[go: up one dir, main page]

JP2013178926A - Positive electrode mixture for nonaqueous secondary battery - Google Patents

Positive electrode mixture for nonaqueous secondary battery Download PDF

Info

Publication number
JP2013178926A
JP2013178926A JP2012041749A JP2012041749A JP2013178926A JP 2013178926 A JP2013178926 A JP 2013178926A JP 2012041749 A JP2012041749 A JP 2012041749A JP 2012041749 A JP2012041749 A JP 2012041749A JP 2013178926 A JP2013178926 A JP 2013178926A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
aqueous
mass
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012041749A
Other languages
Japanese (ja)
Inventor
Takehiro Kose
丈裕 巨勢
Masao Iwatani
真男 岩谷
Mitsuru Seki
満 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012041749A priority Critical patent/JP2013178926A/en
Publication of JP2013178926A publication Critical patent/JP2013178926A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】塩基性の高い正極活物質を含む場合にも集電体の腐食を抑制できるとともに、経時的に増粘しにくく良好な保存安定性を有する非水系二次電池用正極合剤を提供する。
【解決手段】正極活物質(a)、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する含フッ素共重合体(f)、水溶性増粘剤(c)、および水性媒体を含み、pHが6以上10未満であることを特徴とする、非水系二次電池用正極合剤。
【選択図】なし
Provided is a positive electrode mixture for a non-aqueous secondary battery that can suppress corrosion of a current collector even when it contains a highly basic positive electrode active material, and that does not thicken over time and has good storage stability. To do.
A positive electrode active material (a), a fluorine-containing copolymer (f) having a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene, a water-soluble thickener (c), and an aqueous medium, A positive electrode mixture for non-aqueous secondary batteries, wherein the pH is 6 or more and less than 10.
[Selection figure] None

Description

本発明は非水系二次電池用正極合剤とその製造方法、該正極合剤を用いて非水系二次電池用正極を製造する方法、および該正極合剤を用いて製造された非水系二次電池用正極を備えた非水系二次電池に関する。   The present invention relates to a positive electrode mixture for a non-aqueous secondary battery and a method for producing the same, a method for producing a positive electrode for a non-aqueous secondary battery using the positive electrode mixture, and a non-aqueous two produced using the positive electrode mixture. The present invention relates to a non-aqueous secondary battery including a positive electrode for a secondary battery.

近年、電子機器の進展はめざましく、携帯用電子機器の小型化、軽量化が急速に進行している。そのため、これらの電源となる電池も小型化、軽量化ができるように高エネルギー密度が要求されている。なかでも非水系二次電池としてリチウムイオン二次電池が注目されている。   In recent years, electronic devices have made remarkable progress, and portable electronic devices have been rapidly reduced in size and weight. Therefore, high energy density is required so that these batteries as power sources can be reduced in size and weight. In particular, lithium ion secondary batteries are attracting attention as non-aqueous secondary batteries.

リチウムイオン二次電池は、正極と負極、非水電解液とセパレーターなどの部材から構成される。このうち正極は、例えば正極活物質と導電材をバインダーとともに有機溶媒、または水に分散させて正極合剤を調整し、集電体表面に塗布し、溶媒または分散媒を揮発させることにより、集電体表面に正極活物質を固定することで得られる。バインダーが充分量の電池活物質を電極に固定できないと初期容量の大きな電池が得られず、また充放電を繰り返すことなどにより、集電体から電池活物質が脱落するなどして、充放電容量は低下する。   A lithium ion secondary battery is comprised from members, such as a positive electrode and a negative electrode, a non-aqueous electrolyte, and a separator. Among these, for example, a positive electrode active material and a conductive material are dispersed in an organic solvent or water together with a binder to prepare a positive electrode mixture, which is applied to the surface of a current collector, and volatilizes the solvent or the dispersion medium. It is obtained by fixing the positive electrode active material on the surface of the electric body. If the binder cannot fix a sufficient amount of battery active material to the electrode, a battery with a large initial capacity cannot be obtained, and the battery active material may fall off from the current collector due to repeated charge and discharge, etc. Will decline.

正極合剤としては、有機溶媒系バインダー、または水系バインダーを用いることにより、有機溶剤系の正極合剤または水系の正極合剤が得られるが、昨今、有機溶媒の使用による電極製造コストの低減や、環境負荷、作業環境を改善できることから、水系のバインダーを用いる正極合剤が最近特に注目されている。   As a positive electrode mixture, an organic solvent-based positive electrode mixture or an aqueous positive electrode mixture can be obtained by using an organic solvent-based binder or an aqueous binder. The positive electrode mixture using an aqueous binder has recently attracted particular attention because it can improve the environmental load and the working environment.

水系バインダーとしては乳化重合法によって製造されるポリテトラフルオロエチレンやスチレン−ブタジエン共重合ゴムのラテックスが知られている(例えば特許文献1)。
しかし、ポリテトラフルオロエチレンは集電体への密着性が乏しく、巻き取り工程などの外力が加わった際に電極表面が集電体である金属箔から剥離したり、電池として使用した際に、長期充放電サイクルでの安定性が低下する問題がある。
また、スチレン−ブタジエン共重合ゴムはゴム系ポリマーのため、ポリフッ化ビニリデンやポリテトラフルオロエチレンに比べ、柔軟性、密着性に優れているが、ポリマーの耐酸化性が乏しく、特に充電電圧を高めた場合の充放電耐性が充分でない。
As an aqueous binder, latex of polytetrafluoroethylene or styrene-butadiene copolymer rubber produced by an emulsion polymerization method is known (for example, Patent Document 1).
However, polytetrafluoroethylene has poor adhesion to the current collector, and when an external force such as a winding process is applied, the electrode surface peels off from the metal foil as the current collector, or when used as a battery, There is a problem that stability in a long-term charge / discharge cycle is lowered.
In addition, styrene-butadiene copolymer rubber is a rubber polymer, so it has better flexibility and adhesion than polyvinylidene fluoride and polytetrafluoroethylene, but the polymer has poor oxidation resistance, and in particular increases the charging voltage. In this case, the charge / discharge resistance is not sufficient.

一方、正極活物質についても、従来コバルト酸リチウムが多く使われてきたが、電池特性や安全性、コストの観点から様々な開発が進められている。特に、価格の高いコバルトを極力減らしてニッケル・マンガン等で置き換え、容量アップを実現させた、いわゆる三元系正極活物質は次世代リチウムイオン電池の正極材料として注目されている。
しかしながら、これらニッケルを含む正極活物質は塩基性が高いため、正極合剤の塩基性が高くなり、アルミニウム箔からなる集電体の表面を腐食し、アルミ箔と正極活物質との界面で水素ガスが発生し、結果的に集電体との密着性が低下したり、電極表面の平滑性が失われるといった課題があった。
On the other hand, as for the positive electrode active material, lithium cobaltate has been widely used, but various developments are being promoted from the viewpoint of battery characteristics, safety, and cost. In particular, the so-called ternary positive electrode active material, which has reduced cobalt as much as possible and replaced it with nickel, manganese, etc. to realize increased capacity, has attracted attention as a positive electrode material for next-generation lithium ion batteries.
However, since the positive electrode active material containing nickel has high basicity, the basicity of the positive electrode mixture is increased, corroding the surface of the current collector made of aluminum foil, and hydrogen at the interface between the aluminum foil and the positive electrode active material. As a result, gas was generated, resulting in problems such as poor adhesion to the current collector and loss of electrode surface smoothness.

特許文献2には、水系正極合剤のpHを9以下に低下させると、水系正極合剤中に含まれるアクリル系粒子状ポリマー(正極バインダー)の安定性が低下すること、水系正極合剤のpHを10以上、12以下の範囲に調整すると、集電体の腐食を抑制しつつ、正極合剤の安定性を両立できることが示されている。   In Patent Document 2, when the pH of the aqueous positive electrode mixture is lowered to 9 or less, the stability of the acrylic particulate polymer (positive electrode binder) contained in the aqueous positive electrode mixture is reduced. It has been shown that when the pH is adjusted in the range of 10 or more and 12 or less, the stability of the positive electrode mixture can be achieved while suppressing the corrosion of the current collector.

国際公開第2010/074293号International Publication No. 2010/074293 特開2011−76981号公報JP 2011-76981 A

しかしながら、本発明者らの検討によれば、特許文献2に記載の方法において、適用する水系正極合剤のpHを10以上、12以下に調整しても、電極密度を高めるべく、塗工する厚みを厚くすると、乾燥時間が長くなり、結果として集電体の腐食を抑制できないことが分かった。そこで、乾燥時間を短縮し電極製造時の生産性を高めるべく、乾燥温度を高くしても、逆に腐食反応を促進させることとなり、集電体の腐食を抑制できないことが分かった。
また正極合剤のpHを10未満にしてみると、かかる腐食は軽減するものの、粒子状ポリマーの凝集が生じて正極合剤が経時的に増粘しやすくなり、保存安定性が損なわれる場合があることが分かった。
However, according to the study by the present inventors, in the method described in Patent Document 2, even if the pH of the aqueous positive electrode mixture to be applied is adjusted to 10 or more and 12 or less, coating is performed to increase the electrode density. It was found that when the thickness is increased, the drying time becomes longer, and as a result, corrosion of the current collector cannot be suppressed. Therefore, it has been found that even if the drying temperature is increased in order to shorten the drying time and increase the productivity at the time of manufacturing the electrode, the corrosion reaction is accelerated, and the corrosion of the current collector cannot be suppressed.
In addition, when the pH of the positive electrode mixture is less than 10, such corrosion is reduced, but aggregation of the particulate polymer occurs, and the positive electrode mixture is likely to thicken with time, which may impair storage stability. I found out.

本発明の目的は、塩基性の高い正極活物質を含む場合にも集電体の腐食を抑制できるとともに、経時的に増粘しにくく良好な保存安定性を有する非水系二次電池用正極合剤、その製造方法、該正極合剤を用いて非水系二次電池用正極を製造する方法、および該正極合剤を用いて製造された非水系二次電池用正極を備えた非水系二次電池を提供することにある。   The object of the present invention is to suppress the corrosion of the current collector even when it contains a highly basic positive electrode active material, and it is difficult to increase the viscosity over time and has a good storage stability. Agent, method for producing the same, method for producing a positive electrode for a non-aqueous secondary battery using the positive electrode mixture, and a non-aqueous secondary provided with a positive electrode for a non-aqueous secondary battery produced using the positive electrode mixture To provide a battery.

本発明者らは、上記課題を解決すべく鋭意検討した結果、含フッ素共重合体(f)を正極バインダーとして用いることで、水系正極合剤のpHを10未満としても増粘が生じにくくなり、塩基性の高い電極活物質を含む場合にも集電体の腐食を抑制することができるとともに、保存安定性に優れる正極合剤が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors use the fluorine-containing copolymer (f) as a positive electrode binder, so that it is difficult to increase the viscosity even if the pH of the aqueous positive electrode mixture is less than 10. In addition, the present inventors have found that a positive electrode mixture that can suppress corrosion of a current collector and is excellent in storage stability can be obtained even when a highly basic electrode active material is contained. The present invention has been completed.

すなわち、本発明は以下の[1]〜[8]である。
[1] 正極活物質(a)、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する含フッ素共重合体(f)、水溶性増粘剤(c)、および水性媒体を含み、pHが6以上10未満であることを特徴とする、非水系二次電池用正極合剤。
That is, the present invention includes the following [1] to [8].
[1] A pH containing a positive electrode active material (a), a fluorocopolymer (f) having a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene, a water-soluble thickener (c), and an aqueous medium, Is a positive electrode mixture for a non-aqueous secondary battery, wherein the positive electrode mixture is 6 or more and less than 10.

[2] 更にpH調整剤を含む、[1]記載の非水系二次電池用正極合剤。
[3] 前記正極活物質が、下記式(1)で表わされるリチウムニッケル複合酸化物(X)、および式(2)で表わされるリチウムニッケルコバルト複合酸化物(Y)からなる群から選ばれる1種以上である、[1]または[2]に記載の非水系二次電池用正極合剤。
LiNi(1−x) ・・・(1)
(式中、MはAl、B、Sn、MnおよびNbからなる群から選ばれる少なくとも1種であり、xは0.1≦x≦1である。)
LiNiCo(1−x―y) ・・・(2)
(式中、MはAl、B、Sn、MnおよびNbからなる群から選ばれる少なくとも1種であり、xは0.1≦x≦0.9、yは0.1≦y≦0.9である)
[2] The positive electrode mixture for nonaqueous secondary batteries according to [1], further comprising a pH adjuster.
[3] The positive electrode active material is selected from the group consisting of a lithium nickel composite oxide (X) represented by the following formula (1) and a lithium nickel cobalt composite oxide (Y) represented by the formula (2): The positive electrode mixture for nonaqueous secondary batteries according to [1] or [2], which is a seed or more.
LiNi x M (1-x) O 2 (1)
(In the formula, M is at least one selected from the group consisting of Al, B, Sn, Mn and Nb, and x is 0.1 ≦ x ≦ 1.)
LiNi x Co y M (1-xy) O 2 (2)
(In the formula, M is at least one selected from the group consisting of Al, B, Sn, Mn and Nb, x is 0.1 ≦ x ≦ 0.9, and y is 0.1 ≦ y ≦ 0.9. Is)

[4] [1]〜[3]のいずれか一項に記載の非水系二次電池用正極合剤を製造する方法であって、正極活物質(a)、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する含フッ素共重合体(f)が水性媒体中に分散された水性分散体(b)、および水溶性増粘剤(c)を混合する工程を有し、前記水性分散体(b)中の水性媒体が、水単独、または水と水溶性有機溶剤とからなる混合物であり、該混合物における水溶性有機溶剤の含有量が、水100質量部に対して1質量部未満である、非水系二次電池用正極合剤の製造方法。
[5] 前記含フッ素共重合体を含む水性分散体(b)が、水性媒体中に、前記含フッ素共重合体(f)の粒子、およびアニオン性乳化剤を含有し、前記アニオン性乳化剤の含有量が、前記含フッ素共重合体(f)の100質量部に対して、1.5〜5.0質量部である、[4]に記載の非水系二次電池用正極合剤の製造方法。
[4] A method for producing a positive electrode mixture for a non-aqueous secondary battery according to any one of [1] to [3], wherein the positive electrode active material (a), a polymer unit based on tetrafluoroethylene, and A step of mixing the aqueous dispersion (b) in which the fluorine-containing copolymer (f) having polymer units based on propylene is dispersed in an aqueous medium, and the water-soluble thickener (c), The aqueous medium in the body (b) is water alone or a mixture of water and a water-soluble organic solvent, and the content of the water-soluble organic solvent in the mixture is less than 1 part by mass with respect to 100 parts by mass of water. The manufacturing method of the positive mix for non-aqueous secondary batteries which is.
[5] The aqueous dispersion (b) containing the fluorine-containing copolymer contains particles of the fluorine-containing copolymer (f) and an anionic emulsifier in an aqueous medium, and contains the anionic emulsifier. The method for producing a positive electrode mixture for a non-aqueous secondary battery according to [4], wherein the amount is 1.5 to 5.0 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer (f). .

