[go: up one dir, main page]

JP2013086054A - Wet type limestone-gypsum method desulfurization apparatus using seawater - Google Patents

Wet type limestone-gypsum method desulfurization apparatus using seawater Download PDF

Info

Publication number
JP2013086054A
JP2013086054A JP2011230751A JP2011230751A JP2013086054A JP 2013086054 A JP2013086054 A JP 2013086054A JP 2011230751 A JP2011230751 A JP 2011230751A JP 2011230751 A JP2011230751 A JP 2011230751A JP 2013086054 A JP2013086054 A JP 2013086054A
Authority
JP
Japan
Prior art keywords
limestone
seawater
exhaust gas
spray
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2011230751A
Other languages
Japanese (ja)
Inventor
Ryota Ochiai
亮太 落合
Shogo Mori
祥悟 盛
Hiroshi Ishizaka
浩 石坂
Atsushi Katagawa
篤 片川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011230751A priority Critical patent/JP2013086054A/en
Publication of JP2013086054A publication Critical patent/JP2013086054A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wet type limestone-gypsum method desulfurization apparatus which sprays an absorbing solution of high limestone concentration, low Cl concentration and low temperature to an exhaust gas to effectively desulfurize the exhaust gas, and to reduce an amount of industrial water required for exhaust gas desulfurization by using seawater.SOLUTION: In order to remove a sulfur oxide-acidic gas contained in the exhaust gas 1 with limestone slurry 16, the wet type limestone-gypsum method desulfurization apparatus has an absorbing tower 4 consisting of a plurality of steps of spray parts 6 arranged in the flowing direction of the exhaust gas and a liquid storage 5, a slurry tank 24 for forming a limestone slurry 16 with a limestone 25 and water, and a plurality of circulation pumps 28, 29 for supplying the absorbing liquid in the liquid storage 5 to the plurality of steps of spray parts 6, respectively, wherein seawater 27 is used as water for forming the limestone slurry 16 and the limestone slurry 16 with seawater 27, is supplied to a suction side of the circulation pump 28 for supplying the absorbing liquid to the highest step of the spray parts 6. Seawater using and improvement of exhaust gas desulfurization are achieved at the same time by this constitution.

Description

本発明は、火力発電所や工場等に設置されるボイラ等の燃焼設備から排出される排ガスを浄化するための排煙処理装置に係り、特に、ボイラ等の燃焼排ガス中に含まれる硫黄酸化物や、塩化水素、フッ化水素等の酸性ガスや、煤塵及び燃料中に含まれる微量成分等の人的に有害な物質、を低減する湿式排煙脱硫装置において、効率的に脱硫を行うとともに、脱硫に必要な工業用水を低減する技術に関する。   The present invention relates to a flue gas treatment apparatus for purifying exhaust gas discharged from combustion equipment such as a boiler installed in a thermal power plant or factory, and in particular, sulfur oxide contained in combustion exhaust gas such as a boiler. In a wet flue gas desulfurization device that reduces acid gases such as hydrogen chloride and hydrogen fluoride, and human harmful substances such as dust and trace components contained in fuel, efficient desulfurization, The present invention relates to a technique for reducing industrial water necessary for desulfurization.

火力発電設備における湿式排煙脱硫装置の一般的な系統を図5に示す。なお、後述する各図において同一機器には同一番号を付すこととする。図5において、火力発電所や工場等に設置されるボイラ等から排出される排ガス1は、電気集塵器19にて排ガス中のダストが除去された後、排ガスファン20により昇圧され、吸収塔ガス入口部3から吸収塔4に導入される。   A general system of a wet type flue gas desulfurization apparatus in a thermal power generation facility is shown in FIG. Note that the same number is assigned to the same device in each drawing described later. In FIG. 5, the exhaust gas 1 discharged from a boiler or the like installed in a thermal power plant, a factory, or the like is pressurized by an exhaust gas fan 20 after dust in the exhaust gas is removed by an electric dust collector 19, and is absorbed by an absorption tower. The gas is introduced into the absorption tower 4 from the gas inlet 3.

石灰石25とろ液18からなる石灰石スラリ16が吸収塔4の液溜部5に供給される。吸収塔4の液溜部5にあるスラリ状の吸収液は、吸収液循環ポンプ28,29により昇圧され、スプレノズル9から噴霧される吸収液と排ガス1との気液接触により、排ガス中の硫黄酸化物や塩化水素・フッ化水素等の酸性ガスが、吸収液の液滴表面に吸収される。その後、排ガスに同伴されるミストは、吸収塔4出口に設置したミストエリミネータ7により除去された後、最終的に煙突より排出される。吸収塔内部での蒸発や排水による水分損失は、図5に示す工業用水26を補給することにより補う。   Limestone slurry 16 composed of limestone 25 and filtrate 18 is supplied to the liquid reservoir 5 of the absorption tower 4. The slurry-like absorption liquid in the liquid reservoir 5 of the absorption tower 4 is pressurized by the absorption liquid circulation pumps 28 and 29, and sulfur in the exhaust gas comes into contact with the absorption liquid sprayed from the spray nozzle 9 and the exhaust gas 1. Acid gases such as oxides, hydrogen chloride, and hydrogen fluoride are absorbed on the surface of the liquid droplets of the absorbing liquid. Thereafter, the mist accompanying the exhaust gas is removed by the mist eliminator 7 installed at the outlet of the absorption tower 4 and finally discharged from the chimney. Water loss due to evaporation or drainage inside the absorption tower is compensated by supplying industrial water 26 shown in FIG.

吸収塔液溜部5には、酸化用空気ブロワ17からの空気と硫黄酸化物から生成された亜硫酸カルシウムとの酸化反応により石膏スラリとなる。吸収塔4の液溜部5内の吸収液スラリは、吸収塔抜出しポンプ11により、石膏生成量に応じて、吸収塔4の液溜部5から石膏脱水設備12に抜き出され、石膏脱水設備12にて脱水された後、粉体の石膏14として回収される。このように、図5に示す脱硫装置系では、脱硫に必要な水として工業用水を利用している。上述の通り、ボイラ等から排出される排ガス中に含まれる硫黄酸化物、酸性ガス等を除去する手段として湿式脱硫装置としては一般的に公知であり、且つ実用化された技術である。   The absorption tower liquid reservoir 5 becomes gypsum slurry by an oxidation reaction between the air from the oxidation air blower 17 and calcium sulfite generated from sulfur oxides. The absorbent slurry in the liquid reservoir 5 of the absorption tower 4 is extracted from the liquid reservoir 5 of the absorption tower 4 to the gypsum dewatering equipment 12 by the absorption tower extraction pump 11 according to the amount of gypsum produced. After being dehydrated at 12, it is recovered as a powder gypsum 14. Thus, in the desulfurization system shown in FIG. 5, industrial water is used as water necessary for desulfurization. As described above, as a means for removing sulfur oxides, acid gases, and the like contained in exhaust gas discharged from a boiler or the like, it is generally known as a wet desulfurization apparatus and has been put into practical use.

また、上記の従来技術に関し、吸収塔補給水として海水を利用する発明として、例えば特許文献1が挙げられる。この特許文献1によれば、硫黄酸化物を含有するガスを湿式排煙脱硫処理するにあたり、カルシウム系化合物吸収液の形成に使用する水分として海水を使用し、かつ吸収液のpHを4.5未満に保持し、さらに吸収液中のMg濃度を1,000mg/L又はそれ以下とすることにより、湿式排煙脱硫に必要な良質の補給水の約80%を海水で代用できる旨が開示されている。   Moreover, regarding said prior art, patent document 1 is mentioned as invention which utilizes seawater as absorption tower supplementary water, for example. According to Patent Document 1, when wet gas desulfurization treatment is performed on a gas containing sulfur oxides, seawater is used as moisture used for forming a calcium-based compound absorption liquid, and the pH of the absorption liquid is 4.5. It is disclosed that approximately 80% of high-quality makeup water necessary for wet flue gas desulfurization can be substituted with seawater by keeping the Mg concentration below 1,000 mg / L or lower in the absorption liquid. ing.

