[go: up one dir, main page]

JP2013062297A - Semiconductor light-emitting device and manufacturing method of the same - Google Patents

Semiconductor light-emitting device and manufacturing method of the same Download PDF

Info

Publication number
JP2013062297A
JP2013062297A JP2011198293A JP2011198293A JP2013062297A JP 2013062297 A JP2013062297 A JP 2013062297A JP 2011198293 A JP2011198293 A JP 2011198293A JP 2011198293 A JP2011198293 A JP 2011198293A JP 2013062297 A JP2013062297 A JP 2013062297A
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
emitting device
terminal electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011198293A
Other languages
Japanese (ja)
Inventor
Masaru Miyazaki
大 宮▲崎▼
Tomoichiro Toyama
智一郎 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2011198293A priority Critical patent/JP2013062297A/en
Publication of JP2013062297A publication Critical patent/JP2013062297A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device and a manufacturing method of the same, which improve reliability in manufacturing.SOLUTION: A semiconductor light-emitting device 10 comprises: a chip substrate 1; a first terminal electrode 2a and a second terminal electrode 2k arranged on the chip substrate 1; a reflection case 5 arranged so as to surround an outer edge of a top face of the chip substrate 1; a semiconductor light-emitting element 3 arranged on the first terminal electrode 2a via an AuSn eutectic layer; a bonding wire 4 connecting the semiconductor light-emitting element 3 with the second terminal electrode 2k; and a phosphor layer 6 arranged on the inside surrounded by the reflection case 5, in which light-emitting phosphors 61 and 62 are mixed and dispersed in a translucent resin. And a manufacturing method of the semiconductor light-emitting device 10 is provided.

Description

本発明は、半導体発光装置およびその製造方法に関し、特に製造時の信頼性を向上し、放熱特性を向上した半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device and a method for manufacturing the same, and more particularly to a semiconductor light emitting device with improved reliability during manufacture and improved heat dissipation characteristics.

半導体発光素子を用いた発光装置として、発光ダイオード(LED:Light Emitting Diode)をパッケージの凹状のカップ部の内部に収容し、LEDの発光出力を波長変換するための蛍光物質を含む透光性部材をカップ部内に充填した構成を有するものがある(例えば、特許文献1および特許文献2参照。)。   As a light-emitting device using a semiconductor light-emitting element, a light-emitting diode (LED: Light Emitting Diode) is accommodated inside a concave cup portion of a package, and a translucent member containing a fluorescent material for converting the wavelength of the light emission output of the LED Has a configuration in which the cup portion is filled (see, for example, Patent Document 1 and Patent Document 2).

従来の表面実装型LEDの製造方法においては、LEDチップをリードフレームに共晶接合或いは半田接合などの接合方法でダイボンディングする際の高温環境下では、パッケージの非透光性樹脂からなるランプハウスに変形や焦げを生じ易い。   In a conventional method for manufacturing a surface mount LED, a lamp house made of a non-translucent resin of a package in a high temperature environment when die bonding an LED chip to a lead frame by a bonding method such as eutectic bonding or solder bonding. It is easy to cause deformation and burn.

このため、LEDチップをリードフレームにダイボンディングする際、樹脂ペーストを使用していた。この樹脂ペーストは放熱性が悪い。   For this reason, a resin paste has been used when the LED chip is die-bonded to the lead frame. This resin paste has poor heat dissipation.

一方、リードフレームに半導体発光素子を搭載した後にリードフレームとランプハウスを一体形成することにより、ランプハウスがリードフレームに半導体素子を搭載するときの高温環境下に曝されることがない半導体発光装置の製造方法も開示されている(例えば、特許文献3参照。)。   On the other hand, a semiconductor light-emitting device in which the lamp frame is not exposed to a high temperature environment when the semiconductor element is mounted on the lead frame by integrally forming the lead frame and the lamp house after mounting the semiconductor light-emitting element on the lead frame. Is also disclosed (for example, see Patent Document 3).

特開2008−244421号公報JP 2008-244421 A 特開2010−114218号公報JP 2010-114218 A 特開2005−294736号公報JP 2005-294736 A

本発明の目的は、製造時の信頼性を向上し、かつ放熱特性を向上した半導体発光装置およびその製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light emitting device having improved reliability during manufacture and improved heat dissipation characteristics, and a method for manufacturing the same.

本発明の一態様によれば、チップ基板と、前記チップ基板上に配置された第1端子電極および第2端子電極と、前記チップ基板の上面外縁を囲むように配置された反射ケースと、前記第1端子電極上にAuSn共晶層を介して配置された半導体発光素子と、前記半導体発光素子と第2端子電極を接続するボンディングワイヤと、前記反射ケースで囲まれた内部に配置され、発光蛍光体を透光性樹脂中に混合分散した蛍光体層とを備える半導体発光装置が提供される。   According to one aspect of the present invention, a chip substrate, a first terminal electrode and a second terminal electrode disposed on the chip substrate, a reflective case disposed so as to surround an upper surface outer edge of the chip substrate, A semiconductor light emitting device disposed on the first terminal electrode via an AuSn eutectic layer, a bonding wire connecting the semiconductor light emitting device and the second terminal electrode, and an interior surrounded by the reflective case, and emitting light There is provided a semiconductor light emitting device including a phosphor layer in which a phosphor is mixed and dispersed in a translucent resin.

本発明の他の態様によれば チップ基板上に第1端子電極および第2端子電極を形成する工程と、前記チップ基板の上面外縁を囲むように反射ケースを形成する工程と、前記第1端子電極上にAuSn共晶層を介して半導体発光素子を接合する工程と、前記半導体発光素子と第2端子電極との間をボンディングワイヤを用いてボンディング接続する工程と、
前記反射ケースで囲まれた内部に、発光蛍光体を透光性樹脂中に混合分散した蛍光体層を充填する工程とを有する半導体発光装置の製造方法が提供される。
According to another aspect of the present invention, a step of forming a first terminal electrode and a second terminal electrode on a chip substrate, a step of forming a reflective case so as to surround an upper surface outer edge of the chip substrate, and the first terminal Bonding a semiconductor light emitting element on the electrode via an AuSn eutectic layer, bonding the semiconductor light emitting element and the second terminal electrode using a bonding wire,
There is provided a method of manufacturing a semiconductor light emitting device, which includes filling a phosphor layer in which a light emitting phosphor is mixed and dispersed in a translucent resin in an interior surrounded by the reflection case.

本発明によれば、製造時の信頼性を向上し、かつ放熱特性を向上した半導体発光装置およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reliability at the time of manufacture can be provided, and the semiconductor light-emitting device which improved the thermal radiation characteristic, and its manufacturing method can be provided.

