[go: up one dir, main page]

JP2013027226A - Gas insulation switching device - Google Patents

Gas insulation switching device Download PDF

Info

Publication number
JP2013027226A
JP2013027226A JP2011161654A JP2011161654A JP2013027226A JP 2013027226 A JP2013027226 A JP 2013027226A JP 2011161654 A JP2011161654 A JP 2011161654A JP 2011161654 A JP2011161654 A JP 2011161654A JP 2013027226 A JP2013027226 A JP 2013027226A
Authority
JP
Japan
Prior art keywords
conductor
vct
contact
ground
movable contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011161654A
Other languages
Japanese (ja)
Inventor
Koichi Kurokawa
弘一 黒川
Akihisa Mizuno
陽久 水野
Takao Urabe
孝夫 浦邉
Masahiko Fujita
雅彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011161654A priority Critical patent/JP2013027226A/en
Publication of JP2013027226A publication Critical patent/JP2013027226A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

【課題】部品点数を削減し、絶縁ガスを封入した絶縁空間の容積を縮小したGISを提供する。
【解決手段】本発明のGISは、接地容器、電源側導体7、負荷側導体8、二極EDS、VCT側出力導体1B、及びVCT側入力導体1Aで概略構成される。二極EDSは電源側導体7からVCT側入力導体1Aへ向かう電流経路とVCT側出力導体1Bから負荷側導体8へ向かう電流経路を有する。より具体的には、絶縁材17を有する二極可動接触子4、二極可動接触子4の外周側に通電するためのチューリップコンタクト22を有する二極可動側コンタクト2、二極可動接触子4の内周側及び外周側に通電するためのチューリップコンタクト18、23を有する二極固定側コンタクト5、及び二極接地開閉器6を有する。二極接地開閉器6は短絡用コンタクトバンド26、接地用コンタクトバンド28、接地導体27を有する。
【選択図】図2
An object of the present invention is to provide a GIS in which the number of parts is reduced and the volume of an insulating space filled with an insulating gas is reduced.
A GIS according to the present invention is roughly composed of a ground container, a power supply side conductor 7, a load side conductor 8, a bipolar EDS, a VCT side output conductor 1B, and a VCT side input conductor 1A. The bipolar EDS has a current path from the power supply side conductor 7 to the VCT side input conductor 1A and a current path from the VCT side output conductor 1B to the load side conductor 8. More specifically, the two-pole movable contact 4 having the insulating material 17, the two-pole movable contact 2 having the tulip contact 22 for energizing the outer peripheral side of the two-pole movable contact 4, and the two-pole movable contact 4 The two-pole fixed side contact 5 having the tulip contacts 18 and 23 for energizing the inner peripheral side and the outer peripheral side, and the two-pole grounding switch 6 are provided. The bipolar ground switch 6 includes a short-circuit contact band 26, a ground contact band 28, and a ground conductor 27.
[Selection] Figure 2

Description

本発明は、ガス絶縁開閉装置(以下、GISという)に係り、特に絶縁ガスを封入した絶縁空間の容積を縮小できるGISに関するものである。   The present invention relates to a gas insulated switchgear (hereinafter referred to as GIS), and more particularly to a GIS capable of reducing the volume of an insulating space filled with an insulating gas.

GISは、主回路を流れる事故電流を遮断する遮断器や、この事故電流遮断後に事故区間を他の健全な区間から切離すために主回路を開路する断路器や、この断路器の開路後に点検区間の主回路導体を接地する接地開閉器などを有して構成されている。   GIS is a circuit breaker that cuts off the fault current that flows through the main circuit, a disconnect switch that opens the main circuit to isolate the fault section from other healthy sections after the fault current is cut off, and an inspection after the disconnect switch is opened. It has a ground switch or the like for grounding the main circuit conductor in the section.

近年、GISの小型化や設置面積の縮小化のために機器の複合化が行われている。例えば、断路器と接地開閉器を一体化し、共通操作器によって駆動する可動接触子を用いて断路器および接地開閉器をそれぞれ開閉操作するようにした接地断路器(以下、EDSという)が用いられている。このような従来のEDSの構造が特許文献1に開示されている。   In recent years, devices have been combined to reduce the size of GIS and to reduce the installation area. For example, there is used a grounding disconnector (hereinafter referred to as EDS) in which the disconnecting switch and the grounding switch are integrated and the disconnecting switch and the grounding switch are opened and closed using a movable contact driven by a common operating unit. ing. Such a conventional EDS structure is disclosed in Patent Document 1.

