機スルホン酸セシウム(Cs)塩化合物等の有機スルホン酸アルカリ金属塩が好ましい。   Examples of preferred organic sulfonic acid metal salts (B) include organic sulfonic acid lithium (Li) salts, organic sulfonic acid sodium (Na) salts, organic sulfonic acid potassium (K) salts, and organic sulfonic acid rubidium (Rb) salts. , Organic sulfonic acid cesium (Cs) salt, organic sulfonic acid magnesium (Mg) salt, organic sulfonic acid calcium (Ca) salt, organic sulfonic acid strontium (Sr) salt, organic sulfonic acid barium (Ba) salt, and the like. . Among these, organic sulfonic acid alkali metal salts such as organic sulfonic acid sodium (Na) salt, organic sulfonic acid potassium (K) salt compound, and organic sulfonic acid cesium (Cs) salt compound are particularly preferable.

有機スルホン酸金属塩(B)のうち、好ましいものとしては、含フッ素脂肪族スルホン酸の金属塩、含フッ素脂肪族スルホン酸イミドの金属塩、芳香族スルホン酸の金属塩、芳香族スルホンアミドの金属塩が挙げられる。   Among the organic sulfonic acid metal salts (B), preferred are fluorine-containing aliphatic sulfonic acid metal salts, fluorine-containing aliphatic sulfonic acid imide metal salts, aromatic sulfonic acid metal salts, and aromatic sulfonamide. Metal salts are mentioned.

その中でも好ましいものの具体例を挙げると、ノナフルオロブタンスルホン酸カリウム、ノナフルオロブタンスルホン酸リチウム、ノナフルオロブタンスルホン酸ナトリウム、ノナフルオロブタンスルホン酸セシウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸カリウム、ヘプタフルオロプロパンスルホン酸カリウム、デカフルオロ−4−(ペンタフルオロエチル)シクロヘキサンスルホン酸カリウム等の、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族スルホン酸のアルカリ金属塩;   Among them, specific examples of preferable ones include potassium nonafluorobutanesulfonate, lithium nonafluorobutanesulfonate, sodium nonafluorobutanesulfonate, cesium nonafluorobutanesulfonate, lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, Containing at least one C—F bond in the molecule, such as potassium trifluoromethanesulfonate, potassium pentafluoroethanesulfonate, potassium heptafluoropropanesulfonate, potassium decafluoro-4- (pentafluoroethyl) cyclohexanesulfonate; Alkali metal salts of fluoroaliphatic sulfonic acids;

ノナフルオロブタンスルホン酸マグネシウム、ノナフルオロブタンスルホン酸カルシウム、ノナフルオロブタンスルホン酸バリウム、トリフルオロメタンスルホン酸マグネシウム、トリフルオロメタンスルホン酸カルシウム、トリフルオロメタンスルホン酸バリウム等の、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族スルホン酸のアルカリ土類金属塩;   At least one C—F in the molecule, such as magnesium nonafluorobutanesulfonate, calcium nonafluorobutanesulfonate, barium nonafluorobutanesulfonate, magnesium trifluoromethanesulfonate, calcium trifluoromethanesulfonate, barium trifluoromethanesulfonate, etc. An alkaline earth metal salt of a fluorine-containing aliphatic sulfonic acid having a bond;

ジフルオロメタンジスルホン酸ジナトリウム、ジフルオロメタンジスルホン酸ジカリウム、テトラフルオロエタンジスルホン酸ナトリウム、テトラフルオロエタンジスルホン酸ジカリウム、ヘキサフルオロプロパンジスルホン酸ジカリウム、ヘキサフルオロイソプロパンジスルホン酸ジカリウム、オクタフルオロブタンジスルホン酸ジナトリウム、オクタフルオロブタンジスルホン酸ジカリウム等の、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族ジスルホン酸のアルカリ金属塩;等の、含フッ素脂肪族スルホン酸の金属塩、   Disodium difluoromethane disulfonate, dipotassium difluoromethane disulfonate, sodium tetrafluoroethane disulfonate, dipotassium tetrafluoroethane disulfonate, dipotassium hexafluoropropane disulfonate, dipotassium hexafluoroisopropane disulfonate, disodium octafluorobutane disulfonate, A metal salt of a fluorinated aliphatic sulfonic acid, such as an alkali metal salt of a fluorinated aliphatic disulfonic acid having at least one C—F bond in the molecule, such as dipotassium octafluorobutanedisulfonate;

ビス(パーフルオロプロパンスルホニル)イミドリチウム、ビス(パーフルオロプロパンスルホニル)イミドナトリウム、ビス(パーフルオロプロパンスルホニル)イミドカリウム、ビス(パーフルオロブタンスルホニル)イミドリチウム、ビス(パーフルオロブタンスルホニル)イミドナトリウム、ビス(パーフルオロブタンスルホニル)イミドカリウム、トリフルオロメタン(ペンタフルオロエタン)スルホニルイミドカリウム、トリフルオロメタン(ノナフルオロブタン)スルホニルイミドナトリウム、トリフルオロメタン(ノナフルオロブタン)スルホニルイミドカリウム、トリフルオロメタン等の、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族ジスルホン酸イミドのアルカリ金属塩;   Bis (perfluoropropanesulfonyl) imide lithium, bis (perfluoropropanesulfonyl) imide sodium, bis (perfluoropropanesulfonyl) imide potassium, bis (perfluorobutanesulfonyl) imide lithium, bis (perfluorobutanesulfonyl) imide sodium, In the molecule, such as potassium bis (perfluorobutanesulfonyl) imide, potassium trifluoromethane (pentafluoroethane) sulfonylimide, sodium trifluoromethane (nonafluorobutane) sulfonylimide, potassium trifluoromethane (nonafluorobutane) sulfonylimide, trifluoromethane, etc. An alkali metal salt of a fluorine-containing aliphatic disulfonic imide having at least one C—F bond;

シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドリチウム、シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドナトリウム、シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドカリウム等の、分子中に少なくとも1つのC−F結合を有する環状含フッ素脂肪族スルホンイミドのアルカリ金属塩;等の、含フッ素脂肪族スルホン酸イミドの金属塩、   Cyclo-hexafluoropropane-1,3-bis (sulfonyl) imide lithium, cyclo-hexafluoropropane-1,3-bis (sulfonyl) imide sodium, cyclo-hexafluoropropane-1,3-bis (sulfonyl) imide potassium An alkali metal salt of a cyclic fluorinated aliphatic sulfonimide having at least one C—F bond in the molecule; a metal salt of a fluorinated aliphatic sulfonic imide, such as

ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3−スルホン酸カリウム、ベンゼンスルホン酸ナトリウム、(ポリ)スチレンスルホン酸ナトリウム、パラトルエンスルホン酸ナトリウム、(分岐)ドデシルベンゼンスルホン酸ナトリウム、トリクロロベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸カリウム、スチレンスルホン酸カリウム、(ポリ)スチレンスルホン酸カリウム、パラトルエンスルホン酸カリウム、(分岐)ドデシルベンゼンスルホン酸カリウム、トリクロロベンゼンスルホン酸カリウム、ベンゼンスルホン酸セシウム、(ポリ)スチレンスルホン酸セシウム、パラトルエンスルホン酸セシウム、(分岐)ドデシルベンゼンスルホン酸セシウム、トリクロロベンゼンスルホン酸セシウム等の、分子中に少なくとも1種の芳香族基を有する芳香族スルホン酸のアルカリ金属塩;   Diphenylsulfone-3,3′-disulfonate dipotassium, diphenylsulfone-3-sulfonate potassium, sodium benzenesulfonate, sodium (poly) styrenesulfonate, sodium paratoluenesulfonate, sodium (branched) dodecylbenzenesulfonate, tri Sodium chlorobenzenesulfonate, potassium benzenesulfonate, potassium styrenesulfonate, potassium (poly) styrenesulfonate, potassium paratoluenesulfonate, potassium (branched) dodecylbenzenesulfonate, potassium trichlorobenzenesulfonate, cesium benzenesulfonate, ( Poly) cesium styrene sulfonate, cesium p-toluenesulfonate, cesium (branched) dodecylbenzene sulfonate, cesium trichlorobenzene sulfonate Etc., alkali metal salts of aromatic sulfonic acids having at least one aromatic group in the molecule;

パラトルエンスルホン酸マグネシウム、パラトルエンスルホン酸カルシウム、パラトルエンスルホン酸ストロンチウム、パラトルエンスルホン酸バリウム、(分岐)ドデシルベンゼンスルホン酸マグネシウム、(分岐)ドデシルベンゼンスルホン酸カルシウム等の、分子中に少なくとも1種の芳香族基を有する芳香族スルホン酸のアルカリ土類金属塩;等の、芳香族スルホン酸金属塩等、   Magnesium paratoluenesulfonate, calcium paratoluenesulfonate, strontium paratoluenesulfonate, barium paratoluenesulfonate, magnesium (branched) dodecylbenzenesulfonate, calcium (branched) calcium dodecylbenzenesulfonate in the molecule An alkaline earth metal salt of an aromatic sulfonic acid having an aromatic group of: an aromatic sulfonic acid metal salt, etc.

サッカリンのナトリウム塩、N−(p−トリルスルホニル)−p−トルエンスルホイミドのカリウム塩、N−(N’−ベンジルアミノカルボニル)スルファニルイミドのカリウム塩、N−(フェニルカルボキシル)−スルファニルイミドのカリウム塩等の、分子中に少なくとも1種の芳香族基を有する芳香族スルホンアミドのアルカリ金属塩;等の、芳香族スルホンアミドの金属塩等が挙げられる。   Sodium salt of saccharin, potassium salt of N- (p-tolylsulfonyl) -p-toluenesulfimide, potassium salt of N- (N′-benzylaminocarbonyl) sulfanilimide, potassium of N- (phenylcarboxyl) -sulfanilimide Examples thereof include metal salts of aromatic sulfonamides such as alkali metal salts of aromatic sulfonamides having at least one aromatic group in the molecule, such as salts.

上述した例示物の中でも、含フッ素脂肪族スルホン酸金属塩が好ましい。含フッ素脂肪族スルホン酸金属塩としては、分子中に少なくとも1つのC−F結合を有する含フッ素脂肪族スルホン酸のアルカリ金属塩がより好ましく、パーフルオロアルカンスルホン酸のアルカリ金属塩が特に好ましく、具体的にはノナフルオロブタンスルホン酸カリウム等が好ましい。
芳香族スルホン酸金属塩としては、芳香族スルホン酸のアルカリ金属塩がより好ましく、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3−スルホン酸カリウム等のジフェニルスルホン−スルホン酸のアルカリ金属塩;パラトルエンスルホン酸ナトリウム、及びパラトルエンスルホン酸カリウム、パラトルエンスルホン酸セシウム等のパラトルエンスルホン酸のアルカリ金属塩;が特に好ましく、パラトルエンスルホン酸のアルカリ金属塩がさらに好ましい。
Among the above-mentioned examples, fluorine-containing aliphatic sulfonic acid metal salts are preferable. As the fluorine-containing aliphatic sulfonic acid metal salt, an alkali metal salt of a fluorine-containing aliphatic sulfonic acid having at least one C—F bond in the molecule is more preferable, and an alkali metal salt of perfluoroalkanesulfonic acid is particularly preferable. Specifically, potassium nonafluorobutanesulfonate is preferred.
As the aromatic sulfonic acid metal salt, an alkali metal salt of an aromatic sulfonic acid is more preferable, and an alkali of diphenyl sulfone-sulfonic acid such as dipotassium 3,3′-disulfonic acid dipotassium and diphenylsulfone-3-sulfonic acid potassium. Metal salts; sodium paratoluenesulfonate, and alkali metal salts of paratoluenesulfonic acid such as potassium paratoluenesulfonate and cesium paratoluenesulfonate are particularly preferable, and alkali metal salts of paratoluenesulfonic acid are more preferable.

なお、有機スルホン酸金属塩(B)は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   In addition, 1 type may be used for organic sulfonic acid metal salt (B), and it may use 2 or more types together by arbitrary combinations and a ratio.

有機スルホン酸金属塩(B)の平均粒径は、特に制限はなく、通常1μm〜500μmの範囲のものを使用すればよいが、なかでも平均粒径を20〜200μmとすることで透明性が向上する傾向にある為好ましい。この範囲とすることで、ポリカーボネート樹脂中への有機スルホン酸金属塩の分散性が向上し、また凝集性が抑制される為だと考えられる。このような観点より、上述の平均粒径は、25〜150μmであるがより好ましく、30〜100μmであることがさらに好ましい。
なお、平均粒径は、日機装(株)社製、マイクロトラックMT3300型レーザー回折散乱式粒度分布測定装置を用い、分散圧力200kPaの条件で、0.1〜10000μmの範囲測定し、50%累積頻度となるときの体積平均粒径(D50)を表す。
The average particle diameter of the organic sulfonic acid metal salt (B) is not particularly limited, and it is usually sufficient to use one in the range of 1 μm to 500 μm. In particular, transparency can be achieved by setting the average particle diameter to 20 to 200 μm. It is preferable because it tends to improve. By setting it within this range, it is considered that the dispersibility of the organic sulfonic acid metal salt in the polycarbonate resin is improved and the aggregation property is suppressed. From such a viewpoint, the average particle diameter is preferably 25 to 150 μm, more preferably 30 to 100 μm.
The average particle diameter was measured in the range of 0.1 to 10,000 μm using a Microtrac MT3300 laser diffraction scattering type particle size distribution measuring device manufactured by Nikkiso Co., Ltd. under a dispersion pressure of 200 kPa, and the cumulative frequency was 50%. Represents the volume average particle diameter (D50).

有機スルホン酸金属塩(B)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.001〜1質量部である。好ましい下限は0.01質量部以上、より好ましくは0.03質量部以上、特に好ましくは0.05質量部以上であり、好ましい上限は、0.75質量部以下、より好ましくは0.5質量部以下、特に好ましくは0.3質量部以下である。含有量が少なすぎると得られるポリカーボネート樹脂組成物の難燃性が不十分となる可能性があり、逆に多すぎてもポリカーボネート樹脂の熱安定性の低下、並びに、成形品の外観不良及び機械的強度の低下が生ずる可能性がある。   Content of an organic sulfonic acid metal salt (B) is 0.001-1 mass part with respect to 100 mass parts of polycarbonate resin (A). The preferred lower limit is 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, particularly preferably 0.05 parts by mass or more, and the preferred upper limit is 0.75 parts by mass or less, more preferably 0.5 parts by mass. Part or less, particularly preferably 0.3 part by weight or less. If the content is too small, the flame retardancy of the obtained polycarbonate resin composition may be insufficient. On the other hand, if the content is too large, the thermal stability of the polycarbonate resin is deteriorated, and the appearance of the molded product is poor. There is a possibility that the mechanical strength is reduced.

