[go: up one dir, main page]

JP2013247150A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2013247150A
JP2013247150A JP2012117828A JP2012117828A JP2013247150A JP 2013247150 A JP2013247150 A JP 2013247150A JP 2012117828 A JP2012117828 A JP 2012117828A JP 2012117828 A JP2012117828 A JP 2012117828A JP 2013247150 A JP2013247150 A JP 2013247150A
Authority
JP
Japan
Prior art keywords
shower plate
plasma
gas
hole
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012117828A
Other languages
Japanese (ja)
Inventor
Satoshi Ikeda
智 池田
Hideo Takei
日出夫 竹井
Muneyuki Sato
宗之 佐藤
Yosuke Sakao
洋介 坂尾
Fumito Otake
文人 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012117828A priority Critical patent/JP2013247150A/en
Publication of JP2013247150A publication Critical patent/JP2013247150A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma processing apparatus of high productivity which can prevent sneaking of plasma through a through-hole reliably, even when a through-hole of small diameter is provided in a thick shower plate.SOLUTION: A dry etching device EM includes gas introduction means 5 for introducing gas into a processing chamber C1, and plasma generation means 3 for generating plasma in a vacuum processing chamber by exciting the gas thus introduced. The gas introduction means includes a metallic shower plate 4 disposed to face the processing surface of a processed object S in the processing chamber. When the direction toward the shower plate from the processed object is the upper direction, and the direction toward the processed object from the shower plate is the lower direction, a plurality of through-holes 41 penetrating in the vertical direction are provided in the shower plate, and a cylindrical insulating member 42 is inserted into each through-hole.

Description

本発明は、大面積の処理対象物にエッチング等のプラズマ処理を施すためのプラズマ処理装置に関し、より詳しくは、結晶系太陽電池の製造工程において、シリコン基板に対し、その表面に高い光散乱封じ込め効果を発揮するテクスチャー構造を付与するために好適に用いられるドライエッチング装置に関する。   The present invention relates to a plasma processing apparatus for performing plasma processing such as etching on an object to be processed in a large area, and more particularly, in a manufacturing process of a crystalline solar cell, high light scattering containment on the surface of a silicon substrate. The present invention relates to a dry etching apparatus suitably used for imparting a texture structure that exhibits an effect.

単結晶や多結晶のシリコン基板を用いた結晶系太陽電池において、シリコン基板表面に、ドライエッチングにより凹凸形状を形成して粗面化する(テクスチャー構造を付与する)ことで、シリコン基板表面に入射した光の反射を低減させて光電変換効率の向上を図ることが従来から進められている。   In a crystalline solar cell using a single crystal or polycrystalline silicon substrate, the surface of the silicon substrate is roughened by forming an uneven shape by dry etching (providing a texture structure), and incident on the silicon substrate surface. In the past, it has been attempted to improve the photoelectric conversion efficiency by reducing the reflected light.

このようなテクスチャー構造を付与するドライエッチング装置は、例えば特許文献1で知られている。この装置は、真空処理室内でシリコン基板を保持するステージと、ステージで保持されるシリコン基板に対向配置され、上下方向に貫通する複数個の透孔を有する金属製のシャワープレートと、ステージに高周波電力を投入する高周波電源とを備える。そして、シャワープレートの各透孔を通してシリコン基板に向けて均一にエッチングガスを供給し、ステージに高周波電力を投入することにより、真空処理室内にプラズマが形成され、プラズマ中の活性種やイオン種をシリコン基板表面に入射させてエッチングが進行する。このとき、基板表面に堆積したシリコン酸化物を含むハイドロカーボン(炭化水素)系の高分子膜がマスクの役割を果たすことで、シリコン基板表面が凹凸形状にエッチングされて粗面化され、テクスチャー構造が付与される。   A dry etching apparatus that imparts such a texture structure is known from Patent Document 1, for example. This apparatus includes a stage that holds a silicon substrate in a vacuum processing chamber, a metal shower plate that is disposed opposite to the silicon substrate held by the stage and has a plurality of through holes that penetrate vertically, and a high frequency applied to the stage. And a high frequency power source for supplying power. Then, an etching gas is uniformly supplied to the silicon substrate through each through hole of the shower plate, and a high frequency power is supplied to the stage, so that plasma is formed in the vacuum processing chamber, and active species and ion species in the plasma are changed. Etching proceeds by being incident on the surface of the silicon substrate. At this time, the hydrocarbon (hydrocarbon) polymer film containing silicon oxide deposited on the surface of the substrate serves as a mask, so that the surface of the silicon substrate is etched and roughened to form a texture structure. Is granted.

エッチング時に、真空処理室内の圧力等の条件によっては、シャワープレートの透孔を通してプラズマが回り込む場合がある。このようにプラズマが回り込むと、異常放電が発生するだけでなく、透孔の内面がエッチングされたり、または、成膜されたりして、透孔の孔径が変化する。その結果、各透孔から噴出されるガスの流量が不均一になり、基板全面に亘って所望のテクスチャー構造が形成されない。そこで、このようなシャワープレートの各透孔へのプラズマの回り込みを防ぐには、透孔の孔径を小さくすることが有効であると考えられる。   At the time of etching, depending on conditions such as pressure in the vacuum processing chamber, plasma may circulate through the through holes of the shower plate. When plasma circulates in this way, not only abnormal discharge occurs, but also the inner surface of the through hole is etched or film-formed, and the hole diameter of the through hole changes. As a result, the flow rate of the gas ejected from each through hole becomes non-uniform, and a desired texture structure is not formed over the entire surface of the substrate. Therefore, in order to prevent the plasma from flowing into each through hole of the shower plate, it is considered effective to reduce the diameter of the through hole.