特許文献1には、フレームに碍子を介して取付けた円環状の保持金具と、この保持金具の内径に軸方向に摺動自在に嵌め込んだ円柱棒状の可動接触子と、この可動接触子が一端側に移動した際に可動接触子と接触する母線側固定接触子と、可動接触子が他端側に移動した際に可動接触子と接触する接地側固定接触子と、可動接触子の中央付近に摺動自在に嵌め込まれた負荷側固定接触子とを備え、可動接触子を軸方向に駆動することによって、断路器入り、断路器切り、接地開閉器入りの3位置を実現する直線形のEDSが開示されている。   In Patent Document 1, an annular holding metal fitting attached to a frame via a lever, a cylindrical bar-like movable contact fitted into the inner diameter of the holding metal so as to be slidable in the axial direction, and the movable contact include A bus-side fixed contact that contacts the movable contact when moved to one end, a ground-side fixed contact that contacts the movable contact when the movable contact moves to the other end, and the center of the movable contact A load-type fixed contact that is slidably fitted in the vicinity, and by driving the movable contact in the axial direction, a linear type that realizes three positions including disconnector, disconnector, and grounding switch EDS is disclosed.

この従来のEDSを適用したGISを図5に示す。図5はGISにおける一般的なVCT接続回線であり、電源側からEDS102Aに入力する線路(以下、電源側線路という)、EDS102AからVCT側へ入力する線路101A、VCT側からEDS102Bへ出力する線路101B、及びEDS102Bから負荷側に出力する線路(以下、負荷側線路という)より概略構成されている。   FIG. 5 shows a GIS to which this conventional EDS is applied. FIG. 5 shows a general VCT connection line in GIS, a line that is input from the power source side to the EDS 102A (hereinafter referred to as a power source side line), a line 101A that is input from the EDS 102A to the VCT side, and a line 101B that is output from the VCT side to the EDS 102B. , And a line (hereinafter referred to as a load side line) output from the EDS 102B to the load side.

EDS102Aは操作器103Aにより可動子104Aが操作され、可動子104Aが固定側コンタクト105Aと接地開閉器106Aの間を直線運動することで、断路器入り、断路器切り、及び接地開閉器入りの三位置を形成する。同様に、EDS102Bは操作器103Bにより可動子104Bが操作され、可動子104Bが固定側コンタクト105Bと接地開閉器106Bの間を直線運動することで、断路器入り、断路器切り、及び接地開閉器入りの三位置を形成する。   In the EDS 102A, the mover 104A is operated by the operation unit 103A, and the mover 104A linearly moves between the fixed contact 105A and the grounding switch 106A. Form a position. Similarly, in the EDS 102B, the movable element 104B is operated by the operation unit 103B, and the movable element 104B linearly moves between the fixed side contact 105B and the grounding switch 106B, so that the disconnector enters, disconnects, and grounds switch. Forms three positions.

特開平6−84431号公報JP-A-6-84431

しかしながら、上述したような従来のEDSを適用したGISは、電源側線路及び負荷側線路それぞれに、EDS及び操作器の設置が必要であり、電源側線路をEDS102Aに向けて引き回す必要が生じるため、装置全体の大型化と構成部品点数の増加が問題となっていた。   However, the GIS to which the conventional EDS as described above is applied needs to install an EDS and an operation device in each of the power supply side line and the load side line, and the power supply side line needs to be routed toward the EDS102A. The increase in the size of the entire device and the increase in the number of components have been problems.

上記課題を解決するために本発明のGISは、絶縁ガスを充填した接地容器と、前記接地容器に取付けられた電源側導体及び負荷側導体と、前記電源側導体及び負荷側導体に接続された接地断路器と、前記接地断路器に絶縁レバーを介して接続された操作器と、前記接地断路器に接続されたVCT側導体で構成される。   In order to solve the above problems, the GIS of the present invention is connected to a ground container filled with an insulating gas, a power supply side conductor and a load side conductor attached to the ground container, and the power supply side conductor and the load side conductor. It comprises a ground disconnector, an operating device connected to the ground disconnector via an insulating lever, and a VCT side conductor connected to the ground disconnector.