[4.フルオロポリマー(C)]
本発明のポリカーボネート樹脂組成物は、フルオロポリマー(C)を、ポリカーボネート樹脂(A)100質量部に対し、0.001〜1質量部含有する。フルオロポリマー(C)は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
[4. Fluoropolymer (C)]
The polycarbonate resin composition of the present invention contains 0.001 to 1 part by mass of the fluoropolymer (C) with respect to 100 parts by mass of the polycarbonate resin (A). One type of fluoropolymer (C) may be used, or two or more types may be used in any combination and in any ratio.

フルオロポリマー(C)としては、例えば、フルオロオレフィン樹脂が挙げられる。フルオロオレフィン樹脂は、通常フルオロエチレン構造を含む重合体あるいは共重合体である。具体例としてはジフルオロエチレン樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂、テトラフルオロエチレン/パーフルアルキルビニルエーテル共重合樹脂等が挙げられる。なかでも好ましくはテトラフルオロエチレン樹脂等が挙げられる。このフルオロエチレン樹脂としては、フィブリル形成能を有するフルオロエチレン樹脂が挙げられる。   Examples of the fluoropolymer (C) include a fluoroolefin resin. The fluoroolefin resin is usually a polymer or copolymer containing a fluoroethylene structure. Specific examples include difluoroethylene resin, tetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, and the like. Of these, tetrafluoroethylene resin and the like are preferable. Examples of the fluoroethylene resin include a fluoroethylene resin having a fibril forming ability.

フィブリル形成能を有するフルオロエチレン樹脂としては、例えば、三井・デュポンフロロケミカル社製「テフロン(登録商標)6J」、「テフロン(登録商標)640J」、ダイキン化学工業社製「ポリフロンF201L」、「ポリフロンF103」、「ポリフロンFA500B」、「ポリフロンFA500H」などが挙げられる。さらに、フルオロエチレン樹脂の水性分散液の市販品として、例えば、三井デュポンフロロケミカル社製「テフロン(登録商標)30J」、「テフロン(登録商標)31−JR」、ダイキン化学工業社製「フルオンD−1」等が挙げられる。
さらに、ビニル系単量体を重合してなる多層構造を有するフルオロエチレン重合体も使用することができ、このようなフルオロエチレン重合体としては、ポリスチレン−フルオロエチレン複合体、ポリスチレン−アクリロニトリル−フルオロエチレン複合体、ポリメタクリル酸メチル−フルオロエチレン複合体、ポリメタクリル酸ブチル−フルオロエチレン複合体等が挙げられ、具体例としては三菱レイヨン社製「メタブレンA−3800」、GEスペシャリティケミカル社製「ブレンデックス449」等が挙げられる。
なお、フルオロポリマー(C)は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
Examples of the fluoroethylene resin having a fibril forming ability include “Teflon (registered trademark) 6J”, “Teflon (registered trademark) 640J” manufactured by Mitsui DuPont Fluorochemical Co., Ltd., “Polyflon F201L”, “Polyfluorocarbon” manufactured by Daikin Chemical Industries, Ltd. F103 "," Polyfluorocarbon FA500B "," Polyfluorocarbon FA500H "and the like. Further, commercially available products of aqueous dispersions of fluoroethylene resins include, for example, “Teflon (registered trademark) 30J”, “Teflon (registered trademark) 31-JR” manufactured by Mitsui DuPont Fluorochemical Co., Ltd., “Fluon D” manufactured by Daikin Chemical Industries, Ltd. -1 "and the like.
Furthermore, a fluoroethylene polymer having a multilayer structure obtained by polymerizing vinyl monomers can also be used. Examples of such a fluoroethylene polymer include polystyrene-fluoroethylene composites, polystyrene-acrylonitrile-fluoroethylene. Examples include composites, polymethyl methacrylate-fluoroethylene composites, polybutyl methacrylate-fluoroethylene composites, etc. Specific examples include “Metablene A-3800” manufactured by Mitsubishi Rayon Co., Ltd., “Blendex” manufactured by GE Specialty Chemical Co., Ltd. 449 "and the like.
In addition, 1 type may contain fluoropolymer (C) and 2 or more types may contain it by arbitrary combinations and a ratio.

本発明におけるフルオロポリマー(C)は、標準比重の値が、2.15以上、2.22以下のものを使用することが好ましい。標準比重が、2.15を下回る場合は、燃焼時間が伸び、消炎性に劣る傾向にあり、また耐ドリップ性、即ち耐延焼性も低下する傾向にあるため好ましくない。また標準比重が2.22を超える場合も、耐ドリップ性が低下し、耐ドローダウン性も低下しやすい。標準比重の値は、2.16〜2.21であることがより好ましく、2.17〜2.20であることがさらに好ましい。
なお、標準比重(SSGともいう。)は、ASTM D4895に準拠して成形されたサンプルを用い、水置換法により測定する値である。
The fluoropolymer (C) in the present invention preferably has a standard specific gravity value of 2.15 or more and 2.22 or less. When the standard specific gravity is less than 2.15, the combustion time is prolonged, the flame extinguishing property tends to be inferior, and the drip resistance, that is, the flame spread resistance tends to be lowered. Also, when the standard specific gravity exceeds 2.22, the drip resistance is lowered and the drawdown resistance is likely to be lowered. The standard specific gravity value is more preferably 2.16 to 2.21, and further preferably 2.17 to 2.20.
The standard specific gravity (also referred to as SSG) is a value measured by a water displacement method using a sample molded according to ASTM D4895.

フルオロポリマーの製造は、乳化重合により製造されるが、標準比重(SSG)は、その重合条件を調整することで可能であり、例えばテトラフルオロエチレンモノマーの乳化重合過程において、重合開始剤の注入および停止時期の選択、その他の重合条件を調整することにより、可能である。   The fluoropolymer is produced by emulsion polymerization, and the standard specific gravity (SSG) can be adjusted by adjusting the polymerization conditions. For example, in the emulsion polymerization process of tetrafluoroethylene monomer, the polymerization initiator injection and It is possible by selecting the stop time and adjusting other polymerization conditions.

また、本発明におけるフルオロポリマー(C)の平均粒径は、特に制限はないが、300〜1,000μmであることが好ましい。平均粒径が300μmを下回る場合は、本発明のポリカーボネート樹脂組成物の耐ドリップ性が低下する可能性があり、また1,000μmを超える場合は、フルオロポリマーが凝集しやすくなり、成形体とした場合に白点異物等の外観不良を引き起こす可能性があるため好ましくない。このような観点より、フルオロポリマーの平均粒径は、350〜800μmであることがより好ましく、380〜750μmであることがさらに好ましく、400〜700μmであることが特に好ましい。   The average particle size of the fluoropolymer (C) in the present invention is not particularly limited, but is preferably 300 to 1,000 μm. When the average particle size is less than 300 μm, the drip resistance of the polycarbonate resin composition of the present invention may be reduced. When the average particle size is more than 1,000 μm, the fluoropolymer is likely to aggregate, resulting in a molded product. In such a case, it is not preferable because it may cause appearance defects such as white spot foreign matter. From such a viewpoint, the average particle size of the fluoropolymer is more preferably 350 to 800 μm, further preferably 380 to 750 μm, and particularly preferably 400 to 700 μm.

フルオロポリマー(C)の含有量は、前記したように、ポリカーボネート樹脂(A)100質量部に対して、その下限は0.001質量部以上であるが、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、特に好ましくは0.1質量部以上であり、また、その上限は1質量部以下で、好ましくは0.75質量部以下、より好ましくは0.5質量部以下である。フルオロポリマー(C)の含有量が前記範囲の下限値以下の場合は、滴下防止剤による難燃性の効果が不十分となり、含有量が前記範囲の上限値を超える場合は、ポリカーボネート樹脂組成物を成形した成形品の外観不良や機械的強度の低下が生じる可能性がある。   As described above, the content of the fluoropolymer (C) is 0.001 part by mass or more with respect to 100 parts by mass of the polycarbonate resin (A), but preferably 0.01 part by mass or more. Preferably it is 0.05 parts by mass or more, particularly preferably 0.1 parts by mass or more, and the upper limit is 1 part by mass or less, preferably 0.75 parts by mass or less, more preferably 0.5 parts by mass or less. It is. When the content of the fluoropolymer (C) is less than or equal to the lower limit of the above range, the flame retardancy effect due to the anti-dripping agent becomes insufficient, and when the content exceeds the upper limit of the above range, the polycarbonate resin composition There is a possibility that the appearance defect or the mechanical strength of the molded product formed from the above will be deteriorated.

[5.グラフト共重合体(D)]
本発明のポリカーボネート樹脂組成物は、ジエン系ゴムに(メタ)アクリル酸エステル化合物をグラフト重合させてなる平均粒径が160〜240nmのグラフト共重合体(D)を含有する。このような特定のエラストマーを含有することで、ポリカーボネート樹脂組成物の耐衝撃性を改良することができる。従来、エラストマーとしては、ジエン系ゴムが使用されることが多かったが、ジエン系ゴムは酸化劣化あるいは成形時に変色しやすく、本発明では、このような特定のグラフト共重合体(D)を、前記成分(B)〜(C)、後記する成分(E)〜(F)と組み合わせて使用することにより、耐衝撃性、低温衝撃性、耐候性、湿熱安定性に優れた難燃性ポリカーボネート樹脂材料とすることができる。
[5. Graft copolymer (D)]
The polycarbonate resin composition of the present invention contains a graft copolymer (D) having an average particle diameter of 160 to 240 nm obtained by graft polymerization of a (meth) acrylic acid ester compound to a diene rubber. By containing such a specific elastomer, the impact resistance of the polycarbonate resin composition can be improved. Conventionally, diene rubber has often been used as the elastomer, but the diene rubber is easily oxidatively deteriorated or discolored during molding. In the present invention, such a specific graft copolymer (D) Flame retardant polycarbonate resin excellent in impact resistance, low temperature impact resistance, weather resistance and wet heat stability when used in combination with the components (B) to (C) and components (E) to (F) described later Can be a material.

本発明に用いるエラストマーは、ジエン系ゴム質重合体に、これと共重合可能な(メタ)アクリル酸エステル化合物とをグラフト共重合したグラフト共重合体である。グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよい。   The elastomer used in the present invention is a graft copolymer obtained by graft copolymerizing a diene rubber polymer with a (meth) acrylic acid ester compound copolymerizable therewith. As a manufacturing method of a graft copolymer, any manufacturing methods, such as block polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, may be sufficient.

ゴム成分は、ガラス転移温度が通常0℃以下、中でも−20℃以下であることが好ましく、更には−30℃以下が好ましい。   The rubber component generally has a glass transition temperature of 0 ° C. or lower, preferably −20 ° C. or lower, and more preferably −30 ° C. or lower.

本発明に用いるグラフト共重合体中のジエン系ゴムとしては、ポリブタジエン、(部分)水添ポリブタジエン、並びにブタジエン−スチレン共重合体、(部分)水添ポリブタジエン−スチレン共重合体、ブタジエン−スチレンブロック共重合体、(部分)水添ポリブタジエン−スチレンブロック共重合体、ブタジエン−アクリロニトリル共重合体、ブタジエン−イソブチルアクリレートを主成分とするアクリル系ゴム共重合体等のブタジエンとブタジエンと共重合し得る1種以上のビニル系単量体との共重合体等のブタジエン系ゴムや、ポリイソブチレン、ポリイソブチレン−スチレン共重合体、ポリイソブチレン−スチレンブロック共重合体等のイソブチレン系ゴム等が挙げられ、なかでもブタジエン系ゴムが好ましい。   Examples of the diene rubber in the graft copolymer used in the present invention include polybutadiene, (partially) hydrogenated polybutadiene, butadiene-styrene copolymer, (partially) hydrogenated polybutadiene-styrene copolymer, and butadiene-styrene block copolymer. One type that can be copolymerized with butadiene and butadiene, such as a polymer, (partially) hydrogenated polybutadiene-styrene block copolymer, butadiene-acrylonitrile copolymer, acrylic rubber copolymer based on butadiene-isobutyl acrylate Examples include butadiene rubbers such as copolymers with the above vinyl monomers, and isobutylene rubbers such as polyisobutylene, polyisobutylene-styrene copolymers, and polyisobutylene-styrene block copolymers. Butadiene rubber is preferred.

このようなブタジエン系ゴムとしては、なかでも1,3−ブタジエン75〜100質量%と、1,3−ブタジエンと共重合し得る1種以上のビニル系単量体0〜25質量%を共重合して得られるものとを共重合して得られるポリブタジエン、ブタジエン−スチレン共重合体、ブタジエン−スチレンブロック共重合体が好ましいが、このときスチレン含有率が多いと本発明のポリカーボネート樹脂組成物の難燃性、耐衝撃性が低下する可能性があることから、スチレン含有率は小さい方がより好ましい。   As such a butadiene-based rubber, among them, 1,3-butadiene 75-100% by mass and one or more vinyl monomers copolymerizable with 1,3-butadiene 0-30% by mass are copolymerized. Polybutadiene, butadiene-styrene copolymer, and butadiene-styrene block copolymer obtained by copolymerization with those obtained in this manner are preferred, but if the styrene content is high at this time, the polycarbonate resin composition of the present invention is difficult. Since flammability and impact resistance may be reduced, a smaller styrene content is more preferable.