実施の形態に係る半導体発光装置の模式的断面構造図。1 is a schematic cross-sectional structure diagram of a semiconductor light emitting device according to an embodiment. 実施の形態に係る半導体発光装置において、端子電極上にAuSn共晶層を介して半導体発光素子を搭載した部分を示す拡大された模式的断面構造図。In the semiconductor light-emitting device which concerns on embodiment, the expanded typical cross-section figure which shows the part which mounted the semiconductor light-emitting element on the terminal electrode through the AuSn eutectic layer. 比較例に係る半導体発光装置において、最大順方向電流Imax(mA)と周囲温度Ta(℃)との関係を示す安全動作領域の特性例。6 is a characteristic example of a safe operation region showing a relationship between a maximum forward current Imax (mA) and an ambient temperature Ta (° C.) in a semiconductor light emitting device according to a comparative example. 比較例に係る半導体発光装置において、熱抵抗θj-a(℃/W)と動作時間Tp(ms)との関係を示す特性例。6 is a characteristic example showing a relationship between a thermal resistance θj-a (° C./W) and an operation time Tp (ms) in a semiconductor light emitting device according to a comparative example. 比較例に係る半導体発光装置において、接合温度Tj(℃)と動作時間Tp(ms)との関係を示す特性例。6 is a characteristic example showing a relationship between a junction temperature Tj (° C.) and an operation time Tp (ms) in a semiconductor light emitting device according to a comparative example. 実施の形態に係る半導体発光装置において、熱抵抗θj-a(℃/W)と動作時間Tp(ms)との関係を示す特性例。6 is a characteristic example showing a relationship between a thermal resistance θj-a (° C./W) and an operation time Tp (ms) in the semiconductor light emitting device according to the embodiment. 実施の形態に係る半導体発光装置において、接合温度Tj(℃)と動作時間Tp(ms)との関係を示す特性例。6 is a characteristic example showing a relationship between a junction temperature Tj (° C.) and an operation time Tp (ms) in the semiconductor light emitting device according to the embodiment. 実施の形態に係る半導体発光装置(曲線B)と比較例に係る半導体発光装置(曲線A)において、最大順方向電流Imax(mA)と周囲温度Ta(℃)との関係を示す安全動作領域の比較例。In the semiconductor light emitting device according to the embodiment (curve B) and the semiconductor light emitting device according to the comparative example (curve A), a safe operation region showing the relationship between the maximum forward current Imax (mA) and the ambient temperature Ta (° C.). Comparative example. 実施の形態に係る半導体発光装置において、端子電極上にAuSn共晶接合を形成する製造工程における加熱温度と時間との関係を示す模式図。In the semiconductor light-emitting device which concerns on embodiment, the schematic diagram which shows the relationship between the heating temperature and time in the manufacturing process which forms AuSn eutectic junction on a terminal electrode. 実施の形態に係る半導体発光装置の製造方法の一工程を示す模式的断面構造図(その1)。Typical cross-section FIG. (1) which shows 1 process of the manufacturing method of the semiconductor light-emitting device which concerns on embodiment. 実施の形態に係る半導体発光装置の製造方法の一工程を示す模式的断面構造図(その2)。Typical cross-section FIG. (2) which shows 1 process of the manufacturing method of the semiconductor light-emitting device which concerns on embodiment. 実施の形態に係る半導体発光装置の製造方法の一工程を示す模式的断面構造図(その3)。Typical cross-section FIG. (3) which shows 1 process of the manufacturing method of the semiconductor light-emitting device which concerns on embodiment.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施の形態は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, The layout is not specified as follows. Various modifications can be made to the embodiment of the present invention within the scope of the claims.

(第1の実施の形態)
実施の形態に係る半導体発光装置20の模式的断面構造は、図1に示すように表され、実施の形態に係る半導体発光装置20において、端子電極2a上にAuSn共晶層10を介して半導体発光素子30を搭載した部分を示す拡大された模式的断面構造は、図2に示すように表される。
(First embodiment)
A schematic cross-sectional structure of the semiconductor light emitting device 20 according to the embodiment is represented as shown in FIG. 1. In the semiconductor light emitting device 20 according to the embodiment, the semiconductor is disposed on the terminal electrode 2 a via the AuSn eutectic layer 10. An enlarged schematic cross-sectional structure showing a portion on which the light emitting element 30 is mounted is expressed as shown in FIG.

実施の形態に係る半導体発光装置20は、図1および図2に示すように、チップ基板1と、チップ基板1上に配置された第1端子電極2aおよび第2端子電極2kと、チップ基板1の上面外縁を囲むように配置された反射ケース5と、第1端子電極2a上にAuSn共晶層10を介して配置された半導体発光素子30と、半導体発光素子30と第2端子電極2kを接続するボンディングワイヤ4と、反射ケース5で囲まれた内部に配置され、発光蛍光体を透光性樹脂中に混合分散した蛍光体層6とを備える。   As shown in FIGS. 1 and 2, the semiconductor light emitting device 20 according to the embodiment includes a chip substrate 1, first and second terminal electrodes 2 a and 2 k disposed on the chip substrate 1, and the chip substrate 1. A reflection case 5 disposed so as to surround the outer edge of the upper surface of the semiconductor light emitting device, a semiconductor light emitting device 30 disposed on the first terminal electrode 2a via the AuSn eutectic layer 10, the semiconductor light emitting device 30 and the second terminal electrode 2k. A bonding wire 4 to be connected and a phosphor layer 6 which is disposed inside a reflective case 5 and in which a light-emitting phosphor is mixed and dispersed in a translucent resin.

実施の形態に係る半導体発光装置20において、蛍光体層6は、反射ケース5で囲まれた内部に配置され、第1端子電極2aおよび第2端子電極2kと、AuSn共晶層10と、半導体発光素子30と、ボンディングワイヤ4とを封止している。   In the semiconductor light emitting device 20 according to the embodiment, the phosphor layer 6 is disposed inside the reflective case 5, and includes the first terminal electrode 2 a and the second terminal electrode 2 k, the AuSn eutectic layer 10, the semiconductor The light emitting element 30 and the bonding wire 4 are sealed.