[6] [1]〜[3]のいずれか一項に記載の非水系二次電池用正極合剤を、金属からなる集電体上に塗布する工程と、前記集電体上に塗布された前記非水系二次電池用正極合剤を乾燥して水性媒体を除去する工程を有する、非水系二次電池用正極の製造方法。
[7] [4]または[5]に記載の製造方法で非水系二次電池用正極合剤を製造する工程と、得られた非水系二次電池用正極合剤を、金属からなる集電体上に塗布する工程と、前記集電体上に塗布された前記非水系二次電池用正極合剤を乾燥して水性媒体を除去する工程を有する、非水系二次電池用正極の製造方法。
[6] A step of applying the positive electrode mixture for a non-aqueous secondary battery according to any one of [1] to [3] onto a current collector made of metal; A method for producing a positive electrode for a non-aqueous secondary battery, further comprising a step of drying the positive electrode mixture for a non-aqueous secondary battery to remove the aqueous medium.
[7] A step of producing a positive electrode mixture for a non-aqueous secondary battery by the production method according to [4] or [5], and collecting the obtained positive electrode mixture for a non-aqueous secondary battery from a metal A method for producing a positive electrode for a non-aqueous secondary battery, comprising: a step of applying on a body; and a step of drying the positive electrode mixture for a non-aqueous secondary battery applied on the current collector to remove an aqueous medium. .

[8] [6]または[7]のいずれか一項に記載された製造方法により製造された二次電池用正極、負極、電解液、およびセパレーターを備えてなる非水系二次電池。 [8] A non-aqueous secondary battery comprising a positive electrode for a secondary battery, a negative electrode, an electrolytic solution, and a separator produced by the production method according to any one of [6] or [7].

本発明によれば、塩基性の高い正極活物質を含む場合にも集電体の腐食を抑制できるとともに、経時的に増粘しにくく良好な保存安定性を有する非水系二次電池用正極合剤が得られる。
本発明によれば、塩基性の高い正極活物質を用いた場合にも集電体の腐食が抑制される非水系二次電池用正極、およびこれを備えた非水系二次電池が得られる。
According to the present invention, even when a highly basic positive electrode active material is contained, corrosion of the current collector can be suppressed, and the positive electrode composite for a non-aqueous secondary battery that does not thicken over time and has good storage stability can be obtained. An agent is obtained.
ADVANTAGE OF THE INVENTION According to this invention, even when a highly basic positive electrode active material is used, the positive electrode for non-aqueous secondary batteries by which corrosion of a collector is suppressed and a non-aqueous secondary battery provided with the same are obtained.

<非水系二次電池用正極合剤>
本発明の、非水系二次電池用正極合剤(以下、単に正極合剤ということもある。)は、正極活物質(a)、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する含フッ素共重合体(f)、水溶性増粘剤(c)、および水性媒体を含む。以下、各成分について説明する。
<Positive electrode mixture for non-aqueous secondary battery>
The positive electrode mixture for non-aqueous secondary batteries of the present invention (hereinafter sometimes simply referred to as positive electrode mixture) has a positive electrode active material (a), a polymer unit based on tetrafluoroethylene, and a polymer unit based on propylene. A fluorine-containing copolymer (f), a water-soluble thickener (c), and an aqueous medium are included. Hereinafter, each component will be described.

[正極活物質(a)]
本発明で用いられる正極活物質(a)は、特に限定されず、公知の正極活物質を使用できる。例えば下記式(1)で表わされるリチウムニッケル複合酸化物(X)、式(2)で表わされるリチウムニッケルコバルト複合酸化物(Y)、および式(3)で表される複合酸化物(Z)が挙げられる。正極活物質(a)は1種を用いてもよく、2種以上を併用してもよい。
[Positive electrode active material (a)]
The positive electrode active material (a) used by this invention is not specifically limited, A well-known positive electrode active material can be used. For example, lithium nickel composite oxide (X) represented by the following formula (1), lithium nickel cobalt composite oxide (Y) represented by formula (2), and composite oxide (Z) represented by formula (3) Is mentioned. As the positive electrode active material (a), one type may be used, or two or more types may be used in combination.

(リチウムニッケル複合酸化物(X))
LiNi(1−x) ・・・(1)
式中、MはAl、B、Sn、MnおよびNbからなる群から選ばれる少なくとも1種であり、xは0.1≦x≦1である。
(リチウムニッケルコバルト複合酸化物(Y))
LiNiCo(1−x―y) ・・・(2)
式中、MはAl、B、Sn、MnおよびNbからなる群から選ばれる少なくとも1種であり、xは0.1≦x≦0.9、yは0.1≦y≦0.9である。
式(1)で示されるリチウムニッケル複合酸化物として、具体的には例えばLiNi0.5Mn0.5、LiNi0.75Mn0.25、LiNi0.25Mn0.75、などが挙げられる。
式(2)で示されるリチウムニッケルコバルト複合酸化物として、具体的には例えばLiNi0.8Co0.2、LiNi0.7Co0.3、LiNi0.5Co0.5、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.5Co0.3Mn0.2、LiNi0.75Co0.15Al0.1などが挙げられる。
特に、高容量密度で高い安定性を有する、LiNi0.7Co0.3、LiNi0.5Co0.5、LiNi0.5Co0.2Mn0.3、LiNi1/3Co1/3Mn1/3などのリチウムニッケルコバルトマンガン複合酸化物が好ましい。
(Lithium nickel composite oxide (X))
LiNi x M (1-x) O 2 (1)
In the formula, M is at least one selected from the group consisting of Al, B, Sn, Mn and Nb, and x is 0.1 ≦ x ≦ 1.
(Lithium nickel cobalt composite oxide (Y))
LiNi x Co y M (1-xy) O 2 (2)
In the formula, M is at least one selected from the group consisting of Al, B, Sn, Mn, and Nb, x is 0.1 ≦ x ≦ 0.9, and y is 0.1 ≦ y ≦ 0.9. is there.
Specific examples of the lithium nickel composite oxide represented by the formula (1) include LiNi 0.5 Mn 0.5 O 2 , LiNi 0.75 Mn 0.25 O 2 , and LiNi 0.25 Mn 0.75 O. 2 and the like.
Specifically, as the lithium nickel cobalt composite oxide represented by the formula (2), for example, LiNi 0.8 Co 0.2 O 2 , LiNi 0.7 Co 0.3 O 2 , LiNi 0.5 Co 0.5 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.5 Co 0.3 Mn 0.2 O 2 , LiNi 0 .75 Co 0.15 Al 0.1 O 2 and the like.
In particular, LiNi 0.7 Co 0.3 O 2 , LiNi 0.5 Co 0.5 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi having high capacity density and high stability A lithium nickel cobalt manganese composite oxide such as 1/3 Co 1/3 Mn 1/3 O 2 is preferable.

(複合酸化物(Z))
Li(LiMnMe’)O ・・・(3)
式中、Me’は、Co、Ni、Cr、Fe、Al、Ti、ZrおよびMgから選ばれる少なくとも1種であり、0.09<x<0.3、y>0、z>0、1.9<p<2.1、0≦q≦0.1、0.4≦y/(y+z)≦0.8、x+y+z=1、1.2<(1+x)/(y+z)である。
式(3)で表わされる複合酸化物(Z)は、Liの割合が、MnとMe’の合計に対して1.2倍モルを超える。また、式(3)はMnを特定量含む化合物である点も特徴とし、MnとMe’の総量に対するMnの割合は、0.4〜0.8が好ましく、0.55〜0.75がより好ましい。Mnが前記の範囲であれば、放電容量が高容量となる。
ここで、qはFの割合を示すが、Fが存在しない場合にはqは0である。また、pは、x、y、zおよびqに応じて決まる値であり、1.9〜2.1である。
(Composite oxide (Z))
Li (Li x Mn y Me ' z) O p F q ··· (3)
In the formula, Me ′ is at least one selected from Co, Ni, Cr, Fe, Al, Ti, Zr and Mg, and 0.09 <x <0.3, y> 0, z> 0, 1 .9 <p <2.1, 0 ≦ q ≦ 0.1, 0.4 ≦ y / (y + z) ≦ 0.8, x + y + z = 1, 1.2 <(1 + x) / (y + z).
In the composite oxide (Z) represented by the formula (3), the proportion of Li exceeds 1.2 times mol with respect to the total of Mn and Me ′. Further, the formula (3) is also characterized in that it is a compound containing a specific amount of Mn, and the ratio of Mn to the total amount of Mn and Me ′ is preferably 0.4 to 0.8, and preferably 0.55 to 0.75. More preferred. When Mn is in the above range, the discharge capacity becomes high.
Here, q represents the ratio of F, but q is 0 when F does not exist. P is a value determined according to x, y, z, and q, and is 1.9 to 2.1.

式(3)で表される化合物において、前記遷移金属元素の総モル量に対するLi元素の組成比は、1.25≦(1+x)/(y+z)≦1.75が好ましく、1.35≦(1+x)/(y+z)≦1.65がより好ましく、1.40≦(1+x)/(y+z)≦1.55が特に好ましい。この組成比が前記の範囲であれば、4.6V以上の高い充電電圧を印加した場合に、単位質量あたりの放電容量が高い正極材料が得られる。   In the compound represented by the formula (3), the composition ratio of the Li element with respect to the total molar amount of the transition metal element is preferably 1.25 ≦ (1 + x) / (y + z) ≦ 1.75, and 1.35 ≦ ( 1 + x) / (y + z) ≦ 1.65 is more preferable, and 1.40 ≦ (1 + x) / (y + z) ≦ 1.55 is particularly preferable. When the composition ratio is in the above range, a positive electrode material having a high discharge capacity per unit mass can be obtained when a high charging voltage of 4.6 V or higher is applied.

式(3)で表される化合物の中でも、下式(3’)で表される化合物がより好ましい。
Li(LiMnNiCo)O ・・・(3’)
式中、0.09<x<0.3、0.36<y<0.73、0<v<0.32、0<w<0.32、1.9<p<2.1、x+y+v+w=1である。
式(3’)において、Mn、Ni、およびCo元素の合計に対するLi元素の組成比は、1.2<(1+x)/(y+v+w)<1.8である。1.35<(1+x)/(y+v+w)<1.65が好ましく、1.45<(1+x)/(y+v+w)<1.55がより好ましい。
Among the compounds represented by the formula (3), a compound represented by the following formula (3 ′) is more preferable.
Li (Li x Mn y Ni v Co w) O p ··· (3 ')
In the formula, 0.09 <x <0.3, 0.36 <y <0.73, 0 <v <0.32, 0 <w <0.32, 1.9 <p <2.1, x + y + v + w = 1.
In the formula (3 ′), the composition ratio of the Li element with respect to the sum of the Mn, Ni, and Co elements is 1.2 <(1 + x) / (y + v + w) <1.8. 1.35 <(1 + x) / (y + v + w) <1.65 is preferable, and 1.45 <(1 + x) / (y + v + w) <1.55 is more preferable.

式(3’)で表される化合物としては、Li(Li0.16Ni0.17Co0.08Mn0.59)O、Li(Li0.17Ni0.17Co0.17Mn0.49)O、Li(Li0.17Ni0.21Co0.08Mn0.54)O、Li(Li0.17Ni0.14Co0.14Mn0.55)O、Li(Li0.18Ni0.12Co0.12Mn0.58)O、Li(Li0.18Ni0.16Co0.12Mn0.54)O、Li(Li0.20Ni0.12Co0.08Mn0.60)O、Li(Li0.20Ni0.16Co0.08Mn0.56)O、Li(Li0.20Ni0.13Co0.13Mn0.54)Oが特に好ましい。 As a compound represented by the formula (3 ′), Li (Li 0.16 Ni 0.17 Co 0.08 Mn 0.59 ) O 2 , Li (Li 0.17 Ni 0.17 Co 0.17 Mn 0.49 ) O 2 , Li (Li 0.17 Ni 0.21 Co 0.08 Mn 0.54 ) O 2 , Li (Li 0.17 Ni 0.14 Co 0.14 Mn 0.55 ) O 2 , Li (Li 0.18 Ni 0.12 Co 0.12 Mn 0.58 ) O 2 , Li (Li 0.18 Ni 0.16 Co 0.12 Mn 0.54 ) O 2 , Li (Li 0. 20 Ni 0.12 Co 0.08 Mn 0.60 ) O 2 , Li (Li 0.20 Ni 0.16 Co 0.08 Mn 0.56 ) O 2 , Li (Li 0.20 Ni 0.13 Co 0.13 Mn 0.54 ) O 2 is particularly preferred.

上記式(3)で表わされる化合物は、層状岩塩型結晶構造(空間群R−3m)であることが好ましい。また、遷移金属元素に対するLi元素の比率が高いため、X線源としてCuKα線を用いるXRD(X線回折)測定では、層状LiMnOと同様に、2θ=20〜25°の範囲にピークが観察される。 The compound represented by the above formula (3) preferably has a layered rock salt type crystal structure (space group R-3m). In addition, since the ratio of Li element to transition metal element is high, XRD (X-ray diffraction) measurement using CuKα ray as an X-ray source has a peak in a range of 2θ = 20 to 25 °, similarly to layered Li 2 MnO 3. Is observed.

正極活物質の平均粒子径(D50)は、充放電容量、サイクル特性などの電池特性の向上の観点から、0.1〜50μmが好ましく、1〜20μmがより好ましい。
ここで、平均粒子径(D50)とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒子径である、体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理などで充分に分散させて粒度分布を測定する(例えば、HORIBA社製レーザー回折/散乱式粒子径分布測定装置Partica LA−950VII、などを用いる)ことで行なわれる。
The average particle diameter (D50) of the positive electrode active material is preferably 0.1 to 50 μm, and more preferably 1 to 20 μm, from the viewpoint of improving battery characteristics such as charge / discharge capacity and cycle characteristics.
Here, the average particle size (D50) is a particle size distribution at a point where the cumulative curve is 50% in a cumulative curve obtained by obtaining a particle size distribution on a volume basis and setting the total volume to 100%. It means% diameter. The particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus. The particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA, etc.). Used).