前記VCT側導体はVCT側出力導体とVCT側入力導体の2つの電流経路を有し、前記接地断路器は前記電源側導体から前記VCT側入力導体へ向かう電流経路と前記VCT側出力導体から前記負荷側導体へ向かう電流経路を有し、前記接地断路器の可動接触子は中間に絶縁物を介挿した二重同心上の導体で内周側と外周側の2つの電流経路を有し、前記接地断路器の固定側コンタクト導体は絶縁材によって電気的に絶縁された2つの電流経路を内周側と外周側に有し、前記2つの電流経路はそれぞれ前記電源側導体と前記負荷側導体に電気的に接続され、かつ前記可動接触子の内周側と外周側にそれぞれ通電するための2つのチューリップコンタクトを有する。   The VCT side conductor has two current paths of a VCT side output conductor and a VCT side input conductor, and the ground disconnector is connected to the current path from the power supply side conductor to the VCT side input conductor and from the VCT side output conductor. A current path toward the load-side conductor, the movable contactor of the ground disconnector having two current paths on the inner and outer peripheral sides with a double concentric conductor with an insulator interposed therebetween, The fixed-side contact conductor of the ground disconnector has two current paths electrically insulated by an insulating material on the inner peripheral side and the outer peripheral side, and the two current paths are the power supply side conductor and the load side conductor, respectively. And two tulip contacts for energizing each of the inner and outer peripheral sides of the movable contact.

前記接地断路器の可動側コンタクト導体は絶縁材によって電気的に絶縁された断路側電流経路及び接地側電流経路を有し、前記断路側電流経路は前記可動接触子の外周側に通電するためのチューリップコンタクトを有し、前記VCT側出力導体に電気的に接続され、前記接地側電流経路は前記可動接触子の内周側に通電するためのチューリップコンタクトを有し、前記VCT側入力導体に電気的に接続され、前記接地断路器の接地開閉器は絶縁材によって電気的に絶縁され、それぞれコンタクトバンドを有する2つの電流経路を、前記VCT側入出力導体側と前記接地容器側に有する。   The movable-side contact conductor of the ground disconnector has a disconnect-side current path and a ground-side current path that are electrically insulated by an insulating material, and the disconnect-side current path is for energizing the outer peripheral side of the movable contact. A tulip contact, electrically connected to the VCT side output conductor, the ground side current path having a tulip contact for energizing the inner peripheral side of the movable contact, and electrically connecting the VCT side input conductor The earthing switch of the earthing disconnector is electrically insulated by an insulating material, and has two current paths each having a contact band on the VCT side input / output conductor side and the earthing container side.

更に、本発明は、接地状態において前記可動接触子によって前記可動側コンタクト導体の前記VCT側入力導体が前記VCT側出力導体と前記VCT側入出力導体側のコンタクトバンドを介して橋絡され、前記VCT側入力導体と前記VCT側出力導体をループ回路化し、かつ接地容器に電気的に接続され前記VCT側入出力導体が接地される。   Further, in the present invention, the VCT side input conductor of the movable side contact conductor is bridged via the contact band on the VCT side output conductor and the VCT side input / output conductor side by the movable contactor in a grounded state, The VCT side input conductor and the VCT side output conductor are formed into a loop circuit, and are electrically connected to a ground container, and the VCT side input / output conductor is grounded.

本発明は、上記の構成とすることで、従来2台のEDSと2台の操作器、及び電源側線路を一方のEDSに向けて引き回す必要があったところを、1台のEDSと1台の操作器で構成しつつ、EDSに向けて引き回す電源側線路を省略することが可能となる。これにより、GISにおけるガス区画の縮小化、操作スペースの縮小化、構成部品点数削減の効果が得られる。またガス区画が縮小化されることにより絶縁ガス使用量の削減が可能であり、環境性能の向上につながる。   According to the present invention, with the above-described configuration, two EDSs, two controllers, and the power supply side line have to be routed toward one EDS. It is possible to omit the power supply side line that is routed toward the EDS. Thereby, the effect of reducing the gas section in GIS, reducing the operation space, and reducing the number of components can be obtained. In addition, by reducing the size of the gas compartment, it is possible to reduce the amount of insulating gas used, leading to an improvement in environmental performance.

本発明によるGISの回線構成例を示す側面図The side view which shows the example of a line structure of GIS by this invention 本発明のGISを構成するEDSの閉路状態を示す詳細図Detailed view showing the closed state of the EDS constituting the GIS of the present invention 本発明のGISを構成するEDSの断路状態を示す詳細図Detailed view showing disconnection state of EDS constituting GIS of the present invention 本発明のGISを構成するEDSの接地状態を示す詳細図Detailed view showing the grounding state of the EDS constituting the GIS of the present invention 従来のGISの回線構成例を示す側面図Side view showing a conventional GIS line configuration example

以下、本発明にかかるGISの1実施例を図面を用いて説明する。   Hereinafter, an embodiment of a GIS according to the present invention will be described with reference to the drawings.