ところで、近年、生産性向上のため、大面積のシリコン基板が用いられるようになっており、シャワープレートも大面積化している。これに対応させて、大面積のシャワープレートはその自重により反りが生じ易いことから、シャワープレートを厚く(例えば20mm程度)して強度を高めることが一般である。然し、厚いシャワープレートに小径の透孔を開設すると、その透孔は細長(高アスペクト比)のものとなるため、透孔の内周面全体に亘って絶縁膜を形成することは事実上できず、シャワープレートの母材である金属が露出した状態となる。そして、このシャワープレートを用いてプラズマを発生させると、露出した金属が帯電し、プラズマの回り込みを誘発してしまうという不具合が発生する。   By the way, in recent years, a silicon substrate having a large area has been used in order to improve productivity, and a shower plate has also been enlarged. Correspondingly, since a large-area shower plate tends to warp due to its own weight, it is common to increase the strength by increasing the thickness of the shower plate (for example, about 20 mm). However, when a small-diameter through-hole is opened in a thick shower plate, the through-hole becomes elongated (high aspect ratio), so it is virtually impossible to form an insulating film over the entire inner peripheral surface of the through-hole. First, the metal that is the base material of the shower plate is exposed. When plasma is generated using this shower plate, the exposed metal is charged, causing a problem that plasma wraparound is induced.

尚、プラズマの回り込みを防止するために、ステージに投入する高周波電力を小さくすることが考えられるが、これでは、エッチングレートが遅くなり生産性の低下を招来する。   In order to prevent the plasma from wrapping around, it is conceivable to reduce the high-frequency power input to the stage. However, this slows the etching rate and causes a decrease in productivity.

特開2011−35262号公報JP 2011-35262 A

本発明は、以上の点に鑑み、厚いシャワープレートに小径の透孔が設けられる場合でも、透孔を通したプラズマの回り込みを確実に防止できる生産性の高いプラズマ処理装置を提供することをその課題とする。   In view of the above points, the present invention provides a highly productive plasma processing apparatus capable of reliably preventing the plasma from passing through a through-hole even when a small-diameter through-hole is provided in a thick shower plate. Let it be an issue.

上記課題を解決するために、本発明は、真空処理室内にガスを導入するガス導入手段と、このガス導入手段により導入されたガスを励起して真空処理室内にプラズマを発生させるプラズマ発生手段とを備えるプラズマ処理装置において、前記ガス導入手段は、真空処理室内で保持される処理対象物に対向配置される金属製のシャワープレートを備え、処理対象物からシャワープレートに向かう方向を上、シャワープレートから処理対象物に向かう方向を下とし、このシャワープレートに上下方向に貫通する複数個の透孔が設けられ、各透孔に筒状の絶縁性部材が嵌挿されることを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a gas introducing means for introducing a gas into the vacuum processing chamber, and a plasma generating means for generating a plasma in the vacuum processing chamber by exciting the gas introduced by the gas introducing means. In the plasma processing apparatus, the gas introducing means includes a metal shower plate disposed opposite to the processing object held in the vacuum processing chamber, and the shower plate is arranged in a direction upward from the processing object toward the shower plate. The shower plate is provided with a plurality of through holes penetrating in the vertical direction, and a cylindrical insulating member is fitted into each through hole.

本発明によれば、処理対象物をシリコン基板とし、このシリコン基板をエッチングしてテクスチャー構造を付与する場合を例に説明すると、真空処理室内でシリコン基板を位置決め保持し、ガス導入手段により真空処理室内にエッチングガスを導入する。このとき、金属製のシャワープレートに設けられた複数個の透孔からシリコン基板に向けて均一にエッチングガスが供給される。エッチングガスとしては、例えば、SF等のフッ素含有ガスとClやHBr等のハロゲン含有ガスと酸素ガスとの混合ガスを用いることができる。そして、プラズマ発生手段を基板保持用のステージに接続された高周波電源とし、この高周波電源からステージに高周波電力を投入すると、上記エッチングガスが励起して真空処理室内にプラズマが発生し、プラズマ中の活性種やイオン種がシリコン基板表面に入射してエッチングが進行する。このとき、シリコン基板表面にシリコン酸化物を含む高分子膜が堆積し、この堆積した高分子膜がマスクの役割を果たすことで、シリコン基板表面が凹凸形状にエッチングされて粗面化され、テクスチャー構造が付与される。 According to the present invention, the case where a processing target is a silicon substrate and this silicon substrate is etched to give a texture structure will be described as an example. The silicon substrate is positioned and held in a vacuum processing chamber, and vacuum processing is performed by a gas introducing means. An etching gas is introduced into the room. At this time, the etching gas is uniformly supplied toward the silicon substrate from a plurality of through holes provided in the metal shower plate. As the etching gas, for example, a mixed gas of fluorine-containing gas such as SF 6 , halogen-containing gas such as Cl 2 or HBr, and oxygen gas can be used. Then, the plasma generating means is a high frequency power source connected to the stage for holding the substrate, and when the high frequency power is supplied from the high frequency power source to the stage, the etching gas is excited to generate plasma in the vacuum processing chamber. Active species and ion species enter the surface of the silicon substrate and etching proceeds. At this time, a polymer film containing silicon oxide is deposited on the surface of the silicon substrate, and the deposited polymer film serves as a mask, so that the silicon substrate surface is etched into a concavo-convex shape to be roughened and textured. Structure is given.