また上記(X)、(Y)、(Z)以外の正極活物質として、例えばLiCoO、LiMn、LiMnO、LiFePO、LiMnPO等が挙げられる。
また、正極活物質(a)の100質量部のうち、上記(X)、(Y)、(Z)に含まれる正極活物質の合計が50質量部以上であることが好ましく、70質量部以上がより好ましく、99質量部以上がさらに好ましく、100質量部が特に好ましい。
Examples of positive electrode active materials other than (X), (Y), and (Z) include LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiFePO 4 , and LiMnPO 4 .
Moreover, it is preferable that the sum total of the positive electrode active material contained in said (X), (Y), (Z) among 100 mass parts of positive electrode active material (a) is 50 mass parts or more, and 70 mass parts or more. Is more preferably 99 parts by mass or more, and particularly preferably 100 parts by mass.

本発明は、正極活物質(a)を正極合剤に含有させたときに、正極合剤が強い塩基性を示す場合に特に有用である。かかる塩基性を示す正極活物質(a)として、例えば上記リチウムニッケル複合酸化物(X)、リチウムニッケルコバルト複合酸化物(Y)が挙げられる。
すなわち、本発明において、正極活物質(a)が、上記式(1)で表わされるリチウムニッケル複合酸化物(X)、および式(2)で表わされるリチウムニッケルコバルト複合酸化物(Y)からなる群から選ばれる1種以上であることが、特に好ましい。
The present invention is particularly useful when the positive electrode mixture exhibits strong basicity when the positive electrode active material (a) is contained in the positive electrode mixture. Examples of the positive electrode active material (a) exhibiting basicity include the lithium nickel composite oxide (X) and the lithium nickel cobalt composite oxide (Y).
That is, in the present invention, the positive electrode active material (a) is composed of the lithium nickel composite oxide (X) represented by the above formula (1) and the lithium nickel cobalt composite oxide (Y) represented by the formula (2). It is particularly preferable that it is one or more selected from the group.

[含フッ素共重合体(f)]
含フッ素共重合体(f)は、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する。このような重合単位を有することにより、集電体への塗工性が良好であり、正極活物質同士、また正極活物質と集電体との密着性が優れ、電解液に対する電極の膨潤が小さく良好であるという効果が得られる。
含フッ素共重合体(f)は、テトラフルオロエチレンに基づく重合単位とプロピレンに基づく重合単位を有するが、含フッ素共重合体(f)の機能を損なわない範囲内で、必要に応じてテトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位以外の他の重合単位を有していてもよい。他の重合単位を形成する単量体としては、含フッ素単量体、炭化水素系単量体が挙げられる。
[Fluorine-containing copolymer (f)]
The fluorine-containing copolymer (f) has a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene. By having such a polymerized unit, the coating property to the current collector is good, the positive electrode active materials are excellent, and the adhesion between the positive electrode active material and the current collector is excellent, and the electrode swells with respect to the electrolytic solution. The effect of being small and good is obtained.
The fluorine-containing copolymer (f) has a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene, but is within the range that does not impair the function of the fluorine-containing copolymer (f), and is optionally tetrafluoroethylene. You may have other polymerization units other than the polymerization unit based on ethylene, and the polymerization unit based on propylene. Examples of the monomer that forms other polymerized units include fluorine-containing monomers and hydrocarbon monomers.

含フッ素単量体としては、フッ化ビニリデン、六フッ化プロピレン、クロロトリフルオロエチレン、パーフロオロブチルエチレンなどの含フッ素オレフィン、パーフルオロプロピルビニルエーテル、パーフルオロメチルビニルエーテル等の含フッ素ビニルエーテル等を用いることができる。
炭化水素系単量体としては、エチレン、1−ブテン等のα−オレフィン、エチルビニルエーテル、ブチルビニルエーテル、ヒドロキシブチルビニルエーテル等のビニルエーテル類、酢酸ビニル、安息香酸ビニルなどのビニルエステル類等が挙げられる。
As fluorine-containing monomers, fluorine-containing olefins such as vinylidene fluoride, hexafluoropropylene, chlorotrifluoroethylene, and perfluorobutylethylene, fluorine-containing vinyl ethers such as perfluoropropyl vinyl ether, perfluoromethyl vinyl ether, and the like should be used. Can do.
Examples of the hydrocarbon monomer include α-olefins such as ethylene and 1-butene, vinyl ethers such as ethyl vinyl ether, butyl vinyl ether and hydroxybutyl vinyl ether, and vinyl esters such as vinyl acetate and vinyl benzoate.

含フッ素共重合体(f)として、耐アルカリ性、耐酸化性、耐電解液膨潤性、密着性、柔軟性が良好であることから、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位のみからなる含フッ素共重合体であることがより好ましい。   Since the fluorine-containing copolymer (f) has good alkali resistance, oxidation resistance, electrolytic solution swellability, adhesion, and flexibility, only from a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene. The fluorine-containing copolymer is more preferable.

含フッ素共重合体(f)の組成は、テトラフルオロエチレンに基づく重合単位/プロピレンに基づく重合単位に基づく重合単位の比率が、30/70〜85/15(モル%)の範囲であることが好ましく、より好ましくは40/60〜70/30であり、特に好ましくは、50/50〜60/40である。この組成比の範囲内では、保存安定性に優れ、塗工性が良好であり、高温において電解液の溶媒に対する膨潤が小さく、集電体と電極と密着性が良好な電極を得ることができる。
また、含フッ素共重合体(f)が前記他の重合単位を有する場合には、該他の重合単位の含有量は、含フッ素共重合体(f)に含まれる全重合単位中に10モル%以下が好ましく、5モル%以下がより好ましく、1モル%以下が特に好ましい。
The composition of the fluorinated copolymer (f) is such that the ratio of polymer units based on tetrafluoroethylene / polymer units based on polymer units based on propylene is in the range of 30/70 to 85/15 (mol%). It is preferably 40/60 to 70/30, more preferably 50/50 to 60/40. Within this composition ratio range, it is possible to obtain an electrode having excellent storage stability, good coating properties, low swelling of the electrolyte solution with respect to the solvent at high temperatures, and good adhesion between the current collector and the electrode. .
Further, when the fluorinated copolymer (f) has the other polymerized units, the content of the other polymerized units is 10 mol in all the polymerized units contained in the fluorinated copolymer (f). % Or less, more preferably 5 mol% or less, and particularly preferably 1 mol% or less.

本発明における含フッ素共重合体のムーニー粘度は、5〜200が好ましく、10〜170がより好ましく、20〜100が最も好ましい。
ムーニー粘度は、JIS K6300に準じ、直径38.1mm、厚さ5.54mmのL型ローターを用い、100℃で、予熱時間を1分間、ローター回転時間を10分間に設定して測定され、主にゴムなどの高分子材料の分子量の目安である。また、値が大きいほど、間接的に高分子量であることを示す。ムーニー粘度が、5〜200の範囲にあると蓄電デバイス用バインダーとして用いた場合に、良好な密着性(結着性)と、優れた柔軟性が同時に得られやすい。
含フッ素共重合体(f)は、1種の含フッ素共重合体を用いてもよく、また重合単位組成の異なる2種以上の共重合体を組み合わせて用いてもよい。
The Mooney viscosity of the fluorinated copolymer in the present invention is preferably 5 to 200, more preferably 10 to 170, and most preferably 20 to 100.
Mooney viscosity is measured according to JIS K6300 using an L-shaped rotor with a diameter of 38.1 mm and a thickness of 5.54 mm, at 100 ° C., with a preheating time of 1 minute and a rotor rotation time of 10 minutes. It is a measure of the molecular weight of polymer materials such as rubber. Moreover, it shows that it is a high molecular weight indirectly, so that a value is large. When the Mooney viscosity is in the range of 5 to 200, when used as a binder for an electricity storage device, good adhesion (binding property) and excellent flexibility are easily obtained at the same time.
As the fluorine-containing copolymer (f), one type of fluorine-containing copolymer may be used, or two or more types of copolymers having different polymerization unit compositions may be used in combination.

正極合剤における含フッ素共重合体(f)の含有量は、正極活物質100質量部に対し、0.1〜20質量部が好ましく、より好ましくは1〜10質量部、特に好ましくは1〜8質量部である。含フッ素共重合体(f)の含有量がこの範囲内であれば、電極内部の抵抗の上昇を極力抑えつつ、密着性が良好となる。   The content of the fluorinated copolymer (f) in the positive electrode mixture is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, particularly preferably 1 to 1 part by mass with respect to 100 parts by mass of the positive electrode active material. 8 parts by mass. When the content of the fluorinated copolymer (f) is within this range, the adhesion is improved while suppressing an increase in resistance inside the electrode as much as possible.

正極合剤において、含フッ素共重合体(f)は、平均粒子径が10〜500nmの粒子として分散していることが好ましい。平均粒子径の下限は、20nm以上がより好ましく、30nm以上がさらに好ましく、50nm以上が最も好ましい。また、平均粒子径の上限は、300nm以下がより好ましく、200nm以下がさらに好ましく、150nm以下が一層好ましく、100nm以下が最も好ましい。
平均粒子径が上記範囲である場合には、含フッ素共重合体(f)が正極活物質表面全体を密に覆ってしまうことがなく、内部抵抗が低くなるとともに、含フッ素共重合体(f)の結着力が低下しにくい。
なお、含フッ素共重合体(f)の粒子の平均粒子径は、大塚電子社製レーザーゼータ電位計ELS−8000を使用して、動的光散乱法により測定することができる。
In the positive electrode mixture, the fluorine-containing copolymer (f) is preferably dispersed as particles having an average particle diameter of 10 to 500 nm. The lower limit of the average particle diameter is more preferably 20 nm or more, further preferably 30 nm or more, and most preferably 50 nm or more. Further, the upper limit of the average particle diameter is more preferably 300 nm or less, further preferably 200 nm or less, still more preferably 150 nm or less, and most preferably 100 nm or less.
When the average particle size is in the above range, the fluorine-containing copolymer (f) does not cover the entire surface of the positive electrode active material densely, the internal resistance is lowered, and the fluorine-containing copolymer (f ) Binding force is difficult to decrease.
In addition, the average particle diameter of the particle | grains of a fluorine-containing copolymer (f) can be measured with a dynamic light-scattering method using the laser zeta electrometer ELS-8000 by an Otsuka Electronics company.

[その他の重合体]
本発明の正極合剤は、含フッ素共重合体(f)以外にその他の重合体を含有していてもよい。その他の重合体としては、例えば、ポリエチレンオキサイド(PEO)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム等が挙げられる。
[Other polymers]
The positive electrode mixture of the present invention may contain other polymers in addition to the fluorine-containing copolymer (f). Examples of other polymers include polyethylene oxide (PEO), polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). ), Fluororesins such as ethylene-tetrafluoroethylene copolymer (ETFE), polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid Ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, poly (vinyl acetate) , Polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene-butadiene rubber.

その他の重合体の含有量は、含フッ素重合体(f)の100質量部に対して0.1〜50質量部であることが好ましく、0.1〜30質量部であることがより好ましい。その他の重合体の含有量がこの範囲であれば、本発明の正極合剤の特性を損なうことなく、密着性などを向上できる場合がある。   The content of the other polymer is preferably 0.1 to 50 parts by mass, and more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the fluoropolymer (f). If the content of the other polymer is within this range, the adhesion may be improved without impairing the characteristics of the positive electrode mixture of the present invention.

[水溶性増粘剤(c)]
本発明で用いられる水溶性増粘剤(c)としては、25℃において水に溶解し増粘性を示す重合体であれば特に限定されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマー及びこれらのアンモニウム塩ならびにアルカリ金属塩、ポリ(メタ)アクリル酸、及びこれらのアンモニウム塩ならびにアルカリ金属塩、ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、アクリル酸またはアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸またはマレイン酸もしくはフマル酸と酢酸ビニルの共重合体の完全または部分ケン化物、変性ポリビニルアルコール、変性ポリアクリル酸、ポリエチレングリコール、ポリカルボン酸、エチレン−ビニルアルコール共重合体、酢酸ビニル重合体などの水溶性重合体などが挙げられる。
[Water-soluble thickener (c)]
The water-soluble thickener (c) used in the present invention is not particularly limited as long as it is a polymer that dissolves in water at 25 ° C. and exhibits viscosity. Specifically, carboxymethylcellulose, methylcellulose, and hydroxypropylcellulose. Cellulose polymers such as and their ammonium salts and alkali metal salts, poly (meth) acrylic acid, and their ammonium salts and alkali metal salts, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, acrylic acid or acrylic acid salts and vinyl alcohol A copolymer of maleic anhydride or a complete or partial saponified product of maleic anhydride or a copolymer of fumaric acid and vinyl acetate, modified polyvinyl alcohol, modified polyacrylic acid, polyethylene glycol, polycarboxylic acid, ethylene- Alkenyl alcohol copolymer, water-soluble polymers such as vinyl acetate polymers.

正極合剤中の水溶性増粘剤(c)の含有割合は、正極活物質100質量部に対し、好ましくは0.01〜10質量部、より好ましくは0.05〜5質量部、特に好ましくは0.1〜2質量部である。水溶性増粘剤の含有割合が上記範囲であることにより、正極合剤中の活物質等の分散性に優れ、安定性の高い正極合剤が得られるとともに、平滑な電極を得ることができ、優れた電池特性を示すことができる。
正極合剤の粘度は、塗布性に優れることから、100〜10000mPa・sが好ましく、500〜5000mPa・sがより好ましく、1000〜3000mPa・sが特に好ましい。
The content of the water-soluble thickener (c) in the positive electrode mixture is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, particularly preferably 100 parts by mass of the positive electrode active material. Is 0.1 to 2 parts by mass. When the content ratio of the water-soluble thickener is within the above range, a positive electrode mixture with excellent dispersibility of active materials and the like in the positive electrode mixture and high stability can be obtained, and a smooth electrode can be obtained. Excellent battery characteristics can be exhibited.
The viscosity of the positive electrode mixture is preferably from 100 to 10000 mPa · s, more preferably from 500 to 5000 mPa · s, and particularly preferably from 1000 to 3000 mPa · s because of excellent coating properties.