(比較例)
比較例に係る半導体発光装置は、図1および図2におけるAuSn共晶層10の代わりに樹脂ペーストを用いて半導体発光装置20と第1端子電極2a間のダイボンディングを実施している。比較例に係る半導体発光装置において、最大順方向電流Imax(mA)と周囲温度Ta(℃)との関係を示す安全動作領域の特性例は、図3に示すように表される。また、熱抵抗Rθj-a(℃/W)と動作時間Tp(ms)との関係を示す特性例は、図4に示すように表され、接合温度Tj(℃)と動作時間Tp(ms)との関係を示す特性例は、図5に示すように表される。
(Comparative example)
In the semiconductor light emitting device according to the comparative example, die bonding between the semiconductor light emitting device 20 and the first terminal electrode 2a is performed using a resin paste instead of the AuSn eutectic layer 10 in FIGS. In the semiconductor light emitting device according to the comparative example, a characteristic example of the safe operation region showing the relationship between the maximum forward current Imax (mA) and the ambient temperature Ta (° C.) is expressed as shown in FIG. Also, a characteristic example showing the relationship between the thermal resistance Rθj-a (° C./W) and the operation time Tp (ms) is expressed as shown in FIG. 4, and the junction temperature Tj (° C.) and the operation time Tp (ms) An example of the characteristic indicating the relationship is expressed as shown in FIG.

熱抵抗Rθj-c(℃/W)は、半導体発光素子30のpn接合と半田実装部間の熱抵抗で定義され、熱抵抗Rθj-a(℃/W)は、半導体発光素子30のpn接合と周囲雰囲気間の熱抵抗で定義される。比較例に係る半導体発光装置においては、樹脂ペーストを使用しているため放熱性に乏しく、熱抵抗Rθj-c(℃/W)の値は、約150℃/W以下であり、熱抵抗Rθj-a(℃/W)の値は、約250℃/Wである。   The thermal resistance Rθj-c (° C./W) is defined by the thermal resistance between the pn junction of the semiconductor light emitting element 30 and the solder mounting portion, and the thermal resistance Rθj-a (° C./W) is the pn junction of the semiconductor light emitting element 30. And the thermal resistance between the surrounding atmosphere. In the semiconductor light emitting device according to the comparative example, since the resin paste is used, the heat dissipation is poor, the value of the thermal resistance Rθj-c (° C./W) is about 150 ° C./W or less, and the thermal resistance Rθj− The value of a (° C./W) is about 250 ° C./W.

実施の形態に係る半導体発光装置20において、熱抵抗Rθj-a(℃/W)と動作時間Tp(ms)との関係を示す特性例は、図6に示すように表され、接合温度Tj(℃)と動作時間Tp(ms)との関係を示す特性例は、図7に示すように表される。   In the semiconductor light emitting device 20 according to the embodiment, a characteristic example showing the relationship between the thermal resistance Rθj−a (° C./W) and the operation time Tp (ms) is expressed as shown in FIG. A characteristic example showing the relationship between the temperature (° C.) and the operating time Tp (ms) is expressed as shown in FIG.

実施の形態に係る半導体発光装置20においては、AuSn共晶層10を用いて半導体発光装置20と第1端子電極2a間のダイボンディングを実施しているため放熱性が良好であり、熱抵抗Rθj-c(℃/W)の値は、約55℃/W以下であり、熱抵抗Rθj-a(℃/W)の値は、約90℃/Wである。   In the semiconductor light emitting device 20 according to the embodiment, since the AuSn eutectic layer 10 is used for die bonding between the semiconductor light emitting device 20 and the first terminal electrode 2a, the heat dissipation is good, and the thermal resistance Rθj. The value of −c (° C./W) is about 55 ° C./W or less, and the value of the thermal resistance Rθj-a (° C./W) is about 90 ° C./W.

また、実施の形態に係る半導体発光装置(曲線B)と比較例に係る半導体発光装置(曲線A)において、最大順方向電流Imax(mA)と周囲温度Ta(℃)との関係を示す安全動作領域の比較例は、図8に示すように表される。図8において、比較例に係る半導体発光装置の曲線Aは、図3の素子面積の2倍の素子に対応している。   Further, in the semiconductor light emitting device according to the embodiment (curve B) and the semiconductor light emitting device according to the comparative example (curve A), a safe operation showing the relationship between the maximum forward current Imax (mA) and the ambient temperature Ta (° C.). A comparative example of the region is expressed as shown in FIG. In FIG. 8, the curve A of the semiconductor light emitting device according to the comparative example corresponds to an element twice as large as the element area of FIG.

実施の形態に係る半導体発光装置20においては、AuSn共晶層10を用いて半導体発光装置20と第1端子電極2a間のダイボンディングを実施しているため放熱性が良好であり、安全動作領域も相対的に広く設定可能である。   In the semiconductor light emitting device 20 according to the embodiment, since the die bonding between the semiconductor light emitting device 20 and the first terminal electrode 2a is performed using the AuSn eutectic layer 10, the heat dissipation is good, and the safe operation region Can also be set relatively wide.

実施の形態に係る半導体発光装置20の半導体発光素子30の基板寸法は、例えば、約30mm×10mm程度である。また、実施の形態に係る半導体発光装置20は、通常のPLCC(Plastic leaded chip carrier)パッケージであるPLCC2、PLCC4などのLED用パッケージに実装可能である。例えば、PLCC2パッケージの寸法は、横3.5mm×幅2.8mm×高さ1.9mm程度である。   The substrate size of the semiconductor light emitting element 30 of the semiconductor light emitting device 20 according to the embodiment is, for example, about 30 mm × 10 mm. Further, the semiconductor light emitting device 20 according to the embodiment can be mounted on LED packages such as PLCC2 and PLCC4 which are ordinary PLCC (Plastic leaded chip carrier) packages. For example, the dimensions of the PLCC2 package are about 3.5 mm wide × 2.8 mm wide × 1.9 mm high.

また、実施の形態に係る半導体発光装置20において、透光性樹脂は、例えば、シリコーン系樹脂若しくはエポキシ系樹脂で形成可能である。   In the semiconductor light emitting device 20 according to the embodiment, the translucent resin can be formed of, for example, a silicone resin or an epoxy resin.

また、実施の形態に係る半導体発光装置20において、発光蛍光体は、第1発光蛍光体61および第2発光蛍光体62を含む複数種類存在していても良い。   In the semiconductor light emitting device 20 according to the embodiment, there may be a plurality of types of light emitting phosphors including the first light emitting phosphor 61 and the second light emitting phosphor 62.

実施の形態に係る半導体発光装置20において、半導体発光素子30は、窒化物系半導体により形成された青色LEDで形成されていても良い。この場合、第1発光蛍光体61および第2発光蛍光体62は、共に黄色蛍光体で形成されていても良い。或いは、演色性を確保するために、第1発光蛍光体61は赤色蛍光体、第2発光蛍光体62は、緑色蛍光体で形成されていても良い。   In the semiconductor light emitting device 20 according to the embodiment, the semiconductor light emitting element 30 may be formed of a blue LED formed of a nitride semiconductor. In this case, both the first light emitting phosphor 61 and the second light emitting phosphor 62 may be formed of a yellow phosphor. Alternatively, in order to ensure color rendering properties, the first light emitting phosphor 61 may be formed of a red phosphor, and the second light emitting phosphor 62 may be formed of a green phosphor.