ブタジエン系ゴムとしては、特に、1,3−ブタジエン95〜100質量%と、1,3−ブタジエンと共重合し得る1種以上のビニル系単量体0〜5質量%を共重合して得られるものとを共重合して得られるポリブタジエン、ブタジエン−スチレン共重合体、ブタジエン−スチレンブロック共重合体がより好ましく、1,3−ブタジエンが実質的に100質量%からなるポリブタジエンが特に好ましい。ポリブタジエン実質的に100質量%とは、ブタジエンのみからなるゴムを意味するが、ゴム質重合体の熱安定性を高める目的や、粒径制御をしやすくする為に、微量の他成分を含んでいてもよい。但し、このとき他成分としては、ブタジエン系ゴム中、通常5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下である。   Particularly, the butadiene rubber is obtained by copolymerizing 95 to 100% by mass of 1,3-butadiene and 0 to 5% by mass of one or more vinyl monomers that can be copolymerized with 1,3-butadiene. More preferred are polybutadiene, butadiene-styrene copolymer, and butadiene-styrene block copolymer obtained by copolymerizing with each other, and particularly preferred is polybutadiene consisting essentially of 100 mass% of 1,3-butadiene. Polybutadiene substantially 100% by mass means a rubber composed only of butadiene, but it contains a small amount of other components in order to increase the thermal stability of the rubbery polymer and to facilitate particle size control. May be. However, in this case, the other component is usually 5% by mass or less, preferably 3% by mass or less, more preferably 1% by mass or less in the butadiene rubber.

また、本発明に用いるグラフト共重合体における、ジエン系ゴムに、グラフト重合させる(メタ)アクリル酸エステル化合物としては、メチルメタクリレート、エチルメタクリレート、n−ブチルアクリレート等のメタクリル酸アルキルエステル;
フェニルメタクリレート、ナフチルメタクリレート等のアリールメタクリレート;
グリシジルアクリレート、グリシジルメタクリレート等のグリシジル基含有メタクリレート;等が挙げられるが、なかでも耐熱性とポリカーボネート樹脂とのバランスの面よりメタクリル酸アルキルエステルが好ましく、メチルメタクリレートがより好ましい。
なお、上記上記(メタ)アクリル酸エステル化合物は1種または2種以上を使用することができる。
Moreover, as the (meth) acrylic acid ester compound to be graft-polymerized to the diene rubber in the graft copolymer used in the present invention, methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, n-butyl acrylate;
Aryl methacrylates such as phenyl methacrylate and naphthyl methacrylate;
Examples include glycidyl group-containing methacrylates such as glycidyl acrylate and glycidyl methacrylate. Among them, methacrylic acid alkyl esters are preferable, and methyl methacrylate is more preferable in terms of the balance between heat resistance and polycarbonate resin.
In addition, the said (meth) acrylic acid ester compound can use 1 type (s) or 2 or more types.

また、上記(メタ)アクリル酸エステル化合物のほかに、所望に応じてその他のビニル系単量体を含有してよい。その他のビニル系単量体としては、例えば、
スチレン、α−メチルスチレン等の芳香族ビニル類;
アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;
メチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;
マレイミド、N−メチルマレイミド、N−フェニルマレイミド等のマレイミド化合物;
マレイン酸、フタル酸、イタコン酸等のα,β−不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等);
等が挙げられる。
In addition to the (meth) acrylic acid ester compound, other vinyl monomers may be contained as desired. Other vinyl monomers include, for example,
Aromatic vinyls such as styrene and α-methylstyrene;
Unsaturated nitriles such as acrylonitrile and methacrylonitrile;
Vinyl ethers such as methyl vinyl ether and butyl vinyl ether;
Maleimide compounds such as maleimide, N-methylmaleimide, N-phenylmaleimide;
Α, β-unsaturated carboxylic acid compounds such as maleic acid, phthalic acid and itaconic acid and their anhydrides (eg maleic anhydride);
Etc.

さらに、ジビニルベンゼン、ジビニルトルエン等の芳香族多官能ビニル化合物;
エチレングリコールジメタクリレート、1,3−ブタンジオールジアクリレート等の多価アルコール;
トリメタクリル酸エステル、トリアクリル酸エステル、アクリル酸アリル、メタクリル酸アリル等のカルボン酸アリルエステル;
ジアリルフタレート、ジアリルセバケート、トリアリルトリアジン等のジ及びトリアリル化合物等の架橋性単量体を併用することもできる。
Furthermore, aromatic polyfunctional vinyl compounds such as divinylbenzene and divinyltoluene;
Polyhydric alcohols such as ethylene glycol dimethacrylate and 1,3-butanediol diacrylate;
Carboxylic acid allyl esters such as trimethacrylic acid ester, triacrylic acid ester, allyl acrylate, allyl methacrylate;
Crosslinkable monomers such as di- and triallyl compounds such as diallyl phthalate, diallyl sebacate, and triallyl triazine can also be used in combination.

本発明に用いるグラフト共重合体における、ジエン系ゴムの含有量は、ジエン系ゴム、(メタ)アクリル酸エステル化合物、その他の単量体及び架橋性単量体の合計100質量%中、50〜95質量%であることが好ましく、より好ましくは70〜90質量%、さらに好ましくは75〜85質量%である。
ジエン系ゴムの含有量が、上記下限値以下の場合は、本発明のポリカーボネート樹脂の耐衝撃性の低下、難燃性の低下を招く可能性があるため好ましくない。またジエン系ゴムの含有量が、上記上限値を越える場合もやはり耐衝撃性の低下、難燃性の低下を招く可能性があるため好ましくない。
The content of the diene rubber in the graft copolymer used in the present invention is 50 to 50% in a total of 100% by mass of the diene rubber, the (meth) acrylic acid ester compound, other monomers and the crosslinkable monomer. It is preferable that it is 95 mass%, More preferably, it is 70-90 mass%, More preferably, it is 75-85 mass%.
When the content of the diene rubber is not more than the above lower limit value, the polycarbonate resin of the present invention is not preferable because it may cause a decrease in impact resistance and a decrease in flame retardancy. Moreover, when the content of the diene rubber exceeds the above upper limit, it is also not preferable because it may cause a decrease in impact resistance and a decrease in flame retardancy.

また、ジエン系ゴムにグラフト共重合させる(メタ)アクリル酸エステル化合物は、(メタ)アクリル酸エステル化合物、その他の単量体及び架橋性単量体の合計100質量%中、好ましくは50〜100質量%、より好ましくは75〜100質量%、さらに好ましくは90〜100質量%、特に好ましくは実質的に100質量%である。
(メタ)アクリル酸エステル化合物の含有量が、上記下限値未満の場合は、本発明のポリカーボネート樹脂の耐衝撃性の低下、難燃性の低下を招くため可能性があるため好ましくない。また(メタ)アクリル酸エステル化合物の含有量が、上記上限を越える場合もやはり耐衝撃性の低下、難燃性の低下を招くため可能性があるため好ましくない。
Moreover, the (meth) acrylic acid ester compound to be graft-copolymerized to the diene rubber is preferably 100 to 100% in the total of 100% by mass of the (meth) acrylic acid ester compound, the other monomer and the crosslinkable monomer. % By mass, more preferably 75 to 100% by mass, still more preferably 90 to 100% by mass, particularly preferably substantially 100% by mass.
When the content of the (meth) acrylic acid ester compound is less than the above lower limit value, the polycarbonate resin of the present invention may cause a decrease in impact resistance and a decrease in flame retardancy, which is not preferable. Further, when the content of the (meth) acrylic acid ester compound exceeds the above upper limit, it is also not preferable because it may cause a decrease in impact resistance and a decrease in flame retardancy.

グラフト共重合体(D)の製造法については、特に制限はなく、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、また共重合の方式は一段グラフトでも多段グラフトであってもよいが、生産性や粒径を制御しやすい点より、乳化重合法が好ましく、多段乳化重合法がより好ましい。この多段乳化重合法としては、例えば、特開2003−261629号公報に記載している重合法が挙げられる。
また、本発明に用いるグラフト共重合体は、耐衝撃性や難燃性、表面外観が向上しやすい点よりコア/シェル型グラフト共重合体タイプのものが好ましい。
The production method of the graft copolymer (D) is not particularly limited, and any production method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization may be used. However, a multi-stage graft may be used, but an emulsion polymerization method is preferable and a multi-stage emulsion polymerization method is more preferable in terms of easy control of productivity and particle size. Examples of the multistage emulsion polymerization method include polymerization methods described in JP-A No. 2003-261629.
The graft copolymer used in the present invention is preferably of the core / shell type graft copolymer type from the viewpoint of improving impact resistance, flame retardancy, and surface appearance.

本発明に用いるグラフト共重合体(D)は、硫黄含有量が100〜1,500ppmの範囲にあるものが好ましい。硫黄含有量が上記下限値未満の場合は、グラフト共重合体の耐熱性に劣る傾向があり、また上限値を超える場合は、熱エージングした時の変色が著しくなりやすく、ポリカーボネート樹脂組成物の難燃性や色相、耐変色性、連続生産性、及び湿熱安定性が著しく低下するため好ましくない。
このような観点より、上記硫黄含有量は、200〜1,000ppmがより好ましく、300〜800ppmがさらに好ましく、400〜700ppmが最も好ましい。
The graft copolymer (D) used in the present invention preferably has a sulfur content in the range of 100 to 1,500 ppm. When the sulfur content is less than the above lower limit value, the graft copolymer tends to be inferior in heat resistance, and when the sulfur content exceeds the upper limit value, discoloration tends to be remarkable when heat aging occurs, making the polycarbonate resin composition difficult. Since flame retardance, hue, discoloration resistance, continuous productivity, and wet heat stability are significantly reduced, it is not preferable.
From such a viewpoint, the sulfur content is more preferably 200 to 1,000 ppm, further preferably 300 to 800 ppm, and most preferably 400 to 700 ppm.

グラフト共重合体の硫黄含有量は、グラフト共重合体製造時、粉体化の工程において使用される乳化剤、分散剤、重合開始剤、熱安定剤等に含まれる硫黄が主成分であり、例えば無機硫酸塩、有機スルホン酸塩、メルカプタン化合物、チオエーテル化合物が該当する。グラフト共重合体製造後、洗浄や粉体化等の後処理工程で上記硫黄含有成分量を除去し調整することで上述の範囲のような硫黄含有量のグラフト共重合体を得ることができる。   The sulfur content of the graft copolymer is mainly composed of sulfur contained in an emulsifier, a dispersant, a polymerization initiator, a heat stabilizer, etc. used in the pulverization process during the production of the graft copolymer. Inorganic sulfates, organic sulfonates, mercaptan compounds, and thioether compounds are applicable. After the graft copolymer is produced, the sulfur-containing graft copolymer in the above-mentioned range can be obtained by removing and adjusting the amount of the sulfur-containing component in a post-treatment process such as washing and powdering.

なお、上記硫黄含有量は、燃焼イオンクロマト法にて求めることができる。具体的には、三菱化学アナリテック社製AQF−100を用いて、温度:900〜1000℃、パージガス:酸素600ml/分、燃焼時間:8分、吸収液0.09%過酸化水素水25mlの条件で燃焼させ、ダイオネクス社製ICS−90型イオンクロマト装置にて、カラム:IonPacAS12A、溶離液:2.7mM NaCO+0.3mM NaHCO、再生液:15mM HSO、流量:1.3ml/分、分析時間:20分の条件で、硫酸イオン(SO 2−)の量を測定し、硫黄(S)の量に換算し求める。 The sulfur content can be determined by combustion ion chromatography. Specifically, using AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd., temperature: 900 to 1000 ° C., purge gas: oxygen 600 ml / min, combustion time: 8 minutes, absorption liquid 0.09% hydrogen peroxide water 25 ml It was burned under the conditions, and column: IonPacAS12A, eluent: 2.7 mM Na 2 CO 3 +0.3 mM NaHCO 3 , regenerating solution: 15 mM H 2 SO 4 , flow rate: 1 with an ICS-90 type ion chromatograph manufactured by Dionex. The amount of sulfate ion (SO 4 2− ) is measured under the conditions of 3 ml / min, analysis time: 20 minutes, and converted to the amount of sulfur (S).

さらに、本発明に用いるグラフト共重合体(D)は平均粒径が、160〜240nmのものである。平均粒径が上記下限値より小さい場合は、本発明のポリカーボネート樹脂組成物の耐衝撃性が不十分となるため好ましくない。また、平均粒径が上記上限値を超える場合は、本発明のポリカーボネート樹脂組成物の難燃性、防火性が低下するほか、高温成形時の耐衝撃性も低下し、さらに初期色相も悪化するため好ましくない。このような観点より、平均粒径は170〜220nmがより好ましく、180〜210nmがさらに好ましい。   Further, the graft copolymer (D) used in the present invention has an average particle size of 160 to 240 nm. When the average particle size is smaller than the lower limit value, the impact resistance of the polycarbonate resin composition of the present invention is insufficient, which is not preferable. Further, when the average particle size exceeds the upper limit, flame retardancy and fire resistance of the polycarbonate resin composition of the present invention are reduced, impact resistance at high temperature molding is also reduced, and initial hue is also deteriorated. Therefore, it is not preferable. From such a viewpoint, the average particle diameter is more preferably 170 to 220 nm, and further preferably 180 to 210 nm.

なお、平均粒径は重合終了後のグラフト共重合体溶液を動的光散乱法にて測定した時の体積平均粒子径D50によって求められる。測定は、例えば、日機装社製「マイクロトラック粒度分析計9230UPA」を用いることができる。   In addition, an average particle diameter is calculated | required by the volume average particle diameter D50 when the graft copolymer solution after superposition | polymerization is measured with a dynamic light scattering method. For the measurement, for example, “Microtrac particle size analyzer 9230UPA” manufactured by Nikkiso Co., Ltd. can be used.

グラフト共重合体(D)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.5質量部以上であり、好ましくは0.75質量部以上であり、より好ましくは1質量部以上であり、さらに好ましくは1.5質量部以上である。また、6質量部以下であって、好ましくは5質量部以下、さらに好ましくは4質量部以下である。グラフト共重合体(D)の含有量が、前記範囲の下限値より小さい場合は、本発明のポリカーボネート樹脂組成物の耐衝撃性が不十分となり、含有量が前記範囲の上限値を超える場合は、難燃性、耐衝撃性、色相、耐変色性の著しい低下を招く。   The content of the graft copolymer (D) is 0.5 parts by mass or more, preferably 0.75 parts by mass or more, more preferably 1 part by mass with respect to 100 parts by mass of the polycarbonate resin (A). It is above, More preferably, it is 1.5 mass parts or more. Moreover, it is 6 mass parts or less, Preferably it is 5 mass parts or less, More preferably, it is 4 mass parts or less. When the content of the graft copolymer (D) is smaller than the lower limit of the range, the impact resistance of the polycarbonate resin composition of the present invention becomes insufficient, and when the content exceeds the upper limit of the range. , Flame resistance, impact resistance, hue, and discoloration resistance are significantly reduced.