[水性媒体]
正極合剤中の水性媒体は、水を必須とし、水以外には、水に任意の割合混合できる水溶性有機溶媒を含有していてもよい。このような水溶性有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、t−ブタノール等のアルコール類が好ましい。水溶性有機溶媒の含有量が少ないほど好ましく、ゼロであることが特に好ましい。
水性媒体が、水と水溶性有機溶媒の混合物である場合、水溶性有機溶媒の含有量は、1質量%未満が好ましく、0.1質量%以下がより好ましく、ゼロが最も好ましい。水溶性有機溶媒の含有量がこの範囲であれば、正極合剤中において凝集が生じ難く、良好な結着性が得られやすい。
正極合剤中の水性媒体の含有割合は、正極活物質100質量部に対し、好ましくは1〜900質量部、より好ましくは5〜300質量部、特に好ましくは10〜50質量部である。水性媒体の含有量が上記範囲であると、各成分の分散性が良好であり、かつ塗布性に優れる。
[Aqueous medium]
The aqueous medium in the positive electrode mixture essentially contains water, and may contain a water-soluble organic solvent that can be mixed with water in any proportion in addition to water. As such a water-soluble organic solvent, alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, and t-butanol are preferable. The smaller the content of the water-soluble organic solvent is, the more preferable, and zero is particularly preferable.
When the aqueous medium is a mixture of water and a water-soluble organic solvent, the content of the water-soluble organic solvent is preferably less than 1% by mass, more preferably 0.1% by mass or less, and most preferably zero. When the content of the water-soluble organic solvent is within this range, aggregation is unlikely to occur in the positive electrode mixture, and good binding properties are easily obtained.
The content ratio of the aqueous medium in the positive electrode mixture is preferably 1 to 900 parts by mass, more preferably 5 to 300 parts by mass, and particularly preferably 10 to 50 parts by mass with respect to 100 parts by mass of the positive electrode active material. When the content of the aqueous medium is within the above range, the dispersibility of each component is good and the coating property is excellent.

[pH調整剤]
本発明の正極合剤のpHは6以上10未満であり、好ましくは7〜10、更に好ましくは8〜10、特に好ましくは9〜10である。正極合剤のpHを上記範囲とすることにより、正極活物質の電池特性に影響を与えることなく、塩基性の高い電極活物質を含む場合にも集電体の腐食を抑制することができる。
[PH adjuster]
The pH of the positive electrode mixture of the present invention is 6 or more and less than 10, preferably 7 to 10, more preferably 8 to 10, and particularly preferably 9 to 10. By setting the pH of the positive electrode mixture within the above range, the current collector can be prevented from corroding even when a highly basic electrode active material is contained without affecting the battery characteristics of the positive electrode active material.

正極合剤は必要に応じてpH調整剤を含むことができる。pH調整剤を添加することにより、正極合剤のpHを容易に調整することができる。
pH調整剤の種類は特に限定されないが、酸性を示す水溶性物質であることが好ましい。強酸や弱酸いずれも使用することができる。また、無機酸であっても有機酸でも構わない。
無機酸の具体例としては、塩酸、硝酸、硫酸、リン酸などが挙げられる。好ましくは硫酸である。有機酸としてはカルボン酸基、燐酸基、スルホン酸基などの酸基を有する有機化合物が挙げられるが、特にカルボン酸基を有する有機化合物が好ましく用いられる。カルボン酸基を有する化合物の具体例としては、酢酸、シュウ酸、琥珀酸、クエン酸、フタル酸、マレイン酸、無水琥珀酸、無水フタル酸、無水マレイン酸などが挙げられる。
pH調整剤の添加量は、正極合剤100質量部に対して0.1質量部以上、1質量部以下の範囲が好ましい。
The positive electrode mixture can contain a pH adjuster as necessary. By adding a pH adjuster, the pH of the positive electrode mixture can be easily adjusted.
Although the kind of pH adjuster is not specifically limited, It is preferable that it is a water-soluble substance which shows acidity. Either strong acid or weak acid can be used. Further, it may be an inorganic acid or an organic acid.
Specific examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like. Sulfuric acid is preferred. Examples of the organic acid include organic compounds having an acid group such as a carboxylic acid group, a phosphoric acid group, and a sulfonic acid group. In particular, an organic compound having a carboxylic acid group is preferably used. Specific examples of the compound having a carboxylic acid group include acetic acid, oxalic acid, succinic acid, citric acid, phthalic acid, maleic acid, succinic anhydride, phthalic anhydride, maleic anhydride and the like.
The addition amount of the pH adjuster is preferably in the range of 0.1 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the positive electrode mixture.

[導電材]
正極合剤は、必要に応じて導電材を含有していてもよい。導電材を用いることにより、電極活物質同士の電気的接触が向上し、活物質層内の電気抵抗を下げることができ、非水系二次電池の放電レート特性を改善することができる。
導電材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンが挙げられる。
導電材を用いる場合、正極合剤における導電材の含有量は、正極活物質(a)100質量部に対し、0.1〜30質量部が好ましく、1〜10質量部がより好ましい。正極合剤が、この範囲の含有量で導電材を含有すると少量の導電材の添加で電気抵抗の低減効果が大きく良好である。
[Conductive material]
The positive electrode mixture may contain a conductive material as necessary. By using the conductive material, the electrical contact between the electrode active materials can be improved, the electrical resistance in the active material layer can be lowered, and the discharge rate characteristics of the non-aqueous secondary battery can be improved.
Examples of the conductive material include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, and carbon nanotube.
When using an electrically conductive material, 0.1-30 mass parts is preferable with respect to 100 mass parts of positive electrode active materials (a), and, as for content of the electrically conductive material in a positive electrode mixture, 1-10 mass parts is more preferable. When the positive electrode material mixture contains a conductive material with a content in this range, the effect of reducing electrical resistance is greatly improved with the addition of a small amount of conductive material.

<非水系二次電池用正極合剤の製造方法>
本発明の正極合剤は、正極活物質(a)、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する含フッ素共重合体(f)、水溶性増粘剤(c)、水性媒体、および必要に応じて導電材、pH調整剤を均一に混合して得られる。
含フッ素共重合体(f)は、予め、含フッ素共重合体(f)が水性媒体中に分散された水性分散体(b)(以下、単に水性分散体(b)ということがある。)を得、該水性分散体(b)を他の成分と混合することが好ましい。
すなわち、本発明の正極合剤の製造方法は、正極活物質(a)、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する含フッ素共重合体(f)が水性媒体中に分散された水性分散体(b)、および水溶性増粘剤(c)を混合する工程を有する。さらに水性媒体も加えて混合することが好ましい。必要であれば導電材、pH調整剤等を加えて混合する。
<Method for producing positive electrode mixture for non-aqueous secondary battery>
The positive electrode mixture of the present invention includes a positive electrode active material (a), a fluorine-containing copolymer (f) having a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene, a water-soluble thickener (c), and an aqueous medium , And if necessary, a conductive material and a pH adjuster are mixed uniformly.
The fluorine-containing copolymer (f) is an aqueous dispersion (b) in which the fluorine-containing copolymer (f) is dispersed in an aqueous medium in advance (hereinafter sometimes simply referred to as an aqueous dispersion (b)). It is preferable that the aqueous dispersion (b) is mixed with other components.
That is, in the method for producing a positive electrode mixture of the present invention, a positive electrode active material (a), a fluorine-containing copolymer (f) having a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene are dispersed in an aqueous medium. And a step of mixing the aqueous dispersion (b) and the water-soluble thickener (c). Furthermore, it is preferable to add and mix an aqueous medium. If necessary, a conductive material, a pH adjuster, etc. are added and mixed.

[含フッ素共重合体(f)が水性媒体中に分散された水性分散体(b)]
水性分散体(b)中の水性媒体は、水を必須とし、水以外には、水に任意の割合混合できる水溶性有機溶媒を含有していてもよい。このような水溶性有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、t−ブタノール等のアルコール類が好ましい。水溶性有機溶媒の含有量が少ないほど好ましく、ゼロであることが特に好ましい。
水性媒体が、水と水溶性有機溶媒の混合物である場合、水溶性有機溶媒の含有量は、1質量%未満が好ましく、0.1質量%以下がより好ましく、ゼロが最も好ましい。水溶性有機溶媒の含有量がこの範囲であれば、水性分散体(b)中において含フッ素共重合体(f)の凝集が生じ難く、正極合剤に用いたときに良好な結着性が得られやすい。
水性分散体(b)中の水性媒体の成分組成と、正極合剤中の水性媒体の成分組成とは同じでもよく、異なっていてもよい。
[Aqueous dispersion (b) in which fluorine-containing copolymer (f) is dispersed in an aqueous medium]
The aqueous medium in the aqueous dispersion (b) essentially contains water, and may contain a water-soluble organic solvent that can be mixed with water in any proportion in addition to water. As such a water-soluble organic solvent, alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, and t-butanol are preferable. The smaller the content of the water-soluble organic solvent is, the more preferable, and zero is particularly preferable.
When the aqueous medium is a mixture of water and a water-soluble organic solvent, the content of the water-soluble organic solvent is preferably less than 1% by mass, more preferably 0.1% by mass or less, and most preferably zero. When the content of the water-soluble organic solvent is within this range, the fluorinated copolymer (f) hardly aggregates in the aqueous dispersion (b), and good binding properties are obtained when used in the positive electrode mixture. Easy to obtain.
The component composition of the aqueous medium in the aqueous dispersion (b) and the component composition of the aqueous medium in the positive electrode mixture may be the same or different.

水性分散体(b)中における含フッ素共重合体(f)の濃度は、5〜60質量%が好ましく、10〜50質量%がより好ましく、15〜35質量%が特に好ましい。含フッ素共重合体の濃度がこの範囲であれば、水性分散体(b)における含フッ素共重合体(f)の優れた分散安定性が得られやすい。   The concentration of the fluorinated copolymer (f) in the aqueous dispersion (b) is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and particularly preferably 15 to 35% by mass. When the concentration of the fluorinated copolymer is within this range, excellent dispersion stability of the fluorinated copolymer (f) in the aqueous dispersion (b) can be easily obtained.

水性分散体(b)が、水性媒体中に、含フッ素共重合体(f)の粒子およびアニオン性乳化剤を含有するラテックス(乳液)であると、水性分散体(b)の安定性に優れ、該水性分散体(b)を正極合剤に用いた場合に優れた充放電特性が得られるため好ましい。
アニオン性乳化剤としては、公知のものが使用できる。具体例としては、炭化水素系乳化剤(ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等。)、含フッ素アルキルカルボン酸塩(ペルフルオロオクタン酸アンモニウム、ペルフルオロヘキサン酸アンモニウム等。)、下記式(I)で表される化合物(以下、化合物(I)ということもある。)などが挙げられる。
F(CFO(CF(X)CFO)CF(X)COOA ・・・(A)
式中、Xは、フッ素原子または炭素数1〜3のペルフルオロアルキル基を表し、Aは、水素原子、アルカリ金属、またはNHを表し、pは、1〜10の整数を表し、qは、0〜3の整数を表す。
化合物(I)としては、下記の化合物等が挙げられる。
When the aqueous dispersion (b) is a latex (emulsion) containing particles of the fluorinated copolymer (f) and an anionic emulsifier in an aqueous medium, the aqueous dispersion (b) has excellent stability, When this aqueous dispersion (b) is used for a positive electrode mixture, it is preferable because excellent charge / discharge characteristics can be obtained.
Known anionic emulsifiers can be used. Specific examples include hydrocarbon emulsifiers (sodium lauryl sulfate, sodium dodecylbenzenesulfonate, etc.), fluorine-containing alkyl carboxylates (ammonium perfluorooctanoate, ammonium perfluorohexanoate, etc.), represented by the following formula (I). And the like (hereinafter also referred to as compound (I)).
F (CF 2 ) p O (CF (X) CF 2 O) q CF (X) COOA (A)
In the formula, X represents a fluorine atom or a C 1-3 perfluoroalkyl group, A represents a hydrogen atom, an alkali metal, or NH 4 , p represents an integer of 1 to 10, and q represents Represents an integer of 0 to 3;
Examples of compound (I) include the following compounds.

F(CFOCFCFOCFCOONH
F(CFO(CFCFO)CFCOONH
F(CFO(CF(CF)CFO)CF(CF)COONH
F(CFOCFCFOCFCOONH
F(CFO(CFCFO)CFCOONH
F(CFOCFCFOCFCOONH
F(CFO(CFCFO)CFCOONH
F(CFOCF(CF)CFOCF(CF)COONH
F(CFOCFCFOCFCOONa、
F(CFO(CFCFO)CFCOONa、
F(CFOCFCFOCFCOONa、
F(CFO(CFCFO)CFCOONa、
F(CFOCFCFOCFCOONa、
F(CFO(CFCFO)CFCOONa等。
F (CF 2 ) 2 OCF 2 CF 2 OCF 2 COONH 4 ,
F (CF 2 ) 2 O (CF 2 CF 2 O) 2 CF 2 COONH 4 ,
F (CF 2 ) 3 O (CF (CF 3 ) CF 2 O) 2 CF (CF 3 ) COONH 4 ,
F (CF 2 ) 3 OCF 2 CF 2 OCF 2 COONH 4 ,
F (CF 2 ) 3 O (CF 2 CF 2 O) 2 CF 2 COONH 4 ,
F (CF 2 ) 4 OCF 2 CF 2 OCF 2 COONH 4 ,
F (CF 2 ) 4 O (CF 2 CF 2 O) 2 CF 2 COONH 4 ,
F (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 ,
F (CF 2 ) 2 OCF 2 CF 2 OCF 2 COONa,
F (CF 2 ) 2 O (CF 2 CF 2 O) 2 CF 2 COONa,
F (CF 2 ) 3 OCF 2 CF 2 OCF 2 COONa,
F (CF 2 ) 3 O (CF 2 CF 2 O) 2 CF 2 COONa,
F (CF 2 ) 4 OCF 2 CF 2 OCF 2 COONa,
F (CF 2 ) 4 O (CF 2 CF 2 O) 2 CF 2 COONa and the like.

これらのうち、ラテックスの分散安定性により優れることから、ラウリル硫酸ナトリウムが特に好ましい。アニオン性乳化剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
水性分散体(b)におけるアニオン性乳化剤の含有量は、含フッ素共重合体の100質量部に対して、1.5〜5.0質量部が好ましく、1.5〜3.8質量部がより好ましく、1.7〜3.2質量部が特に好ましい。アニオン性乳化剤の含有量がこの範囲であると、水性分散体(b)の安定性に優れ、該水性分散体(b)を正極合剤に用いた場合に優れた充放電特性が得られやすい。
Of these, sodium lauryl sulfate is particularly preferable because of excellent dispersion stability of latex. An anionic emulsifier may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the anionic emulsifier in the aqueous dispersion (b) is preferably 1.5 to 5.0 parts by mass, and 1.5 to 3.8 parts by mass with respect to 100 parts by mass of the fluorinated copolymer. More preferred is 1.7 to 3.2 parts by mass. When the content of the anionic emulsifier is within this range, the stability of the aqueous dispersion (b) is excellent, and excellent charge / discharge characteristics are easily obtained when the aqueous dispersion (b) is used in the positive electrode mixture. .