ここで、青色LEDを励起光源とする黄色蛍光体としては、例えば、Ce添加YAG(Y3Al512:Ce)蛍光体、Eu添加α−サイアロン(CaSiAlON:Eu)、シリケート蛍光体((Sr,Ba,Ca,Mg)2SiO4:Eu)などを用いることができる。すなわち、青色発光LEDの青色光の一部を黄色蛍光体により黄色の発光に変換し、青+黄の発光により白色発光を得ることができる。 Here, as a yellow phosphor using a blue LED as an excitation light source, for example, a Ce-doped YAG (Y 3 Al 5 O 12 : Ce) phosphor, an Eu-added α-sialon (CaSiAlON: Eu), a silicate phosphor (( Sr, Ba, Ca, Mg) 2 SiO 4 : Eu) or the like can be used. That is, part of the blue light of the blue light emitting LED can be converted into yellow light emission by the yellow phosphor, and white light emission can be obtained by blue + yellow light emission.

また、青色LEDを励起光源とする緑色蛍光体としては、例えば、Eu添加β−サイアロン(Si6-zAlzz8-z:Eu)蛍光体、Ce添加CSSO(Ca3Sc2Si312:Ce)蛍光体などを用いることができる。 Examples of the green phosphor using a blue LED as an excitation light source include Eu-added β-sialon (Si 6-z Al z O z N 8-z : Eu) phosphor, Ce-added CSSO (Ca 3 Sc 2 Si). A 3 O 12 : Ce) phosphor or the like can be used.

また、青色LEDを励起光源とする赤色蛍光体としては、例えば、Eu添加CaAlSiN3(CaAlSiN3:Eu)蛍光体などを用いることができる。 In addition, as a red phosphor using a blue LED as an excitation light source, for example, an Eu-added CaAlSiN 3 (CaAlSiN 3 : Eu) phosphor can be used.

また、半導体発光素子3は、窒化物系半導体により形成された紫外光LEDで形成されていても良い。この場合、第1発光蛍光体61および第2発光蛍光体62は、共に黄色蛍光体で形成されていても良い。或いは、演色性を確保するために、第1発光蛍光体61は青色蛍光体、第2発光蛍光体62は、黄色蛍光体で形成されていても良い。   Further, the semiconductor light emitting element 3 may be formed of an ultraviolet LED formed of a nitride semiconductor. In this case, both the first light emitting phosphor 61 and the second light emitting phosphor 62 may be formed of a yellow phosphor. Alternatively, in order to ensure color rendering, the first light emitting phosphor 61 may be formed of a blue phosphor, and the second light emitting phosphor 62 may be formed of a yellow phosphor.

紫外光LEDを励起光源とする青色蛍光体としては、紫外光を受けて青色に発光するものであれば良く、例えば、ハロゲン酸塩蛍光体、アルミン酸塩蛍光体、ケイ酸塩蛍光体などが挙げられる。また、付活剤としては、例えば、セリウム、ユウロピウム、マンガン、ガドリニウム、サマリウム、テルビウム、スズ、クロム、アンチモン等の元素を挙げることができる。この中でもユウロピウムが好ましい。付活剤の添加量は、蛍光体に対して0.1〜10mol%の範囲が好ましい。   As the blue phosphor using the ultraviolet light LED as the excitation light source, any material that emits blue light upon receiving ultraviolet light may be used. For example, a halogenate phosphor, an aluminate phosphor, a silicate phosphor, etc. Can be mentioned. Examples of the activator include elements such as cerium, europium, manganese, gadolinium, samarium, terbium, tin, chromium, and antimony. Among these, europium is preferable. The addition amount of the activator is preferably in the range of 0.1 to 10 mol% with respect to the phosphor.

紫外光LEDを励起光源とする黄色蛍光体としては、青色発光を吸収して黄色に発光する蛍光体および紫外線を吸収して黄色に発光する蛍光体のいずれであっても良い。ここで、演色性を確保するために、第1発光蛍光体61を青色蛍光体、第2発光蛍光体62を黄色蛍光体で形成する場合には、発光効率を一層高めるためには、紫外線を吸収して黄色に発光する蛍光体が望ましい。青色発光を吸収して黄色に発光する蛍光体としては、例えば、有機蛍光体では、アリルスルホアミド・メラミンホルムアルデヒド共縮合染色物やペリレン系蛍光体等を挙げることができ、無機蛍光体では、アルミン酸塩、リン酸塩、ケイ酸塩等を挙げることができる。このなかでも長時間使用可能な点から、ペリレン系蛍光体、YAG系蛍光体が特に好ましい。また、付活剤としては、例えば、セリウム、ユウロピウム、マンガン、ガドリニウム、サマリウム、テルビウム、スズ、クロム、アンチモン等の元素を挙げることができる。この中でもセリウムが好ましい。付活剤の添加量は、蛍光体に対して0.1〜10mol%の範囲が好ましい。蛍光体と付活剤との組み合わせとしては、YAGとセリウムとの組み合わせが好ましい。   The yellow phosphor using an ultraviolet LED as an excitation light source may be either a phosphor that absorbs blue light emission and emits yellow light, or a phosphor that absorbs ultraviolet light and emits yellow light. Here, in order to ensure color rendering properties, when the first light-emitting phosphor 61 is formed of a blue phosphor and the second light-emitting phosphor 62 is formed of a yellow phosphor, in order to further increase the light emission efficiency, ultraviolet rays are used. A phosphor that absorbs and emits yellow light is desirable. Examples of phosphors that absorb blue light emission and emit yellow light include organic phosphors such as allylsulfoamide / melamine formaldehyde co-condensed dyes and perylene phosphors, and inorganic phosphors include alumina. Examples thereof include acid salts, phosphates, and silicates. Among these, perylene phosphors and YAG phosphors are particularly preferable because they can be used for a long time. Examples of the activator include elements such as cerium, europium, manganese, gadolinium, samarium, terbium, tin, chromium, and antimony. Of these, cerium is preferred. The addition amount of the activator is preferably in the range of 0.1 to 10 mol% with respect to the phosphor. As a combination of the phosphor and the activator, a combination of YAG and cerium is preferable.

また、紫外線を吸収して黄色に発光する蛍光体としては、例えば、(La,Ce)(P,Si)O4や、(Zn,Mg)Oなどの蛍光体を挙げることができる。また、付活剤としては、例えば、テルビウム、亜鉛などを挙げることができる。 Examples of the phosphor that absorbs ultraviolet rays and emits yellow light include phosphors such as (La, Ce) (P, Si) O 4 and (Zn, Mg) O. Examples of the activator include terbium and zinc.