このように発生したプラズマが透孔を通して回り込むと、異常放電が生じるだけでなく、透孔の孔径が変化するため、シリコン基板に対して均一にエッチングガスを供給できず、これでは、エッチングを精度良く行うことができず、所望のテクスチャー構造が得られない。本発明では、シャワープレートの各透孔に筒状の例えばアルミナで構成される絶縁性部材が嵌挿されるため、この絶縁性部材の内径を例えば0.5mm〜1.0mmに設定すれば、厚いシャワープレートに小径の透孔が実質的に開設され、しかも、透孔の内面全体が絶縁性部材で覆われる。従って、透孔を通したプラズマの回り込みを確実に防止できる。しかも、ステージに投入する高周波電力を小さくする必要がないので、エッチングレートが低下せず、生産性の低下を招かない。   When the plasma generated in this way circulates through the through-hole, not only abnormal discharge occurs, but also the diameter of the through-hole changes, so that the etching gas cannot be supplied uniformly to the silicon substrate. It cannot be performed well, and a desired texture structure cannot be obtained. In the present invention, a cylindrical insulating member made of alumina, for example, is inserted into each through hole of the shower plate. Therefore, if the inner diameter of the insulating member is set to 0.5 mm to 1.0 mm, for example, it is thick. A small-diameter through hole is substantially opened in the shower plate, and the entire inner surface of the through hole is covered with an insulating member. Therefore, it is possible to reliably prevent the plasma from passing through the through hole. Moreover, since it is not necessary to reduce the high-frequency power input to the stage, the etching rate does not decrease and productivity does not decrease.

ここで、シャワープレートの温度が高くなると、シャワープレートと筒状部材との熱膨張係数の差に起因して、透孔と筒状部材との間に微小な隙間が生じ、この隙間に反応生成物が堆積する場合がある。この場合、堆積した反応生成物が剥がれ落ちてパーティクルの原因となる虞がある。本発明において、前記透孔は、シャワープレート上面から下方にのびる上孔部と、この上孔部より小径の下孔部とからなり、上孔部に前記絶縁性部材が嵌挿され、下孔部の内面に絶縁膜が形成されることが好ましい。これによれば、下孔部内面と絶縁膜との間に隙間が生じないため、上記パーティクルの発生を防止できる。   Here, when the temperature of the shower plate rises, a minute gap is generated between the through hole and the cylindrical member due to the difference in thermal expansion coefficient between the shower plate and the cylindrical member, and a reaction is generated in this gap. Objects may accumulate. In this case, the deposited reaction product may peel off and cause particles. In the present invention, the through hole comprises an upper hole portion extending downward from the upper surface of the shower plate and a lower hole portion having a smaller diameter than the upper hole portion, and the insulating member is fitted into the upper hole portion, An insulating film is preferably formed on the inner surface of the portion. According to this, since no gap is generated between the inner surface of the lower hole portion and the insulating film, the generation of the particles can be prevented.

本発明の実施形態のプラズマ処理装置を説明する図。The figure explaining the plasma processing apparatus of embodiment of this invention. 図2(a)は、処理室の構成例を示す模式図であり、図2(b)は、シャワープレートの透孔を拡大して示す図。Fig.2 (a) is a schematic diagram which shows the structural example of a processing chamber, and FIG.2 (b) is a figure which expands and shows the through-hole of a shower plate. シャワープレートの変形例を模式的に示す拡大図。The enlarged view which shows the modification of a shower plate typically.

以下、図面を参照して、処理対象物を結晶系太陽電池用の単結晶又は多結晶のシリコン基板とし、このシリコン基板の表面に高い光散乱封じ込め効果を発揮するテクスチャー構造を付与するためのドライエッチング装置を例に本発明の実施形態のプラズマ処理装置を説明する。なお、結晶系太陽電池の構造は公知であるため、ここでは詳細な説明を省略する。   Hereinafter, referring to the drawings, the object to be treated is a single crystal or polycrystalline silicon substrate for a crystalline solar cell, and a dry structure for imparting a texture structure that exhibits a high light scattering confinement effect to the surface of the silicon substrate. The plasma processing apparatus according to the embodiment of the present invention will be described using an etching apparatus as an example. In addition, since the structure of a crystalline solar cell is well-known, detailed description is abbreviate | omitted here.