また、石灰石と海水を用いて脱硫・脱塵する従来技術として、例えば特許文献2が挙げられ、この特許文献2によると、石灰石スラリの噴霧による一次脱硫スプレノズルと、一次脱硫スプレノズルより上方に配設されて海水を噴霧する二次脱硫スプレノズルとを備え、二次脱硫スプレノズルより噴霧される海水を受けて外部へ流出させるための海水回収部とをさらに備え、大半の脱硫を安価な石灰石で一次脱硫し、残りは水酸化マグネシウムあるいは海水を用いる旨が開示されている。   Further, as a conventional technique for desulfurization / dedusting using limestone and seawater, for example, Patent Document 2 is cited. According to Patent Document 2, a primary desulfurization spray nozzle by spraying of limestone slurry and a position above the primary desulfurization spray nozzle are arranged. And a secondary desulfurization spray nozzle that sprays seawater, and further includes a seawater recovery unit for receiving the seawater sprayed from the secondary desulfurization spray nozzle and discharging it to the outside. However, it is disclosed that the remainder uses magnesium hydroxide or seawater.

特開平7−275648号公報JP-A-7-275648 特開2001−170444号公報JP 2001-170444 A

ところで、上述した湿式排煙脱硫装置における従来技術において(図5を参照)、ボイラ等から排出される排ガス温度、吸収塔入口のガス温度は、120〜160℃と比較的高温であるため、吸収塔4内での気液接触により蒸発水量が多くなり、吸収塔液溜部5の液レベル、吸収液スラリ濃度を一定に維持し、脱硫装置全体の水バランスを維持するためには、吸収塔4に多量の工業用水26を補給する必要があるという課題があった。   By the way, in the prior art in the above-described wet flue gas desulfurization apparatus (see FIG. 5), the exhaust gas temperature discharged from the boiler or the like and the gas temperature at the absorption tower inlet are relatively high at 120 to 160 ° C. In order to maintain the liquid level and absorption liquid slurry concentration in the absorption tower liquid reservoir 5 constant and maintain the water balance of the entire desulfurization apparatus, the absorption tower increases. 4 has a problem that a large amount of industrial water 26 needs to be replenished.

一方で、上記の特許文献1,2に開示されているように、補給水として海水を利用しようとした場合、工業用水中のCl濃度(塩素濃度)は数百ppmであるのに対し、海水中のCl濃度は約20,000ppmであり、吸収塔内での水分蒸発によって脱硫装置系内のClが濃縮し、これにより脱硫性能が低下(補給水として海水を用いた場合に海水が次第に濃縮され、海水中に含有される塩素濃度が高まり、限度を超えると石灰石溶解性が不十分となり脱硫性能が低下)するという課題がある。   On the other hand, as disclosed in Patent Documents 1 and 2, when seawater is used as makeup water, the Cl concentration (chlorine concentration) in industrial water is several hundred ppm, whereas seawater The concentration of Cl in the reactor is about 20,000 ppm, and Cl in the desulfurization system is concentrated by evaporation of water in the absorption tower, resulting in a decrease in desulfurization performance (seawater is gradually concentrated when seawater is used as makeup water). However, when the concentration of chlorine contained in seawater increases and exceeds the limit, limestone solubility becomes insufficient and desulfurization performance decreases).

本発明の目的は、火力発電所等のプラント設備に設置する湿式排煙脱硫装置において、必要な工業用水量の低減を図るとともに、脱硫装置系内のCl濃度増加による脱硫性能低下を抑制する、海水利用の湿式石灰石−石膏法脱硫装置を提供することにある。   The purpose of the present invention is to reduce the amount of industrial water required in a wet flue gas desulfurization device installed in a plant facility such as a thermal power plant, and suppress a decrease in desulfurization performance due to an increase in Cl concentration in the desulfurization device system. The object is to provide a wet limestone-gypsum desulfurization apparatus using seawater.

前記課題を解決するために、本発明は次のような構成を採用する。
排ガス中に含まれる硫黄酸化物・酸性ガスを石灰石スラリを用いて除去するために、排ガス流れ方向に複数段配置されたスプレ部と液溜部とからなる吸収塔と、石灰石と水とで石灰石スラリを生成するスラリタンクと、前記液溜部の吸収液を前記複数段のスプレ部にそれぞれ送給する複数の循環ポンプと、を備えた湿式石灰石−石膏法脱硫装置であって、前記石灰石スラリを生成する水として海水を用い、前記スプレ部の最上段に前記吸収液を送給する循環ポンプの吸い込み側に、前記海水を用いた石灰石スラリを供給するように接続構成すること。
In order to solve the above problems, the present invention adopts the following configuration.
In order to remove sulfur oxide and acid gas contained in exhaust gas using limestone slurry, limestone is composed of an absorption tower composed of a spray part and a liquid storage part arranged in a plurality of stages in the exhaust gas flow direction, and limestone and water. A wet limestone-gypsum desulfurization apparatus comprising: a slurry tank that generates slurry; and a plurality of circulation pumps that respectively supply absorption liquid of the liquid reservoir to the plurality of stages of spray units, the limestone slurry The seawater is used as the water for generating water, and the limestone slurry using the seawater is connected to the suction side of the circulation pump that feeds the absorption liquid to the uppermost stage of the spray unit.

また、前記海水利用の湿式石灰石−石膏法脱硫装置において、前記スプレ部の最上段への前記吸収液と前記石灰石スラリからなるスプレ量を、前記最上段以外のスプレ部への前記吸収液からなるスプレ量よりも少なくすること。   Further, in the wet limestone-gypsum desulfurization apparatus using seawater, the amount of the spray composed of the absorption liquid and the limestone slurry to the uppermost stage of the spray part is composed of the absorption liquid to the spray parts other than the uppermost stage. Less than spray amount.

本発明によれば、吸収塔のスプレ部最上段の循環ポンプの吸い込み側に海水の混入した石灰石スラリを供給することにより、高石灰石濃度、低Cl濃度、低温度の吸収液を排ガスに噴霧できるので、排ガスの脱硫を効率的に行うことができる。さらに、海水を利用することで排ガス脱硫に必要な工業用水を低減することができる。   According to the present invention, by supplying a limestone slurry mixed with seawater to the suction side of the circulation pump at the uppermost stage of the spray section of the absorption tower, it is possible to spray an absorption liquid having a high limestone concentration, a low Cl concentration, and a low temperature onto the exhaust gas. As a result, the exhaust gas can be efficiently desulfurized. Furthermore, industrial water required for exhaust gas desulfurization can be reduced by using seawater.

本発明の実施形態に係る海水利用の湿式石灰石−石膏法脱硫装置における系統構成例を示すブロック図である。It is a block diagram which shows the system configuration | structure example in the wet limestone-gypsum method desulfurization apparatus using the seawater which concerns on embodiment of this invention. 本発明の実施形態に係る海水利用の湿式石灰石−石膏法脱硫装置における他の系統構成例を示すブロック図である。It is a block diagram which shows the other system | strain structural example in the wet limestone-gypsum method desulfurization apparatus using the seawater which concerns on embodiment of this invention. 脱硫装置系内のCl濃度と石灰石溶解性の関連を示す特性図である。It is a characteristic view which shows the relationship between Cl density | concentration in a desulfurization apparatus system, and a limestone solubility. 本実施形態に係る脱硫装置による吸収液量/ガス量(L/G)への影響を、比較例と対比して説明する表である。It is a table | surface explaining the influence on the amount of absorption liquids / gas amount (L / G) by the desulfurization apparatus which concerns on this embodiment compared with a comparative example. 従来技術に関する工業用水利用の湿式石灰石−石膏法脱硫装置における系統構成例を示すブロック図である。It is a block diagram which shows the example of a system | strain structure in the wet limestone-gypsum method desulfurization apparatus using industrial water regarding a prior art.