蛍光体層6中の第1発光蛍光体61・第2発光蛍光体62の含有量は、半導体発光素子3や蛍光体の種類などから適宜決定すればよいが、一般にその含有量は、各蛍光体とも蛍光体層6に対して1〜25wt%の範囲が望ましい。エポキシ系の透光性樹脂の典型的な熱硬化温度は、例えば、約180℃程度である。また、発光蛍光体の直径は、例えば、約0.4μm程度である。   The contents of the first light-emitting phosphor 61 and the second light-emitting phosphor 62 in the phosphor layer 6 may be determined as appropriate based on the semiconductor light-emitting element 3 and the type of the phosphor. The range of 1 to 25 wt% with respect to the phosphor layer 6 is desirable for the body. A typical thermosetting temperature of the epoxy-based translucent resin is about 180 ° C., for example. The diameter of the light emitting phosphor is, for example, about 0.4 μm.

実施の形態によれば、放熱特性を向上した半導体発光装置を提供することができる。   According to the embodiment, a semiconductor light emitting device with improved heat dissipation characteristics can be provided.

(製造方法)
実施の形態に係る半導体発光装置の製造方法において、端子電極上にAuSn共晶接合を形成する製造工程における加熱温度と時間との関係は、模式的に図9に示すように表される。また、実施の形態に係る半導体発光装置の製造方法の一工程を示す模式的断面構造は、図10〜図12に示すように表される。
(Production method)
In the manufacturing method of the semiconductor light emitting device according to the embodiment, the relationship between the heating temperature and time in the manufacturing process of forming the AuSn eutectic junction on the terminal electrode is schematically represented as shown in FIG. A schematic cross-sectional structure showing one step of the method for manufacturing the semiconductor light emitting device according to the embodiment is expressed as shown in FIGS.

実施の形態に係る半導体発光装置の製造方法は、図9〜図13に示すように、チップ基板1上に第1端子電極2aおよび第2端子電極2kを形成する工程と、チップ基板1の上面外縁を囲むように反射ケース5を形成する工程と、第1端子電極2a上にAuSn共晶層10を介して半導体発光素子30を接合する工程と、半導体発光素子30の表面と第2端子電極2kとの間をボンディングワイヤ4を用いてボンディング接続する工程と、反射ケース5で囲まれた内部に、蛍光体層6を充填する工程とを有する。ここで、蛍光体層6は、第1発光蛍光体61・第2発光蛍光体62を透光性樹脂中に混合分散して形成されていても良い。   As shown in FIGS. 9 to 13, the method for manufacturing the semiconductor light emitting device according to the embodiment includes the step of forming the first terminal electrode 2 a and the second terminal electrode 2 k on the chip substrate 1, and the upper surface of the chip substrate 1. A step of forming the reflective case 5 so as to surround the outer edge, a step of bonding the semiconductor light emitting element 30 on the first terminal electrode 2a via the AuSn eutectic layer 10, and the surface of the semiconductor light emitting element 30 and the second terminal electrode. 2k, the bonding wire 4 is used for bonding connection, and the phosphor layer 6 is filled in the interior surrounded by the reflective case 5. Here, the phosphor layer 6 may be formed by mixing and dispersing the first light-emitting phosphor 61 and the second light-emitting phosphor 62 in a translucent resin.

(加熱工程)
第1端子電極2a上にAuSn共晶層10を介して半導体発光素子30を接合する工程は、図9の曲線Aに示すように、時刻t0から時刻t1の第1の期間内に温度を室温T3から第1温度T1まで上昇する工程と、時刻t1から時刻t2の第2の期間内に温度を第1温度T1以上第2温度T2以下に保持する工程と、時刻t2から時刻t3の第3期間内に温度を前記第2温度T2から室温T3に降下する工程とを有する。或いは、図9の曲線Bに示すように、時刻tpから時刻t0のプレキュア期間内に温度を室温T3からプレキュア温度Tpまで上昇する工程と、時刻t0から時刻t1の第1の期間内に温度をプレキュア温度Tpから第1温度T1まで上昇する工程と、時刻t1から時刻t2の第2の期間内に温度を第1温度T1以上第2温度T2以下に保持する工程と、時刻t2から時刻t3の第3期間内に温度を前記第2温度T2から室温T3に降下する工程とを有していても良い。ここで、時刻tpから時刻t0のプレキュア期間は、例えば、約60秒であり、プレキュア温度Tpは、例えば、約200℃である。このように、加熱工程では、室温T3から昇温するものと、事前に一部昇温(プレキュア)するものとのいずれも実施可能である。尚、図9において、時刻t1から時刻t2の第2の期間、および時刻t2から時刻t3の第3期間では、曲線Bと曲線Aは、重なっているため、実線のみ表示されている。
(Heating process)
The step of bonding the semiconductor light emitting element 30 on the first terminal electrode 2a via the AuSn eutectic layer 10 is performed at a temperature within a first period from time t 0 to time t 1 as shown by a curve A in FIG. Increasing the temperature from the room temperature T 3 to the first temperature T 1 , maintaining the temperature at the first temperature T 1 or more and the second temperature T 2 or less within the second period from the time t 1 to the time t 2 , Dropping the temperature from the second temperature T 2 to the room temperature T 3 within a third period from time t 2 to time t 3 . Alternatively, as shown by a curve B in FIG. 9, a step of increasing the temperature from room temperature T 3 to precure temperature T p within a precure period from time t p to time t 0 and a first from time t 0 to time t 1 . a step of raising the temperature within a period from the pre-curing temperature T p up to the first temperature T 1 of the first temperature above T 1 second temperature T 2 below the temperature in the second period from the time t 1 the time t 2 And a step of lowering the temperature from the second temperature T 2 to the room temperature T 3 within a third period from time t 2 to time t 3 . Here, the precure period from time t p to time t 0 is, for example, about 60 seconds, and the precure temperature T p is, for example, about 200 ° C. As described above, in the heating step, both the temperature rising from the room temperature T 3 and the one partially raising the temperature in advance (precure) can be performed. In FIG. 9, since the curve B and the curve A overlap in the second period from the time t 1 to the time t 2 and the third period from the time t 2 to the time t 3 , only the solid line is displayed. Yes.