[6.紫外線吸収剤(E)]
本発明に使用する紫外線吸収剤(E)としては、例えば、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤;ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらの中では有機紫外線吸収剤が好ましく、ベンゾトリアゾール化合物、トリアジン化合物、シアノアクリレート化合物がより好ましく、ベンゾトリアゾール化合物がさらに好ましい。有機紫外線吸収剤を選択することで、本発明のポリカーボネート樹脂組成物の透明性や機械物性が良好なものになる。
[6. UV absorber (E)]
Examples of the ultraviolet absorber (E) used in the present invention include inorganic ultraviolet absorbers such as cerium oxide and zinc oxide; benzotriazole compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, triazine compounds, oxanilide compounds, malonic acid Examples thereof include organic ultraviolet absorbers such as ester compounds and hindered amine compounds. In these, an organic ultraviolet absorber is preferable, a benzotriazole compound, a triazine compound, and a cyanoacrylate compound are more preferable, and a benzotriazole compound is further more preferable. By selecting the organic ultraviolet absorber, the polycarbonate resin composition of the present invention has good transparency and mechanical properties.

ベンゾトリアゾール化合物の具体例としては、例えば、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチル−フェニル)−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチル−フェニル)−5−クロロベンゾトリアゾール)、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミル)−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]等が挙げられ、なかでも2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]が好ましく、特に2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾールが好ましい。
このようなベンゾトリアゾール化合物としては、具体的には例えば、シプロ化成社製「シーソーブ701」、「シーソーブ705」、「シーソーブ703」、「シーソーブ702」、「シーソーブ704」、「シーソーブ709」、共同薬品社製「バイオソーブ520」、「バイオソーブ582」、「バイオソーブ580」、「バイオソーブ583」、ケミプロ化成社製「ケミソーブ71」、「ケミソーブ72」、サイテックインダストリーズ社製「サイアソーブUV5411」、アデカ社製「LA−32」、「LA−38」、「LA−36」、「LA−34」、「LA−31」、チバ・スペシャルティ・ケミカルズ社製「チヌビンP」、「チヌビン234」、「チヌビン326」、「チヌビン327」、「チヌビン328」等が挙げられる。
Specific examples of the benzotriazole compound include, for example, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (α, α-dimethylbenzyl). ) Phenyl] -benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) -benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5 ′) -Methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) -5-chlorobenzotriazole), 2- (2'-hydroxy-3 ', 5'-di-tert-amyl) -benzotriazole, 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole, 2,2'-methylenebis [4 (1,1,3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol], among others, 2- (2′-hydroxy-5′-tert-octylphenyl) ) Benzotriazole, 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol], particularly 2- (2 ′ -Hydroxy-5'-tert-octylphenyl) benzotriazole is preferred.
Specific examples of such a benzotriazole compound include “Seesorb 701”, “Seesorb 705”, “Seesorb 703”, “Seesorb 702”, “Seesorb 704”, and “Seesorb 709” manufactured by Sipro Kasei Co., Ltd. “Biosorb 520”, “Biosorb 582”, “Biosorb 580”, “Biosorb 583” manufactured by Yakuhin Kagaku Co., Ltd. “Chemisorb 71”, “Chemisorb 72” manufactured by Chemipro Kasei Co., Ltd. “Siasorb UV5411” manufactured by Cytec Industries, Inc. “LA-32”, “LA-38”, “LA-36”, “LA-34”, “LA-31”, “Tinubin P”, “Tinubin 234”, “Tinubin 326” manufactured by Ciba Specialty Chemicals , “Tinuvin 327”, “tinuvin 328”, etc.

ベンゾフェノン化合物の具体例としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−n−ドデシロキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン等が挙げられる。
このようなベンゾフェノン化合物としては、具体的には例えば、シプロ化成社製「シーソーブ100」、「シーソーブ101」、「シーソーブ101S」、「シーソーブ102」、「シーソーブ103」、共同薬品社製「バイオソーブ100」、「バイオソーブ110」、「バイオソーブ130」、ケミプロ化成社製「ケミソーブ10」、「ケミソーブ11」、「ケミソーブ11S」、「ケミソーブ12」、「ケミソーブ13」、「ケミソーブ111」、BASF社製「ユビヌル400」、BASF社製「ユビヌルM−40」、BASF社製「ユビヌルMS−40」、サイテックインダストリーズ社製「サイアソーブUV9」、「サイアソーブUV284」、「サイアソーブUV531」、「サイアソーブUV24」、アデカ社製「アデカスタブ1413」、「アデカスタブLA−51」等が挙げられる。
Specific examples of the benzophenone compound include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2-hydroxy-4-n-octoxy Benzophenone, 2-hydroxy-n-dodecyloxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4 , 4′-dimethoxybenzophenone and the like.
Specific examples of such benzophenone compounds include “Seesorb 100”, “Seesorb 101”, “Seesorb 101S”, “Seesorb 102” and “Seesorb 103” manufactured by Sipro Kasei Co., Ltd., “Biosorb 100” manufactured by Kyodo Pharmaceutical Co., Ltd. ”,“ Biosorb 110 ”,“ Biosorb 130 ”,“ Chemisorb 10 ”,“ Chemsorb 11 ”,“ Chemsorb 11S ”,“ Chemsorb 12 ”,“ Chemsorb 13 ”,“ Chemsorb 111 ”, manufactured by BASF "Ubinur 400", BASF "Ubinur M-40", BASF "Ubinur MS-40", Cytec Industries "Thiasorb UV9", "Thiasorb UV284", "Thiasorb UV531,""ThiasorbUV24", Adeka Made by Adekas Bed 1413 "," ADEKA STAB LA-51 ", and the like.

サリシレート化合物の具体例としては、例えば、フェニルサリシレート、4−tert−ブチルフェニルサリシレート等が挙げられ、このようなサリシレート化合物としては、具体的には例えば、シプロ化成社製「シーソーブ201」、「シーソーブ202」、ケミプロ化成社製「ケミソーブ21」、「ケミソーブ22」等が挙げられる。   Specific examples of the salicylate compound include phenyl salicylate and 4-tert-butylphenyl salicylate. Specific examples of such a salicylate compound include, for example, “Seesorb 201” and “Seesorb” manufactured by Sipro Kasei Co., Ltd. 202 ”,“ Kemisorb 21 ”,“ Kemisorb 22 ”manufactured by Chemipro Kasei Co., Ltd., and the like.

シアノアクリレート化合物の具体例としては、例えば、エチル−2−シアノ−3,3−ジフェニルアクリレート、2−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等が挙げられ、このようなシアノアクリレート化合物としては、具体的には例えば、シプロ化成社製「シーソーブ501」、共同薬品社製「バイオソーブ910」、第一化成社製「ユビソレーター300」、BASF社製「ユビヌルN−35」、「ユビヌルN−539」等が挙げられる。   Specific examples of the cyanoacrylate compound include, for example, ethyl-2-cyano-3,3-diphenyl acrylate, 2-ethylhexyl-2-cyano-3,3-diphenyl acrylate, and the like. Specifically, for example, “Seasorb 501” manufactured by Sipro Kasei Co., Ltd., “Biosorb 910” manufactured by Kyodo Yakuhin Co., Ltd., “Ubisolator 300” manufactured by Daiichi Kasei Co., Ltd., “Ubinur N-35”, “Ubinur N-N-” manufactured by BASF. 539 "and the like.

トリアジン化合物としては、例えば1,3,5−トリアジン骨格を有する化合物等が挙げられ、このようなトリアジン化合物としては、具体的には例えば、アデカ社製「LA−46」、チバ・スペシャルティ・ケミカルズ社製「チヌビン1577ED」、「チヌビン400」、「チヌビン405」、「チヌビン460」、「チヌビン477−DW」、「チヌビン479」等が挙げられる。   Examples of the triazine compound include a compound having a 1,3,5-triazine skeleton. Specific examples of such a triazine compound include “LA-46” manufactured by Adeka Co., Ltd., Ciba Specialty Chemicals. “Tinuvin 1577ED”, “Tinuvin 400”, “Tinuvin 405”, “Tinuvin 460”, “Tinuvin 477-DW”, “Tinuvin 479”, and the like are available.

オギザニリド化合物の具体例としては、例えば、2−エトキシ−2’−エチルオキザリニックアシッドビスアリニド等が挙げられ、このようなオキザリニド化合物としては、具体的には例えば、クラリアント社製「サンデュボアVSU」等が挙げられる。   Specific examples of the oxanilide compound include, for example, 2-ethoxy-2′-ethyl oxalinic acid bis-arinide and the like. Specific examples of such an oxalinide compound include “Sanduboa” manufactured by Clariant Corporation. VSU "etc. are mentioned.

マロン酸エステル化合物としては、2−(アルキリデン)マロン酸エステル類が好ましく、2−(1−アリールアルキリデン)マロン酸エステル類がより好ましい。このようなマロン酸エステル化合物としては、具体的には例えば、クラリアントジャパン社製「PR−25」、チバ・スペシャルティ・ケミカルズ社製「B−CAP」等が挙げられる。   As the malonic acid ester compound, 2- (alkylidene) malonic acid esters are preferable, and 2- (1-arylalkylidene) malonic acid esters are more preferable. Specific examples of such a malonic ester compound include “PR-25” manufactured by Clariant Japan, “B-CAP” manufactured by Ciba Specialty Chemicals, and the like.

本発明における紫外線吸収剤(E)の分子量は、特に制限はないが、なかでも分子量が500g/mol以上のものが好ましい。このように分子量500g/mol以上の紫外線吸収剤を選択することで本発明のポリカーボネート樹脂組成物の熱安定性が向上し、低金型汚染性が向上する。
このため成形加工時の金型メンテナンスの負担が低減し、本発明のポリカーボネート樹脂組成物成形体の生産性が向上する効果があるほか、本発明のポリカーボネート樹脂成形品の外観が良好となる。このような観点から、紫外線吸収剤(E)の分子量は、550g/mol以上であることがより好ましく、600g/mol以上であることがさらに好ましく、700g/mol以上であることが特に好ましい。
また一般に、より高い分子量の有機化合物はポリカーボネート樹脂への相溶性が著しく低下し、分散性に劣る傾向にあるため、紫外線吸収剤(E)の分子量は、通常3000g/mol以下、より好ましくは、2500g/mol以下、さらに好ましくは2000g/mol以下、特に好ましくは1500g/mol以下である。
Although the molecular weight of the ultraviolet absorber (E) in the present invention is not particularly limited, a molecular weight of 500 g / mol or more is particularly preferable. Thus, by selecting the ultraviolet absorber having a molecular weight of 500 g / mol or more, the thermal stability of the polycarbonate resin composition of the present invention is improved, and the low mold contamination is improved.
For this reason, the burden of the mold maintenance at the time of a shaping | molding process reduces, and there exists an effect which improves the productivity of the polycarbonate resin composition molded object of this invention, and the external appearance of the polycarbonate resin molded product of this invention becomes favorable. From such a viewpoint, the molecular weight of the ultraviolet absorber (E) is more preferably 550 g / mol or more, further preferably 600 g / mol or more, and particularly preferably 700 g / mol or more.
In general, higher molecular weight organic compounds have a significantly reduced compatibility with the polycarbonate resin and tend to be inferior in dispersibility. Therefore, the molecular weight of the ultraviolet absorber (E) is usually 3000 g / mol or less, more preferably, It is 2500 g / mol or less, more preferably 2000 g / mol or less, and particularly preferably 1500 g / mol or less.

紫外線吸収剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.01質量部以上であり、好ましくは0.1質量部以上であり、また、0.5質量部以下であって、好ましくは0.4質量部以下である。紫外線吸収剤の含有量が前記範囲の下限値未満の場合は、耐候性の改良効果が不十分となり、紫外線吸収剤の含有量が前記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こしやすい。
なお、紫外線吸収剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
The content of the ultraviolet absorber is 0.01 parts by mass or more, preferably 0.1 parts by mass or more, and 0.5 parts by mass or less with respect to 100 parts by mass of the polycarbonate resin (A). The amount is preferably 0.4 parts by mass or less. If the content of the ultraviolet absorber is less than the lower limit of the range, the effect of improving the weather resistance is insufficient, and if the content of the ultraviolet absorber exceeds the upper limit of the range, a mold deposit or the like occurs, Prone to mold contamination.
In addition, 1 type may contain the ultraviolet absorber and 2 or more types may contain it by arbitrary combinations and a ratio.

[7.隠蔽剤(F):酸化チタン(F−1)またはカーボンブラック(F−2)]
本発明においては、隠蔽剤として、酸化チタン(F−1)またはカーボンブラック(F−2)]を、ポリカーボネート樹脂(A)100質量部に対し、0.00001〜5質量部を含有する。酸化チタン(F−1)とカーボンブラック(F−2)]の両方を含有する場合はその合計量である。
[7. Concealing agent (F): titanium oxide (F-1) or carbon black (F-2)]
In the present invention, titanium oxide (F-1) or carbon black (F-2)] is contained as a concealing agent in an amount of 0.00001 to 5 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). When both titanium oxide (F-1) and carbon black (F-2)] are contained, the total amount is included.

[酸化チタン(F−1)]
本発明における酸化チタン(F−1)は、ポリカーボネート樹脂組成物から得られる成形品の遮光性、白度、光線反射特性等を向上させるように機能する。酸化チタン(F−1)に用いられる酸化チタンは、製造方法、結晶形態および平均粒子径などは、特に限定されるものではない。酸化チタンの製造方法には硫酸法および塩素法があるが、硫酸法で製造された酸化チタンは、これを添加した組成物の白度が劣る傾向があるため、本発明の目的を効果的に達成するには、塩素法で製造されたものが好適である。
[Titanium oxide (F-1)]
Titanium oxide (F-1) in the present invention functions to improve the light shielding properties, whiteness, light reflection characteristics and the like of the molded product obtained from the polycarbonate resin composition. As for the titanium oxide used for titanium oxide (F-1), a manufacturing method, a crystal form, an average particle diameter, etc. are not specifically limited. There are sulfuric acid method and chlorine method in the production method of titanium oxide, but titanium oxide produced by sulfuric acid method tends to be inferior in whiteness of the composition to which this is added, so the object of the present invention can be effectively achieved. To achieve this, those produced by the chlorine method are preferred.