本発明の実施形態に係る海水利用の湿式石灰石−石膏法脱硫装置について、図1〜図4を参照しながら以下説明する。各図面の図示内容は、図面の簡単な説明欄に記述したとおりである。図面において、1はボイラ出口排ガス、2は脱硫装置ガス出口部、3は脱硫装置ガス入口部、4は吸収塔、5は吸収塔液溜部、6は吸収塔スプレ部(吸収部)、7はミストエリミネータ、8はスプレヘッダ、9はスプレノズル、10はバイパスライン、11は吸収液抜出しポンプ、12は石膏脱水設備、13は吸収液循環配管、14は石膏、15は酸化用攪拌機、16は石灰石スラリ、17は酸化用空気ブロワ、18はろ液、19は電気集塵器、20は排ガスファン、21はろ液回収タンク、22はろ液ポンプ、23は排水ライン、24は石灰石スラリタンク、25は石灰石、26は工業用水、27は海水、28は吸収塔上段循環ポンプ、29は吸収塔下段循環ポンプ、30は開閉バルブ、をそれぞれ表す。   A seawater-based wet limestone-gypsum desulfurization apparatus according to an embodiment of the present invention will be described below with reference to FIGS. The contents shown in each drawing are as described in the brief explanation column of the drawing. In the drawings, 1 is an exhaust gas from a boiler outlet, 2 is a desulfurizer gas outlet, 3 is a desulfurizer gas inlet, 4 is an absorption tower, 5 is an absorption tower liquid reservoir, 6 is an absorption tower spray section (absorption section), 7 Is a mist eliminator, 8 is a spray header, 9 is a spray nozzle, 10 is a bypass line, 11 is an absorption liquid extraction pump, 12 is a gypsum dewatering facility, 13 is an absorption liquid circulation pipe, 14 is gypsum, 15 is an agitator for oxidation, and 16 is limestone. Slurry, 17 is an oxidizing air blower, 18 is filtrate, 19 is an electric dust collector, 20 is an exhaust gas fan, 21 is a filtrate recovery tank, 22 is a filtrate pump, 23 is a drain line, 24 is a limestone slurry tank, and 25 is limestone. , 26 is industrial water, 27 is seawater, 28 is an absorption tower upper stage circulation pump, 29 is an absorption tower lower stage circulation pump, and 30 is an open / close valve.

図1において、火力発電所や工場等に設置されるボイラ等からの排ガス1は、吸収塔ガス入口部3から吸収塔4に導入され、排ガス1中に含まれる硫黄酸化物や塩化水素・フッ化水素等の酸性ガスが、吸収塔4内を循環する吸収液の液滴表面に吸収され除去される、という基本構成を示している。ここで、本実施形態を表す図1では、石灰石スラリ16を生成するために海水27を利用し、さらに、吸収塔4のスプレ部(吸収部)6最上段に送給する循環ポンプ28の吸い込み側に石灰石スラリ16が供給される構成を備えている。なお、本実施形態に係る脱硫装置というのは、図1において、排ガスファン20以降の排ガス流れ系統と、酸化用空気ブロワ17、吸収液抜出しポンプ11を含めた構成系と、海水27を利用した石灰石スラリタンク24を含めた構成系と、からなるものであり、広義には石膏脱水設備12をもつ構成系を含めてもよい。   In FIG. 1, exhaust gas 1 from a boiler or the like installed in a thermal power plant or factory is introduced into an absorption tower 4 from an absorption tower gas inlet 3, and sulfur oxide, hydrogen chloride, or fluorine contained in the exhaust gas 1 is introduced. The basic structure is shown in which acidic gas such as hydrogen fluoride is absorbed and removed by the surface of the liquid droplet of the absorbing liquid circulating in the absorption tower 4. Here, in FIG. 1 representing this embodiment, the seawater 27 is used to generate the limestone slurry 16, and the suction of the circulation pump 28 that is fed to the uppermost stage of the spray section (absorption section) 6 of the absorption tower 4. The limestone slurry 16 is provided on the side. The desulfurization apparatus according to the present embodiment uses an exhaust gas flow system after the exhaust gas fan 20, a configuration system including an oxidation air blower 17, an absorption liquid extraction pump 11, and seawater 27 in FIG. 1. And a constituent system having the gypsum dewatering equipment 12 may be included in a broad sense.

図1に示す系統構成を更に詳しく説明すると、火力発電所や工場等に設置されるボイラ等から排出される排ガス1は、電気集塵器19にて排ガス中のダストが除去された後、排ガスファン20により昇圧され、吸収塔ガス入口部3から吸収塔4に導入される。ここで、火力発電所や工場等に設置されるボイラ等から排出される排ガス温度は、使用する燃料によっても異なるが、石炭焚きボイラの場合、通常は、120〜160℃の比較的高温のガス温度である。   The system configuration shown in FIG. 1 will be described in more detail. Exhaust gas 1 discharged from a boiler or the like installed in a thermal power plant or factory is exhausted after dust in the exhaust gas is removed by an electric dust collector 19. The pressure is increased by the fan 20 and introduced into the absorption tower 4 from the absorption tower gas inlet 3. Here, the temperature of exhaust gas discharged from boilers installed in thermal power plants and factories varies depending on the fuel used, but in the case of coal-fired boilers, it is usually a relatively high temperature gas of 120 to 160 ° C. Temperature.

吸収塔4は液溜部5とスプレ部(吸収部)6から構成され、吸収塔4の液溜部5には、ボイラ等からの排ガス1に含まれる硫黄酸化物や塩化水素・フッ化水素等の酸性ガス(以後、硫黄酸化物等とも称する)の量に応じて、石灰石スラリタンク24より石灰石スラリ16が供給される。石灰石スラリタンク24では石灰石25と海水27により石灰石スラリ16の量及び濃度が調整される。吸収塔4の液溜部5にあるスラリ状(固体粒子が液体中に懸濁している流動体)の吸収液は、吸収液循環ポンプ28,29により昇圧され、吸収液循環配管13を経由して、吸収塔4内の上部の吸収部6に、ガス流れ方向に多段に設けたスプレヘッダ8に供給される。   The absorption tower 4 is composed of a liquid storage section 5 and a spray section (absorption section) 6. The liquid storage section 5 of the absorption tower 4 contains sulfur oxides, hydrogen chloride / hydrogen fluoride contained in the exhaust gas 1 from a boiler or the like. The limestone slurry 16 is supplied from the limestone slurry tank 24 in accordance with the amount of acid gas such as sulfur oxide (hereinafter also referred to as sulfur oxide). In the limestone slurry tank 24, the amount and concentration of the limestone slurry 16 are adjusted by the limestone 25 and the seawater 27. The slurry-like absorption fluid (fluid in which solid particles are suspended in the liquid) in the liquid reservoir 5 of the absorption tower 4 is pressurized by the absorption liquid circulation pumps 28 and 29 and passes through the absorption liquid circulation pipe 13. Then, it is supplied to the spray header 8 provided in multiple stages in the gas flow direction to the upper absorption section 6 in the absorption tower 4.

各スプレヘッダ8には、多数のスプレノズル9が設けられており、このスプレノズル9から噴霧される吸収液とボイラ等からの排ガス1との気液接触により、排ガス中に含まれる硫黄酸化物や塩化水素・フッ化水素等の酸性ガスが、吸収塔4内を循環する吸収液の液滴表面に吸収される。その後、排ガスに同伴されるミスト(気体中に分散した液状微粒子)は、吸収塔4出口に設置したミストエリミネータ7により除去された後、最終的に煙突より排出される。吸収塔内部での蒸発や、排水などによる系内の水分損失は、図1に示す海水27を補給することにより補うことができる。   Each spray header 8 is provided with a number of spray nozzles 9, and sulfur oxides and hydrogen chloride contained in the exhaust gas due to gas-liquid contact between the absorbing liquid sprayed from the spray nozzle 9 and the exhaust gas 1 from a boiler or the like. Acidic gas such as hydrogen fluoride is absorbed on the droplet surface of the absorbing liquid circulating in the absorption tower 4. Thereafter, the mist accompanying the exhaust gas (liquid fine particles dispersed in the gas) is removed by the mist eliminator 7 installed at the outlet of the absorption tower 4 and finally discharged from the chimney. Evaporation inside the absorption tower or water loss in the system due to drainage or the like can be compensated by supplying seawater 27 shown in FIG.