図1を参照して、EMは、クラスターツールで構成されたドライエッチング装置であり、ドライエッチング装置EMは、搬送ロボットRを内蔵する中央の搬送室Tを備える。搬送ロボットRは、図示省略の2個のモータを有し、同心に配置された各モータの回転軸11a,11bにはロボットアーム12が図示省略のリンク機構をなして連結され、その先端にロボットハンド13が取り付けられている。そして、各モータの回転軸11a,11bの回転角を適宜制御することで、ロボットアーム12が伸縮及び旋回自在となり、ロボットハンド13でシリコン基板Sを支持して所定位置まで移送可能となる。搬送室Tの外側壁には、その周囲を囲うようにして、ロードロック室L1,L2と処理室C1,C2とがゲートバルブGVを介してそれぞれ連結され、各室が相互に隔絶できるようになっている。搬送室T,ロードロック室L1,L2及び処理室C1,C2は、図示省略の真空ポンプで真空引きされる。そして、ロードロック室L1にシリコン基板Sが投入されると、ロードロック室L1が真空引きされ、搬送ロボットRによりロードロック室L1から処理室C1,C2の何れか一方にシリコン基板Sが搬送され、処理室C1,C2にてシリコン基板Sに対して後述するエッチングが施される。エッチング済みのシリコン基板Sは、搬送ロボットRによりロードロック室L2に戻され、ロードロック室L2を大気圧までベントした後、ロードロック室L2から取り出される。   Referring to FIG. 1, EM is a dry etching apparatus configured with a cluster tool, and the dry etching apparatus EM includes a central transfer chamber T in which a transfer robot R is built. The transfer robot R has two motors (not shown). A robot arm 12 is connected to the rotation shafts 11a and 11b of the motors arranged concentrically by a link mechanism (not shown), and a robot is connected to the tip of the robot arm 12. A hand 13 is attached. Then, by appropriately controlling the rotation angles of the rotation shafts 11a and 11b of the respective motors, the robot arm 12 can be expanded and contracted and turned, and the robot hand 13 can support the silicon substrate S and transfer it to a predetermined position. The load lock chambers L1 and L2 and the processing chambers C1 and C2 are connected to the outer wall of the transfer chamber T through the gate valve GV so as to surround the periphery of the transfer chamber T so that the chambers can be isolated from each other. It has become. The transfer chamber T, the load lock chambers L1 and L2, and the processing chambers C1 and C2 are evacuated by a vacuum pump (not shown). When the silicon substrate S is loaded into the load lock chamber L1, the load lock chamber L1 is evacuated, and the transfer robot R transfers the silicon substrate S from the load lock chamber L1 to one of the processing chambers C1 and C2. Etching described later is performed on the silicon substrate S in the processing chambers C1 and C2. The etched silicon substrate S is returned to the load lock chamber L2 by the transfer robot R, and after the load lock chamber L2 is vented to atmospheric pressure, it is taken out from the load lock chamber L2.

図2(a)を参照して、ドライエッチング装置EMは、処理室C1を画成する真空チャンバ1を備える。処理室C1の底部には、シリコン基板Sをその処理面を上側にして保持する基板ステージ2が設けられている。基板ステージ2には、高周波電源3からの出力31が接続され、高周波電力を投入できるようになっている。投入される高周波電力は、例えば、周波数が13.56MHz、3kW〜20kWの範囲内で設定できる。   Referring to FIG. 2A, the dry etching apparatus EM includes a vacuum chamber 1 that defines a processing chamber C1. A substrate stage 2 that holds the silicon substrate S with its processing surface facing upward is provided at the bottom of the processing chamber C1. An output 31 from a high frequency power source 3 is connected to the substrate stage 2 so that high frequency power can be input. The high frequency power to be input can be set, for example, within a frequency range of 13.56 MHz and 3 kW to 20 kW.

処理室C1内には、シリコン基板Sの処理面に対向させるように、例えばアルミニウム等の金属製のシャワープレート4が設けられている。シリコン基板Sからシャワープレート4に向かう方向を上、シャワープレート4からシリコン基板Sに向かう方向を下とし、シャワープレート4は、真空チャンバ1の上壁の内面に突設した環状の支持壁14の下端で保持されている。シャワープレート4には、上下方向に貫通する複数個の透孔41が設けられている。図2(b)に示すように、各透孔41に筒状の絶縁性部材42が嵌挿される。絶縁性部材42は、例えば、アルミナ管で構成され、絶縁性部材42上端には径方向外側に延出するフランジ42aが一体に形成されている。そして、このフランジ42aがシャワープレート4の上面に接することで、絶縁性部材42の脱落を防止できる。透孔41の孔径d1は、0.5mm〜1.0mmの範囲内に設定し、絶縁性部材42の内径d2は、0.5mm〜1.0mmの範囲内、より好ましくは、0.5mm〜0.8mmの範囲内となるように小さく設定することが好ましい。0.5mmよりも小さいと、気体分子半径が大きいガス分子が流れにくくなるという不具合がある一方で、1.0mmよりも大きいと、プラズマの回り込みが生じ易くなるという不具合がある。   In the processing chamber C1, a shower plate 4 made of a metal such as aluminum is provided so as to face the processing surface of the silicon substrate S. The direction from the silicon substrate S toward the shower plate 4 is up, and the direction from the shower plate 4 toward the silicon substrate S is down. The shower plate 4 is formed of an annular support wall 14 protruding from the inner surface of the upper wall of the vacuum chamber 1. It is held at the lower end. The shower plate 4 is provided with a plurality of through holes 41 penetrating in the vertical direction. As shown in FIG. 2B, a cylindrical insulating member 42 is inserted into each through hole 41. The insulating member 42 is made of, for example, an alumina tube, and a flange 42 a extending radially outward is integrally formed at the upper end of the insulating member 42. And since this flange 42a contacts the upper surface of the shower plate 4, the insulation member 42 can be prevented from falling off. The hole diameter d1 of the through hole 41 is set in a range of 0.5 mm to 1.0 mm, and the inner diameter d2 of the insulating member 42 is in a range of 0.5 mm to 1.0 mm, more preferably 0.5 mm to 1.0 mm. It is preferable to set small so that it may be in the range of 0.8 mm. If it is smaller than 0.5 mm, there is a problem that gas molecules having a large gas molecule radius are difficult to flow. On the other hand, if it is larger than 1.0 mm, there is a problem that plasma wraparound tends to occur.