図1に本発明のGISの回路構成を示す。ここで絶縁材によって二極構造化したEDSを二極EDS、二極構造化した可動接触子を二極可動接触子4、二極構造化した接地開閉器を二極接地開閉器6、二極構造化した固定側コンタクトを二極固定側コンタクト5、二極構造化した可動側コンタクトを二極可動側コンタクト2という。二極EDSは、二極固定側コンタクト5、二極可動側コンタクト2、二極可動接触子4及び二極接地開閉器6で概略構成される。   FIG. 1 shows a circuit configuration of the GIS of the present invention. Here, the EDS having a bipolar structure by an insulating material is a bipolar EDS, the movable contact having the bipolar structure is the bipolar movable contact 4, the ground switch having the bipolar structure is the bipolar ground switch 6, and the bipolar The structured fixed side contact is referred to as a two-pole fixed side contact 5, and the two-pole structured movable side contact is referred to as a two-pole movable side contact 2. The two-pole EDS is roughly constituted by a two-pole fixed side contact 5, a two-pole movable side contact 2, a two-pole movable contact 4 and a two-pole grounding switch 6.

二極EDSからVCTへ接続する二極の導体は、VCT側入力導体1AとVCT側出力導体1Bを絶縁板1Cによって一体化した往復導体1で構成される。VCT側入力導体1Aは二極EDSの電源側の線路に接続される。同様にVCT側出力導体1Bは二極EDSの負荷側の線路に接続される。   A bipolar conductor connected from the bipolar EDS to the VCT is composed of a reciprocating conductor 1 in which a VCT side input conductor 1A and a VCT side output conductor 1B are integrated by an insulating plate 1C. The VCT side input conductor 1A is connected to a power supply side line of the bipolar EDS. Similarly, the VCT side output conductor 1B is connected to the load side line of the bipolar EDS.

二極EDSの二極可動接触子4は操作器3により操作され、二極固定側コンタクト5、二極可動側コンタクト2、及び二極接地開閉器6との間で断路器入り、断路器切り、接地開閉器入りの3つの状態を二極同時に形成する。二極固定側コンタクト5と接続する負荷側導体8及び電源側導体7はそれぞれスペーサー9、10に一体に設けられた貫通導体に接続される。   The two-pole movable contact 4 of the two-pole EDS is operated by the operation device 3 and is connected to the two-pole fixed-side contact 5, the two-pole movable-side contact 2, and the two-pole grounding switch 6 and disconnected. The three states with the grounding switch are formed at the same time. The load side conductor 8 and the power source side conductor 7 connected to the bipolar fixed side contact 5 are connected to the through conductors provided integrally with the spacers 9 and 10, respectively.

次に、図2に基づいて二極EDSの詳細を説明する。VCT側入力導体1Aは平導体11によって二極EDSのコンタクト導体13に電気的に接続される。このコンタクト導体13にはチューリップコンタクト14が内蔵されている。チューリップコンタクト14は、二極可動接触子4の可動接触子内周導体15から、二極固定側コンタクト5に内蔵されているチューリップコンタクト18によって電源側導体7に電気的に接続される。   Next, details of the bipolar EDS will be described with reference to FIG. The VCT side input conductor 1A is electrically connected to the contact conductor 13 of the bipolar EDS by the flat conductor 11. The contact conductor 13 has a built-in tulip contact 14. The tulip contact 14 is electrically connected to the power supply side conductor 7 from the movable contact inner peripheral conductor 15 of the two-pole movable contact 4 by a tulip contact 18 built in the two-pole fixed side contact 5.

二極可動接触子4は、絶縁材17によって、可動接触子内周導体15と可動接触子外周導体16が絶縁された構造を有する。また、二極可動接触子4は絶縁レバー25を介して操作器3の駆動力で操作される。   The two-pole movable contact 4 has a structure in which the movable contact inner peripheral conductor 15 and the movable contact outer peripheral conductor 16 are insulated by an insulating material 17. Further, the two-pole movable contact 4 is operated by the driving force of the operating device 3 through the insulating lever 25.