吸収塔4出口に設置されたミストエリミネータ7には、吸収塔4を循環する吸収液が飛散し、ミストエリミネータ7エレメントに付着するため、水洗装置を設けており、水洗水として海水27を用いてミストエリミネータ7エレメントの水洗を行っている。   The mist eliminator 7 installed at the outlet of the absorption tower 4 is provided with a water washing device so that the absorption liquid circulating through the absorption tower 4 scatters and adheres to the mist eliminator 7 element. The mist eliminator 7 element is washed with water.

ボイラ等から排出される排ガス1中に含まれる硫黄酸化物等は、吸収液中のカルシウム化合物と反応し、中間生成物として亜硫酸カルシウムとなり、吸収塔液溜部5に流下する。一方、吸収塔液溜部5には、酸化用空気ブロワ17より空気を強制供給し、該空気と亜硫酸カルシウムとの酸化反応により、反応生成物として石膏スラリとなる。なお、その際に吸収塔液溜部5に供給する酸化空気は、吸収塔液溜部5内の吸収液を攪拌する酸化用攪拌機15により微細化されることにより、酸化空気の利用率を高めている。   Sulfur oxide or the like contained in the exhaust gas 1 discharged from the boiler or the like reacts with the calcium compound in the absorption liquid, becomes calcium sulfite as an intermediate product, and flows down to the absorption tower liquid reservoir 5. On the other hand, air is forcibly supplied from the oxidizing air blower 17 to the absorption tower liquid reservoir 5, and a gypsum slurry is obtained as a reaction product by an oxidation reaction between the air and calcium sulfite. At this time, the oxidized air supplied to the absorption tower liquid reservoir 5 is refined by an oxidizer stirrer 15 for agitating the absorption liquid in the absorption tower liquid reservoir 5, thereby increasing the utilization rate of the oxidized air. ing.

吸収塔4の液溜部5内の吸収液は概ね50℃程度であるが、酸化用空気ブロワ17出口の空気温度は、通常、120〜150℃であり、そのまま吸収塔4の液溜部5に供給すると吸収塔4の液溜部5の吸収液中に内挿した配管端部で乾・湿繰り返しが生じるため、図1に示すように、酸化用空気ブロワ17出口の空気は、工業用水26の噴霧により空気温度を低下させ、吸収塔4の液溜部5に供給される。   The absorption liquid in the liquid reservoir 5 of the absorption tower 4 is approximately 50 ° C., but the air temperature at the outlet of the oxidizing air blower 17 is normally 120 to 150 ° C., and the liquid reservoir 5 of the absorption tower 4 is used as it is. 1, since dry / wet repetition occurs at the end of the pipe inserted in the absorbent in the liquid reservoir 5 of the absorption tower 4, as shown in FIG. 1, the air at the outlet of the oxidizing air blower 17 is used as industrial water. The air temperature is lowered by the spraying 26 and supplied to the liquid reservoir 5 of the absorption tower 4.

吸収塔4の液溜部5内の吸収液スラリは、吸収塔抜出しポンプ11により、石膏生成量に応じて、吸収塔4の液溜部5から石膏脱水設備12に抜き出され、石膏脱水設備12にて脱水された後、粉体の石膏14として回収される。   The absorbent slurry in the liquid reservoir 5 of the absorption tower 4 is extracted from the liquid reservoir 5 of the absorption tower 4 to the gypsum dewatering equipment 12 by the absorption tower extraction pump 11 according to the amount of gypsum produced. After being dehydrated at 12, it is recovered as a powder gypsum 14.

以上説明したように、図1に示す本実施形態の構成例において、吸収液となるスラリ状の石灰石スラリ16は石灰石スラリタンク24でその量と濃度が調整され、吸収塔スプレ部6の最上段に送給する循環ポンプ28の吸い込み側に供給される。そして、この石灰石スラリ供給ラインの経路中で補給水となる海水27を混入できるラインを設けることが、当該構成例の特徴の1つである。従来技術において、火力発電所や工場等に設置されるボイラ等からの排ガス1は、排ガス温度が120〜160℃と、比較的高温のまま、吸収塔4内に導入されるため、吸収塔4内での蒸発水量が多くなるといった課題がある。そのため、大量の吸収塔補給水が必要となるが、本実施形態においては、工業用水の代わりに海水を補給水として利用することで、使用できる工業用水が少ない地域においても、湿式石灰石‐石膏法脱硫装置を活用することが可能となる。   As described above, in the configuration example of this embodiment shown in FIG. 1, the amount and concentration of the slurry-like limestone slurry 16 serving as the absorption liquid is adjusted by the limestone slurry tank 24, and the uppermost stage of the absorption tower spray unit 6. Is supplied to the suction side of the circulation pump 28 to be fed to the pump. And it is one of the characteristics of the said structural example to provide the line which can mix the seawater 27 used as makeup water in the path | route of this limestone slurry supply line. In the prior art, the exhaust gas 1 from a boiler or the like installed in a thermal power plant or factory is introduced into the absorption tower 4 at a relatively high exhaust gas temperature of 120 to 160 ° C. Therefore, the absorption tower 4 There is a problem that the amount of evaporated water increases. For this reason, a large amount of absorption water for the absorption tower is required. In this embodiment, the wet limestone-gypsum method is used even in an area where there is little industrial water that can be used by using seawater as supplementary water instead of industrial water. It is possible to utilize a desulfurization apparatus.

さらに、図1に示す本構成例をその機能乃至作用とともに説明すると、ボイラ等からの排ガス1は、吸収塔4のスプレ部(吸収部)6に導入され、吸収液である石灰石スラリ16の液滴と気液接触することにより、排ガス中に含まれる硫黄酸化物が吸収液中に取り込まれて除去される。吸収液循環配管13の石灰石スラリ中には硫黄酸化物の他、副生成物である石膏14が含まれており、pHはおよそ5.5〜6.0に維持されている。滞留部5で生成した石膏は石膏脱水設備12によって連続的に抜き出される系統構成となっており、スプレされる吸収液中の石膏濃度はおよそ20%となっている。   Further, this configuration example shown in FIG. 1 will be described together with its functions and actions. Exhaust gas 1 from a boiler or the like is introduced into a spray section (absorption section) 6 of an absorption tower 4 and a liquid of limestone slurry 16 as an absorption liquid. By contacting the droplets with gas and liquid, sulfur oxides contained in the exhaust gas are taken into the absorbing solution and removed. The limestone slurry of the absorbent circulation pipe 13 contains gypsum 14 as a by-product in addition to sulfur oxide, and the pH is maintained at about 5.5 to 6.0. The gypsum generated in the retention part 5 has a system configuration that is continuously extracted by the gypsum dewatering equipment 12, and the gypsum concentration in the sprayed absorbent is approximately 20%.

吸収液の脱硫性能については、石灰石濃度の高い方がpHも高くなり、より好条件となるため、石灰石スラリを吸収塔スプレ部6の最上部への循環ポンプ28の吸い込み側に直接供給することにより、石灰石濃度の高い吸収液を、滞留時間が最も高くなるようにスプレ部(吸収部)6で噴霧することができ、効率的に脱硫することができる。換言すると、石灰石スラリ16の供給ラインを吸収塔循環ポンプ28の吸い込み側に接続することは、高石灰石濃度の吸収液をスプレすることを可能にするため、海水利用による脱硫装置系内Cl濃度増加による脱硫性能低下を抑制できる。   As for the desulfurization performance of the absorption liquid, the higher the limestone concentration, the higher the pH and the more favorable conditions. Therefore, supply the limestone slurry directly to the suction side of the circulation pump 28 to the top of the absorption tower spray section 6. Thus, the absorbing liquid having a high limestone concentration can be sprayed by the spray part (absorbing part) 6 so that the residence time becomes the highest, and can be efficiently desulfurized. In other words, connecting the supply line of the limestone slurry 16 to the suction side of the absorption tower circulation pump 28 makes it possible to spray an absorption liquid having a high limestone concentration. It can suppress desulfurization performance degradation by.