シャワープレート4と支持壁14とで画成された空間40にはエッチングガスを導入するガス導入系5が設けられている。ガス導入系5は、空間40に通じる合流ガス管51を備える、合流ガス管51には、マスフローコントローラ等の閉止機能を有する流量制御手段52a、52b、52cが介設されたガス管53a、53b、53cが夫々接続され、第1〜第3のガス源54a、54b、54cに夫々連通している。これにより、ガス種毎に流量制御して処理室C1に導入できるようになっている。本実施形態では、第1のガス源54aのガスは、SF、C、CF、C、C、C、NF等のフッ素含有ガスであり、第2のガス源54bのガスは、Cl、Br、I等のハロゲンガスやHCl、HBr等のハロゲン化水素ガスからなるハロゲン含有ガスであり、そして、第3のガス源54cのガスは、酸素ガスである。以下、上記ドライエッチング装置EMの処理室C1におけるエッチング方法について具体的に説明する。 A gas introduction system 5 for introducing an etching gas is provided in a space 40 defined by the shower plate 4 and the support wall 14. The gas introduction system 5 includes a merging gas pipe 51 communicating with the space 40. The merging gas pipe 51 includes gas pipes 53a, 53b in which flow control means 52a, 52b, 52c having a closing function such as a mass flow controller are interposed. 53c are respectively connected to the first to third gas sources 54a, 54b, 54c. Thus, the flow rate can be controlled for each gas type and introduced into the processing chamber C1. In the present embodiment, gas in the first gas source 54a is, SF 6, C x H y F z, CF 4, C 2 F 6, C 3 F 8, C 4 F 8, NF 3 and fluorine-containing gas The gas of the second gas source 54b is a halogen-containing gas composed of a halogen gas such as Cl 2 , Br 2 or I 2 or a hydrogen halide gas such as HCl or HBr, and the third gas source The gas 54c is oxygen gas. Hereinafter, an etching method in the processing chamber C1 of the dry etching apparatus EM will be specifically described.

先ず、処理室C1が所定真空度(例えば、10−3Pa)に達した状態で、搬送ロボットRにより、ロードロック室L1から処理室C1内にシリコン基板Sを搬送して基板ステージ2に保持させる。次に、ガス導入系5の各流量制御弁52a〜52cを介して、第1〜第3のガス源54a、54b、54cからエッチングガスを空間40からシャワープレート4を介して処理室C1内に導入する。この場合、フッ素含有ガスたるSFの流量は300〜3000sccmの範囲、ハロゲン含有ガスたるClの流量は200〜1500sccmの範囲、酸素ガスの流量は100〜1000sccmの範囲とする。この場合、減圧下の処理室C1内の圧力は20〜40Paとする。これに併せて、高周波電源3から基板ステージ2に放電用の高周波電力を投入する。高周波電力は、電力密度が0.5〜1.5W/cmとなるように適宜設定され、例えば、13.56MHz、3kW〜20kWの範囲内で設定される。これにより、処理室C1内にプラズマが形成され、プラズマ中の活性種やイオン種がシリコン基板S表面に入射してエッチングが進行する。このとき、シリコン基板S表面にシリコン酸化物を含むハイドロカーボン系の高分子膜が堆積し、この堆積した高分子膜がマスクの役割を果たすことで、シリコン基板S表面が凹凸形状にエッチングされて粗面化され、テクスチャー構造が付与される。エッチングが終了すると、搬送ロボットRにより、処理室C1からロードロック室L2にシリコン基板Sが搬送され、ロードロック室L2が大気圧までベントされた後、有機物シートSが取り出される。 First, in a state where the processing chamber C1 reaches a predetermined degree of vacuum (for example, 10 −3 Pa), the transfer robot R transfers the silicon substrate S from the load lock chamber L1 into the processing chamber C1 and holds it on the substrate stage 2. Let Next, the etching gas is supplied from the first to third gas sources 54a, 54b, 54c from the space 40 to the processing chamber C1 via the shower plate 4 via the flow rate control valves 52a to 52c of the gas introduction system 5. Introduce. In this case, the flow rate of SF 6 as the fluorine-containing gas is in the range of 300 to 3000 sccm, the flow rate of Cl 2 as the halogen-containing gas is in the range of 200 to 1500 sccm, and the flow rate of the oxygen gas is in the range of 100 to 1000 sccm. In this case, the pressure in the processing chamber C1 under reduced pressure is set to 20 to 40 Pa. At the same time, high frequency power for discharge is supplied from the high frequency power source 3 to the substrate stage 2. The high frequency power is appropriately set so that the power density is 0.5 to 1.5 W / cm 2, and is set within a range of 13.56 MHz, 3 kW to 20 kW, for example. As a result, plasma is formed in the processing chamber C1, and active species and ion species in the plasma are incident on the surface of the silicon substrate S and etching proceeds. At this time, a hydrocarbon-based polymer film containing silicon oxide is deposited on the surface of the silicon substrate S, and the deposited polymer film serves as a mask, so that the surface of the silicon substrate S is etched into an uneven shape. It is roughened to give a texture structure. When the etching is completed, the silicon substrate S is transferred from the processing chamber C1 to the load lock chamber L2 by the transfer robot R, and after the load lock chamber L2 is vented to atmospheric pressure, the organic material sheet S is taken out.