一方、VCT側出力導体1Bは平導体12によってコンタクト導体21に接続される。コンタクト導体21にはチューリップコンタクト22が取付けられており、可動接触子外周導体16によって二極固定側コンタクト5に内蔵されているチューリップコンタクト23を介し負荷側導体8に接続される。   On the other hand, the VCT side output conductor 1 </ b> B is connected to the contact conductor 21 by the flat conductor 12. A tulip contact 22 is attached to the contact conductor 21, and is connected to the load-side conductor 8 by a movable contact outer peripheral conductor 16 via a tulip contact 23 built in the two-pole fixed-side contact 5.

電源側導体7と負荷側導体8は絶縁材19によって絶縁される。また、コンタクト導体13とコンタクト導体21は絶縁材30により絶縁される。このような構成により、VCT側入力導体1Aから平導体11、コンタクト導体13、チューリップコンタクト14、可動接触子内周導体15を経てチューリップコンタクト18を介して電源側導体7に至る回路と、VCT側出力導体1Bから平導体12、コンタクト導体21、チューリップコンタクト22、可動接触子外周導体16を経てチューリップコンタクト23を介して負荷側導体8に至る回路が電気的に独立して形成される。   The power supply side conductor 7 and the load side conductor 8 are insulated by an insulating material 19. Further, the contact conductor 13 and the contact conductor 21 are insulated by an insulating material 30. With such a configuration, a circuit extending from the VCT side input conductor 1A to the power source side conductor 7 via the flat conductor 11, the contact conductor 13, the tulip contact 14, the movable contact inner peripheral conductor 15 and the tulip contact 18, and the VCT side A circuit from the output conductor 1B to the load side conductor 8 through the tulip contact 23 through the flat conductor 12, the contact conductor 21, the tulip contact 22, and the movable contact outer peripheral conductor 16 is formed electrically independently.

次に接地回路の具体的構成について説明する。二極接地開閉器6は、絶縁材29と、その中に取付けた短絡用コンタクトバンド26、導体20、接地用コンタクトバンド28、接地導体27及び接地線33とで構成される。導体20は絶縁材31、32によりコンタクト導体13と絶縁される。   Next, a specific configuration of the ground circuit will be described. The bipolar ground switch 6 includes an insulating material 29, and a short-circuit contact band 26, a conductor 20, a ground contact band 28, a ground conductor 27, and a ground wire 33 attached therein. The conductor 20 is insulated from the contact conductor 13 by insulating materials 31 and 32.

図4に示す接地状態においては、VCT側入力導体1AとVCT側出力導体1Bは、VCT側入力導体1A、平導体11、コンタクト導体13、チューリップコンタクト14、可動接触子4の可動接触子内周導体15、短絡用コンタクトバンド26、導体20、24、コンタクト導体21、平導体12、VCT側出力導体1Bで形成される通電ルートにより短絡される。   In the ground state shown in FIG. 4, the VCT side input conductor 1A and the VCT side output conductor 1B are the VCT side input conductor 1A, the flat conductor 11, the contact conductor 13, the tulip contact 14, and the inner periphery of the movable contact of the movable contact 4. Short-circuited by an energization route formed by the conductor 15, the short-circuit contact band 26, the conductors 20 and 24, the contact conductor 21, the flat conductor 12, and the VCT-side output conductor 1B.

そして短絡した状態で可動接触子内周導体15が接地導体27に内蔵されている接地用コンタクトバンド28に電気的に接続することにより、VCT側入力導体1AとVCT側出力導体1Bを同時に接地する。これによりVCTの残留電荷が接地される。   Then, the inner peripheral conductor 15 of the movable contact is electrically connected to the ground contact band 28 built in the ground conductor 27 in a short-circuited state, thereby grounding the VCT side input conductor 1A and the VCT side output conductor 1B simultaneously. . As a result, the residual charge of VCT is grounded.

以下、図2〜図4に基づき本発明の二極EDSの動作及び電流経路を説明する。図2に示す断路器入りの状態においては、二極可動接触子4がチューリップコンタクト14と18、チューリップコンタクト22と23をそれぞれ橋絡する位置にある。   Hereinafter, the operation and current path of the bipolar EDS of the present invention will be described with reference to FIGS. In the state with the disconnector shown in FIG. 2, the two-pole movable contact 4 is in a position to bridge the tulip contacts 14 and 18 and the tulip contacts 22 and 23, respectively.

図2における電流経路は以下のとおりである。電源側の電流経路、すなわち、電源側導体7からVCTに至る電流経路は、電源側導体7、チューリップコンタクト18、可動接触子内周導体15、チューリップコンタクト14、コンタクト導体13、平導体11、VCT側入力導体1Aに至る回路により形成される。   The current path in FIG. 2 is as follows. The current path on the power source side, that is, the current path from the power source side conductor 7 to the VCT is the power source side conductor 7, the tulip contact 18, the movable contact inner peripheral conductor 15, the tulip contact 14, the contact conductor 13, the flat conductor 11, and the VCT. It is formed by a circuit reaching the side input conductor 1A.