また、石灰石スラリ供給ラインの経路途中で海水(Cl濃度:約20,000ppm)を補給水として混入することで、脱硫装置系内で濃縮したCl濃度(100,000ppm)を低下させ、石灰石溶解性低下を抑え、脱硫性能低下を抑制できる。すなわち、石灰石スラリ16を供給する際に補給水となる海水27(Cl濃度:約20,000ppm)を同時に供給することで、系内で濃縮した吸収液中のCl濃度(100,000ppm)を低減することが可能となり、補給水として海水27を利用した際の脱硫性能低下を抑制する作用がある。図3には脱硫装置系内Cl濃度と石灰石溶解性の関係を示しているが、海水27(Cl濃度:約20,000ppm)の補給によって系内Cl濃度(100,000ppm)を低くすると石灰石溶解性が高くなり、脱硫性能が向上することを表している。
また、通常脱硫装置系内はおよそ50℃に維持されているが、およそ30℃の海水を吸収塔スプレ部最上段の循環ポンプ28吸い込み側に供給することにより、吸収液温度を低下させ、補給水として海水27を利用した際の脱硫性能低下を抑制する作用がある。ガス状の硫黄酸化物SOxが吸収液に溶解する溶解度は温度の低い方が高いので、吸収液の温度が低下すれば脱硫性能が良くなることは周知の事実である。
In addition, seawater (Cl concentration: about 20,000 ppm) is mixed as make-up water in the course of the limestone slurry supply line, so that the concentration of Cl (100,000 ppm) concentrated in the desulfurization system is reduced and the limestone solubility is reduced. It is possible to suppress the decrease and suppress the desulfurization performance deterioration. That is, by supplying seawater 27 (Cl concentration: about 20,000 ppm) as makeup water when supplying the limestone slurry 16, the Cl concentration (100,000ppm) in the absorption liquid concentrated in the system is reduced. This makes it possible to suppress a decrease in desulfurization performance when seawater 27 is used as makeup water. FIG. 3 shows the relationship between the Cl concentration in the desulfurization system and the solubility of limestone. When the Cl concentration (100,000 ppm) in the system is lowered by supplementing seawater 27 (Cl concentration: about 20,000 ppm), limestone dissolution occurs. This indicates that the desulfurization performance is improved.
Normally, the inside of the desulfurization system is maintained at about 50 ° C., but by supplying seawater at about 30 ° C. to the suction side of the circulating pump 28 at the top of the absorption tower spray section, the temperature of the absorption liquid is lowered and replenished. There exists an effect | action which suppresses the desulfurization performance fall at the time of using the seawater 27 as water. It is a well-known fact that the solubility of the gaseous sulfur oxide SOx in the absorbing solution is higher at lower temperatures, so that the desulfurization performance improves as the temperature of the absorbing solution decreases.

以上のように、本実施形態に係る湿式排煙脱硫装置の石灰石スラリ供給ラインを、吸収塔のスプレ部最上段の循環ポンプの吸い込み側に接続し、石灰石スラリ供給ラインの経路中で海水を供給できるように接続することによって、高石灰石濃度、低Cl濃度、低温度の吸収液を噴霧することとと、海水を補給水として供給することが同時に達成される。   As described above, the limestone slurry supply line of the wet flue gas desulfurization apparatus according to the present embodiment is connected to the suction side of the circulation pump at the uppermost stage of the spray tower, and seawater is supplied in the route of the limestone slurry supply line. By connecting in such a way as possible, spraying a high limestone concentration, low Cl concentration, low temperature absorption liquid and supplying seawater as make-up water can be achieved simultaneously.

次に、図1に示す系統構成における改良例を説明する。図1の系統において、石灰石スラリ16を循環ポンプ28の吸い込み側に供給しているが、その供給の仕方について改良するものである。すなわち、石灰石スラリ16を循環ポンプ28の吸い込み配管の内周壁側に供給する改良例とすること(すなわち、石灰石スラリ16を配管の中央部分に供給するのではなくて、配管内周壁の複数部位から吸収液流れ方向に内周壁に沿って供給すること)で、海水利用によるポンプ入り口の腐食環境を低減することができる。   Next, an improvement example in the system configuration shown in FIG. 1 will be described. In the system of FIG. 1, the limestone slurry 16 is supplied to the suction side of the circulation pump 28, but the supply method is improved. That is, it is set as the improvement example which supplies the limestone slurry 16 to the inner peripheral wall side of the suction pipe of the circulation pump 28 (that is, the limestone slurry 16 is not supplied to the central portion of the pipe, but from a plurality of parts on the inner peripheral wall of the pipe. By supplying along the inner peripheral wall in the absorption liquid flow direction), it is possible to reduce the corrosive environment of the pump inlet due to the use of seawater.

その低減の理由は、配管の内周壁にCl濃度が20,000ppmの海水27を流し、さらに、系内で濃縮したCl濃度(100,000ppm)をもつ吸収液が配管中央分に流れることによって、内周壁に低Cl濃度の石灰石スラリ層を作るようにして、配管の内周壁やポンプ入り口での塩素による腐食を緩和する作用があるからである。   The reason for the reduction is that the seawater 27 having a Cl concentration of 20,000 ppm flows on the inner peripheral wall of the pipe, and further, the absorption liquid having a Cl concentration (100,000 ppm) concentrated in the system flows to the center of the pipe. This is because a limestone slurry layer having a low Cl concentration is formed on the inner peripheral wall, thereby mitigating corrosion caused by chlorine on the inner peripheral wall of the pipe and the pump inlet.

次に、本実施形態に係る海水利用の湿式石灰石−石膏法脱硫装置における他の系統構成例について、図2を参照しながら説明する。図2において、複数段設置された吸収塔循環ポンプ28,29,…の内で石灰石スラリ16が供給される最上段ポンプ28の吸い込み側と、他のポンプ29,…の吸い込み側との間にそれぞれバイパスライン10を設け、各バイパスラインに開閉バルブ(流路オンオフのバルブ)を設置する構成とする。   Next, another system configuration example in the seawater-based wet limestone-gypsum desulfurization apparatus according to the present embodiment will be described with reference to FIG. 2, between the suction side of the uppermost pump 28 to which the limestone slurry 16 is supplied and the suction side of the other pumps 29,... Among the absorption tower circulation pumps 28, 29,. Each of the bypass lines 10 is provided, and an opening / closing valve (flow path on / off valve) is installed in each bypass line.

ボイラの負荷変動(排ガスの流入量変動)に対して使用する循環ポンプを切り替える場合、例えば、全負荷の場合にはすべての循環ポンプを使用するが、部分負荷の場合にはポンプ28を止めて開閉バルブ30をオンにして石灰石スラリ16をポンプ29に供給する場合、使用する循環ポンプの中でスプレヘッダ最上段に噴霧するポンプへ高効率の吸収液を供給することが常に可能となる。   When switching the circulation pump to be used in response to boiler load fluctuations (exhaust gas inflow fluctuations), for example, all circulation pumps are used for full load, but pump 28 is stopped for partial load. When the on-off valve 30 is turned on and the limestone slurry 16 is supplied to the pump 29, it is always possible to supply the highly efficient absorption liquid to the pump sprayed on the uppermost stage of the spray header in the circulating pump to be used.

次に、図1に示す本実施形態に係る海水利用の湿式石灰石−石膏法脱硫装置における系統構成例において最上段ポンプ28による吸収液循環量の差異による系統構成の効率的運用について、図4を参照しながら以下説明する。   Next, FIG. 4 shows the efficient operation of the system configuration based on the difference in the amount of the circulating liquid absorbed by the uppermost pump 28 in the system configuration example in the seawater-based wet limestone-gypsum desulfurization apparatus according to the present embodiment shown in FIG. This will be described below with reference.

図1の系統構成において、吸収塔最上段循環ポンプ28での循環量を他段の循環ラインよりも低下させることにより、より高石灰石濃度の吸収液をスプレ部6最上段より噴霧させることができ、効率的運用可能な系統構成となる。図4には、特許文献1に示すような脱硫装置に海水を補給水として供給するシステム(比較例)と、本構成例によるシステムの吸収液量/ガス量(L/G)への影響を対比している。ここで、同一のガス量に対して吸収液量の少ない方が排ガスファン20や循環ポンプ28,29の動力も低減することを表している(L/Gの小の方が系統構成の効率的運用となる)。   In the system configuration of FIG. 1, by reducing the amount of circulation in the uppermost circulation pump 28 of the absorption tower as compared with the circulation line of the other stages, it is possible to spray an absorption liquid having a higher limestone concentration from the uppermost stage of the spray unit 6. It becomes a system configuration capable of efficient operation. FIG. 4 shows a system (comparative example) for supplying seawater as make-up water to a desulfurization apparatus as shown in Patent Document 1, and the effect on the amount of absorbed liquid / gas amount (L / G) of the system according to this configuration example Contrast. Here, the smaller amount of the absorbing liquid with respect to the same gas amount represents that the power of the exhaust gas fan 20 and the circulation pumps 28 and 29 is reduced (the smaller L / G is the more efficient the system configuration). Will be operational).