水性分散体(b)中の含フッ素共重合体(f)が粒子状である場合、その平均粒子径は、上述した正極合剤中の含フッ素共重合体(f)の平均粒子径と同じである。
水性分散体(b)中の含フッ素共重合体(f)の平均粒子径は、重合工程で添加する乳化剤の種類、添加量等、公知の方法で調節することができる。具体的には、乳化剤の添加量を増やすと平均粒子径が小さくなる傾向がある。
When the fluorine-containing copolymer (f) in the aqueous dispersion (b) is in the form of particles, the average particle size is the same as the average particle size of the fluorine-containing copolymer (f) in the positive electrode mixture described above. It is.
The average particle size of the fluorinated copolymer (f) in the aqueous dispersion (b) can be adjusted by known methods such as the type and amount of emulsifier added in the polymerization step. Specifically, when the amount of the emulsifier added is increased, the average particle size tends to decrease.

含フッ素共重合体(f)は、懸濁重合、乳化重合、溶液重合等の公知の方法で製造することができる。重合によって得られた含フッ素重合体(f)は、水などの水性媒体に分散した分散体、または溶媒に溶解した溶液のいずれの状態であってもよい。これらのうち、含フッ素重合体(f)の均一分散性が良好であり、重合で得られた液をそのまま水性分散体(b)として使用することができる点で、水性媒体に分散した分散体の状態であることが好ましく、特に、粒子が水性媒体中に分散したラテックス(乳液)状態であることが好ましい。このようなラテックス状態の含フッ素共重合体(f)は、乳化重合法で含フッ素共重合体(f)を合成することにより、容易に得ることができる。
また、任意の重合で得られた含フッ素共重合体(f)を精製して固体状態とし、該固体を水性媒体に再度分散させた分散体も、本発明における水性分散体(b)として用いることができる。
The fluorine-containing copolymer (f) can be produced by a known method such as suspension polymerization, emulsion polymerization, or solution polymerization. The fluoropolymer (f) obtained by polymerization may be in any state of a dispersion dispersed in an aqueous medium such as water or a solution dissolved in a solvent. Among these, the dispersion dispersed in the aqueous medium in that the homodispersibility of the fluoropolymer (f) is good and the liquid obtained by polymerization can be used as the aqueous dispersion (b) as it is. In particular, a latex (milky emulsion) state in which particles are dispersed in an aqueous medium is preferable. Such a latex-containing fluorine-containing copolymer (f) can be easily obtained by synthesizing the fluorine-containing copolymer (f) by an emulsion polymerization method.
Further, a dispersion obtained by purifying the fluorine-containing copolymer (f) obtained by arbitrary polymerization to a solid state and re-dispersing the solid in an aqueous medium is also used as the aqueous dispersion (b) in the present invention. be able to.

含フッ素共重合体(f)の製造方法として乳化重合法または懸濁重合法を採用する場合には、乳化剤または分散剤を使用してもよい。該乳化剤または分散剤は、通常の乳化重合法、懸濁重合法等で用いられるものを使用することができる。乳化剤または分散剤としては、得られる液(含フッ素共重合体(f)が分散された水性分散体)の機械的および化学的安定性に優れる点から、イオン性乳化剤が好ましく、上述のアニオン性乳化剤がより好ましい。   When employing an emulsion polymerization method or a suspension polymerization method as a method for producing the fluorinated copolymer (f), an emulsifier or a dispersant may be used. As the emulsifier or dispersant, those used in usual emulsion polymerization method, suspension polymerization method and the like can be used. As the emulsifier or dispersant, an ionic emulsifier is preferable from the viewpoint of excellent mechanical and chemical stability of the obtained liquid (an aqueous dispersion in which the fluorinated copolymer (f) is dispersed). An emulsifier is more preferable.

重合で得られた含フッ素共重合体の分散体を、そのまま水性分散体(b)として使用する場合は、乳化剤を乳化重合工程後の含フッ素共重合体の水分散液にさらに加えて添加してもよい。すなわち含フッ素共重合体の乳化重合工程で乳化剤を含有させて、含フッ素共重合体の水分散液を得たのち、さらに乳化剤を追加添加しても好ましい。乳化重合工程後の含フッ素共重合体の水分散液に添加する乳化剤は、乳化重合工程に使用した乳化剤と同じものであってもよいし、別のものであってもよい。   When the dispersion of the fluorinated copolymer obtained by polymerization is used as it is as the aqueous dispersion (b), an emulsifier is further added to the aqueous dispersion of the fluorinated copolymer after the emulsion polymerization step. May be. That is, it is preferable to add an emulsifier after adding an emulsifier in the emulsion polymerization step of the fluorinated copolymer to obtain an aqueous dispersion of the fluorinated copolymer. The emulsifier added to the aqueous dispersion of the fluorinated copolymer after the emulsion polymerization step may be the same as the emulsifier used in the emulsion polymerization step or may be different.

本発明の正極合剤の製造方法において、混合方法や混合順序には特に制限されない。例えば、水溶性増粘剤(c)と水性媒体の混合物(水溶性増粘剤(c)の水溶液)に、正極活物質(a)、必要に応じて導電材等のその他の成分を加え、さらに追加的に水性媒体を加えて混合した後に、含フッ素共重合体(f)を含む水性分散体(b)を添加して混合する方法を用いることができる。
正極合剤のpHを調整する工程は、正極合剤の製造中であればどこで行ってもよいが正極合剤を所定の固形分濃度まで調整した後に、pH調整剤を加えて調整することが好ましい。また、含フッ素共重合体(f)を含む水性分散体(b)や水溶性増粘剤(c)の水溶液に、pH調整剤を予め添加しておいてもよい。
In the method for producing the positive electrode mixture of the present invention, the mixing method and the mixing order are not particularly limited. For example, to the mixture of the water-soluble thickener (c) and the aqueous medium (aqueous solution of the water-soluble thickener (c)), the positive electrode active material (a), and other components such as a conductive material, if necessary, Furthermore, after adding and mixing an aqueous medium additionally, the method of adding and mixing the aqueous dispersion (b) containing a fluorine-containing copolymer (f) can be used.
The step of adjusting the pH of the positive electrode mixture may be performed anywhere during the production of the positive electrode mixture, but after adjusting the positive electrode mixture to a predetermined solid content concentration, it may be adjusted by adding a pH adjuster. preferable. Moreover, you may add the pH adjuster previously to the aqueous dispersion (b) containing a fluorine-containing copolymer (f), or the aqueous solution of a water-soluble thickener (c).

混合する際に使用する混合機としては、上記成分を均一に混合できる装置であれば、特に限定されず、プラネタリーミキサー、ニーダーなどのブレード型攪拌機、単軸または二軸の押出機、ボールミル、ビーズミル、ロールミル、ヘンシェルミキサー、自転・公転式ミキサーなどが使用できる。これらの中でも、高濃度の分散が可能なことから、ビーズミル、プラネタリーミキサー、自転・公転式ミキサーなどが好ましく、特に好ましくは自転・公転式ミキサーである。   The mixer used for mixing is not particularly limited as long as it is an apparatus capable of uniformly mixing the above components, a planetary mixer, a blade type agitator such as a kneader, a single or twin screw extruder, a ball mill, Bead mills, roll mills, Henschel mixers, rotating / revolving mixers, etc. can be used. Among these, a bead mill, a planetary mixer, a rotation / revolution mixer, and the like are preferable because high concentration dispersion is possible, and a rotation / revolution mixer is particularly preferable.

<非水系二次電池用正極の製造方法>
本発明の非水系二次電池用正極の製造方法は、本発明の正極合剤を、金属からなる集電体上に塗布する工程と、前記集電体上に塗布された前記正極合剤を乾燥して水性媒体を除去する工程を有する。
または、本発明の正極合剤の製造方法で得られた正極合剤を、金属からなる集電体上に塗布する工程と、前記集電体上に塗布された前記正極合剤を乾燥して水性媒体を除去する工程を有する。
<Method for producing positive electrode for non-aqueous secondary battery>
The method for producing a positive electrode for a non-aqueous secondary battery according to the present invention comprises a step of applying the positive electrode mixture of the present invention on a current collector made of a metal, and the positive electrode mixture applied on the current collector. Drying to remove the aqueous medium.
Or the process of apply | coating the positive mix obtained with the manufacturing method of the positive mix of this invention on the collector which consists of metals, and drying the said positive mix applied on the said collector Removing the aqueous medium.

集電体としては、導電性材料からなるものであれば特に限定されないが、一般的には、アルミニウム、ニッケル、ステンレススチール、銅等の金属箔、金属網状物、金属多孔体等が挙げられ、特にアルミニウムが好ましい。
集電体の厚さは1〜100μmであることが好ましい。1μm未満では電池の耐久性が不充分で、電池の信頼性が低くなるおそれがある。また、100μmを超えると電池の質量が増加する。
The current collector is not particularly limited as long as it is made of a conductive material, but generally includes metal foils such as aluminum, nickel, stainless steel, copper, metal nets, metal porous bodies, and the like. Aluminum is particularly preferable.
The thickness of the current collector is preferably 1 to 100 μm. If it is less than 1 μm, the durability of the battery is insufficient and the reliability of the battery may be lowered. On the other hand, if it exceeds 100 μm, the mass of the battery increases.

正極合剤を集電体に塗布する方法としては、種々の塗布方法が挙げられる。例えば、ドクターブレードなどの塗布用具により塗布する方法などが挙げられる。塗布温度は、特に制限ないが、通常は常温付近の温度が好ましい。
正極合剤の塗布層の厚さは、乾燥後の厚さで0.5〜2000μmが好ましく、10〜1000μmがより好ましく、50〜500μmが特に好ましい。
As a method for applying the positive electrode mixture to the current collector, various application methods may be mentioned. For example, the method of apply | coating with application tools, such as a doctor blade, etc. are mentioned. The coating temperature is not particularly limited, but usually a temperature around room temperature is preferable.
The thickness of the coating layer of the positive electrode mixture is preferably 0.5 to 2000 μm, more preferably 10 to 1000 μm, and particularly preferably 50 to 500 μm in terms of the thickness after drying.

集電体上に塗布された正極合剤を乾燥する工程は、種々の乾燥機を用いて行うことができる。例えば、温風、熱風などによる加熱乾燥機、加熱式真空乾燥機、遠赤外線や電子線などの照射による乾燥機などが挙げられる。これらのうち、加熱乾燥機または加熱式真空乾燥機が好ましい。
乾燥温度は、高いほど乾燥時間が短くてすみ生産性は向上する。正極合剤が塩基性の高い正極活物質を含む場合には、乾燥温度が高いほど、乾燥時間が長いほど、集電体の腐食が生じやすい傾向がある。
本発明において、乾燥温度は通常室温(例えば25℃)〜200℃が好ましく、特に生産性を高めるために、残存水分が5%未満となるまで50〜150℃、好ましくは70℃〜150℃で加熱乾燥機を用いて乾燥させたのちに、100℃〜200℃で真空乾燥を行うことが好ましい。
乾燥時間は、特に制限されないが、合計で30分以上が好ましく、2時間以上がより好ましい。
The step of drying the positive electrode mixture applied on the current collector can be performed using various dryers. For example, a heat dryer using hot air or hot air, a heating vacuum dryer, a dryer using irradiation with far infrared rays or an electron beam, and the like can be given. Among these, a heat dryer or a heat-type vacuum dryer is preferable.
The higher the drying temperature, the shorter the drying time and the better the productivity. In the case where the positive electrode mixture contains a highly basic positive electrode active material, the higher the drying temperature and the longer the drying time, the more likely the corrosion of the current collector tends to occur.
In the present invention, the drying temperature is usually preferably from room temperature (for example, 25 ° C.) to 200 ° C., and particularly from 50 to 150 ° C., preferably from 70 ° C. to 150 ° C. until the residual moisture becomes less than 5% in order to increase productivity. It is preferable to perform vacuum drying at 100 ° C. to 200 ° C. after drying using a heat dryer.
The drying time is not particularly limited, but is preferably 30 minutes or more in total, and more preferably 2 hours or more.

このようにして正極合剤を塗布し、乾燥して水性媒体を除去した後に、必要に応じてプレスにより所望の厚みに成形してもよい。かかるプレスを行うと電極の空隙率を低くすることができる点で好ましい。
プレス方法としては金型プレスやロールプレスなどを用いて行うことができる。
Thus, after apply | coating a positive mix and drying and removing an aqueous medium, you may shape | mold to desired thickness with a press as needed. Such pressing is preferred in that the porosity of the electrode can be lowered.
As a pressing method, a mold press, a roll press or the like can be used.

本発明の非水系二次電池は、本発明の非水系二次電池用正極を備え、さらに負極、セパレーター、および非水系電解液を備えている。負極としては、通常一般的に使用される負極を使用することができ、リチウム金属や、リチウムアルミニウム合金などのリチウム合金、負極活物質およびバインダーよりなる負極合剤が負極集電体に保持されてなる負極などが挙げられる。
負極活物質の種類は特に限定されないが、例えばコークス、グラファイト、メソフェーズピッチ小球体、フェノール樹脂、ポリパラフェニレン等の高分子の炭化物;気相生成カーボンファイバー、炭素繊維等の炭素質材料;が挙げられる。また、リチウムと合金化可能なSi、Sn、Sb、Al、ZnおよびWなどの金属も挙げられる。電極活物質は、機械的改質法により表面に導電材を付着させたものも使用できる。
The non-aqueous secondary battery of the present invention includes the positive electrode for a non-aqueous secondary battery of the present invention, and further includes a negative electrode, a separator, and a non-aqueous electrolyte solution. As the negative electrode, a commonly used negative electrode can be used, and a negative electrode mixture composed of lithium metal, a lithium alloy such as a lithium aluminum alloy, a negative electrode active material, and a binder is held in a negative electrode current collector. And the negative electrode.
The type of the negative electrode active material is not particularly limited, and examples thereof include high-molecular carbides such as coke, graphite, mesophase pitch spherules, phenol resin, and polyparaphenylene; and carbonaceous materials such as vapor-phase-generated carbon fiber and carbon fiber. It is done. In addition, metals such as Si, Sn, Sb, Al, Zn, and W that can be alloyed with lithium are also included. An electrode active material having a conductive material attached to the surface by a mechanical modification method can also be used.