一方、負荷側の電流経路、すなわち、VCTから負荷側導体8に至る電流経路は、VCT側出力導体1B、平導体12、コンタクト導体21、チューリップコンタクト22、可動接触子外周導体16、チューリップコンタクト23、負荷側導体8に至る回路により形成される。   On the other hand, the load-side current path, that is, the current path from the VCT to the load-side conductor 8 includes the VCT-side output conductor 1B, the flat conductor 12, the contact conductor 21, the tulip contact 22, the movable contact outer peripheral conductor 16, and the tulip contact 23. , Formed by a circuit reaching the load side conductor 8.

従って、電源側から供給された電流は、可動接触子内周導体15を通り、VCT側に流れ、VCT側から戻ってきた電流は可動接触子外周導体16を経て負荷側に供給される。   Therefore, the current supplied from the power source side passes through the movable contact inner peripheral conductor 15 and flows to the VCT side, and the current returned from the VCT side is supplied to the load side through the movable contact outer peripheral conductor 16.

図3は、二極EDSが断路器切りの状態を示している。図3は、図2の状態から絶縁レバー25が操作器3により時計周りに30度程度駆動された状態である。この状態では、二極可動接触子4がチューリップコンタクト18及びチューリップコンタクト23並びに短絡用コンタクトバンド26及び接地用コンタクトバンド28に接触しない位置にある。   FIG. 3 shows a state where the two-pole EDS is disconnected. FIG. 3 shows a state in which the insulating lever 25 is driven about 30 degrees clockwise by the operating device 3 from the state of FIG. In this state, the two-pole movable contact 4 is in a position where it does not contact the tulip contact 18 and the tulip contact 23, the short-circuit contact band 26, and the ground contact band 28.

すなわち、図3では、VCT側入力導体1A及びVCT側出力導体1Bが電源側導体7及び負荷側導体8から切離された状態となっているが、VCT側入力導体1AとVCT側出力導体1Bは接地されていない状態にある。   That is, in FIG. 3, the VCT side input conductor 1A and the VCT side output conductor 1B are separated from the power source side conductor 7 and the load side conductor 8, but the VCT side input conductor 1A and the VCT side output conductor 1B are separated. Is not grounded.

図4は、二極EDSが二極接地開閉器入りの状態を示している。図4は、図3の状態から絶縁レバー25が操作器3により時計周りに更に30度程度駆動された状態である。この状態では、二極可動接触子4の可動接触子内周導体15がチューリップコンタクト14と短絡用コンタクトバンド26及び接地用コンタクトバンド28に電気的に接続している。   FIG. 4 shows a state in which the two-pole EDS is included in the two-pole ground switch. FIG. 4 shows a state in which the insulating lever 25 is further driven about 30 degrees clockwise by the operating device 3 from the state of FIG. In this state, the movable contact inner peripheral conductor 15 of the two-pole movable contact 4 is electrically connected to the tulip contact 14, the short-circuit contact band 26, and the ground contact band 28.

図4における電流経路は以下のとおりである。VCT側入力導体1Aからの電流経路は、VCT側入力導体1A、平導体11、コンタクト導体13、チューリップコンタクト14、可動接触子内周導体15を経て接地用コンタクトバンド28を介して接地導体27に至る。VCT側出力導体1Bからの電流経路は、VCT側出力導体1B、平導体12、コンタクト導体21、導体24、導体20を経て短絡用コンタクトバンド26から可動接触子内周導体15を介し、接地用コンタクトバンド28から接地導体27に至る。   The current path in FIG. 4 is as follows. The current path from the VCT side input conductor 1A passes through the VCT side input conductor 1A, the flat conductor 11, the contact conductor 13, the tulip contact 14, and the movable contact inner peripheral conductor 15 to the ground conductor 27 via the ground contact band 28. It reaches. The current path from the VCT side output conductor 1B is connected to the ground via the VCT side output conductor 1B, the flat conductor 12, the contact conductor 21, the conductor 24, the conductor 20 and the shorting contact band 26 through the movable contact inner peripheral conductor 15. From the contact band 28 to the ground conductor 27.