ここで、第1温度T1は280℃以上であり、第2温度T2は320℃以下である。第1温度T1は、第1端子電極2a上にAuSn共晶層10を介して半導体発光素子30を接合するのに必要な温度である。第1端子電極2aは、例えば、Ag/Cuで形成されており、このAg/Cuと半導体発光素子30のサファイヤ基板との間にAuSn半田によって、AuSn共晶層10を形成して接合を形成する。 Here, the first temperature T 1 is 280 ° C. or higher, and the second temperature T 2 is 320 ° C. or lower. The first temperature T 1 is a temperature necessary for bonding the semiconductor light emitting element 30 to the first terminal electrode 2a via the AuSn eutectic layer 10. The first terminal electrode 2a is made of, for example, Ag / Cu, and an AuSn eutectic layer 10 is formed between the Ag / Cu and the sapphire substrate of the semiconductor light emitting element 30 by AuSn solder to form a bond. To do.

尚、反射ケース5は、樹脂で形成されるため、この樹脂層の耐熱性を考慮して、第2温度T2は320℃以下であることが望ましい。 In addition, since the reflective case 5 is formed of resin, the second temperature T 2 is desirably 320 ° C. or lower in consideration of the heat resistance of the resin layer.

時刻t1から時刻t2の第2の期間内に温度を第1温度T1以上第2温度T2以下に保持する工程によって、半導体発光素子30と第1端子電極2a間に良好なAuSn共晶層10を形成するために、第1温度T1は280℃以上であり、第2温度T2は290℃以下であっても良い。 By maintaining the temperature between the first temperature T 1 and the second temperature T 2 within the second period from the time t 1 to the time t 2 , good AuSn coexistence between the semiconductor light emitting element 30 and the first terminal electrode 2a is obtained. In order to form the crystal layer 10, the first temperature T 1 may be 280 ° C. or higher and the second temperature T 2 may be 290 ° C. or lower.

また、第1の期間、第2の期間および第3の期間は、60秒程度で、半導体発光素子30と第1端子電極2a間に良好なAuSn共晶層10を形成することができることが実験的に確認されている。また、第1の期間、第2の期間および第3の期間は、60秒程度であることが、樹脂層で形成されるため反射ケース5の耐熱性を確保する上で望ましい。   In addition, the first period, the second period, and the third period are about 60 seconds, and it is an experiment that an excellent AuSn eutectic layer 10 can be formed between the semiconductor light emitting element 30 and the first terminal electrode 2a. Has been confirmed. Further, the first period, the second period, and the third period are preferably about 60 seconds from the viewpoint of ensuring the heat resistance of the reflective case 5 because they are formed of a resin layer.

また、第1端子電極2a上にAuSn共晶層10を形成して半導体発光素子30を接合する工程は、窒素雰囲気中で実施されていても良い。この工程は、大気圧下で、実施可能である。   Further, the step of forming the AuSn eutectic layer 10 on the first terminal electrode 2a and bonding the semiconductor light emitting element 30 may be performed in a nitrogen atmosphere. This step can be performed under atmospheric pressure.

以下図面を参照しながら、実施の形態に係る半導体発光装置の製造方法を詳述する。   Hereinafter, a method for manufacturing a semiconductor light emitting device according to an embodiment will be described in detail with reference to the drawings.

(a)まず、図10に示すように、チップ基板1上に第1端子電極2aおよび第2端子電極2kを形成後、チップ基板1の上面外縁を囲むように反射ケース5を形成する。 (A) First, as shown in FIG. 10, after forming the first terminal electrode 2 a and the second terminal electrode 2 k on the chip substrate 1, the reflection case 5 is formed so as to surround the outer edge of the upper surface of the chip substrate 1.

(b)次に、図11に示すように、第1端子電極2a上にAuSn共晶層10を介して半導体発光素子30を接合する(ダイボンディング工程)。 (B) Next, as shown in FIG. 11, the semiconductor light emitting element 30 is bonded to the first terminal electrode 2a via the AuSn eutectic layer 10 (die bonding step).

(b−1)このダイボンディング工程では、まず、図10の状態で、約100℃、5分程度オーブン中で加熱して、プレキュア工程を実施する。 (B-1) In this die bonding step, first, in the state shown in FIG. 10, the precure step is performed by heating in an oven at about 100 ° C. for about 5 minutes.

(b−2)次に、フラックスと共にAuSn半田層上に半導体発光素子30を配置し、約300℃で上記の加熱工程を実施して、半導体発光素子30と第1端子電極2a間に良好なAuSn共晶層10を形成する。 (B-2) Next, the semiconductor light emitting element 30 is arranged on the AuSn solder layer together with the flux, and the above heating process is performed at about 300 ° C., so that the semiconductor light emitting element 30 and the first terminal electrode 2a are in good condition. An AuSn eutectic layer 10 is formed.

(b−3)上記の加熱工程後、フラックスを洗浄した後、乾燥させる。 (B-3) After the heating step, the flux is washed and then dried.

(c)次に、図12に示すように、例えば、プラズマ洗浄工程を実施した後、半導体発光素子30の表面と第2端子電極2kとの間をボンディングワイヤ4を用いて接続する。 (C) Next, as shown in FIG. 12, for example, after performing a plasma cleaning process, the surface of the semiconductor light emitting element 30 and the second terminal electrode 2k are connected using the bonding wire 4.

(d)次に、蛍光体層6の注入前のベーキング工程を実施後、反射ケース5で囲まれた内部に、蛍光体層6を充填する。ここで、蛍光体層6は、第1発光蛍光体61・第2発光蛍光体62を透光性樹脂中に混合分散して形成されていても良い。 (D) Next, after performing the baking process before injection | pouring of the fluorescent substance layer 6, the fluorescent substance layer 6 is filled into the inside enclosed by the reflective case 5. FIG. Here, the phosphor layer 6 may be formed by mixing and dispersing the first light-emitting phosphor 61 and the second light-emitting phosphor 62 in a translucent resin.

(e)次に、透光性樹脂を熱硬化するためのキュア工程を実施して、図1に示された半導体発光装置20が完成する。 (E) Next, a curing process for thermosetting the translucent resin is performed to complete the semiconductor light emitting device 20 shown in FIG.

実施の形態によれば、加熱工程において、加熱時間および加熱温度を工夫することによって、半導体発光素子30と第1端子電極2a間に良好なAuSn共晶層10を形成することができる。このため、製造時の信頼性を向上することができる。   According to the embodiment, a good AuSn eutectic layer 10 can be formed between the semiconductor light emitting element 30 and the first terminal electrode 2a by devising the heating time and the heating temperature in the heating step. For this reason, the reliability at the time of manufacture can be improved.

本発明によれば、製造時の信頼性を向上し、かつ放熱特性を向上した半導体発光装置およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reliability at the time of manufacture can be provided, and the semiconductor light-emitting device which improved the thermal radiation characteristic, and its manufacturing method can be provided.