<非水系二次電池>
本発明の非水系二次電池は、本発明の非水系二次電池用正極の製造方法により製造された二次電池用正極、負極、電解液、およびセパレーターを備えてなる。二次電池の構造は公知の構造を採用することができる。
本発明で得られる非水系二次電池用正極は、円筒形、シート形、角形等いずれの形状の電池にも使用できる。そして、該正極と負極の間にセパレーターを設け、非水系電解液とともにこれらをケースに収容してなる非水系二次電池は、高温においても信頼性が高い。
<Non-aqueous secondary battery>
The non-aqueous secondary battery of this invention is equipped with the positive electrode for secondary batteries manufactured by the manufacturing method of the positive electrode for non-aqueous secondary batteries of this invention, a negative electrode, electrolyte solution, and a separator. A known structure can be adopted as the structure of the secondary battery.
The positive electrode for a non-aqueous secondary battery obtained in the present invention can be used for batteries having any shape such as a cylindrical shape, a sheet shape, and a square shape. A non-aqueous secondary battery in which a separator is provided between the positive electrode and the negative electrode and these are accommodated in a case together with a non-aqueous electrolyte is highly reliable even at high temperatures.

セパレーターとしては、微多孔性の高分子フィルムが用いられ、その材質としては、ナイロン樹脂、ポリエステル樹脂、セルロースアセテート樹脂、ニトロセルロース樹脂、ポリスルホン樹脂、ポリアクリロニトリル樹脂、ポリフッ化ビニリデン樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン−エチレン共重合体樹脂、ポリプロピレン樹脂、ポリエチレン樹脂などが挙げられる。   As the separator, a microporous polymer film is used, and the material is nylon resin, polyester resin, cellulose acetate resin, nitrocellulose resin, polysulfone resin, polyacrylonitrile resin, polyvinylidene fluoride resin, tetrafluoroethylene resin. , Tetrafluoroethylene-ethylene copolymer resin, polypropylene resin, polyethylene resin and the like.

非水系電解液としては、非プロトン性有機溶媒、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、ジエトキシエタン等が挙げられる。また、電解質としては、LiClO、LiBF、LiPF、LiAsF、CFSOLi、(CFSONLi等のリチウム塩が挙げられる。 Examples of the non-aqueous electrolyte include aprotic organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, γ-butyrolactone, and diethoxyethane. Examples of the electrolyte include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 5 , CF 3 SO 3 Li, and (CF 3 SO 2 ) 2 NLi.

本発明によれば、正極活物質のバインダーとして含フッ素共重合体(f)を用い、正極合剤のpHを10未満の特定範囲とすることにより、塩基性の高い電極活物質を含む場合にも集電体の腐食を抑制することができるとともに、正極合剤が増粘し難くて保存安定性に優れ、かつ正極合剤と集電体との密着性、および電池の充放電特性に優れる、正極合剤が得られる。
このように、優れた正極合剤と集電体との密着性、および優れた電池の充放電特性が得られる理由としては、正極合剤による集電体の腐食が抑制されることで、集電体と正極活物質との電気抵抗の増加が抑制できるためと考えられる。また、含フッ素共重合体(f)がpHの変化に対して極めて安定であり、電極合剤の保存安定性が高くなることで、正極中の含フッ素共重合体(f)がより均一に分散するためと考えられる。
According to the present invention, when the fluorine-containing copolymer (f) is used as a binder for the positive electrode active material, and the pH of the positive electrode mixture is set to a specific range of less than 10, a highly basic electrode active material is contained. Can suppress corrosion of the current collector, the positive electrode mixture is hard to thicken, has excellent storage stability, and is excellent in the adhesion between the positive electrode mixture and the current collector and the charge / discharge characteristics of the battery. A positive electrode mixture is obtained.
As described above, the excellent adhesion between the positive electrode mixture and the current collector and the excellent charge / discharge characteristics of the battery can be obtained by suppressing the corrosion of the current collector due to the positive electrode mixture. This is thought to be because an increase in electrical resistance between the electric body and the positive electrode active material can be suppressed. Further, the fluorine-containing copolymer (f) is extremely stable against changes in pH, and the storage stability of the electrode mixture is increased, so that the fluorine-containing copolymer (f) in the positive electrode becomes more uniform. It is thought to be dispersed.

以下に本発明の実施例を説明する。但し、以下に示す実施例は、本発明の例示であって本発明は、これらに限定されるものではない。
実施例および比較例中の測定および評価は以下の方法で行った。
Examples of the present invention will be described below. However, the following examples are illustrative of the present invention and the present invention is not limited thereto.
Measurement and evaluation in Examples and Comparative Examples were performed by the following methods.

(1)正極合剤のpH
得られた正極合剤のpHを、25℃にて東亜ディーケーケー社製pHメーター(製品名:HM−20P)により測定した。
(1) pH of positive electrode mixture
The pH of the obtained positive electrode mixture was measured at 25 ° C. with a pH meter (product name: HM-20P) manufactured by Toa DKK Corporation.

(2)正極合剤の粘度(保存安定性)
得られた正極合剤を円錐平板型回転粘度計(東機産業社製、製品名:RE215H)を用いて、1°34’×R24ローター、回転数:1.0rpmで25℃にて測定を行った。正極合剤の作成直後、25℃にて1日保管、および25℃にて7日間保管後のものについてそれぞれ測定した。作成直後の粘度に比べて保管後の粘度増加が小さいほど、正極合剤の保存安定性が良好である。
(2) Viscosity of positive electrode mixture (storage stability)
The obtained positive electrode mixture was measured at 25 ° C. using a conical plate type rotational viscometer (manufactured by Toki Sangyo Co., Ltd., product name: RE215H) at 1 ° 34 ′ × R24 rotor, rotation speed: 1.0 rpm. went. Immediately after the preparation of the positive electrode mixture, it was measured for one day at 25 ° C. and after 7 days at 25 ° C. The smaller the increase in viscosity after storage compared to the viscosity immediately after creation, the better the storage stability of the positive electrode mixture.

(3)剥離強度(密着性)
集電体上に正極合剤を塗布し乾燥して得られた正極を、幅2cm×長さ10cmの短冊状に切り、正極合剤の塗膜面を上にして固定した。正極合剤の塗膜面にセロハンテープ(商品名、ニチバン社製)を貼り付け、該テープを10mm/minの速度で、塗膜面に対して90℃方向に剥離したときの強度(N)を5回測定し、その平均値を剥離強度とした。この値が大きいほど密着性(結着性)に優れていることを示す。
(3) Peel strength (adhesion)
A positive electrode obtained by applying a positive electrode mixture on a current collector and drying was cut into a strip shape having a width of 2 cm and a length of 10 cm, and fixed with the coating surface of the positive electrode mixture facing up. Cellophane tape (trade name, manufactured by Nichiban Co., Ltd.) is applied to the coating surface of the positive electrode mixture, and the strength (N) when the tape is peeled off at 90 ° C. from the coating surface at a speed of 10 mm / min. Was measured 5 times, and the average value was taken as the peel strength. It shows that it is excellent in adhesiveness (binding property), so that this value is large.

(4)集電体の腐食確認
集電体上に正極合剤を塗布し、乾燥後の正極表面を目視にて観察し集電体の腐食性を判定した。集電体のアルミニウムが正極合剤と接触したときに、正極合剤との界面で水素ガスが生成すると、正極表面に発泡による凹凸が生成する。かかる凹凸が認められないものを「腐食なし」、凹凸が認められるものを「腐食あり」とした。
(4) Confirmation of corrosion of current collector A positive electrode mixture was applied on the current collector, and the surface of the positive electrode after drying was visually observed to determine the corrosivity of the current collector. When aluminum of the current collector comes into contact with the positive electrode mixture, if hydrogen gas is generated at the interface with the positive electrode mixture, irregularities due to foaming are generated on the surface of the positive electrode. The case where such unevenness was not recognized was regarded as “no corrosion”, and the case where unevenness was observed as “corrosion”.

(5)容量保持率(充放電特性)
コイン型非水電解液二次電池について、25℃において、0.5Cに相当する定電流で4.5V(電圧はリチウムに対する電圧を表す)まで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に0.5Cに相当する定電流で3Vまで放電するサイクルを行った。1サイクル目放電時の放電容量に対する、50サイクル目の放電容量の容量維持率(単位:%)を求め、電池の充放電測定の指標とした。容量維持率の値が高いほど優れる。
なお、1Cとは電池の基準容量を1時間で放電する電流値を表し、0.5Cとはその1/2の電流値を表す。
(5) Capacity retention (charge / discharge characteristics)
The coin-type non-aqueous electrolyte secondary battery was charged at a constant current corresponding to 0.5 C at 25 ° C. up to 4.5 V (the voltage represents a voltage with respect to lithium), and further, the current value was 0. Charging was performed until the temperature reached 02C, and thereafter, a cycle of discharging to 3V with a constant current corresponding to 0.5C was performed. The capacity retention rate (unit:%) of the discharge capacity at the 50th cycle relative to the discharge capacity at the time of the first cycle discharge was determined and used as an index for the charge / discharge measurement of the battery. The higher the capacity retention rate, the better.
Note that 1 C represents a current value for discharging the reference capacity of the battery in one hour, and 0.5 C represents a half current value.

[製造例1:含フッ素共重合体(f1)を含む水性分散体(b1)の製造]
撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、1700gのイオン交換水、39gのリン酸水素二ナトリウム12水和物、1.0gの水酸化ナトリウム、9gのラウリル硫酸ナトリウム、4.4gの過硫酸アンモニウムを加えた。
ついで、75℃で、四フッ化エチレン(以下、TFEと記す。)/プロピレン(以下、Pと記す。)=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、重合反応を開始させた。
重合の進行に伴い、反応器内の圧力が低下するので、反応器の内圧が2.49MPaGに降下した時点で、TFE/P=56/44(モル比)の単量体混合ガスを自圧で圧入し、反応器の内圧を2.51MPaGまで昇圧させた。これを繰り返し、反応器の内圧を2.49〜2.51MPaGに保持し、重合反応を続けた。TFE/Pの単量体混合ガスの圧入量の総量が900gとなった時点で、反応器の内温を10℃まで冷却し、重合反応を停止し、含フッ素共重合体(f1)のラテックスである、含フッ素共重合体(f1)を含む水性分散体(b1)を得た。重合時間は8時間であった。
得られた水性分散体(b1)中の固形分は34質量%であり、乳化剤(ラウリル硫酸ナトリウム)の含有量は、含フッ素共重合体の100質量部に対して1.0質量部であった。含フッ素共重合体(f1)からなる微粒子の平均粒子径は80nmであった。
含フッ素共重合体(f1)の共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。含フッ素共重合体(f1)のムーニー粘度は80であった。また水性分散体(b1)における含フッ素共重合体(f1)の濃度は33質量%であった。
[Production Example 1: Production of aqueous dispersion (b1) containing fluorine-containing copolymer (f1)]
After degassing the inside of a 3200 mL stainless steel pressure-resistant reactor equipped with a stirring anchor blade, 1700 g of ion-exchange water, 39 g of disodium hydrogen phosphate 12 hydrate, 0.0 g sodium hydroxide, 9 g sodium lauryl sulfate, 4.4 g ammonium persulfate were added.
Next, at 75 ° C., a monomer mixed gas of ethylene tetrafluoride (hereinafter referred to as TFE) / propylene (hereinafter referred to as P) = 88/12 (molar ratio) was used, and the internal pressure of the reactor was 2 Press-fitted to 50 MPaG. The anchor blade was rotated at 300 rpm to initiate the polymerization reaction.
As the polymerization proceeds, the pressure in the reactor decreases. When the internal pressure of the reactor drops to 2.49 MPaG, the monomer mixed gas of TFE / P = 56/44 (molar ratio) is self-pressured. And the internal pressure of the reactor was increased to 2.51 MPaG. This was repeated, and the internal pressure of the reactor was maintained at 2.49 to 2.51 MPaG, and the polymerization reaction was continued. When the total amount of the TFE / P monomer mixed gas injected reaches 900 g, the internal temperature of the reactor is cooled to 10 ° C., the polymerization reaction is stopped, and the latex of the fluorine-containing copolymer (f1) An aqueous dispersion (b1) containing a fluorinated copolymer (f1) was obtained. The polymerization time was 8 hours.
The solid content in the obtained aqueous dispersion (b1) was 34% by mass, and the content of the emulsifier (sodium lauryl sulfate) was 1.0 part by mass with respect to 100 parts by mass of the fluorinated copolymer. It was. The average particle diameter of the fine particles comprising the fluorinated copolymer (f1) was 80 nm.
The copolymer composition of the fluorinated copolymer (f1) was a repeating unit based on TFE / a repeating unit based on P = 56/44 (molar ratio). The Mooney viscosity of the fluorinated copolymer (f1) was 80. The concentration of the fluorinated copolymer (f1) in the aqueous dispersion (b1) was 33% by mass.

[製造例2:含フッ素共重合体(f2)を含む水性分散体(b2)の製造]
ラウリル硫酸ナトリウムの量を13.5gとした以外は製造例1と同様にして、含フッ素共重合体(f2)を含む水性分散体(b2)を得た。
得られた水性分散体(b2)中の固形分は34質量%であり、乳化剤(ラウリル硫酸ナトリウム)の含有量は、含フッ素共重合体の100質量部に対して1.5質量部であった。含フッ素共重合体(f2)からなる微粒子の平均粒子径は60nmであった。
含フッ素共重合体(f2)の共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。含フッ素共重合体(f2)のムーニー粘度は70であった。また水性分散体(b2)における含フッ素共重合体(f2)の濃度は33質量%であった。
[Production Example 2: Production of aqueous dispersion (b2) containing fluorine-containing copolymer (f2)]
An aqueous dispersion (b2) containing a fluorinated copolymer (f2) was obtained in the same manner as in Production Example 1, except that the amount of sodium lauryl sulfate was 13.5 g.
The solid content in the obtained aqueous dispersion (b2) was 34% by mass, and the content of the emulsifier (sodium lauryl sulfate) was 1.5 parts by mass with respect to 100 parts by mass of the fluorinated copolymer. It was. The average particle size of the fine particles comprising the fluorinated copolymer (f2) was 60 nm.
The copolymer composition of the fluorinated copolymer (f2) was a repeating unit based on TFE / a repeating unit based on P = 56/44 (molar ratio). The Mooney viscosity of the fluorinated copolymer (f2) was 70. The concentration of the fluorinated copolymer (f2) in the aqueous dispersion (b2) was 33% by mass.