酸化チタンの結晶形態には、ルチル型とアナターゼ型があるが、耐光性の観点からルチル型の結晶形態のものが好適である。酸化チタン(F−1)の平均粒子径は、0.1〜0.7μmであることが好ましく、より好ましくは0.1〜0.4μmである。平均粒子径が0.1μm未満では成形品の光線遮蔽性に劣り、0.7μmを超える場合は、成形品表面に肌荒れを起こしたり、成形品の機械的強度が低下したりしやすい。なお、平均粒径の異なる酸化チタンを2種類以上混合して使用してもよい。   The crystal form of titanium oxide includes a rutile type and an anatase type, but a rutile type crystal form is preferred from the viewpoint of light resistance. It is preferable that the average particle diameter of a titanium oxide (F-1) is 0.1-0.7 micrometer, More preferably, it is 0.1-0.4 micrometer. When the average particle size is less than 0.1 μm, the light shielding property of the molded product is inferior, and when it exceeds 0.7 μm, the surface of the molded product is easily roughened, and the mechanical strength of the molded product tends to be lowered. Two or more types of titanium oxide having different average particle diameters may be mixed and used.

なお、酸化チタン(F−1)は、後記するオルガノシロキサン系の表面処理剤で表面処理する前に、アルミナ系表面処理剤で前処理するのが好ましい。アルミナ系表面処理剤としてはアルミナ水和物が好適に用いられる。さらにアルミナ水和物とともに珪酸水和物で前処理しても良い。前処理の方法は特に限定されるものではなく、任意の方法によることが出来る。アルミナ水和物、さらに必要に応じて珪酸水和物による前処理は、酸化チタンに対して1〜15重量%の範囲で行うのが好ましい。   Titanium oxide (F-1) is preferably pretreated with an alumina surface treatment agent before being surface treated with an organosiloxane surface treatment agent described later. Alumina hydrate is preferably used as the alumina-based surface treatment agent. Furthermore, it may be pretreated with silicic acid hydrate together with alumina hydrate. The pretreatment method is not particularly limited, and any method can be used. Pretreatment with alumina hydrate and, if necessary, silicic acid hydrate is preferably carried out in the range of 1 to 15% by weight with respect to titanium oxide.

アルミナ水和物、さらに必要に応じて珪酸水和物で前処理された酸化チタンは、更にその表面をオルガノシロキサン系の表面処理剤で表面処理することによって、熱安定性を改善することが出来る他、ポリカーボネート樹脂組成物中での均一分散性および分散状態の安定性を向上させる。   Titanium oxide pretreated with alumina hydrate and, if necessary, silicic acid hydrate can be further improved in thermal stability by surface treatment with an organosiloxane surface treatment agent. In addition, the uniform dispersibility in the polycarbonate resin composition and the stability of the dispersion state are improved.

オルガノシロキサン系表面処理剤としては、無機化合物粒子の表面と反応する反応性の官能基を持つ反応性官能基含有有機珪素化合物が好ましい。反応性の官能基としては、Si−H基、Si−OH基、Si−NH基、Si−OR基が挙げられるが、Si−H基、Si−OH基、Si−OR基を持つものがより好ましく、Si−H基をもつSi−H基含有有機珪素化合物が、特に好ましい。   As the organosiloxane surface treating agent, a reactive functional group-containing organosilicon compound having a reactive functional group that reacts with the surface of the inorganic compound particles is preferable. Examples of reactive functional groups include Si-H groups, Si-OH groups, Si-NH groups, and Si-OR groups, but those having Si-H groups, Si-OH groups, and Si-OR groups. More preferred are Si-H group-containing organosilicon compounds having Si-H groups.

Si−H基含有有機珪素化合物としては、分子中にSi−H基を持つ化合物であれば特に制限されず、適宜選択して用いればよいが、なかでも、ポリ(メチルハイドロジェンシロキサン)、ポリシクロ(メチルハイドロジェンシロキサン)、ポリ(エチルハイドロジェンシロキサン)、ポリ(フェニルハイドロジェンシロキサン)、ポリ[(メチルハイドロジェンシロキサン)(ジメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(エチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ヘキシルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(オクチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(フェニルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジメトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(3,3,3−トリフルオロプロピルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)((2−メトキシエトキシ)メチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(フェノキシメチルシロキサン)]コポリマー等のポリオルガノ水素シロキサンが好ましい。   The Si—H group-containing organosilicon compound is not particularly limited as long as it is a compound having a Si—H group in the molecule, and may be appropriately selected and used. Among them, poly (methyl hydrogensiloxane), polycyclo (Methylhydrogensiloxane), poly (ethylhydrogensiloxane), poly (phenylhydrogensiloxane), poly [(methylhydrogensiloxane) (dimethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (ethylmethylsiloxane) )] Copolymer, poly [(methylhydrogensiloxane) (diethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (hexylmethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (octylmethy) Siloxane)] copolymer, poly [(methylhydrogensiloxane) (phenylmethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (diethoxysiloxane)] copolymer, poly [(methylhydrogensiloxane) (dimethoxysiloxane)] Copolymer, poly [(methylhydrogensiloxane) (3,3,3-trifluoropropylmethylsiloxane)] copolymer, poly [(dihydrogensiloxane) ((2-methoxyethoxy) methylsiloxane)] copolymer, poly [( Polyorganohydrogensiloxanes such as dihydrogensiloxane) (phenoxymethylsiloxane)] copolymers are preferred.

酸化チタンのオルガノシロキサン系表面処理剤による表面処理法には、(1)湿式法と(2)乾式法とがある。湿式法は、オルガノシロキサン系の表面処理剤と溶剤との混合物に、アルミナ水和物、さらに必要に応じて珪酸水和物で前処理された酸化チタンを加え、撹拌した後に脱溶媒を行い、更にその後100〜300℃で熱処理する方法である。乾式法は、上記と同様に前処理された酸化チタンとポリオルガノハイドロジェンシロキサン類とをヘンシェルミキサーなどで混合する方法、前処理された酸化チタンにポリオルガノハイドロジェンシロキサン類の有機溶液を噴霧して付着させ、100〜300℃で熱処理する方法などが挙げられる。   Surface treatment methods using an organosiloxane surface treatment agent for titanium oxide include (1) a wet method and (2) a dry method. In the wet method, a mixture of an organosiloxane-based surface treatment agent and a solvent is added with alumina hydrate, and if necessary, titanium oxide pretreated with silicic acid hydrate. Furthermore, it is a method of heat-processing at 100-300 degreeC after that. In the dry method, pretreated titanium oxide and polyorganohydrogensiloxane are mixed with a Henschel mixer in the same manner as described above, and an organic solution of polyorganohydrogensiloxane is sprayed on the pretreated titanium oxide. And a method of heat-treating at 100 to 300 ° C.

シロキサン化合物の処理量としては、酸化チタン(F−1)100質量部に対し、通常0.01〜10質量部である。処理量が、上記下限値未満の場合は、表面処理効果が低く、本発明のポリカーボネート樹脂組成物の色相や耐変色性が低下しやすい。また、処理量が、上記上限値を超える場合は、本発明のポリカーボネート樹脂組成物の発生ガスが多くなり、金型汚染や成形表面の外観不良を引き起こす可能性があるため好ましくない。
このような観点より上記処理量は、酸化チタン(F−1)100質量部に対し、0.1〜6質量部がより好ましく、0.5〜5質量部がさらに好ましく、1〜4質量が特に好ましい。
The treatment amount of the siloxane compound is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of titanium oxide (F-1). When the amount of treatment is less than the above lower limit, the surface treatment effect is low, and the hue and discoloration resistance of the polycarbonate resin composition of the present invention are likely to be lowered. Moreover, when the amount of treatment exceeds the above upper limit, the amount of gas generated in the polycarbonate resin composition of the present invention is increased, which may cause mold contamination and poor appearance of the molding surface, which is not preferable.
From such a viewpoint, the amount of treatment is more preferably 0.1 to 6 parts by mass, further preferably 0.5 to 5 parts by mass, and 1 to 4 parts by mass with respect to 100 parts by mass of titanium oxide (F-1). Particularly preferred.

酸化チタン(F−1)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.00001質量部以上、好ましくは0.001質量部以上、より好ましくは0.01質量部以上、特には0.1質量部以上であり、また、5質量部以下であり、好ましくは4.5質量部以下、より好ましくは4質量部以下である。酸化チタンが0.00001質量部未満では遮光性に劣り、5質量部を越えると、成形した成形品の耐衝撃性の低下が生じる可能性があり、また、流動性や外観が低下し、成形品表面からの酸化チタンの脱落も生じやすくなる。   The content of titanium oxide (F-1) is 0.00001 parts by mass or more, preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, relative to 100 parts by mass of the polycarbonate resin (A). In particular, it is 0.1 parts by mass or more and 5 parts by mass or less, preferably 4.5 parts by mass or less, more preferably 4 parts by mass or less. If the titanium oxide is less than 0.00001 parts by mass, the light-shielding property is inferior, and if it exceeds 5 parts by mass, the impact resistance of the molded product may be reduced, and the fluidity and appearance may be reduced. Titanium oxide may easily fall off from the product surface.

[カーボンブラック(F−2)]
本発明に用いるカーボンブラック(F−2)は、その製造方法、原料種等に制限はなく、従来公知の任意のもの、例えばオイルファーネスブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック等のいずれも使用することができる。これらの中でも、着色性とコストの点から、オイルファーネスブラックが好ましい。
[Carbon black (F-2)]
Carbon black (F-2) used in the present invention is not limited in its production method, raw material type, etc., and any conventionally known one, such as oil furnace black, channel black, acetylene black, ketjen black, etc. Can be used. Among these, oil furnace black is preferable from the viewpoint of colorability and cost.

カーボンブラック(F−2)の平均粒子径は、適宜選択して決定すればよいが、中でも5〜60nmが好ましく、更には7〜55nm、特に10〜50nmであることが好ましい。平均粒子径を5nm以上とすることで、流動性や帯電防止性が向上する傾向にあり、60nm以下とすることで成形品の外観が向上し、成形品表面からのカーボンブラックの脱落を抑制することができる。なお、カーボンブラックの平均粒子径は、透過型電子顕微鏡を用い、求めることができる。   The average particle size of the carbon black (F-2) may be selected and determined as appropriate, but is preferably 5 to 60 nm, more preferably 7 to 55 nm, and particularly preferably 10 to 50 nm. By setting the average particle size to 5 nm or more, fluidity and antistatic properties tend to be improved, and by setting the average particle size to 60 nm or less, the appearance of the molded product is improved and carbon black is prevented from falling off from the molded product surface. be able to. The average particle diameter of carbon black can be obtained using a transmission electron microscope.

カーボンブラック(F−2)の窒素吸着比表面積は、1,000m/g未満が好ましく、中でも50〜400m/gであることが好ましい。窒素吸着比表面積を1,000m/g未満にすることで、本発明のガラス繊維強化樹脂組成物の流動性や成形品の外観が向上する傾向にあり好ましい。なお、窒素吸着比表面積は、JIS K6217に準拠して測定することができる。 Nitrogen adsorption specific surface area of the carbon black (F-2) is preferably less than 1,000 m 2 / g, is preferably Among them, 50 to 400 m 2 / g. By making the nitrogen adsorption specific surface area less than 1,000 m 2 / g, the fluidity of the glass fiber reinforced resin composition of the present invention and the appearance of the molded product tend to be improved, which is preferable. The nitrogen adsorption specific surface area can be measured according to JIS K6217.

また、カーボンブラックのDBP吸収量は、300cm/100g未満であることが好ましく、中でも30〜200cm/100gであることが好ましい。DBP吸収量を300cm/100g未満にすることで、樹脂組成物の流動性や成形品の外観が向上する傾向にあり好ましい。
なお、DBP吸収量はJIS K6217に準拠して測定することができる。また、カーボンブラック(F−2)は、そのpHについても特に制限はないが、通常、2〜10であり、3〜9であることが好ましく、4〜8であることがさらに好ましい。
Further, DBP absorption amount of carbon black is preferably less than 300 cm 3/100 g, is preferably Among them 30~200cm 3 / 100g. The DBP absorption amount by less than 300 cm 3/100 g, tends to increase the appearance of fluidity and a molded article of the resin composition.
The DBP absorption can be measured according to JIS K6217. Carbon black (F-2) is not particularly limited with respect to its pH, but it is usually 2 to 10, preferably 3 to 9, and more preferably 4 to 8.

カーボンブラック(F−2)は、単独でまたは2種以上併用して使用することができる。更にカーボンブラック(F−2)は、バインダーを用いて顆粒化することも可能であり、他の樹脂中に高濃度で溶融混練したマスターバッチでの使用も可能である。   Carbon black (F-2) can be used alone or in combination of two or more. Furthermore, carbon black (F-2) can be granulated using a binder, and can also be used in a master batch that is melt-kneaded at a high concentration in another resin.

カーボンブラック(F−2)の含有量は、ポリカーボネート樹脂(A)100質量部に対し、0.00001〜5質量部である。カーボンブラック(F−2)が0.00001質量部未満では遮光性に劣り、5質量部を越えると流動性や外観が低下し、成形品表面からのカーボンブラックの脱落も生じやすくなる。
なお、カーボンブラックの含有量は通常、連続生産性と隠蔽性、所望の色相とのバランスで適宜選択して用いる。
Content of carbon black (F-2) is 0.00001-5 mass parts with respect to 100 mass parts of polycarbonate resin (A). If the carbon black (F-2) is less than 0.00001 part by mass, the light shielding property is poor, and if it exceeds 5 parts by mass, the fluidity and the appearance are deteriorated, and the carbon black easily falls off from the surface of the molded product.
The carbon black content is usually selected and used as appropriate in accordance with the balance between continuous productivity, concealability, and desired hue.