(その他の実施の形態)
上記のように、実施の形態によって記載したが、この開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
(Other embodiments)
As described above, the embodiments have been described. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

また、半導体発光素子30のLEDの構成として、例えば、1パッケージ中に「青色LED+緑色LED+赤色LED」を収容して白色LEDを構成することもできる。このようなマルチチップの例として、「赤外LED+青色LED」のマルチチップで、青色光励起によって黄色光を発光する蛍光体を組み合わせることもできる。黄色蛍光体は、赤外光による影響を受けないため、小型1パッケージで構成可能であり、占有スペースを小さくすることができ、小さなスペースに実装可能である。   Moreover, as a configuration of the LED of the semiconductor light emitting element 30, for example, a “blue LED + green LED + red LED” can be accommodated in one package to configure a white LED. As an example of such a multi-chip, a phosphor that emits yellow light by blue light excitation in a multi-chip of “infrared LED + blue LED” can be combined. Since the yellow phosphor is not affected by infrared light, it can be configured in one small package, can occupy a small space, and can be mounted in a small space.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の半導体発光装置は、一般照明、道路照明、タスク照明、アクセント照明、階段灯、フラッシュライト、誘導灯、交通信号灯、自動車電装用、自動車前照灯、大型液晶バックライトなどLED照明装置全般に適用可能である。   The semiconductor light emitting device of the present invention is a general LED lighting device such as general lighting, road lighting, task lighting, accent lighting, stair light, flashlight, guide light, traffic signal light, automobile electrical equipment, automobile headlight, large liquid crystal backlight, etc. It is applicable to.

1…チップ基板
2a、2k…端子電極
4…ボンディングワイヤ
5…反射ケース
6…蛍光体層
10…AuSn共晶層
20…半導体発光装置
30…半導体発光素子
61…第1発光蛍光体
62…第2発光蛍光体
DESCRIPTION OF SYMBOLS 1 ... Chip substrate 2a, 2k ... Terminal electrode 4 ... Bonding wire 5 ... Reflection case 6 ... Phosphor layer 10 ... AuSn eutectic layer 20 ... Semiconductor light emitting device 30 ... Semiconductor light emitting element 61 ... 1st light emission fluorescent substance 62 ... 2nd Luminescent phosphor

Claims (13)

チップ基板と、
前記チップ基板上に配置された第1端子電極および第2端子電極と、
前記チップ基板の上面外縁を囲むように配置された反射ケースと、
前記第1端子電極上にAuSn共晶層を介して配置された半導体発光素子と、
前記半導体発光素子と第2端子電極を接続するボンディングワイヤと、
前記反射ケースで囲まれた内部に配置され、発光蛍光体を透光性樹脂中に混合分散した蛍光体層と
を備えることを特徴とする半導体発光装置。
A chip substrate;
A first terminal electrode and a second terminal electrode disposed on the chip substrate;
A reflective case disposed so as to surround an outer edge of the upper surface of the chip substrate;
A semiconductor light emitting device disposed on the first terminal electrode via an AuSn eutectic layer;
A bonding wire connecting the semiconductor light emitting element and the second terminal electrode;
A semiconductor light emitting device comprising: a phosphor layer disposed inside the reflection case and having a light emitting phosphor mixed and dispersed in a translucent resin.
前記発光蛍光体は、複数種類であることを特徴とする請求項1に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the light-emitting phosphor includes a plurality of types. 前記蛍光体層は、前記反射ケースで囲まれた内部に配置され、前記第1端子電極および前記第2端子電極と、前記AuSn共晶層10と、前記半導体発光素子と、前記ボンディングワイヤとを封止することを特徴とする請求項1に記載の半導体発光装置。   The phosphor layer is disposed inside the reflective case, and includes the first terminal electrode and the second terminal electrode, the AuSn eutectic layer 10, the semiconductor light emitting element, and the bonding wire. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is sealed. 前記半導体発光素子は、窒化物系半導体により形成されたことを特徴とする請求項1〜3のいずれか1項に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the semiconductor light-emitting element is formed of a nitride-based semiconductor. 前記半導体発光素子の接合と半田実装部間の熱抵抗は、55℃/W以下であることを特徴とする請求項1〜4のいずれか1項に記載の半導体発光装置。   5. The semiconductor light emitting device according to claim 1, wherein a thermal resistance between the junction of the semiconductor light emitting element and the solder mounting portion is 55 ° C./W or less. 前記半導体発光素子の接合と周囲雰囲気間の熱抵抗は、90℃/W以下であることを特徴とする請求項1〜4のいずれか1項に記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein a thermal resistance between the junction of the semiconductor light emitting element and the ambient atmosphere is 90 ° C./W or less. チップ基板上に第1端子電極および第2端子電極を形成する工程と、
前記チップ基板の上面外縁を囲むように反射ケースを形成する工程と、
前記第1端子電極上にAuSn共晶層を介して半導体発光素子を接合する工程と、
前記半導体発光素子と第2端子電極との間をボンディングワイヤを用いてボンディング接続する工程と、
前記反射ケースで囲まれた内部に、発光蛍光体を透光性樹脂中に混合分散した蛍光体層を充填する工程と
を有することを特徴とする半導体発光装置の製造方法。
Forming a first terminal electrode and a second terminal electrode on the chip substrate;
Forming a reflective case so as to surround the outer edge of the upper surface of the chip substrate;
Bonding a semiconductor light emitting element on the first terminal electrode through an AuSn eutectic layer;
Bonding the semiconductor light emitting element and the second terminal electrode using a bonding wire;
Filling a phosphor layer in which a light-emitting phosphor is mixed and dispersed in a light-transmitting resin in an interior surrounded by the reflection case.
前記第1端子電極上にAuSn共晶層を介して半導体発光素子を接合する工程は、
時刻t0から時刻t1の第1の期間内に温度を第1温度まで上昇する工程と、
時刻t1から時刻t2の第2の期間内に温度を前記第1温度以上第2温度以下に保持する工程と、
時刻t2から時刻t3の第3期間内に温度を前記第2温度から室温に降下する工程と
を有することを特徴とする請求項7に記載の半導体発光装置の製造方法。
The step of bonding the semiconductor light emitting device on the first terminal electrode through the AuSn eutectic layer includes:
Increasing the temperature to a first temperature within a first period from time t 0 to time t 1 ;
Maintaining the temperature between the first temperature and the second temperature within a second period from time t 1 to time t 2 ;
The method of manufacturing a semiconductor light-emitting device according to claim 7, further comprising: lowering the temperature from the second temperature to room temperature within a third period from time t 2 to time t 3 .
前記第1温度は280℃以上であることを特徴とする請求項8に記載の半導体発光装置の製造方法。   The method of manufacturing a semiconductor light emitting device according to claim 8, wherein the first temperature is 280 ° C. or higher. 前記第2温度は320℃以下であることを特徴とする請求項8または9に記載の半導体発光装置の製造方法。   The method of manufacturing a semiconductor light emitting device according to claim 8, wherein the second temperature is 320 ° C. or lower. 前記第1の期間、前記第2の期間および前記第3の期間は、60秒であることを特徴とする請求項8〜10のいずれか1項に記載の半導体発光装置の製造方法。   11. The method of manufacturing a semiconductor light emitting device according to claim 8, wherein the first period, the second period, and the third period are 60 seconds. 前記第1端子電極上にAuSn共晶層を介して半導体発光素子を接合する工程は、窒素雰囲気中で実施されることを特徴とする請求項8〜11のいずれか1項に記載の半導体発光装置の製造方法。   12. The semiconductor light-emitting device according to claim 8, wherein the step of bonding the semiconductor light-emitting element to the first terminal electrode through an AuSn eutectic layer is performed in a nitrogen atmosphere. Device manufacturing method. 前記第1端子電極上にAuSn共晶層を介して半導体発光素子を接合する工程は、大気圧で実施されることを特徴とする請求項12に記載の半導体発光装置の製造方法。   The method of manufacturing a semiconductor light emitting device according to claim 12, wherein the step of bonding the semiconductor light emitting element on the first terminal electrode through the AuSn eutectic layer is performed at atmospheric pressure.
JP2011198293A 2011-09-12 2011-09-12 Semiconductor light-emitting device and manufacturing method of the same Pending JP2013062297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198293A JP2013062297A (en) 2011-09-12 2011-09-12 Semiconductor light-emitting device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198293A JP2013062297A (en) 2011-09-12 2011-09-12 Semiconductor light-emitting device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013062297A true JP2013062297A (en) 2013-04-04