[製造例3:含フッ素共重合体(f1)を含む水性分散体(b3)の製造]
製造例1で得られた、含フッ素共重合体(f1)を含む水性分散体(b1)100gに対し、ラウリル硫酸ナトリウムの20質量%水溶液を2.5g添加し攪拌させ、含フッ素共重合体(f1)を含む水性分散体(b3)を得た。
得られた水性分散体(b3)中における乳化剤(ラウリル硫酸ナトリウム)の含有量は、含フッ素共重合体の100質量部に対して2.5質量部であった。また水性分散体(b3)における含フッ素共重合体(f1)の濃度は32質量%であった。
[Production Example 3: Production of aqueous dispersion (b3) containing fluorine-containing copolymer (f1)]
To 100 g of the aqueous dispersion (b1) containing the fluorinated copolymer (f1) obtained in Production Example 1, 2.5 g of a 20% by mass aqueous solution of sodium lauryl sulfate was added and stirred to obtain a fluorinated copolymer. An aqueous dispersion (b3) containing (f1) was obtained.
The content of the emulsifier (sodium lauryl sulfate) in the obtained aqueous dispersion (b3) was 2.5 parts by mass with respect to 100 parts by mass of the fluorinated copolymer. The concentration of the fluorinated copolymer (f1) in the aqueous dispersion (b3) was 32% by mass.

[実施例1]
水溶性増粘剤(c)としてのカルボキシメチルセルロースナトリウムの2質量%水溶液25質量部に、正極活物質として平均粒子径10μmのLiNi0.5Co0.2Mn0.3の95質量部、アセチレンブラックの2.5質量部を混合し、固形分濃度が75質量%となるように水を加えて攪拌した。続いて、製造例1で得られた含フッ素共重合体(f1)を含む水性分散体(b1)を、含フッ素共重合体が2.5質量部となるように加えて均一に攪拌した後、pH調整剤として10質量%の硫酸水溶液を1.8質量部加え、正極合剤1を得た。
正極合剤1のpHは9.7であった。得られた正極合剤1を、表面を粗面化した厚さ15μmのアルミニウム箔(集電体)に、ドクターブレードで乾燥後の厚さが120μmとなるように塗布し、80℃の熱風乾燥機に入れて30分乾燥した。電極中の水分が1%であることを確認した後、150℃の真空乾燥機にて2時間乾燥し、電極(正極1)を得た。乾燥後の電極中の水分は10ppmであった。電極中の水分はカールフィッシャー式水分計を用いて測定した。
[Example 1]
95 parts by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle size of 10 μm as a positive electrode active material in 25 parts by mass of a 2% by mass aqueous solution of sodium carboxymethylcellulose as a water-soluble thickener (c) Then, 2.5 parts by mass of acetylene black was mixed, water was added and stirred so that the solid content concentration became 75% by mass. Subsequently, the aqueous dispersion (b1) containing the fluorinated copolymer (f1) obtained in Production Example 1 was added so that the fluorinated copolymer would be 2.5 parts by mass and uniformly stirred. Then, 1.8 parts by mass of a 10% by mass sulfuric acid aqueous solution was added as a pH adjuster to obtain a positive electrode mixture 1.
The pH of the positive electrode mixture 1 was 9.7. The obtained positive electrode mixture 1 was applied to a 15 μm thick aluminum foil (current collector) with a roughened surface so that the thickness after drying with a doctor blade was 120 μm, and then dried with hot air at 80 ° C. It was put into the machine and dried for 30 minutes. After confirming that the water | moisture content in an electrode was 1%, it dried for 2 hours with the 150 degreeC vacuum dryer, and obtained the electrode (positive electrode 1). The moisture in the electrode after drying was 10 ppm. The moisture in the electrode was measured using a Karl Fischer moisture meter.

得られた正極1を、直径18mmの円形に切り出し、これと同面積のリチウム金属箔、およびポリエチレン製のセパレーターを、リチウム金属箔、セパレーター、正極の順に2016型コインセル内に積層して電池要素を作製し、1M−LiPFのエチルメチルカーボネート−エチレンカーボネート(体積比1:1)の非水電解液を添加し、これを密封することによりコイン型非水電解液二次電池1を製造した。
上記(1)〜(5)について測定・評価を行った。結果を表1に示す。
The obtained positive electrode 1 was cut into a circle having a diameter of 18 mm, and a lithium metal foil having the same area and a polyethylene separator were laminated in a 2016 type coin cell in the order of the lithium metal foil, the separator, and the positive electrode to obtain a battery element. A coin-type nonaqueous electrolyte secondary battery 1 was manufactured by adding a nonaqueous electrolyte solution of ethylmethyl carbonate-ethylene carbonate (volume ratio of 1: 1) of 1M-LiPF 6 and sealing it.
Measurement and evaluation were performed for the above (1) to (5). The results are shown in Table 1.

[実施例2]
製造例1で得られた含フッ素共重合体(f1)を含む水性分散体(b1)に代わって、製造例2で得られた含フッ素共重合体(f2)を含む水性分散体(b2)とした以外は実施例1と同様にして、正極合剤2を得た。正極合剤のpHは9.7であった。以下実施例1と同様にして正極2を作成し、測定・評価を行った。結果を表1に示す。
[Example 2]
Instead of the aqueous dispersion (b1) containing the fluorinated copolymer (f1) obtained in Production Example 1, an aqueous dispersion (b2) containing the fluorinated copolymer (f2) obtained in Production Example 2 A positive electrode mixture 2 was obtained in the same manner as in Example 1 except that. The pH of the positive electrode mixture was 9.7. Thereafter, a positive electrode 2 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[実施例3]
10質量%の硫酸水溶液の添加量を3質量部とした以外は実施例2と同様にして、正極合剤3を得た。正極合剤のpHは8.4であった。以下実施例1と同様にして正極3を作成し、測定・評価を行った。結果を表1に示す。
[Example 3]
A positive electrode mixture 3 was obtained in the same manner as in Example 2 except that the addition amount of the 10% by mass sulfuric acid aqueous solution was changed to 3 parts by mass. The pH of the positive electrode mixture was 8.4. Thereafter, the positive electrode 3 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[実施例4]
10質量%の硫酸水溶液の添加量を7質量部とした以外は実施例2と同様にして、正極合剤4を得た。正極合剤4のpHは6.6であった。以下実施例1と同様にして正極4を作成し、測定・評価を行った。結果を表1に示す。
[Example 4]
A positive electrode mixture 4 was obtained in the same manner as in Example 2 except that the addition amount of the 10% by mass sulfuric acid aqueous solution was changed to 7 parts by mass. The pH of the positive electrode mixture 4 was 6.6. Thereafter, the positive electrode 4 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[実施例5]
pH調整剤として、10質量%の硫酸水溶液に代わって10質量%の無水マレイン酸水溶液を3質量部とした以外は実施例2と同様にして、正極合剤5を得た。正極合剤のpHは9.5であった。以下実施例1と同様にして正極5を作成し、測定・評価を行った。結果を表1に示す。
[Example 5]
A positive electrode mixture 5 was obtained in the same manner as in Example 2 except that 3 parts by mass of a 10% by mass aqueous maleic anhydride solution was used instead of the 10% by mass sulfuric acid aqueous solution as a pH adjuster. The pH of the positive electrode mixture was 9.5. Thereafter, the positive electrode 5 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[実施例6]
製造例1で得られた含フッ素共重合体(f1)を含む水性分散体(b1)に代わって、製造例3で得られた含フッ素共重合体(f1)を含む水性分散体(b3)とした以外は実施例1と同様にして、正極合剤6を得た。正極合剤のpHは9.8であった。以下実施例1と同様にして正極6を作成し、測定・評価を行った。結果を表1に示す。
[Example 6]
Instead of the aqueous dispersion (b1) containing the fluorinated copolymer (f1) obtained in Production Example 1, an aqueous dispersion (b3) containing the fluorinated copolymer (f1) obtained in Production Example 3 A positive electrode mixture 6 was obtained in the same manner as in Example 1 except that. The pH of the positive electrode mixture was 9.8. Thereafter, a positive electrode 6 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[実施例7]
正極活物質としてLiNi0.5Co0.2Mn0.3に代わって、平均粒子径10μmのLiMnを使用し、10質量%の硫酸水溶液を添加しなかった以外は実施例2と同様にして、正極合剤7を得た。正極合剤7のpHは7.0であった。以下実施例1と同様にして正極7を作成し、測定・評価を行った。結果を表1に示す。
[Example 7]
Example except that LiMn 2 O 4 having an average particle diameter of 10 μm was used in place of LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material, and no 10 mass% sulfuric acid aqueous solution was added. In the same manner as in Example 2, a positive electrode mixture 7 was obtained. The pH of the positive electrode mixture 7 was 7.0. Thereafter, a positive electrode 7 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[比較例1]
10%質量の硫酸水溶液を0.9質量部とした以外は実施例2と同様にして、正極合剤8を得た。正極合剤8のpHは10.5であった。以下実施例1と同様にして正極8を作成し、測定・評価を行った。結果を表1に示す。
[Comparative Example 1]
A positive electrode mixture 8 was obtained in the same manner as in Example 2 except that the 10% by mass sulfuric acid aqueous solution was changed to 0.9 parts by mass. The pH of the positive electrode mixture 8 was 10.5. Thereafter, a positive electrode 8 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[比較例2]
10質量%の硫酸水溶液を10質量部とした以外は実施例2と同様にして、正極合剤9を得た。正極合剤9のpHは5.5であった。以下実施例1と同様にして正極9を作成し、測定・評価を行った。結果を表1に示す。
[Comparative Example 2]
A positive electrode mixture 9 was obtained in the same manner as in Example 2 except that 10 parts by mass of a 10% by mass sulfuric acid aqueous solution was used. The pH of the positive electrode mixture 9 was 5.5. Thereafter, a positive electrode 9 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[比較例3]
製造例2で得られた含フッ素共重合体(f2)を含む水性分散液(b2)に代わって、アクリロニトリル−2エチルヘキシルアクリレートからなるアクリルゴムのラテックス(固形分40質量%)を用いる以外は実施例3と同様にして、正極合剤10を得た。正極合剤10のpHは8.2であった。以下実施例1と同様にして正極10を作成し、測定・評価を行った。結果を表1に示す。
正極合剤10は、粘度上昇が著しく、ラテックスの凝集とみられる重合体の凝集が目視で観測された。保管1日後以降の粘度は測定できなかった。
[Comparative Example 3]
Instead of the aqueous dispersion (b2) containing the fluorinated copolymer (f2) obtained in Production Example 2, an acrylic rubber latex composed of acrylonitrile-2-ethylhexyl acrylate (solid content: 40% by mass) was used. In the same manner as in Example 3, a positive electrode mixture 10 was obtained. The pH of the positive electrode mixture 10 was 8.2. Thereafter, a positive electrode 10 was prepared in the same manner as in Example 1, and measurement and evaluation were performed. The results are shown in Table 1.
In the positive electrode mixture 10, the viscosity was remarkably increased, and the aggregation of the polymer, which was considered to be the aggregation of latex, was visually observed. The viscosity after 1 day of storage could not be measured.

[比較例4]
製造例2で得られた含フッ素共重合体(f2)を含む水性分散液(b2)に代わって、固形分50質量%のポリテトラフルオロエチレン水性分散液を加えた以外は、実施例4と同様にして、正極合剤11を得た。正極合剤11のpHは6.4であった。以下実施例1と同様にして正極11を作成し、測定・評価を行った。結果を表1に示す。
[Comparative Example 4]
Example 4 and Example 4 were added except that a polytetrafluoroethylene aqueous dispersion having a solid content of 50% by mass was added instead of the aqueous dispersion (b2) containing the fluorinated copolymer (f2) obtained in Production Example 2. Similarly, the positive electrode mixture 11 was obtained. The pH of the positive electrode mixture 11 was 6.4. Thereafter, a positive electrode 11 was prepared in the same manner as in Example 1, and measurement and evaluation were performed. The results are shown in Table 1.

[比較例5]
製造例2で得られた含フッ素共重合体(f2)を含む水性分散液(b2)に代わって、アクリロニトリル−2エチルヘキシルアクリレートからなるアクリルゴムのラテックス(固形分40質量%)を用いる以外は実施例5と同様にして、正極合剤12を得た。正極合剤12のpHは9.5であった。以下実施例1と同様にして正極12を作成し、測定・評価を行った。結果を表1に示す。
[Comparative Example 5]
Instead of the aqueous dispersion (b2) containing the fluorinated copolymer (f2) obtained in Production Example 2, an acrylic rubber latex composed of acrylonitrile-2-ethylhexyl acrylate (solid content: 40% by mass) was used. In the same manner as in Example 5, a positive electrode mixture 12 was obtained. The pH of the positive electrode mixture 12 was 9.5. Thereafter, a positive electrode 12 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

[比較例6]
10質量%の硫酸水溶液を添加しなかった以外は実施例2と同様にして、正極合剤13を得た。正極合剤13のpHは11.8であった。以下実施例1と同様にして正極13を作成し、測定・評価を行った。結果を表1に示す。
[Comparative Example 6]
A positive electrode mixture 13 was obtained in the same manner as in Example 2 except that 10% by mass sulfuric acid aqueous solution was not added. The pH of the positive electrode mixture 13 was 11.8. Thereafter, a positive electrode 13 was prepared in the same manner as in Example 1 and measured and evaluated. The results are shown in Table 1.

Figure 2013178926
Figure 2013178926

表1の結果に示されるように、バインダーとして、本発明にかかる含フッ素共重合体(f)を用い、集電体に塗布する非水系二次電池用正極合剤のpHを6〜10とした実施例1〜7では、正極合剤の保存安定性に優れ、比較的高い乾燥温度においても集電体が腐食せず、かつ密着性に優れる電極を得ることができ、非水系二次電池として良好な充放電特性が得られる。
また実施例1と実施例3を比べると、含フッ素共重合体(f1)を含む水性分散体(b3)中における乳化剤(ラウリル硫酸ナトリウム)の含有量が多い実施例3の方が、正極合剤の保存安定性、密着性および充放電特性において、より優れる。
As shown in the results of Table 1, as a binder, the fluorine-containing copolymer (f) according to the present invention was used, and the pH of the positive electrode mixture for non-aqueous secondary batteries applied to the current collector was 6-10. In Examples 1 to 7, it is possible to obtain an electrode that is excellent in storage stability of the positive electrode mixture, does not corrode the current collector even at a relatively high drying temperature, and has excellent adhesion, and is a non-aqueous secondary battery. As a result, good charge / discharge characteristics can be obtained.
Further, when Example 1 and Example 3 are compared, Example 3 in which the content of the emulsifier (sodium lauryl sulfate) in the aqueous dispersion (b3) containing the fluorine-containing copolymer (f1) is larger is higher in the positive electrode composite. Excellent in storage stability, adhesion and charge / discharge characteristics of the agent.