なお、前述したように、本発明で規定する遮蔽剤(F)の含有量0.00001〜5質量部とは、酸化チタン(F−1)とカーボンブラック(F−2)の合計量として定義される。   In addition, as above-mentioned, content 0.00001-5 mass parts of shielding agent (F) prescribed | regulated by this invention is defined as a total amount of titanium oxide (F-1) and carbon black (F-2). Is done.

[8.その他配合成分]
[リン系安定剤]
本発明のポリカーボネート樹脂組成物は、リン系安定剤を含有することが好ましい。リン系安定剤を含有することで、ポリカーボネート樹脂の色相が良好なものとなり、さらには耐変色性や連続生産性も向上する。
リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;ホスフェート化合物、ホスファイト化合物、ホスホナイト化合物などが挙げられるが、ホスファイト化合物が特に好ましい。ホスファイト化合物を選択することで、より高い耐変色性と連続生産性を有するポリカーボネート樹脂組成物が得られる。
[8. Other ingredients]
[Phosphorus stabilizer]
The polycarbonate resin composition of the present invention preferably contains a phosphorus stabilizer. By containing a phosphorus-based stabilizer, the hue of the polycarbonate resin is improved, and further, discoloration resistance and continuous productivity are improved.
Any known phosphorous stabilizer can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Phosphates of Group 1 or Group 2B metals such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate; phosphate compounds, phosphite compounds, phosphonite compounds and the like are mentioned, and phosphite compounds are particularly preferred. By selecting a phosphite compound, a polycarbonate resin composition having higher discoloration resistance and continuous productivity can be obtained.

ここでホスファイト化合物は、一般式P(OR)で表される3価のリン化合物であり、Rは、1価または2価の有機基を表す。このようなホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6−ジ−tert−ブチルフェニル)オクチルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレン−ジ−ホスファイト、6−[3−(3−tert−ブチル−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−tert−ブチルジベンゾ[d,f][1,3,2]−ジオキサホスフェピン等が挙げられる。 Here, the phosphite compound is a trivalent phosphorus compound represented by the general formula P (OR) 3 , and R represents a monovalent or divalent organic group. Examples of such phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphine. Phyto, monooctyl diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, distearyl pentaerythritol diphosphite, Bis (2,4-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, bis (2,6-di-tert-butylphenyl) octyl phosphite, 2,2-methylene (4,6-di-tert-butylphenyl) octyl phosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylene-di-phosphite, 6- [3- (3 -Tert-butyl-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo [d, f] [1,3,2] -dioxaphosphine and the like. It is done.

このようなホスファイト化合物のなかでも、下記式(2)および/または(3)で表される芳香族ホスファイト化合物が、本発明のポリカーボネート樹脂組成物の耐変色性が効果的に高まるため、より好ましい。   Among such phosphite compounds, the aromatic phosphite compound represented by the following formula (2) and / or (3) effectively increases the discoloration resistance of the polycarbonate resin composition of the present invention. More preferred.

Figure 2012219177
Figure 2012219177
Figure 2012219177
Figure 2012219177

上記式(2)中、R、R及びRは炭素数6以上、30以下のアリール基を表す。なお、R、R及びRはそれぞれ同一であっても異なっていてもよい。
上記式(2)で表されるホスファイト化合物としては、なかでもトリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト等が好ましく、なかでもトリス(2,4−ジ−tert−ブチルフェニル)ホスファイトがより好ましい。このような、有機ホスファイト化合物としては、具体的には例えば、アデカ社製「アデカスタブ1178」、住友化学社製「スミライザーTNP」、城北化学工業社製「JP−351」、アデカ社製「アデカスタブ2112」、チバ・スペシャルティ・ケミカルズ社製「イルガフォス168」、城北化学工業社製「JP−650」等が挙げられる。
In the formula (2), R 1, R 2 and R 3 are 6 or more carbon atoms, a 30 following aryl group. R 1 , R 2 and R 3 may be the same or different.
As the phosphite compound represented by the above formula (2), triphenyl phosphite, tris (monononylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, etc. are preferable, Of these, tris (2,4-di-tert-butylphenyl) phosphite is more preferable. Specific examples of such organic phosphite compounds include, for example, “Adeka Stub 1178” manufactured by Adeka Corporation, “Sumilyzer TNP” manufactured by Sumitomo Chemical Co., Ltd., “JP-351” manufactured by Johoku Chemical Industry Co., Ltd. 2112 "," Irgaphos 168 "manufactured by Ciba Specialty Chemicals," JP-650 "manufactured by Johoku Chemical Industry Co., Ltd. and the like.

また、上記式(3)中、R及びRは炭素数6以上、30以下のアリール基を表す。なお、R及びRはそれぞれ同一であっても異なっていてもよい。
上記式(3)で表されるホスファイト化合物としては、なかでもビス(2,4−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6−ジ−tert−ブチルフェニル)オクチルホスファイトがより好ましい。このような、有機ホスファイト化合物としては、具体的には例えば、アデカ社製「アデカスタブPEP−24G」、「アデカスタブPEP−36」等が挙げられる。
なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
Further, the formula (3) in, R 4 and R 5 are at least 6 carbon atoms, represents the 30 following aryl group. R 4 and R 5 may be the same or different.
Examples of the phosphite compound represented by the above formula (3) include bis (2,4-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite and bis (2,6-di-tert-butyl). More preferred is phenyl) octyl phosphite. Specific examples of such an organic phosphite compound include “ADEKA STAB PEP-24G” and “ADEKA STAB PEP-36” manufactured by Adeka Corporation.
In addition, 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.

リン系安定剤の含有量は、ポリカーボネート樹脂100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常0.5質量部以下、好ましくは0.3質量以下、より好ましくは0.1質量部以下である。リン系安定剤の含有量が前記範囲の下限値未満の場合は、色相、耐変色性、連続生産性が不十分となる可能性があり、リン系安定剤の含有量が前記範囲の上限値を超える場合は、耐変色性がかえって悪化するだけでなく、湿熱安定性も低下する傾向にあるため好ましくない。   The content of the phosphorus stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, based on 100 parts by mass of the polycarbonate resin. 0.5 parts by mass or less, preferably 0.3 parts by mass or less, more preferably 0.1 parts by mass or less. When the content of the phosphorus stabilizer is less than the lower limit of the above range, the hue, discoloration resistance, and continuous productivity may be insufficient, and the content of the phosphorus stabilizer is the upper limit of the above range. In the case of exceeding, discoloration resistance is not only deteriorated, but also moist heat stability tends to be lowered, which is not preferable.

[フェノール系安定剤]
本発明のポリカーボネート樹脂組成物は、フェノール系安定剤を含有することも好ましい。フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニルプロピオナミド)、2,4−ジメチル−6−(1−メチルペンタデシル)フェノール、ジエチル[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(オクチルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン,2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ)フェノール、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート等が挙げられる。
[Phenolic stabilizer]
The polycarbonate resin composition of the present invention preferably contains a phenol-based stabilizer. As a phenol type stabilizer, a hindered phenol type antioxidant is mentioned, for example. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl). ) Propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-) tert-butyl-4-hydroxyphenylpropionamide), 2,4-dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl ] Methyl] phosphoate, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesi Tylene-2,4,6-triyl) tri-p-cresol, 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4- Hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert- Butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di-tert-butyl-4- (4,6-bis ( Octylthio) -1,3,5-triazin-2-ylamino) phenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-te t- pentylphenyl acrylate.

なかでも、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、チバ・スペシャルティ・ケミカルズ社製「イルガノックス1010」、「イルガノックス1076」、アデカ社製「アデカスタブAO−50」、「アデカスタブAO−60」等が挙げられる。
なお、フェノール系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
Among them, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate preferable. Specific examples of such phenolic antioxidants include “Irganox 1010” and “Irganox 1076” manufactured by Ciba Specialty Chemicals, “Adekastab AO-50” and “Adekastab AO” manufactured by Adeka. -60 "and the like.
In addition, 1 type may contain the phenol type stabilizer, and 2 or more types may contain it by arbitrary combinations and a ratio.

フェノール系安定剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。フェノール系安定剤の含有量が前記範囲の下限値未満の場合は、フェノール系安定剤としての効果が不十分となる可能性があり、フェノール系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。   The content of the phenol-based stabilizer is usually 0.001 part by mass or more, preferably 0.01 part by mass or more, and usually 1 part by mass or less, preferably 100 parts by mass of the polycarbonate resin (A). 0.5 parts by mass or less. When the content of the phenol-based stabilizer is less than the lower limit of the range, the effect as the phenol-based stabilizer may be insufficient, and the content of the phenol-based stabilizer exceeds the upper limit of the range. If this is the case, the effect may reach its peak and not economical.

[滑剤]
また、必要により、滑剤を含有することも好ましい。滑剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200〜15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
[Lubricant]
Moreover, it is also preferable to contain a lubricant if necessary. Examples of the lubricant include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils.

脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は、炭素数6〜36の一価または二価カルボン酸であり、炭素数6〜36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。   Examples of the aliphatic carboxylic acid include saturated or unsaturated aliphatic monovalent, divalent or trivalent carboxylic acid. Here, the aliphatic carboxylic acid includes alicyclic carboxylic acid. Among these, preferable aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferable. Specific examples of such aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.

脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も包含する用語として使用される。   As aliphatic carboxylic acid in ester of aliphatic carboxylic acid and alcohol, the same thing as the said aliphatic carboxylic acid can be used, for example. On the other hand, examples of the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferable. Here, the term “aliphatic” is used as a term including alicyclic compounds.

かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2−ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。   Specific examples of such alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol, and the like. Is mentioned.

なお、上記のエステルは、不純物として脂肪族カルボン酸及び/またはアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   In addition, said ester may contain aliphatic carboxylic acid and / or alcohol as an impurity. Moreover, although said ester may be a pure substance, it may be a mixture of a plurality of compounds. Furthermore, the aliphatic carboxylic acid and alcohol which combine to form one ester may be used alone or in combination of two or more in any combination and ratio.

脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。   Specific examples of esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate Examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate and the like.

数平均分子量200〜15,000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ−トロプシュワックス、炭素数3〜12のα−オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。   Examples of the aliphatic hydrocarbon having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and α-olefin oligomer having 3 to 12 carbon atoms. Here, the aliphatic hydrocarbon includes alicyclic hydrocarbons. Further, these hydrocarbons may be partially oxidized.

これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。
また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5,000以下である。
なお、脂肪族炭化水素は、単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。
Among these, paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
The number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
The aliphatic hydrocarbon may be a single substance, but even a mixture of various constituent components and molecular weights can be used as long as the main component is within the above range.

ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。
なお、上述した滑剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
Examples of the polysiloxane silicone oil include dimethyl silicone oil, methylphenyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone.
In addition, 1 type may contain the lubricant mentioned above, and 2 or more types may contain it by arbitrary combinations and a ratio.

滑剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。滑剤の含有量が前記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、滑剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。   The content of the lubricant is usually 0.001 part by mass or more, preferably 0.01 part by mass or more, and usually 2 parts by mass or less, preferably 1 part by mass with respect to 100 parts by mass of the polycarbonate resin (A). It is as follows. When the content of the lubricant is less than the lower limit of the above range, the effect of releasability may not be sufficient, and when the content of the lubricant exceeds the upper limit of the above range, degradation of hydrolysis resistance, injection There is a possibility of mold contamination during molding.

[染顔料]
また、必要により、染顔料を含有することも好ましい。染顔料としては、例えば、無機顔料、有機顔料、有機染料などが挙げられる。
無機顔料としては、例えば、カドミウムレッド、カドミウムイエロー等の硫化物系顔料;群青などの珪酸塩系顔料;亜鉛華、弁柄、酸化クロム、鉄黒、チタンイエロー、亜鉛−鉄系ブラウン、チタンコバルト系グリーン、コバルトグリーン、コバルトブルー、銅−クロム系ブラック、銅−鉄系ブラック等の酸化物系顔料;黄鉛、モリブデートオレンジ等のクロム酸系顔料;紺青などのフェロシアン系顔料などが挙げられる。
[Dye and pigment]
Moreover, it is also preferable to contain a dye / pigment if necessary. Examples of the dye / pigment include inorganic pigments, organic pigments, and organic dyes.
Examples of inorganic pigments include sulfide pigments such as cadmium red and cadmium yellow; silicate pigments such as ultramarine blue; zinc white, petal, chromium oxide, iron black, titanium yellow, zinc-iron brown, titanium cobalt Oxide pigments such as green, cobalt green, cobalt blue, copper-chromium black and copper-iron black; chromic pigments such as chrome lead and molybdate orange; ferrocyan pigments such as bitumen It is done.

有機顔料および有機染料としては、例えば、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料;ニッケルアゾイエロー等のアゾ系染顔料;チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの縮合多環染顔料;アンスラキノン系、複素環系、メチル系の染顔料などが挙げられる。   Examples of organic pigments and organic dyes include phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green; azo dyes such as nickel azo yellow; thioindigo, perinone, perylene, quinacridone, dioxazine, iso Examples thereof include condensed polycyclic dyes such as indolinone and quinophthalone; anthraquinone, heterocyclic and methyl dyes.

これらの中では、熱安定性の点から、シアニン系、キノリン系、アンスラキノン系、フタロシアニン系化合物などが好ましい。
なお、染顔料は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
Of these, cyanine-based, quinoline-based, anthraquinone-based, and phthalocyanine-based compounds are preferable from the viewpoint of thermal stability.
In addition, 1 type may contain the dye / pigment, and 2 or more types may contain it by arbitrary combinations and a ratio.

染顔料の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常5質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下である。染顔料の含有量が多すぎると耐衝撃性が十分でなくなる可能性がある。   The content of the dye / pigment is usually 5 parts by mass or less, preferably 3 parts by mass or less, more preferably 2 parts by mass or less with respect to 100 parts by mass of the polycarbonate resin (A). If the content of the dye / pigment is too large, the impact resistance may not be sufficient.

[9.その他の成分]
本発明のポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、ポリカーボネート樹脂以外の樹脂、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
[9. Other ingredients]
The polycarbonate resin composition of the present invention may contain other components in addition to those described above as necessary, as long as the desired physical properties are not significantly impaired. Examples of other components include resins other than polycarbonate resins and various resin additives. In addition, 1 type may contain other components and 2 or more types may contain them by arbitrary combinations and ratios.