Family

ID=48186742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198293A Pending JP2013062297A (en) 2011-09-12 2011-09-12 Semiconductor light-emitting device and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013062297A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203386A (en) * 1999-12-22 2001-07-27 Lumileds Lighting Us Llc III-nitride light emitting device with enhanced light generation capability
JP2006186297A (en) * 2004-12-03 2006-07-13 Toshiba Corp Semiconductor light emitting device and manufacturing method thereof
JP2006253172A (en) * 2005-03-08 2006-09-21 Toshiba Corp Semiconductor light emitting device, semiconductor light emitting device, and method for manufacturing semiconductor light emitting device
JP2006344682A (en) * 2005-06-07 2006-12-21 Stanley Electric Co Ltd Manufacturing method of semiconductor light emitting device
JP2007201420A (en) * 2005-12-27 2007-08-09 Sharp Corp Semiconductor light emitting device, semiconductor light emitting element, and method for manufacturing semiconductor light emitting device
JP2007305844A (en) * 2006-05-12 2007-11-22 Stanley Electric Co Ltd Light emitting device and manufacturing method thereof
JP2008166311A (en) * 2006-12-26 2008-07-17 Toshiba Corp Semiconductor light emitting device and semiconductor light emitting device
JP2010027937A (en) * 2008-07-23 2010-02-04 Panasonic Corp Wiring board and linear light unit
JP2011009346A (en) * 2009-06-24 2011-01-13 Shin-Etsu Chemical Co Ltd Optical semiconductor device
JP2011146567A (en) * 2010-01-15 2011-07-28 Mitsubishi Shindoh Co Ltd Method for connecting led chip, and lead frame
JP2011176364A (en) * 2010-01-29 2011-09-08 Toshiba Corp Led package

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203386A (en) * 1999-12-22 2001-07-27 Lumileds Lighting Us Llc III-nitride light emitting device with enhanced light generation capability
JP2006186297A (en) * 2004-12-03 2006-07-13 Toshiba Corp Semiconductor light emitting device and manufacturing method thereof
JP2006253172A (en) * 2005-03-08 2006-09-21 Toshiba Corp Semiconductor light emitting device, semiconductor light emitting device, and method for manufacturing semiconductor light emitting device
JP2006344682A (en) * 2005-06-07 2006-12-21 Stanley Electric Co Ltd Manufacturing method of semiconductor light emitting device
JP2007201420A (en) * 2005-12-27 2007-08-09 Sharp Corp Semiconductor light emitting device, semiconductor light emitting element, and method for manufacturing semiconductor light emitting device
JP2007305844A (en) * 2006-05-12 2007-11-22 Stanley Electric Co Ltd Light emitting device and manufacturing method thereof
JP2008166311A (en) * 2006-12-26 2008-07-17 Toshiba Corp Semiconductor light emitting device and semiconductor light emitting device
JP2010027937A (en) * 2008-07-23 2010-02-04 Panasonic Corp Wiring board and linear light unit
JP2011009346A (en) * 2009-06-24 2011-01-13 Shin-Etsu Chemical Co Ltd Optical semiconductor device
JP2011146567A (en) * 2010-01-15 2011-07-28 Mitsubishi Shindoh Co Ltd Method for connecting led chip, and lead frame
JP2011176364A (en) * 2010-01-29 2011-09-08 Toshiba Corp Led package

Similar Documents

Publication Publication Date Title
JP5284006B2 (en) Light emitting device
US20090321758A1 (en) Led with improved external light extraction efficiency
WO2014181757A1 (en) Circuit board, optical semiconductor device and manufacturing method for same
JP2011134762A (en) Light emitting device
JPWO2013001687A1 (en) Light emitting device
JP2007329219A (en) RESIN MOLDED BODY, SURFACE MOUNTED LIGHT EMITTING DEVICE AND METHOD FOR PRODUCING THEM
JP5740976B2 (en) Light emitting device and method for manufacturing light emitting device
JP6107415B2 (en) Light emitting device
JP2009170825A (en) Light emitting device and manufacturing method thereof
JP2010245481A (en) Light emitting device
JP2016058614A (en) Light emitting device and lighting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP4923711B2 (en) Light emitting device
JP2007235104A (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
JP4771800B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR20140007510A (en) Led package and method of manufacturing the same
JP2008244468A (en) Light emitting device
JP5294741B2 (en) RESIN MOLDED BODY, SURFACE MOUNTED LIGHT EMITTING DEVICE AND METHOD FOR PRODUCING THEM
CN110224054A (en) Plant illumination monochromatic LED and plant lamp
JP2018191015A (en) Method for manufacturing light emitting device
JP2013138262A (en) Resin mold, surface mounting type light emitting device, and manufacturing methods of resin mold and surface mounting type light emitting device
JP5837774B2 (en) Semiconductor light emitting device
JP2013062297A (en) Semiconductor light-emitting device and manufacturing method of the same
JP2003197971A (en) Light emitting diode
CN110391217A (en) Light-emitting device, lighting device and silicone resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802