一方、バインダーとして本発明にかかる含フッ素共重合体(f)を用いても、pHが10を超える正極合剤(比較例1、6)は、集電体の腐食が認められ、得られる電極は密着性に乏しく、電池の充放電特性も劣る。また正極合剤の保存中に粘度が低下する傾向があり、7日保管後の粘度が他の例に比べて低い。
また、バインダーとして本発明にかかる含フッ素共重合体(f)を用いても、pHが6より小さい正極合剤(比較例2)は、集電体の腐食、電極の密着性は優れているが、電池の充放電特性に劣る。これは酸の添加量が過剰であったため、正極活物質が劣化したものと考えられる。
On the other hand, even when the fluorine-containing copolymer (f) according to the present invention is used as a binder, the positive electrode mixture (Comparative Examples 1 and 6) having a pH exceeding 10 shows corrosion of the current collector, and the resulting electrode. Has poor adhesion, and the charge / discharge characteristics of the battery are also poor. Moreover, there exists a tendency for a viscosity to fall during preservation | save of a positive mix, and the viscosity after 7-day storage is low compared with another example.
Further, even when the fluorine-containing copolymer (f) according to the present invention is used as a binder, the positive electrode mixture having a pH lower than 6 (Comparative Example 2) has excellent current collector corrosion and electrode adhesion. However, it is inferior to the charging / discharging characteristic of a battery. This is presumably because the positive electrode active material was deteriorated because the amount of acid added was excessive.

バインダーとして、本発明にかかる含フッ素共重合体(f)を用いず、その代わりにアクリルゴムを用いた比較例3、5、ポリテトラフルオロエチレンを用いた比較例4では、正極合剤のpHを実施例3〜5とそれぞれ同程度に調整にしたところ、かえって正極合剤の安定性が著しく低下し、電極の密着性、電池の充放電特性に劣る結果であった。
比較例3〜5において電極の密着性および電池の充放電特性が劣るのは、アクリルゴム(比較例3、5)またはポリテトラフルオロエチレン(比較例4)の分散安定性が経時的に悪化し、正極中のアクリルゴムおよびポリテトラフルオロエチレンが偏在しやすくなったためと考えられる。
In Comparative Examples 3 and 5 using acrylic rubber instead of the fluorine-containing copolymer (f) according to the present invention as a binder, and Comparative Example 4 using polytetrafluoroethylene, the pH of the positive electrode mixture As a result, the stability of the positive electrode mixture was significantly lowered, resulting in poor electrode adhesion and battery charge / discharge characteristics.
In Comparative Examples 3 to 5, the electrode adhesion and the charge / discharge characteristics of the battery are inferior because the dispersion stability of acrylic rubber (Comparative Examples 3 and 5) or polytetrafluoroethylene (Comparative Example 4) deteriorates over time. This is probably because the acrylic rubber and polytetrafluoroethylene in the positive electrode are likely to be unevenly distributed.

Claims (8)

正極活物質(a)、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する含フッ素共重合体(f)、水溶性増粘剤(c)、および水性媒体を含み、pHが6以上10未満であることを特徴とする、非水系二次電池用正極合剤。   A positive electrode active material (a), a fluorine-containing copolymer (f) having a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene, a water-soluble thickener (c), and an aqueous medium, and having a pH of 6 or more A positive electrode mixture for a non-aqueous secondary battery, wherein the positive electrode mixture is less than 10. 更にpH調整剤を含む、請求項1記載の非水系二次電池用正極合剤。   Furthermore, the positive mix for non-aqueous secondary batteries of Claim 1 containing a pH adjuster. 前記正極活物質が、下記式(1)で表わされるリチウムニッケル複合酸化物(X)、および式(2)で表わされるリチウムニッケルコバルト複合酸化物(Y)からなる群から選ばれる1種以上である、請求項1または2に記載の非水系二次電池用正極合剤。
LiNi(1−x) ・・・(1)
(式中、MはAl、B、Sn、MnおよびNbからなる群から選ばれる少なくとも1種であり、xは0.1≦x≦1である。)
LiNiCo(1−x―y) ・・・(2)
(式中、MはAl、B、Sn、MnおよびNbからなる群から選ばれる少なくとも1種であり、xは0.1≦x≦0.9、yは0.1≦y≦0.9である。)
The positive electrode active material is at least one selected from the group consisting of a lithium nickel composite oxide (X) represented by the following formula (1) and a lithium nickel cobalt composite oxide (Y) represented by the formula (2) The positive electrode mixture for non-aqueous secondary batteries according to claim 1 or 2.
LiNi x M (1-x) O 2 (1)
(In the formula, M is at least one selected from the group consisting of Al, B, Sn, Mn and Nb, and x is 0.1 ≦ x ≦ 1.)
LiNi x Co y M (1-xy) O 2 (2)
(In the formula, M is at least one selected from the group consisting of Al, B, Sn, Mn and Nb, x is 0.1 ≦ x ≦ 0.9, and y is 0.1 ≦ y ≦ 0.9. .)
請求項1〜3のいずれか一項に記載の非水系二次電池用正極合剤を製造する方法であって、
正極活物質(a)、テトラフルオロエチレンに基づく重合単位およびプロピレンに基づく重合単位を有する含フッ素共重合体(f)が水性媒体中に分散された水性分散体(b)、および水溶性増粘剤(c)を混合する工程を有し、
前記水性分散体(b)中の水性媒体が、水単独、または水と水溶性有機溶剤とからなる混合物であり、該混合物における水溶性有機溶剤の含有量が、水100質量部に対して1質量部未満である、非水系二次電池用正極合剤の製造方法。
A method for producing a positive electrode mixture for a non-aqueous secondary battery according to any one of claims 1 to 3,
A positive electrode active material (a), an aqueous dispersion (b) in which a fluorine-containing copolymer (f) having a polymer unit based on tetrafluoroethylene and a polymer unit based on propylene is dispersed in an aqueous medium, and water-soluble thickening Mixing the agent (c),
The aqueous medium in the aqueous dispersion (b) is water alone or a mixture comprising water and a water-soluble organic solvent, and the content of the water-soluble organic solvent in the mixture is 1 with respect to 100 parts by mass of water. The manufacturing method of the positive mix for nonaqueous secondary batteries which is less than a mass part.
前記含フッ素共重合体を含む水性分散体(b)が、水性媒体中に、前記含フッ素共重合体(f)の粒子、およびアニオン性乳化剤を含有し、前記アニオン性乳化剤の含有量が、前記含フッ素共重合体(f)の100質量部に対して、1.5〜5.0質量部である、請求項4に記載の非水系二次電池用正極合剤の製造方法。   The aqueous dispersion (b) containing the fluorinated copolymer contains particles of the fluorinated copolymer (f) and an anionic emulsifier in an aqueous medium, and the content of the anionic emulsifier is The manufacturing method of the positive mix for non-aqueous secondary batteries of Claim 4 which is 1.5-5.0 mass parts with respect to 100 mass parts of the said fluorocopolymer (f). 請求項1〜3のいずれか一項に記載の非水系二次電池用正極合剤を、金属からなる集電体上に塗布する工程と、前記集電体上に塗布された前記非水系二次電池用正極合剤を乾燥して水性媒体を除去する工程を有する、非水系二次電池用正極の製造方法。   The process of apply | coating the positive mix for non-aqueous secondary batteries as described in any one of Claims 1-3 on the electrical power collector which consists of metals, The said non-aqueous secondary apply | coated on the said electrical power collector The manufacturing method of the positive electrode for non-aqueous secondary batteries which has the process of drying the positive electrode mixture for secondary batteries, and removing an aqueous medium. 請求項4または5に記載の製造方法で非水系二次電池用正極合剤を製造する工程と、
得られた非水系二次電池用正極合剤を、金属からなる集電体上に塗布する工程と、
前記集電体上に塗布された前記非水系二次電池用正極合剤を乾燥して水性媒体を除去する工程を有する、非水系二次電池用正極の製造方法。
A step of producing a positive electrode mixture for a non-aqueous secondary battery by the production method according to claim 4,
Applying the obtained positive electrode mixture for a non-aqueous secondary battery onto a current collector made of metal;
The manufacturing method of the positive electrode for non-aqueous secondary batteries which has the process of drying the said positive electrode mixture for non-aqueous secondary batteries apply | coated on the said electrical power collector, and removing an aqueous medium.
請求項6または7のいずれか一項に記載された製造方法により製造された二次電池用正極、負極、電解液、およびセパレーターを備えてなる非水系二次電池。   A non-aqueous secondary battery comprising a positive electrode for a secondary battery, a negative electrode, an electrolytic solution, and a separator manufactured by the manufacturing method according to claim 6.
JP2012041749A 2012-02-28 2012-02-28 Positive electrode mixture for nonaqueous secondary battery Pending JP2013178926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041749A JP2013178926A (en) 2012-02-28 2012-02-28 Positive electrode mixture for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041749A JP2013178926A (en) 2012-02-28 2012-02-28 Positive electrode mixture for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2013178926A true JP2013178926A (en) 2013-09-09

Family

ID=49270391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041749A Pending JP2013178926A (en) 2012-02-28 2012-02-28 Positive electrode mixture for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2013178926A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046172A1 (en) * 2013-09-24 2015-04-02 旭硝子株式会社 Non-aqueous electrolyte secondary battery
WO2015146649A1 (en) * 2014-03-24 2015-10-01 昭和電工株式会社 Slurry for positive electrode of lithium ion secondary cell, positive electrode obtained using said slurry, method for manufacturing said positive electrode, lithium ion secondary cell formed using said positive electrode, and method for manufacturing said cell
JP2016184528A (en) * 2015-03-26 2016-10-20 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP2017073331A (en) * 2015-10-09 2017-04-13 株式会社デンソー Secondary battery device
WO2020248679A1 (en) * 2019-06-13 2020-12-17 Greenovelty Energy Co. Limited Cathode slurry for secondary battery
JP2023501070A (en) * 2020-05-18 2023-01-18 蜂巣能源科技股▲ふん▼有限公司 Cobalt-free system, cathode slurry, homogenization method and use thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046172A1 (en) * 2013-09-24 2015-04-02 旭硝子株式会社 Non-aqueous electrolyte secondary battery
JPWO2015046172A1 (en) * 2013-09-24 2017-03-09 旭硝子株式会社 Non-aqueous electrolyte secondary battery
WO2015146649A1 (en) * 2014-03-24 2015-10-01 昭和電工株式会社 Slurry for positive electrode of lithium ion secondary cell, positive electrode obtained using said slurry, method for manufacturing said positive electrode, lithium ion secondary cell formed using said positive electrode, and method for manufacturing said cell
CN105940530A (en) * 2014-03-24 2016-09-14 昭和电工株式会社 Slurry for positive electrode of lithium ion secondary battery, positive electrode obtained using the same and method for producing the same, lithium ion secondary battery obtained using the positive electrode and method for producing the same
JPWO2015146649A1 (en) * 2014-03-24 2017-04-13 昭和電工株式会社 Slurry for positive electrode of lithium ion secondary battery, positive electrode obtained using this slurry and method for producing the same, lithium ion secondary battery comprising this positive electrode and method for producing the same
CN105940530B (en) * 2014-03-24 2019-03-08 昭和电工株式会社 Slurry for positive electrode of lithium ion secondary battery, positive electrode obtained by using the slurry, and manufacturing method thereof, lithium ion secondary battery obtained by using the positive electrode, and manufacturing method thereof
JP2016184528A (en) * 2015-03-26 2016-10-20 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP2017073331A (en) * 2015-10-09 2017-04-13 株式会社デンソー Secondary battery device
WO2020248679A1 (en) * 2019-06-13 2020-12-17 Greenovelty Energy Co. Limited Cathode slurry for secondary battery
CN114365307A (en) * 2019-06-13 2022-04-15 坚能创智有限公司 Method for preparing cathode of secondary battery
CN114365307B (en) * 2019-06-13 2023-10-13 坚能创智有限公司 Method for preparing cathode of secondary battery
JP2023501070A (en) * 2020-05-18 2023-01-18 蜂巣能源科技股▲ふん▼有限公司 Cobalt-free system, cathode slurry, homogenization method and use thereof

Similar Documents

Publication Publication Date Title
TWI753208B (en) Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery, and secondary battery
JP5733314B2 (en) Positive electrode mixture for non-aqueous secondary battery, positive electrode for non-aqueous secondary battery and secondary battery using the same
TWI843868B (en) Composition for electrochemical device, positive electrode compound, positive electrode structure and secondary battery
JP5761197B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, secondary battery, and method for producing secondary battery negative electrode binder composition
JP5637142B2 (en) Binder composition for secondary battery, electrode mixture for secondary battery using the same, and secondary battery
CN103391951B (en) The manufacture method of fluorinated copolymer latex, fluorinated copolymer latex, electrode manufacture binding agent, electrode for power storage device mixture and electrode for power storage device
WO2010008058A1 (en) Anode composite for nonaqueous electrolyte cell
JP2011076981A (en) Manufacturing method of secondary battery positive electrode, slurry for secondary battery positive electrode, and secondary battery
JP2013178926A (en) Positive electrode mixture for nonaqueous secondary battery
WO2015151529A1 (en) Slurry for positive electrode of lithium ion secondary cell, production method for slurry for positive electrode of lithium ion secondary cell, production method for positive electrode of lithium ion secondary cell, and lithium ion secondary cell
US20150188140A1 (en) Method for producing binder composition for storage battery device
CN103650222A (en) Adhesives for electrical storage devices
US9490484B2 (en) Binder for storage battery device
WO2012043763A1 (en) Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
JP6582879B2 (en) Electroconductive element conductive composition, electrochemical element electrode composition, current collector with adhesive layer, and electrochemical element electrode
JP2016143552A (en) Power storage device composition, power storage device electrode slurry, power storage device electrode, and power storage device
WO2025150529A1 (en) Binder for secondary battery, electrode mixture, electrode, and non-aqueous electrolyte secondary battery