本実施形態では、シャワープレート4に開設された透孔41に、内径d2が0.5mm〜1.0mmである筒状の絶縁性部材42を嵌挿することで、厚いシャワープレート4に小径の透孔が実質的に開けられる。このように厚いシャワープレート4に小径の透孔41が開けられる場合、すなわち、高アスペクト比の透孔41が開けられる場合でも、透孔41の内周面全体が絶縁性部材42で覆われるため、透孔41を介したプラズマの回り込みを確実に防止できる。しかも、基板ステージ2に投入する高周波電力を小さくする必要がないので、エッチングレートが低下せず、生産性の低下を招かない。   In the present embodiment, a cylindrical insulating member 42 having an inner diameter d2 of 0.5 mm to 1.0 mm is fitted into the through hole 41 formed in the shower plate 4 so that the thick shower plate 4 has a small diameter. A through hole is substantially opened. Thus, even when the small-diameter through hole 41 is opened in the thick shower plate 4, that is, even when the high aspect ratio through hole 41 is opened, the entire inner peripheral surface of the through hole 41 is covered with the insulating member 42. Further, it is possible to reliably prevent the plasma from passing through the through hole 41. Moreover, since it is not necessary to reduce the high-frequency power input to the substrate stage 2, the etching rate does not decrease and productivity does not decrease.

以上の効果を確認するために、上記ドライエッチング装置を用いて次の実験を行った。即ち、処理対象物Sを1100mm×1100mmのシリコン基板とし、これに対応させてシャワープレート4の一辺の長さを1200mm×1200mm、厚みを20mmとし、透孔41の孔径d1を1.5mm、絶縁性部材42の内径d2を0.8mmとし、ステージ2に投入する高周波電力の周波数を13.56MHzとし、その電力値を6kW、7kW、8kW、9kW、10kWで変化させ、処理室C1内に導入するフッ素含有ガスたるCFの流量を700sccm、ハロゲン含有ガスたるClの流量を1400sccm、酸素ガスの流量を300sccmとし、圧力(作動圧力)を30Pa、35Pa、40Paで変化させ、プラズマを発生させた。各条件での放電を10分行い、異常放電の有無を目視にて確認した結果を表1に示す。表1中、○印で示すように、全ての条件で異常放電は発生せず、プラズマの回り込みが発生しないことが確認された。特に、異常放電が生じやすい低圧(30Pa)や高パワー(7kW〜10kW)の条件でも、安定した放電が達成できることが判った。それに対する従来例として、シャワープレートの透孔の孔径を0.8mmとし、透孔内に絶縁性部材を嵌挿するのではなく、透孔の内周面にアルマイト法によりアルミナ皮膜を形成したものを用いた以外は、上記のものと同じ条件でプラズマを発生させ、異常放電の有無を確認した。表1に併せて示すように、比較的高圧(35Pa、40Pa)で低パワー(6kW)の条件のみ異常放電は発生せず、圧力を30Paにするか、高周波電力を7kW以上にすると、異常放電が発生し、プラズマの回り込みが発生することが確認された。これは、透孔の内周面全体にアルミナ皮膜が形成されず、部分的に母材のアルミニウムが露出し、帯電したためと考えられる。 In order to confirm the above effects, the following experiment was performed using the dry etching apparatus. That is, the processing object S is a silicon substrate of 1100 mm × 1100 mm, the length of one side of the shower plate 4 is 1200 mm × 1200 mm, the thickness is 20 mm, the hole diameter d1 of the through hole 41 is 1.5 mm, and the insulating substrate S is insulated. The internal diameter d2 of the conductive member 42 is set to 0.8 mm, the frequency of the high frequency power input to the stage 2 is set to 13.56 MHz, and the power value is changed at 6 kW, 7 kW, 8 kW, 9 kW, and 10 kW, and is introduced into the processing chamber C1. The flow rate of CF 4 as a fluorine-containing gas is 700 sccm, the flow rate of Cl 2 as a halogen-containing gas is 1400 sccm, the flow rate of oxygen gas is 300 sccm, and the pressure (operating pressure) is changed at 30 Pa, 35 Pa, and 40 Pa to generate plasma. It was. Table 1 shows the results of performing discharge under each condition for 10 minutes and visually confirming the presence or absence of abnormal discharge. As shown by the circles in Table 1, it was confirmed that abnormal discharge did not occur under all conditions, and plasma wraparound did not occur. In particular, it was found that stable discharge can be achieved even under conditions of low pressure (30 Pa) and high power (7 kW to 10 kW) at which abnormal discharge is likely to occur. As a conventional example, the hole diameter of the through hole of the shower plate is 0.8 mm, and an insulating film is not inserted into the through hole, but an alumina film is formed on the inner peripheral surface of the through hole by an alumite method Except that was used, plasma was generated under the same conditions as described above, and the presence or absence of abnormal discharge was confirmed. As shown in Table 1, abnormal discharge does not occur only under conditions of relatively high pressure (35 Pa, 40 Pa) and low power (6 kW), and abnormal discharge occurs when the pressure is 30 Pa or the high frequency power is 7 kW or more. It was confirmed that plasma wraparound occurred. This is presumably because the alumina film was not formed on the entire inner peripheral surface of the through-hole, and the base aluminum was partially exposed and charged.