図4によると、本構成例と比較例とにおいて、液循環量はいずれのケースについても30,000[m/h]とし、その中に海水を補給水として200[m/h]供給する。また、系内Cl濃度については100,000ppmに設定した。スプレ段数は3段とし、スプレ量については比較例ケースでは各段にて10,000[m/h]と均等にスプレし、本構成例ケースにおいては上段のみ1,000[m/h]と低減し、他段については残りを均等に分配した循環量(各30,000−1,000/2[m/h])としている。スプレ量の各段での図4に示す流量調整は一例として各循環ポンプを制御することで為し得る。 According to FIG. 4, in this configuration example and the comparative example, the liquid circulation rate is 30,000 [m 3 / h] in any case, and 200 [m 3 / h] is supplied as seawater as makeup water therein. To do. The in-system Cl concentration was set to 100,000 ppm. The number of spray stages is three, and the spray amount is sprayed equally at 10,000 [m 3 / h] in each stage in the comparative example case, and in the case of this configuration example, only the upper stage is 1,000 [m 3 / h]. ], And the other stages are set to the circulation amount (each 30,000-1,000 / 2 [m 3 / h]) that is evenly distributed. The flow rate adjustment shown in FIG. 4 at each stage of the spray amount can be performed by controlling each circulation pump as an example.

また、上段液循環量Qtopと、全液循環量Qtotalの比Qtop/Qtotalをそれぞれのケースにて示している。ここで、吸収塔最上段スプレ量を他段のスプレ量よりも低くし、Qtop/Qtotalを0.33→0.033にすることにより、脱硫性能に対する影響度合いを示すRTUが5%増加し、全体としてL/Gが5%低減できる。これにはCl濃度低下、石灰石濃度増加、吸収液温度低下等による上段スプレ部吸収液の性能向上が寄与している。   Further, the ratio Qtop / Qtotal between the upper stage liquid circulation amount Qtop and the total liquid circulation amount Qtotal is shown in each case. Here, the RTU indicating the degree of influence on the desulfurization performance is increased by 5% by lowering the spray amount at the uppermost stage of the absorber and lowering the spray amount at the other stage and changing Qtop / Qtotal from 0.33 to 0.033. Overall, L / G can be reduced by 5%. This contributes to the improvement in the performance of the upper spray part absorbent by reducing the Cl concentration, increasing the limestone concentration, lowering the temperature of the absorbent, and the like.

図4によると、海水量(Cl濃度:20,000ppm)は本構成例と比較例とで同一量であり、且つ上段スプレ量については本構成例では、比較例との対比で、10,000[m/h]から1,000[m/h]へと低減しているので、本構成例は、上段のスプレについて、濃縮された100,000ppmCl濃度の吸収液の1,000[m/h]に占める割合は小さくなっており、すなわち低Cl濃度となっているので、脱硫性能低下を抑制できるのである。ここで、RTUはRelative transfer unitの略号であり、SO吸収性能の評価指数であるATU(Actual transfer unit)の比を表している。RTUは、脱硫性能に対する各影響因子の影響度合いを表す場合や、パイロット装置と実機のスケールアップファクタを表す指標として、二者間のATUの比を表すものである。 According to FIG. 4, the amount of seawater (Cl concentration: 20,000 ppm) is the same in the present configuration example and the comparative example, and the upper spray amount is 10,000 in this configuration example as compared with the comparative example. Since [m 3 / h] is reduced to 1,000 [m 3 / h], the present configuration example is about 1,000 [m] of the absorbed liquid having a concentrated 100,000 ppm Cl concentration for the upper spray. 3 / h] is small, that is, since the Cl concentration is low, it is possible to suppress a decrease in desulfurization performance. Here, RTU is an abbreviation for Relative transfer unit, and represents a ratio of ATU (Actual transfer unit) which is an evaluation index of SO 2 absorption performance. The RTU represents the ratio of the ATU between the two when representing the degree of influence of each influencing factor on the desulfurization performance or as an index representing the scale-up factor between the pilot device and the actual machine.

次に、本発明の実施形態に係る海水利用の湿式石灰石−石膏法脱硫装置の作用効果について、敷衍して以下説明する。本実施形態によれば、スラリタンク24への補給水として工業用水の代わりに海水を利用することができるため、海水利用により、工業用水確保が困難な中東や東南アジア及び南米等の地域(この地域に限らない)において、湿式石灰石−石膏法脱硫を採用する上で有効な手法となる。例えば、1,000MW相当の排ガスを湿式石灰石−石膏法で処理する場合、図示する脱硫装置のガス入出力側に設けた不図示のガスガスヒータ(GGH)設置なしで合計約160ton/hの工業用水が必要となるが、このうち、酸化用空気ブロワ15出口の酸化空気増湿用と、ポンプ17のシール水に使用する約10ton/h以外の水を海水で補い、系内Cl濃度を100,000ppmに維持しようとした場合、約200ton/hの海水があればよい(図4に示す海水量200m/hに対応)。上述の160トンと200トンという合計の供給水量が変わってくるのは、工業用水と海水中のCl濃度が異なるため、系内Cl濃度を等しく維持するには供給水量と排水量で調節しなければならないためである。 Next, the effect of the seawater-based wet limestone-gypsum desulfurization apparatus according to the embodiment of the present invention will be described below. According to the present embodiment, seawater can be used instead of industrial water as make-up water for the slurry tank 24. Therefore, it is difficult to secure industrial water by using seawater, such as the Middle East, Southeast Asia, and South America (this area However, it is an effective method for employing wet limestone-gypsum desulfurization. For example, when exhaust gas equivalent to 1,000 MW is treated by the wet limestone-gypsum method, industrial water of about 160 ton / h in total is installed without installing a gas gas heater (GGH) (not shown) provided on the gas input / output side of the desulfurization apparatus shown in the figure. Of these, water other than about 10 ton / h used for oxidizing air humidification at the outlet of the oxidizing air blower 15 and the sealing water of the pump 17 is supplemented with seawater, and the Cl concentration in the system is set to 100, When it is going to be maintained at 000 ppm, it is sufficient if there is about 200 ton / h seawater (corresponding to the seawater amount 200 m 3 / h shown in FIG. 4). The total supply water amount of 160 tons and 200 tons mentioned above changes because the Cl concentration in industrial water and seawater is different. To maintain the same Cl concentration in the system, the supply water amount and the drainage amount must be adjusted. This is because it must not.

また、既設の火力発電所において、脱硫装置を追設する場合、必要工業用水を海水淡水化装置の追設により確保するよりも、海水を補給水として直接利用するほうがコストインパクトとしてより安価となる。   In addition, when installing a desulfurization unit in an existing thermal power plant, using seawater directly as make-up water is less expensive as a cost impact than securing necessary industrial water by adding a seawater desalination unit. .

工業用水確保が困難な地域においては、海水を脱硫剤としてワンスルーで使用する海水脱硫方式が採用されつつあるが、排水量が多量となり十分な排水処理がなされない状態で海洋に排出されるため、環境汚染の懸念がある。本実施形態では、海水は補給水として使用するが、吸収剤としては石灰石を使用し、排水処理設備も設置可能であるため、海水脱硫方式よりも環境負荷低減が可能な系統構成となる。   In areas where it is difficult to secure industrial water, a seawater desulfurization method that uses seawater as a desulfurization agent is being adopted, but the amount of wastewater is large and discharged to the ocean without sufficient wastewater treatment. There are concerns about contamination. In this embodiment, seawater is used as make-up water, but limestone is used as an absorbent and wastewater treatment equipment can be installed. Therefore, the system configuration can reduce the environmental burden compared to the seawater desulfurization method.