・その他の樹脂
その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;
ポリスチレン樹脂、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−スチレン−アクリルゴム共重合体(ASA樹脂)、アクリロニトリル−エチレンプロピレン系ゴム−スチレン共重合体(AES樹脂)などのスチレン系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂;ポリメタクリレート樹脂等が挙げられる。
なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
Other resins Examples of the other resins include thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin;
Polystyrene resin, high impact polystyrene resin (HIPS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), acrylonitrile-ethylenepropylene rubber-styrene copolymer (AES resin) And the like; polyolefin resins such as polyethylene resins and polypropylene resins; polyamide resins; polyimide resins; polyetherimide resins; polyurethane resins; polyphenylene ether resins; polyphenylene sulfide resins;
In addition, 1 type may contain other resin and 2 or more types may contain it by arbitrary combinations and ratios.

・樹脂添加剤
樹脂添加剤としては、前述したもの以外では、例えば、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
-Resin additive Examples of the resin additive other than those described above include, for example, an antistatic agent, an antifogging agent, an antiblocking agent, a fluidity improver, a plasticizer, a dispersant, and an antibacterial agent. In addition, 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio.

[10.樹脂組成物の製造方法]
本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用できる。
具体例を挙げると、ポリカーボネート樹脂(A)、有機スルホン酸金属塩(B)、フルオロポリマー(C)、グラフト共重合体(D)、紫外線吸収剤(E)および隠蔽剤(F)、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
[10. Method for producing resin composition]
There is no restriction | limiting in the manufacturing method of the polycarbonate resin composition of this invention, The manufacturing method of a well-known polycarbonate resin composition can be employ | adopted widely.
Specific examples include polycarbonate resin (A), organic sulfonic acid metal salt (B), fluoropolymer (C), graft copolymer (D), ultraviolet absorber (E) and hiding agent (F), as required. Other ingredients to be blended in accordance with, for example, various mixers such as a tumbler and Henschel mixer, after pre-mixing, such as Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader The method of melt-kneading with a mixer is mentioned.

また、例えば、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明のポリカーボネート樹脂組成物を製造することもできる。
また、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明のポリカーボネート樹脂組成物を製造することもできる。
また、例えば、分散し難い成分を混合する際には、その分散し難い成分を予め水や有機溶剤等の溶媒に溶解又は分散させ、その溶液又は分散液と混練するようにすることで、分散性を高めることもできる。
またペレットを経由せずに、押出機で溶融混練された樹脂を直接、射出成形品、ブロー成形品あるいは押出成形品等にすることもできる。
In addition, for example, without mixing each component in advance, or only a part of the components is mixed in advance, and fed to an extruder using a feeder and melt-kneaded to produce the polycarbonate resin composition of the present invention. You can also
Also, for example, by mixing a part of the components in advance and supplying the resulting mixture to an extruder and melt-kneading it as a master batch, this master batch is again mixed with the remaining components and melt-kneaded. The polycarbonate resin composition of the present invention can also be produced.
In addition, for example, when mixing a component that is difficult to disperse, the component that is difficult to disperse is dissolved or dispersed in a solvent such as water or an organic solvent in advance, and kneaded with the solution or the dispersion. It can also improve sex.
Further, the resin melt-kneaded by an extruder can be directly made into an injection molded product, a blow molded product, an extruded molded product or the like without going through pellets.

[11.成形体]
本発明のポリカーボネート樹脂組成物は、通常、任意の形状に成形して成形体として用いる。この成形体の形状、模様、色彩、寸法などに制限はなく、その成形体の用途に応じて任意に設定すればよい。
本発明のポリカーボネート樹脂組成物は、難燃性、耐衝撃性、低温衝撃性、耐候性、湿熱安定性、耐薬品性にも優れるポリカーボネート樹脂材料であるので、各種用途における成形体として使用できる。
[11. Molded body]
The polycarbonate resin composition of the present invention is usually molded into an arbitrary shape and used as a molded body. There is no restriction | limiting in the shape, pattern, color, dimension, etc. of this molded object, What is necessary is just to set arbitrarily according to the use of the molded object.
Since the polycarbonate resin composition of the present invention is a polycarbonate resin material having excellent flame retardancy, impact resistance, low temperature impact resistance, weather resistance, wet heat stability, and chemical resistance, it can be used as a molded product in various applications.

成形体の例を挙げると、電池装置、電気電子機器、情報端末機器、家電製品、OA機器、機械部品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類、照明機器等の部品あるいは部材が挙げられる。これらの中でも、特に電池装置、電気電子機器、OA機器、情報端末機器、家電製品、照明機器等の部品あるいは部材に用いて好適であり、特に外部環境下で使用される製品または屋外に設置される製品の部品・部材として好ましく使用することができる。   Examples of molded products include battery devices, electrical and electronic equipment, information terminal equipment, home appliances, OA equipment, machine parts, vehicle parts, building parts, various containers, leisure goods / miscellaneous goods, lighting equipment parts or members, etc. Is mentioned. Among these, it is particularly suitable for use in parts or members of battery devices, electrical and electronic equipment, OA equipment, information terminal equipment, home appliances, lighting equipment, etc., and is particularly suitable for products used in an external environment or installed outdoors. It can be preferably used as a part or member of a product.

このような例をあげると、電池装置としては、二次電池装置が挙げられ、電動アシスト自転車または電気自転車等の電動自転車、あるいは電動自動車の駆動電源用のバッテリー装置に使用される、バッテリーパック、カバー、コネクター、保護部材等として、好ましく使用することができる。
また、太陽電池モジュール用の部材、例えばモジュール用枠材等にも好ましく使用できる。
Taking such an example, the battery device includes a secondary battery device, a battery pack used for an electric bicycle such as an electric assist bicycle or an electric bicycle, or a battery device for driving power of an electric vehicle, It can be preferably used as a cover, a connector, a protective member or the like.
Moreover, it can use preferably also for the member for solar cell modules, for example, the frame material for modules.

電気電子機器、情報端末機器、家電製品、OA機器としては、例えば、パソコン、ゲーム機、テレビ、電子ペーパーなどのディスプレイ装置、プリンター、コピー機、スキャナー、ファックス、電子手帳やPDA(個人用携帯情報端末)、電子式卓上計算機、電子辞書、カメラ、ビデオカメラ、携帯電話、電池パック、記録媒体のドライブや読み取り装置、マウス、テンキー、CDプレーヤー、MDプレーヤー、携帯ラジオ・オーディオプレーヤー等が挙げられる。なかでも、屋外でも使用される、ノートブックパソコン、PDA、携帯電話、携帯オーディオプレーヤー、携帯型タブレット端末、電子ブック、電子辞書、無線機、カメラ、ビデオカメラ、携帯ゲーム機等のハウジング、あるいはその電源用の電池パック用バッテリーケース等に好適に用いることができる。   Examples of electrical and electronic equipment, information terminal equipment, home appliances, and office automation equipment include display devices such as personal computers, game machines, televisions, and electronic paper, printers, copiers, scanners, fax machines, electronic notebooks, and personal digital assistants (PDAs). Terminal), electronic desk calculator, electronic dictionary, camera, video camera, mobile phone, battery pack, recording medium drive and reader, mouse, numeric keypad, CD player, MD player, portable radio / audio player, and the like. Among them, notebook PCs, PDAs, mobile phones, portable audio players, portable tablet terminals, electronic books, electronic dictionaries, wireless devices, cameras, video cameras, portable game consoles, etc. It can be suitably used for a battery case for a battery pack for power supply.

成形体の製造方法は、特に限定されず、ポリカーボネート樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。
得られた本発明の成形体は、上述したようにポリカーボネート樹脂の優れた性質を損なうことなく、難燃性、機械物性の高い実用的な成形体として用いることが可能である。
The manufacturing method of a molded object is not specifically limited, The molding method generally employ | adopted about the polycarbonate resin composition can be employ | adopted arbitrarily. For example, injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, rapid heating mold were used. Molding method, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, Examples thereof include a blow molding method. A molding method using a hot runner method can also be used.
The obtained molded article of the present invention can be used as a practical molded article having high flame retardancy and mechanical properties without impairing the excellent properties of the polycarbonate resin as described above.

以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
なお、以下の説明において[部]とは、特に断りのない限り、質量基準に基づく「質量部」を表す。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not construed as being limited to the following examples.
In the following description, “parts” means “parts by mass” based on mass standards unless otherwise specified.

以下の実施例および比較例において、使用した成分は以下の表1および表2の通りである。

Figure 2012219177
In the following Examples and Comparative Examples, the components used are as shown in Table 1 and Table 2 below.
Figure 2012219177

Figure 2012219177
Figure 2012219177

(実施例1〜9、比較例1〜7)
[樹脂ペレット製造]
上記表1および表2に記した各成分を、後記表4、表5に記した割合(質量比)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製二軸押出機(TEX30HSST)に供給し、スクリュー回転数200rpm、吐出量15kg/時間、バレル温度280℃の条件で混練し、ストランド状に押出された溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化し、ポリカーボネート樹脂組成物のペレットを得た。
(Examples 1-9, Comparative Examples 1-7)
[Production of resin pellets]
Each component described in Table 1 and Table 2 above was blended in the proportions (mass ratios) described in Table 4 and Table 5 below, mixed for 20 minutes with a tumbler, and then manufactured by Nippon Steel Works, Ltd. equipped with 1 vent. Supplied to a twin screw extruder (TEX30HSST), kneaded under the conditions of a screw speed of 200 rpm, a discharge rate of 15 kg / hour, and a barrel temperature of 280 ° C., the molten resin extruded in a strand shape is rapidly cooled in a water tank, and a pelletizer is used To obtain pellets of a polycarbonate resin composition.

[試験片の作製]
上記製造方法で得られたペレットを80℃で5時間乾燥させた後、住友重機械工業社製のSE100DU型射出成形機を用いて、シリンダー温度280℃、金型温度80℃、成形サイクル30秒の条件で射出成形し、長さ125mm、幅13mm、厚さ1.5mmのUL試験用試験片を射出成形した。
また、上記の製造方法で得られたペレットを80℃で5時間乾燥させた後、住友重機械工業社製射出成形機(サイキャップM−2、型締め力75T)を用いて、シリンダー温度280℃、金型温度80℃の条件で、ISO多目的試験片(3mm厚)、および長さ100mm、幅50mm、厚さ3mmの平板状試験片を射出成形した。
[Preparation of test piece]
After the pellets obtained by the above production method were dried at 80 ° C. for 5 hours, using a SE100DU injection molding machine manufactured by Sumitomo Heavy Industries, Ltd., a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., and a molding cycle of 30 seconds. The test piece for UL test having a length of 125 mm, a width of 13 mm, and a thickness of 1.5 mm was injection molded under the following conditions.
Moreover, after drying the pellet obtained by said manufacturing method at 80 degreeC for 5 hours, using a Sumitomo Heavy Industries, Ltd. injection molding machine (Cycap M-2, clamping force 75T), cylinder temperature 280 An ISO multipurpose test piece (3 mm thick) and a flat test piece having a length of 100 mm, a width of 50 mm, and a thickness of 3 mm were injection molded under the conditions of ℃ and a mold temperature of 80 ℃.

[難燃性評価]
各ポリカーボネート樹脂組成物の難燃性の評価は、上記方法で得られたUL試験用試験片(0.8mm厚)を温度23℃、湿度50%の恒温室の中で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)に準拠して行った。UL94Vとは、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間やドリップ性から難燃性を評価する方法であり、V−0、V−1及びV−2の難燃性を有するためには、以下の表3に示す基準を満たすことが必要となる。
[Flame retardance evaluation]
The flame retardant evaluation of each polycarbonate resin composition was performed by conditioning the test piece for UL test (0.8 mm thickness) obtained by the above method for 48 hours in a thermostatic chamber at a temperature of 23 ° C. and a humidity of 50%. The test was conducted in accordance with the UL94 test (combustion test of plastic materials for equipment parts) defined by the US Underwriters Laboratories (UL). UL94V is a method for evaluating flame retardancy from the after-flame time and drip properties after indirect flame of a burner for 10 seconds on a test piece of a predetermined size held vertically, V-0, V- In order to have flame retardancy of 1 and V-2, it is necessary to satisfy the criteria shown in Table 3 below.

Figure 2012219177
ここで残炎時間とは、着火源を遠ざけた後の、試験片の有炎燃焼を続ける時間の長さである。また、ドリップによる綿着火とは、試験片の下端から約300mm下にある標識用の綿が、試験片からの滴下(ドリップ)物によって着火されるかどうかによって決定される。さらに、5試料のうち、1つでも上記基準を満たさないものがある場合、V−2を満足しないとしてNR(not rated)と評価した。
Figure 2012219177
Here, the after-flame time is the length of time for which the flammable combustion of the test piece is continued after the ignition source is moved away. The cotton ignition by the drip is determined by whether or not the labeling cotton, which is about 300 mm below the lower end of the test piece, is ignited by a drip from the test piece. Further, when any one of the five samples did not satisfy the above criteria, it was evaluated as NR (not rated) because V-2 was not satisfied.

[SWOM処理(耐候性試験)]
上述の方法で得られたISO多目的試験片(3mm厚)および平板状試験片(3mm厚)を、サンシャインウェザオメーター(スガ試験機社製)を用い、ブラックパネル温度63℃、スプレー(12分/60分)の条件で、300時間処理を行った。
[SWOM treatment (weather resistance test)]
The ISO multipurpose test piece (3 mm thickness) and flat plate test piece (3 mm thickness) obtained by the above-described method were sprayed using a sunshine weatherometer (manufactured by Suga Test Instruments Co., Ltd.) at a black panel temperature of 63 ° C. and sprayed (12 minutes) / 60 minutes) for 300 hours.

[耐衝撃性評価]
上述の方法で得られた280℃で成形したISO多目的試験片(3mm厚)を用い、ISO179に準拠し、R=0.25およびR=0.1のVノッチを入れ、23℃(R=0.25およびR=0.1)、及び−30℃(R=0.25)の条件で、それぞれノッチ有りシャルピー耐衝撃強度(単位:kJ/m)を測定した。また、上記SWOM処理後の試験片についてもR=0.25のVノッチを入れ、23℃の条件で、上述の方法と同じ方法にてノッチ有りシャルピー耐衝撃強度を測定した。
[Impact resistance evaluation]
Using the ISO multi-purpose test piece (3 mm thickness) molded at 280 ° C. obtained by the above-described method, in accordance with ISO 179, V notches of R = 0.25 and R = 0.1 were added, and 23 ° C. (R = Notched Charpy impact strength (unit: kJ / m 2 ) was measured under the conditions of 0.25 and R = 0.1) and −30 ° C. (R = 0.25). Further, the test piece after the SWOM treatment was also provided with a V-notch of R = 0.25, and the Charpy impact strength with notch was measured under the condition of 23 ° C. by the same method as described above.