以上のとおり、本発明に係る二極EDSにより、従来2台のEDSと2台の操作器、及び電源側線路を一方のEDSに向けて引き回す必要があったところを、1台のEDSと1台の操作器で構成しつつ、EDSに向けて引き回す電源側線路を省略することが可能となる。   As described above, with the two-pole EDS according to the present invention, it has been necessary to route two EDSs, two controllers, and the power supply side line toward one EDS. It is possible to omit the power supply side line that is routed toward the EDS while being configured by a single controller.

これにより、図1と図5を対比すると明らかなように、導体の配線スペースが削減され、GISのコンパクト化及び部品点数の削減効果が得られる。またGISのガス区画が縮小化されることにより絶縁ガス使用量が削減可能であり、環境性能の向上につながる。   Thereby, as is clear from the comparison between FIG. 1 and FIG. 5, the wiring space of the conductor is reduced, and the effect of reducing the GIS size and the number of parts can be obtained. In addition, the use of insulating gas can be reduced by reducing the gas section of the GIS, leading to improvement of environmental performance.

1 往復導体
1A VCT側入力導体
1B VCT側出力導体
1C 絶縁板
2 二極可動側コンタクト
3 操作器
4 二極可動接触子
5 二極固定側コンタクト
6 二極接地開閉器
7 電源側導体
8 負荷側導体
9、10 スペーサー
11、12 平導体
13、21 コンタクト導体
14、18、22、23 チューリップコンタクト
15 可動接触子内周導体
16 可動接触子外周導体
17、19、29、30、31、32 絶縁材
20、24 導体
25 絶縁レバー
26 短絡用コンタクトバンド
27 接地導体
28 接地用コンタクトバンド
DESCRIPTION OF SYMBOLS 1 Reciprocating conductor 1A VCT side input conductor 1B VCT side output conductor 1C Insulation board 2 Bipolar movable contact 3 Actuator 4 Bipolar movable contact 5 Bipolar fixed contact 6 Bipolar grounding switch 7 Power supply side conductor 8 Load side Conductor 9, 10 Spacer 11, 12 Flat conductor 13, 21 Contact conductor 14, 18, 22, 23 Tulip contact 15 Movable contact inner conductor 16 Movable contact outer conductor 17, 19, 29, 30, 31, 32 Insulation 20, 24 Conductor 25 Insulation lever 26 Short-circuit contact band 27 Ground conductor 28 Ground contact band

Claims (1)

絶縁ガスを充填した接地容器と、前記接地容器に取付けられた電源側導体及び負荷側導体と、前記電源側導体及び負荷側導体に接続された接地断路器と、前記接地断路器に絶縁レバーを介して接続された操作器と、前記接地断路器に接続されたVCT側導体から構成されるガス絶縁開閉装置において、
前記VCT側導体はVCT側出力導体とVCT側入力導体の2つの電流経路を有し、
前記接地断路器は前記電源側導体から前記VCT側入力導体へ向かう電流経路と前記VCT側出力導体から前記負荷側導体へ向かう電流経路を有し、
前記接地断路器の可動接触子は中間に絶縁物を介挿した二重同心上の導体で内周側と外周側の2つの電流経路を有し、
前記接地断路器の固定側コンタクト導体は絶縁材によって電気的に絶縁された2つの電流経路を内周側と外周側に有し、前記2つの電流経路はそれぞれ前記電源側導体と前記負荷側導体に電気的に接続され、かつ前記可動接触子の内周側と外周側にそれぞれ通電するための2つのチューリップコンタクトを有し、
前記接地断路器の可動側コンタクト導体は絶縁材によって電気的に絶縁された断路側電流経路及び接地側電流経路を有し、
前記断路側電流経路は前記可動接触子の外周側に通電するためのチューリップコンタクトを有し、前記VCT側出力導体に電気的に接続され、
前記接地側電流経路は前記可動接触子の内周側に通電するためのチューリップコンタクトを有し、前記VCT側入力導体に電気的に接続され、
前記接地断路器の接地開閉器は絶縁材によって電気的に絶縁され、それぞれコンタクトバンドを有する2つの電流経路を、前記VCT側入出力導体側と前記接地容器側に有し、
接地状態において前記可動接触子によって前記可動側コンタクト導体の前記VCT側入力導体が前記VCT側出力導体と前記VCT側入出力導体側のコンタクトバンドを介して橋絡され、前記VCT側入力導体と前記VCT側出力導体をループ回路化し、かつ接地容器に電気的に接続され前記VCT側入出力導体が接地されることを特徴とするガス絶縁開閉装置。
A grounding container filled with an insulating gas, a power supply side conductor and a load side conductor attached to the grounding container, a grounding disconnector connected to the power supply side conductor and the loadside conductor, and an insulating lever on the grounding disconnector A gas-insulated switchgear composed of an operating device connected via a VCT side conductor connected to the ground disconnector;
The VCT side conductor has two current paths of a VCT side output conductor and a VCT side input conductor,
The ground disconnector has a current path from the power supply side conductor to the VCT side input conductor and a current path from the VCT side output conductor to the load side conductor;
The movable contactor of the ground disconnector has two current paths on the inner peripheral side and the outer peripheral side with a double concentric conductor with an insulator interposed therebetween,
The fixed-side contact conductor of the ground disconnector has two current paths electrically insulated by an insulating material on the inner peripheral side and the outer peripheral side, and the two current paths are the power supply side conductor and the load side conductor, respectively. Two tulip contacts that are electrically connected to each other and energize the inner and outer peripheral sides of the movable contact,
The movable contact conductor of the ground disconnector has a disconnect current path and a ground current path that are electrically insulated by an insulating material,
The disconnect side current path has a tulip contact for energizing the outer peripheral side of the movable contact, and is electrically connected to the VCT side output conductor,
The ground side current path has a tulip contact for energizing the inner peripheral side of the movable contact, and is electrically connected to the VCT side input conductor,
The earthing switch of the earthing disconnector is electrically insulated by an insulating material, and has two current paths each having a contact band on the VCT side input / output conductor side and the grounding container side,
In the grounded state, the VCT-side input conductor of the movable-side contact conductor is bridged by the movable contact via the contact band on the VCT-side output conductor and the VCT-side input / output conductor side, and the VCT-side input conductor and the A gas insulated switchgear characterized in that a VCT-side output conductor is formed into a loop circuit, and is electrically connected to a ground container, and the VCT-side input / output conductor is grounded.
JP2011161654A 2011-07-25 2011-07-25 Gas insulation switching device Withdrawn JP2013027226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161654A JP2013027226A (en) 2011-07-25 2011-07-25 Gas insulation switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161654A JP2013027226A (en) 2011-07-25 2011-07-25 Gas insulation switching device