海水を補給する方法として、石灰石スラリとともに吸収塔循環ポンプ吸い込み側より補給することで、石灰石濃度増加と、吸収液Cl濃度低下(系内Cl濃度:100,000ppmの場合)によって、より高性能な吸収液としてスプレすることが可能となる。   As a method of replenishing seawater, by supplying from the suction tower circulation pump suction side together with limestone slurry, higher performance can be achieved by increasing the limestone concentration and decreasing the absorption solution Cl concentration (in the case of Cl concentration in the system: 100,000 ppm). It becomes possible to spray as an absorbing solution.

また、通常脱硫装置系内はおよそ50℃に維持されているが、およそ30℃の海水を循環ポンプ吸い込み側で供給することにより、吸収液温度を低下させ、補給水として海水27を利用した際の脱硫性能低下を抑制する効果がある。   In addition, the inside of the desulfurization system is normally maintained at about 50 ° C., but when the seawater at about 30 ° C. is supplied on the circulation pump suction side, the temperature of the absorption liquid is lowered and seawater 27 is used as makeup water. It has the effect of suppressing the desulfurization performance degradation.

そして、石灰石スラリ16供給配管を吸収塔上段循環ポンプ28の吸い込み側に接続することにより、高吸収性能の吸収液の滞留時間が最も長くなり(吸収液が排ガスに接触している時間が長くなり)、また、吸収塔上段循環ポンプ28での循環量を他段の循環ラインよりも低下させることで、より高石灰石濃度、低Cl濃度の吸収液をスプレ部6最上段より噴霧させることができ、より効率的に脱硫できる効果がある(図4の説明参照)。   Then, by connecting the limestone slurry 16 supply pipe to the suction side of the absorption tower upper circulation pump 28, the residence time of the absorbent with high absorption performance becomes the longest (the time during which the absorbent is in contact with the exhaust gas becomes longer). ) In addition, by reducing the amount of circulation in the upper circulation pump 28 of the absorption tower as compared with the circulation line of the other stages, it is possible to spray an absorption liquid having a higher limestone concentration and a lower Cl concentration from the uppermost stage of the spray unit 6. This has the effect of more efficiently desulfurizing (see the description of FIG. 4).

さらに、石灰石スラリを吸収塔スプレ部最上段の循環ポンプ吸い込み側に供給することにより、噴霧する吸収液スラリ中の石膏濃度を低下させ、飛散ミスト中の石膏濃度が低下し、ミストエリミネータへの石膏固着を低減できる効果がある。   Furthermore, by supplying the limestone slurry to the circulation pump suction side at the uppermost stage of the absorption tower spray section, the gypsum concentration in the sprayed absorption liquid slurry is lowered, the gypsum concentration in the scattered mist is lowered, and the gypsum to the mist eliminator There is an effect that sticking can be reduced.

1 ボイラ出口排ガス
2 脱硫装置ガス出口部
3 脱硫装置(吸収塔)ガス入口部
4 吸収塔
5 吸収塔液溜部
6 吸収塔スプレ部(吸収部)
7 ミストエリミネータ
8 スプレヘッダ
9 スプレノズル
10 バイパスライン
11 吸収液抜出しポンプ
12 石膏脱水設備
13 吸収液循環配管
14 石膏
15 酸化用攪拌機
16 石灰石スラリ
17 酸化用空気ブロワ
18 ろ液
19 電気集塵器
20 排ガスファン
21 ろ液回収タンク
22 ろ液ポンプ
23 排水ライン
24 石灰石スラリタンク
25 石灰石
26 工業用水
27 海水
28 吸収塔上段循環ポンプ
29 吸収塔下段循環ポンプ
30 開閉バルブ
DESCRIPTION OF SYMBOLS 1 Boiler exit exhaust gas 2 Desulfurization apparatus gas exit part 3 Desulfurization apparatus (absorption tower) gas inlet part 4 Absorption tower 5 Absorption tower liquid storage part 6 Absorption tower spray part (absorption part)
7 Mist Eliminator 8 Spray Header 9 Spray Nozzle 10 Bypass Line 11 Absorption Liquid Extraction Pump 12 Gypsum Dehydration Equipment 13 Absorption Liquid Circulation Pipe 14 Gypsum 15 Oxidizing Stirrer 16 Limestone Slurry 17 Oxidizing Air Blower 18 Filtrate 19 Electric Dust Collector 20 Exhaust Fan 21 Filtrate recovery tank 22 Filtrate pump 23 Drain line 24 Limestone slurry tank 25 Limestone 26 Industrial water 27 Seawater 28 Absorption tower upper circulation pump 29 Absorption tower lower circulation pump 30 Open / close valve

Claims (4)

排ガス中に含まれる硫黄酸化物・酸性ガスを石灰石スラリを用いて除去するために、排ガス流れ方向に複数段配置されたスプレ部と液溜部とからなる吸収塔と、石灰石と水とで石灰石スラリを生成するスラリタンクと、前記液溜部の吸収液を前記複数段のスプレ部にそれぞれ送給する複数の循環ポンプと、を備えた湿式石灰石−石膏法脱硫装置であって、
前記石灰石スラリを生成する水として海水を用い、
前記スプレ部の最上段に前記吸収液を送給する循環ポンプの吸い込み側に、前記海水を用いた石灰石スラリを供給するように接続構成する
ことを特徴とする海水利用の湿式石灰石−石膏法脱硫装置。
In order to remove sulfur oxide and acid gas contained in exhaust gas using limestone slurry, limestone is composed of an absorption tower composed of a spray part and a liquid storage part arranged in a plurality of stages in the exhaust gas flow direction, and limestone and water. A wet limestone-gypsum desulfurization apparatus comprising a slurry tank for generating slurry, and a plurality of circulation pumps for feeding the absorption liquid of the liquid reservoir to the plurality of stages of spray parts, respectively.
Seawater is used as water to generate the limestone slurry,
A wet limestone-gypsum desulfurization method using seawater, characterized in that the limestone slurry using the seawater is connected to the suction side of a circulation pump that feeds the absorbing liquid to the uppermost stage of the spray section. apparatus.
請求項1において、
前記スプレ部の最上段への前記吸収液と前記石灰石スラリからなるスプレ量を、前記最上段以外のスプレ部への前記吸収液からなるスプレ量よりも少なくする
ことを特徴とする海水利用の湿式石灰石−石膏法脱硫装置。
In claim 1,
Wet water using seawater, characterized in that the amount of spray consisting of the absorbent and limestone slurry to the uppermost stage of the spray part is less than the amount of spray consisting of the absorbent to the spray part other than the uppermost stage. Limestone-gypsum desulfurization equipment.
請求項1または2において、
前記循環ポンプの吸い込み側に前記石灰石スラリを供給する接続構成は、前記吸い込み側の配管の周壁複数部位から吸収液流れ方向に内周壁に沿って前記石灰石スラリを供給するように構成する
ことを特徴とする海水利用の湿式石灰石−石膏法脱硫装置。
In claim 1 or 2,
The connection configuration for supplying the limestone slurry to the suction side of the circulation pump is configured to supply the limestone slurry along the inner peripheral wall in the absorption liquid flow direction from a plurality of peripheral wall portions of the suction side piping. Wet limestone-gypsum desulfurization equipment using seawater.
請求項1、2または3において、
前記複数の循環ポンプの内で前記スプレ部の最上段に液送給する循環ポンプの吸い込み側と、他の循環ポンプの吸い込み側との間を連結するバイパスラインをそれぞれ設けるとともに、各バイパスラインにそれぞれ開閉バルブを設け、
前記排ガスの流入量変動に対して使用する循環ポンプをオン・オフして切り替える場合に、バイパスライン毎の前記開閉バルブを選定してオン・オフする
ことを特徴とする海水利用の湿式石灰石−石膏法脱硫装置。
In claim 1, 2 or 3,
Each of the plurality of circulation pumps is provided with a bypass line that connects between the suction side of the circulation pump that feeds liquid to the uppermost stage of the spray unit and the suction side of other circulation pumps, and each bypass line Each has an open / close valve,
A wet limestone-gypsum using seawater, wherein the on-off valve for each bypass line is selected and turned on / off when the circulation pump used for the inflow fluctuation of the exhaust gas is switched on / off. Process desulfurization equipment.
JP2011230751A 2011-10-20 2011-10-20 Wet type limestone-gypsum method desulfurization apparatus using seawater Ceased JP2013086054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011230751A JP2013086054A (en) 2011-10-20 2011-10-20 Wet type limestone-gypsum method desulfurization apparatus using seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011230751A JP2013086054A (en) 2011-10-20 2011-10-20 Wet type limestone-gypsum method desulfurization apparatus using seawater