Figure 2013247150
Figure 2013247150

なお、本発明は上記実施形態に限定されるものではない。例えば、図3に示すように、シャワープレート4に開設される透孔41を、シャワープレート4上面から下方にのびる上孔部41aと、この上孔部41aに連通する、上孔部41aよりも小径の下孔部41bで構成してもよい。この場合、上孔部41aにフランジ無しの絶縁性部材42が嵌挿され、下孔部41bの内周面に絶縁膜43が形成される。絶縁膜43は、例えば、アルミナ膜であり、その形成方法は、アルマイト法等の公知のものを用いることができるため、ここでは詳細な説明を省略する。上孔部41aの孔径d3は、例えば、1mm〜2mmの範囲内に設定し、絶縁性部材42の内径d4は、例えば、0.5mm〜0.8mmの範囲内に設定することが好ましい。また、上孔部41aの深さt1と、下孔部41bの深さt2との比は、t1:t2=2:1に設定することが好ましい。これによれば、下孔部41bと絶縁膜43との間に隙間が生じないため、この隙間に反応生成物が堆積することによるパーティクルの発生を防止できる。   The present invention is not limited to the above embodiment. For example, as shown in FIG. 3, the through hole 41 formed in the shower plate 4 has an upper hole portion 41 a extending downward from the upper surface of the shower plate 4 and an upper hole portion 41 a communicating with the upper hole portion 41 a. You may comprise by the small diameter pilot hole part 41b. In this case, an insulating member 42 without a flange is fitted into the upper hole portion 41a, and an insulating film 43 is formed on the inner peripheral surface of the lower hole portion 41b. The insulating film 43 is, for example, an alumina film, and a known method such as an alumite method can be used as its formation method, and thus detailed description thereof is omitted here. The hole diameter d3 of the upper hole portion 41a is preferably set within a range of 1 mm to 2 mm, for example, and the inner diameter d4 of the insulating member 42 is preferably set within a range of 0.5 mm to 0.8 mm, for example. The ratio of the depth t1 of the upper hole portion 41a and the depth t2 of the lower hole portion 41b is preferably set to t1: t2 = 2: 1. According to this, since no gap is generated between the lower hole portion 41b and the insulating film 43, it is possible to prevent generation of particles due to deposition of reaction products in the gap.

上記実施形態では、所謂クラスターツールとして構成されたドライエッチング装置を例に説明したが、インライン式に構成されたドライエッチング装置に対しても本発明を適用することができる。また、上記実施形態では、ドライエッチング装置を例に説明したが、例えばプラズマCVD装置のようにシャワープレートから供給したガスを励起してプラズマを発生させるプラズマ処理装置であれば、本発明を適用することができる。   In the above embodiment, the dry etching apparatus configured as a so-called cluster tool has been described as an example, but the present invention can also be applied to a dry etching apparatus configured in an in-line type. In the above embodiment, the dry etching apparatus is described as an example. However, the present invention is applied to any plasma processing apparatus that generates plasma by exciting a gas supplied from a shower plate, such as a plasma CVD apparatus. be able to.

C1,C2…処理室(真空処理室)、EM…ドライエッチング装置(プラズマ処理装置)、S…処理対象物(シリコン基板)、3…プラズマ発生手段、4…シャワープレート、5…ガス導入手段、41…透孔、41a…上孔部、41b…下孔部、42…絶縁性部材。   C1, C2 ... processing chamber (vacuum processing chamber), EM ... dry etching apparatus (plasma processing apparatus), S ... processing object (silicon substrate), 3 ... plasma generating means, 4 ... shower plate, 5 ... gas introducing means, 41 ... Through hole, 41a ... Upper hole part, 41b ... Lower hole part, 42 ... Insulating member.