Publications (1)

Publication Number Publication Date
JP2013027226A true JP2013027226A (en) 2013-02-04

Family

ID=47784987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161654A Withdrawn JP2013027226A (en) 2011-07-25 2011-07-25 Gas insulation switching device

Country Status (1)

Country Link
JP (1) JP2013027226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179652A (en) * 2015-08-14 2015-12-23 河南平芝高压开关有限公司 Transmission shaft and gear box, disconnecting switch and gas insulated switchgear (GIS) equipment using transmission shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179652A (en) * 2015-08-14 2015-12-23 河南平芝高压开关有限公司 Transmission shaft and gear box, disconnecting switch and gas insulated switchgear (GIS) equipment using transmission shaft

Similar Documents

Publication Publication Date Title
EP2546850B1 (en) Switchgear and method for operating switchgear
KR101277366B1 (en) Switching device unit and switch gear
JP5452555B2 (en) Switchgear and switchgear operating method
US20090141430A1 (en) Gas-Insulated Switchpanel of a Medium-Voltage Switchgear Assembly
JP2009153350A (en) Vacuum insulated switchgear
TWI505589B (en) Switchgear and switchgear assembly method
KR20130027077A (en) High-voltage switching device
CN104979129B (en) The medium-voltage switchgear switched including every phase two
JP2013501491A (en) Gas-insulated high-voltage switching system
CN1910800B (en) Compressed gas insulated switchgear
JP2013027226A (en) Gas insulation switching device
JP2009164001A (en) Switchgear
JP2012039872A (en) Switchgear
JP5815449B2 (en) Vacuum circuit breaker
CN102017038B (en) Medium Voltage Switchgear
WO2014190458A1 (en) Combined type high-voltage composite apparatus and unipolar structure thereof
KR101606073B1 (en) Gas Insulated Swichgear
JPH1189027A (en) Switchgear
KR101960058B1 (en) Remote operating structure for separating auxiliary contact from driving unit in gas insulated switchgear
CN102484014A (en) Isolating switch for switchgear
JP5413268B2 (en) Gas insulated switchgear
KR101843455B1 (en) Structure for separating auxiliary contact from driving unit in gas insulated switchgear
CN202513071U (en) Four-position switch of composite apparatus
KR101831850B1 (en) 25.8KV bypass built-in variable load break switch
JPH1141727A (en) Switchgear

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007