Publications (1)

Publication Number Publication Date
JP2013086054A true JP2013086054A (en) 2013-05-13

Family

ID=48530546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011230751A Ceased JP2013086054A (en) 2011-10-20 2011-10-20 Wet type limestone-gypsum method desulfurization apparatus using seawater

Country Status (1)

Country Link
JP (1) JP2013086054A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150098425A (en) * 2014-02-20 2015-08-28 주식회사 포스코건설 Apparatus for treating seawater using by-product of power plant and method thereof
KR20150098426A (en) * 2014-02-20 2015-08-28 주식회사 포스코건설 Apparatus for treating seawater using limestone and method thereof
WO2016208273A1 (en) * 2015-06-26 2016-12-29 富士電機株式会社 Exhaust gas treatment apparatus
CN108854499A (en) * 2018-08-09 2018-11-23 河南禾力能源股份有限公司 A kind of furfural dregs boiler smoke magnesia FGD purification device
CN109126408A (en) * 2018-08-23 2019-01-04 南京天创电子技术有限公司 A kind of wet desulphurization device and intelligent control method
CN111729484A (en) * 2020-07-29 2020-10-02 佛山东华盛昌新材料有限公司 White smoke eliminating, desulfurizing and dedusting system
CN113797739A (en) * 2021-11-02 2021-12-17 福建龙净环保股份有限公司 A limestone-gypsum method flue gas desulfurization system and limestone-gypsum method flue gas desulfurization method
WO2022185878A1 (en) * 2021-03-02 2022-09-09 昭和電工株式会社 Hydrogen fluoride gas removal device and method for removing hydrogen fluoride gas
WO2022185879A1 (en) * 2021-03-02 2022-09-09 昭和電工株式会社 Hydrogen fluoride gas removal device and hydrogen fluoride gas removal method
CN115364645A (en) * 2022-08-01 2022-11-22 巩义市良慧环保科技有限公司 A molecular membrane flue gas desulfurization and decarbonization system and its desulfurization and decarbonization method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352623A (en) * 1989-07-21 1991-03-06 Babcock Hitachi Kk Wet type flue gas desulfurization facility utilizing sea water
JPH07171337A (en) * 1993-12-20 1995-07-11 Babcock Hitachi Kk Flue gas desulfurization device
JP2004237146A (en) * 2003-02-03 2004-08-26 Jfe Engineering Kk Deodorizing device and deodorizing method
JP2008521069A (en) * 2004-08-27 2008-06-19 アルストム テクノロジー リミテッド Optimized air pollution control
JP2008178789A (en) * 2007-01-24 2008-08-07 Toshiba Corp Antifouling device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352623A (en) * 1989-07-21 1991-03-06 Babcock Hitachi Kk Wet type flue gas desulfurization facility utilizing sea water
JPH07171337A (en) * 1993-12-20 1995-07-11 Babcock Hitachi Kk Flue gas desulfurization device
JP2004237146A (en) * 2003-02-03 2004-08-26 Jfe Engineering Kk Deodorizing device and deodorizing method
JP2008521069A (en) * 2004-08-27 2008-06-19 アルストム テクノロジー リミテッド Optimized air pollution control
JP2008178789A (en) * 2007-01-24 2008-08-07 Toshiba Corp Antifouling device and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150098425A (en) * 2014-02-20 2015-08-28 주식회사 포스코건설 Apparatus for treating seawater using by-product of power plant and method thereof
KR20150098426A (en) * 2014-02-20 2015-08-28 주식회사 포스코건설 Apparatus for treating seawater using limestone and method thereof
KR101626532B1 (en) * 2014-02-20 2016-06-01 주식회사 포스코건설 Apparatus for treating seawater using limestone and method thereof
KR101626530B1 (en) * 2014-02-20 2016-06-01 주식회사 포스코건설 Apparatus for treating seawater using by-product of power plant and method thereof
EP3187245A4 (en) * 2015-06-26 2018-05-16 Fuji Electric Co., Ltd. Exhaust gas treatment apparatus
JP2017012951A (en) * 2015-06-26 2017-01-19 富士電機株式会社 Exhaust gas treatment equipment
WO2016208273A1 (en) * 2015-06-26 2016-12-29 富士電機株式会社 Exhaust gas treatment apparatus
CN108854499A (en) * 2018-08-09 2018-11-23 河南禾力能源股份有限公司 A kind of furfural dregs boiler smoke magnesia FGD purification device
CN109126408A (en) * 2018-08-23 2019-01-04 南京天创电子技术有限公司 A kind of wet desulphurization device and intelligent control method
CN111729484A (en) * 2020-07-29 2020-10-02 佛山东华盛昌新材料有限公司 White smoke eliminating, desulfurizing and dedusting system
WO2022185878A1 (en) * 2021-03-02 2022-09-09 昭和電工株式会社 Hydrogen fluoride gas removal device and method for removing hydrogen fluoride gas
WO2022185879A1 (en) * 2021-03-02 2022-09-09 昭和電工株式会社 Hydrogen fluoride gas removal device and hydrogen fluoride gas removal method
TWI851969B (en) * 2021-03-02 2024-08-11 日商力森諾科股份有限公司 Hydrogen fluoride gas removal device and hydrogen fluoride gas removal method
CN113797739A (en) * 2021-11-02 2021-12-17 福建龙净环保股份有限公司 A limestone-gypsum method flue gas desulfurization system and limestone-gypsum method flue gas desulfurization method
CN115364645A (en) * 2022-08-01 2022-11-22 巩义市良慧环保科技有限公司 A molecular membrane flue gas desulfurization and decarbonization system and its desulfurization and decarbonization method

Similar Documents

Publication Publication Date Title
JP2013086054A (en) Wet type limestone-gypsum method desulfurization apparatus using seawater
JP7390431B2 (en) Non-drainage exhaust gas treatment system and non-drainage exhaust gas treatment method
JP6230818B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP5773687B2 (en) Seawater flue gas desulfurization system and power generation system
US10247414B2 (en) Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method
US9327236B2 (en) Wet type flue-gas desulfurization method
EA029429B1 (en) Method for treating flue gas and apparatus for treating acidic tail gas by using ammonia process
US20020110511A1 (en) Horizontal scrubber system
WO2009093575A1 (en) System and method for treating discharge gas from coal-fired boiler
CN105311946A (en) Flue gas denitration and desulfuration washing system and denitration and desulfuration method
PH12015501897B1 (en) Seawater flue-gas desulfurization device and method for operating same
JP2013094729A (en) Exhaust gas desulfurization apparatus
JP2012179521A5 (en)
CN100469419C (en) Segmented sodium-calcium double-alkali desulfurization process and its device
JPWO2008087769A1 (en) Wet flue gas desulfurization equipment
JPWO2008035703A1 (en) Wet flue gas desulfurization equipment
WO2015099171A1 (en) Method for desulfurizing sulfurous acid gas-containing exhaust gas and desulfurizing device
JP5106479B2 (en) Method and apparatus for suppressing mercury re-release in desulfurization equipment
JP2016120438A (en) Wet-type desulfurization apparatus and wet-type desulfurization method
JP2013154330A (en) Oxidation tank, seawater exhaust gas desulfurization system, and power generator system
JP2015116520A (en) Wet type flue-gas desulfurization apparatus and application method of the wet type flue-gas desulfurization apparatus
JP2012196611A (en) Flue gas desulfurization apparatus and flue gas desulfurization method
JP2005152745A (en) Wet flue gas desulfurization method and wet flue gas desulfurizer
JP3337382B2 (en) Exhaust gas treatment method
JP5991664B2 (en) Flue gas desulfurization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20150929