[イエローインデックス(YI)(変色試験)]
JIS K−7105に準じ、前記平板状試験片(3mm厚)を試験片とし、日本電色工業社製のSE2000型分光式色彩計で、反射法により測定した(初期YI)。
また、上記平板状試験片に300時間SWOM処理した後の試験片についても測定を行った(SWOM処理後YI)。さらに、平板状試験片に温度120℃で12時間エージング処理した後の試験片についても測定を行った(12hエージング後YI)。
[Yellow Index (YI) (discoloration test)]
According to JIS K-7105, the above flat test piece (3 mm thickness) was used as a test piece, and was measured by a reflection method using an SE2000 type spectrocolorimeter manufactured by Nippon Denshoku Industries Co., Ltd. (initial YI).
Moreover, it measured also about the test piece after carrying out the SWOM process for 300 hours to the said flat test piece (YI after a SWOM process). Furthermore, the measurement was performed also on the test piece after the plate-like test piece was aged for 12 hours at a temperature of 120 ° C. (YI after 12 h aging).

[金型汚染性]
日精樹脂社製PS−40型成形機を用い、しずく型金型を用いて、成形温度320℃、金型温度80℃の条件で50ショット及び100ショットの連続成形を行い、終了後金型の付着物の有無について、次の基準で評価した。
○:金型の付着物が少ない。×:金型の付着物が非常に多い。
以上の評価結果を表4、表5に示す。
[Mold contamination]
Using a PS-40 mold machine manufactured by Nissei Resin Co., Ltd., using a drop mold, 50 shots and 100 shots were continuously molded at a molding temperature of 320 ° C and a mold temperature of 80 ° C. The presence or absence of deposits was evaluated according to the following criteria.
○: There are few deposits on the mold. X: There are very many deposits on the mold.
The above evaluation results are shown in Tables 4 and 5.

Figure 2012219177
Figure 2012219177

Figure 2012219177
Figure 2012219177

表4に示す実施例1〜9から、本発明で規定する要件を満たすポリカーボネート樹脂(A)、有機スルホン酸金属塩(B)、フルオロポリマー(C)、グラフト共重合体(D)、紫外線吸収剤(E)および隠蔽剤(F)を所定量含有するポリカーボネート樹脂組成物は、UL難燃性はV−0で、耐衝撃性にも優れることがわかる。また、ノッチRが極めて小さい時や低温においても耐衝撃性に優れ、さらに耐候性や耐熱変色性にも優れる
一方、表5の比較例に示されるように、本発明で規定する要件を満たさない比較例のポリカーボネート樹脂組成物は、難燃性、耐衝撃性、低温衝撃性、耐候性、耐熱変色性の物性バランスを満たすことはできずいずれかの性質が劣ることがわかる。
また紫外線吸収剤(E)を特定のものとした場合(実施例4、6及び7)は、低金型汚染性に優れることがわかる。
したがって、上記の実施例及び比較例から、高度の難燃性と、耐衝撃性、低温衝撃性、耐候性、耐熱変色性を同時に満たすという効果は、本発明の構成によりはじめて得られるものであることが確認された。
From Examples 1 to 9 shown in Table 4, polycarbonate resin (A), organic sulfonic acid metal salt (B), fluoropolymer (C), graft copolymer (D), UV absorption satisfying the requirements specified in the present invention. It can be seen that the polycarbonate resin composition containing a predetermined amount of the agent (E) and the masking agent (F) has UL flame retardancy of V-0 and is excellent in impact resistance. In addition, when the notch R is extremely small or at a low temperature, it has excellent impact resistance, and also has excellent weather resistance and heat discoloration. On the other hand, as shown in the comparative example of Table 5, it does not meet the requirements specified in the present invention It can be seen that the polycarbonate resin composition of the comparative example cannot satisfy the physical property balance of flame retardancy, impact resistance, low temperature impact resistance, weather resistance, and heat discoloration, and is inferior in any property.
In addition, when the ultraviolet absorber (E) is specified (Examples 4, 6 and 7), it can be seen that the low mold contamination is excellent.
Therefore, from the above examples and comparative examples, the effect of simultaneously satisfying high flame retardancy and impact resistance, low temperature impact resistance, weather resistance, and heat discoloration can be obtained for the first time by the configuration of the present invention. It was confirmed.

本発明のポリカーボネート樹脂組成物は、難燃性、耐衝撃性、低温衝撃性、耐候性、耐熱変色性、低金型汚染性にも優れるポリカーボネート樹脂材料であるので、各種用途における成形体として使用でき、電池装置、電気電子機器、OA機器、情報端末機器、家電製品、照明機器等の部品あるいは部材に用いて好適であり、特に外部環境下で使用される製品または屋外に設置される製品の部品・部材として好ましく使用することができるので、産業上の利用性は非常に高い。   The polycarbonate resin composition of the present invention is a polycarbonate resin material that is also excellent in flame retardancy, impact resistance, low temperature impact resistance, weather resistance, heat discoloration resistance, and low mold contamination, so it can be used as a molded product in various applications. Suitable for parts or members of battery devices, electrical and electronic equipment, OA equipment, information terminal equipment, home appliances, lighting equipment, etc., especially for products used in external environments or products installed outdoors. Since it can be preferably used as a component / member, the industrial utility is very high.

Claims (11)

粘度平均分子量[Mv]が22,000〜30,000のポリカーボネート樹脂(A)100質量部に対し、
有機スルホン酸金属塩(B)0.001〜1質量部、フルオロポリマー(C)0.001〜1質量部、ジエン系ゴムに(メタ)アクリル酸エステル化合物をグラフト重合させてなる平均粒径が160〜240nmのグラフト共重合体(D)0.5〜6質量部、紫外線吸収剤(E)0.01〜0.5質量部、酸化チタン(F−1)またはカーボンブラック(F−2)から選ばれる少なくとも1種の隠蔽剤(F)0.00001〜5質量部を含有することを特徴とするポリカーボネート樹脂組成物。
For 100 parts by mass of the polycarbonate resin (A) having a viscosity average molecular weight [Mv] of 22,000 to 30,000,
0.001 to 1 part by mass of organic sulfonic acid metal salt (B), 0.001 to 1 part by mass of fluoropolymer (C), and an average particle diameter obtained by graft polymerization of a (meth) acrylic acid ester compound to a diene rubber 160-240 nm graft copolymer (D) 0.5-6 parts by mass, UV absorber (E) 0.01-0.5 parts by mass, titanium oxide (F-1) or carbon black (F-2) A polycarbonate resin composition comprising 0.00001 to 5 parts by mass of at least one concealing agent (F) selected from:
グラフト共重合体(D)は、硫黄含有量が100〜1,500ppmであることを特徴とする請求項1に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to claim 1, wherein the graft copolymer (D) has a sulfur content of 100 to 1,500 ppm. 有機スルホン酸金属塩(B)が、含フッ素脂肪族スルホン酸アルカリ金属塩であることを特徴とする請求項1または2に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to claim 1 or 2, wherein the organic sulfonic acid metal salt (B) is a fluorine-containing aliphatic sulfonic acid alkali metal salt. 紫外線吸収剤(E)が、少なくとも500g/molの分子量を有することを特徴とする請求項1乃至3のいずれか1項に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to any one of claims 1 to 3, wherein the ultraviolet absorber (E) has a molecular weight of at least 500 g / mol. 請求項1乃至4のいずれか1項に記載のポリカーボネート樹脂組成物を成形してなることを特徴とする成形体。   A molded article obtained by molding the polycarbonate resin composition according to any one of claims 1 to 4. 成形体が、二次電池装置用部材である請求項5に記載の成形体。   The molded body according to claim 5, wherein the molded body is a member for a secondary battery device. 電動自転車用または電動自動車用電池装置用部材である請求項6に記載の成形体。   The molded body according to claim 6, which is a member for a battery device for an electric bicycle or an electric automobile. 電動自転車用または電動自動車用バッテリーケースである請求項6または7に記載の成形体。   The molded article according to claim 6 or 7, which is a battery case for an electric bicycle or an electric automobile. 屋外設置蓄電池用二次電池装置用部材である請求項5または6に記載の成形体。   The molded body according to claim 5 or 6, which is a member for a secondary battery device for an outdoor storage battery. 太陽電池モジュール用部材である請求項5に記載の成形体。   The molded article according to claim 5, which is a member for a solar cell module. 成形体が、ノートブックパソコン、PDA、携帯電話、携帯オーディオプレーヤー、デジタルカメラ、電子ブック、電子辞書、無線機からなる群より選ばれる携帯電子機器のハウジングであることを特徴とする請求項5に記載の成形体。   6. The molded body is a housing of a portable electronic device selected from the group consisting of a notebook personal computer, a PDA, a mobile phone, a portable audio player, a digital camera, an electronic book, an electronic dictionary, and a wireless device. The molded body described.
JP2011085970A 2011-04-08 2011-04-08 Polycarbonate resin composition and molded body Active JP5636329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085970A JP5636329B2 (en) 2011-04-08 2011-04-08 Polycarbonate resin composition and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085970A JP5636329B2 (en) 2011-04-08 2011-04-08 Polycarbonate resin composition and molded body

Publications (2)

Publication Number Publication Date
JP2012219177A true JP2012219177A (en) 2012-11-12
JP5636329B2 JP5636329B2 (en) 2014-12-03

Family

ID=47271048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085970A Active JP5636329B2 (en) 2011-04-08 2011-04-08 Polycarbonate resin composition and molded body

Country Status (1)

Country Link
JP (1) JP5636329B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226887A (en) * 2011-04-18 2012-11-15 Mitsubishi Engineering Plastics Corp Electric bicycle battery device
WO2013161433A1 (en) * 2012-04-23 2013-10-31 三菱エンジニアリングプラスチックス株式会社 Aromatic polycarbonate composite resin composition and molded article
JP2015056325A (en) * 2013-09-12 2015-03-23 株式会社リチウムエナジージャパン Power storage device
JP2016008278A (en) * 2014-06-25 2016-01-18 三菱レイヨン株式会社 Polycarbonate resin composition and molded article
JP2016084414A (en) * 2014-10-27 2016-05-19 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded article
WO2018054847A1 (en) 2016-09-22 2018-03-29 Covestro Deutschland Ag Transparent moulded parts having reduced thickness
JP2019019191A (en) * 2017-07-14 2019-02-07 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molding
JP2020200373A (en) * 2019-06-07 2020-12-17 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and illumination cover
WO2022106533A1 (en) * 2020-11-23 2022-05-27 Covestro Deutschland Ag Flame-retardant, titanium dioxide-containing polycarbonate compositions

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226887A (en) * 2011-04-18 2012-11-15 Mitsubishi Engineering Plastics Corp Electric bicycle battery device
WO2013161433A1 (en) * 2012-04-23 2013-10-31 三菱エンジニアリングプラスチックス株式会社 Aromatic polycarbonate composite resin composition and molded article
US9534115B2 (en) 2012-04-23 2017-01-03 Mitsubishi Engineering-Plastics Corporation Aromatic polycarbonate composite resin composition and molded article
JP2015056325A (en) * 2013-09-12 2015-03-23 株式会社リチウムエナジージャパン Power storage device
JP2016008278A (en) * 2014-06-25 2016-01-18 三菱レイヨン株式会社 Polycarbonate resin composition and molded article
JP2016084414A (en) * 2014-10-27 2016-05-19 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded article
WO2018054847A1 (en) 2016-09-22 2018-03-29 Covestro Deutschland Ag Transparent moulded parts having reduced thickness
CN109715700A (en) * 2016-09-22 2019-05-03 科思创德国股份有限公司 Transparent moldings with lower thickness
EP3515964B1 (en) * 2016-09-22 2021-07-07 Covestro Intellectual Property GmbH & Co. KG Transparent moulded parts with low thickness
JP2019019191A (en) * 2017-07-14 2019-02-07 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molding
JP2020200373A (en) * 2019-06-07 2020-12-17 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and illumination cover
JP7296787B2 (en) 2019-06-07 2023-06-23 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and lighting cover
WO2022106533A1 (en) * 2020-11-23 2022-05-27 Covestro Deutschland Ag Flame-retardant, titanium dioxide-containing polycarbonate compositions

Also Published As

Publication number Publication date
JP5636329B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP4990417B6 (en) Polycarbonate resin composition and molded body
JP4700770B2 (en) Polycarbonate resin composition and molded body
JP5636329B2 (en) Polycarbonate resin composition and molded body
JPWO2012067108A6 (en) Polycarbonate resin composition and molded body
JP5540758B2 (en) Polycarbonate resin composition and molded body
WO2013157345A1 (en) Polycarbonate resin composition
JP5782547B2 (en) Thermoplastic resin composition
JP5723223B2 (en) Polycarbonate resin composition and molded body
JP5304836B2 (en) Polycarbonate resin composition
JP6147595B2 (en) Polycarbonate resin composition, molded article comprising the same, and method for producing the same
JP5449443B2 (en) Polycarbonate resin composition
JP5449458B2 (en) Polycarbonate resin composition
JP5560997B2 (en) Aromatic polycarbonate resin composition
JP2012007054A (en) Polycarbonate resin composition
JP6411173B2 (en) Polycarbonate resin composition and molded article
JP5449442B2 (en) Polycarbonate resin composition
JP5758649B2 (en) Polycarbonate resin composition and molded body
JP5785308B1 (en) Thermoplastic resin composition
JP5521565B2 (en) Polycarbonate resin composition
JP6026129B2 (en) Polycarbonate resin composition, molded article comprising the same, and method for producing the same
JP6143357B2 (en) Polycarbonate resin composition
WO2015001895A1 (en) Thermoplastic resin composition
JP2012207173A (en) Polycarbonate resin composition
JP2014218599A (en) Polycarbonate resin composition and molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5636329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250