Claims (2)

真空処理室内にガスを導入するガス導入手段と、このガス導入手段により導入されたガスを励起して真空処理室内にプラズマを発生させるプラズマ発生手段とを備えるプラズマ処理装置において、
前記ガス導入手段は、真空処理室内の処理対象物の処理面に対向配置される金属製のシャワープレートを備え、処理対象物からシャワープレートに向かう方向を上、シャワープレートから処理対象物に向かう方向を下とし、このシャワープレートに上下方向に貫通する複数個の透孔が設けられ、各透孔に筒状の絶縁性部材が嵌挿されることを特徴とするプラズマ処理装置。
In a plasma processing apparatus comprising gas introducing means for introducing a gas into the vacuum processing chamber, and plasma generating means for exciting the gas introduced by the gas introducing means to generate plasma in the vacuum processing chamber,
The gas introducing means includes a metal shower plate disposed to face the processing surface of the processing object in the vacuum processing chamber, and is directed upward from the processing object toward the shower plate and from the shower plate toward the processing object. A plasma processing apparatus, wherein a plurality of through holes penetrating in the vertical direction are provided in the shower plate, and a cylindrical insulating member is fitted into each through hole.
前記透孔は、シャワープレート上面から下方にのびる上孔部と、この上孔部より小径の下孔部とからなり、上孔部に前記絶縁性部材が嵌挿され、下孔部の内周面に絶縁膜が形成されたことを特徴とする請求項1記載のプラズマ処理装置。
The through hole is composed of an upper hole portion extending downward from the upper surface of the shower plate and a lower hole portion having a smaller diameter than the upper hole portion, and the insulating member is fitted into the upper hole portion, and the inner periphery of the lower hole portion. The plasma processing apparatus according to claim 1, wherein an insulating film is formed on the surface.
JP2012117828A 2012-05-23 2012-05-23 Plasma processing apparatus Pending JP2013247150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117828A JP2013247150A (en) 2012-05-23 2012-05-23 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117828A JP2013247150A (en) 2012-05-23 2012-05-23 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
JP2013247150A true JP2013247150A (en) 2013-12-09

Family

ID=49846726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117828A Pending JP2013247150A (en) 2012-05-23 2012-05-23 Plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP2013247150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604259B2 (en) 2016-01-20 2020-03-31 Amsafe, Inc. Occupant restraint systems having extending restraints, and associated systems and methods
US10611334B2 (en) 2017-02-07 2020-04-07 Shield Restraint Systems, Inc. Web adjuster

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333850A (en) * 1993-05-19 1994-12-02 Tokyo Electron Ltd Plasma processing device
JPH08190994A (en) * 1995-01-12 1996-07-23 Kokusai Electric Co Ltd Electrodes for plasma processing equipment
JPH08227874A (en) * 1995-02-21 1996-09-03 Mitsubishi Electric Corp Vacuum processing apparatus and vacuum processing method
JP2001223204A (en) * 2000-02-08 2001-08-17 Shin Etsu Chem Co Ltd Electrode plate for plasma etching equipment
JP2001244256A (en) * 2000-03-02 2001-09-07 Hitachi Ltd Processing equipment
JP2006120872A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Gas diffusion plate
JP2006186306A (en) * 2004-09-30 2006-07-13 Toshiba Ceramics Co Ltd Gas diffusion plate and manufacturing method thereof
JP2012060101A (en) * 2010-08-12 2012-03-22 Toshiba Corp Gas supply member, plasma processing apparatus, and method for forming yttria-containing film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333850A (en) * 1993-05-19 1994-12-02 Tokyo Electron Ltd Plasma processing device
JPH08190994A (en) * 1995-01-12 1996-07-23 Kokusai Electric Co Ltd Electrodes for plasma processing equipment
JPH08227874A (en) * 1995-02-21 1996-09-03 Mitsubishi Electric Corp Vacuum processing apparatus and vacuum processing method
JP2001223204A (en) * 2000-02-08 2001-08-17 Shin Etsu Chem Co Ltd Electrode plate for plasma etching equipment
JP2001244256A (en) * 2000-03-02 2001-09-07 Hitachi Ltd Processing equipment
JP2006186306A (en) * 2004-09-30 2006-07-13 Toshiba Ceramics Co Ltd Gas diffusion plate and manufacturing method thereof
JP2006120872A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Gas diffusion plate
JP2012060101A (en) * 2010-08-12 2012-03-22 Toshiba Corp Gas supply member, plasma processing apparatus, and method for forming yttria-containing film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604259B2 (en) 2016-01-20 2020-03-31 Amsafe, Inc. Occupant restraint systems having extending restraints, and associated systems and methods
US10611334B2 (en) 2017-02-07 2020-04-07 Shield Restraint Systems, Inc. Web adjuster

Similar Documents

Publication Publication Date Title
US20220415661A1 (en) Plasma processing apparatus and plasma processing method
KR102426264B1 (en) Etching method
TWI674617B (en) Method for performing plasma treatment process after plasma cleaning process
KR102402866B1 (en) Contact clean in high-aspect ratio structures
TWI730092B (en) Systems and methods for using electrical asymmetry effect to control plasma process space in semiconductor fabrication
CN106486335B (en) Plasma etching system and method using secondary plasma implantation
US20200075346A1 (en) Apparatus and process for electron beam mediated plasma etch and deposition processes
KR20210016453A (en) Pecvd deposition of smooth silicon films
JP6169701B2 (en) Plasma processing apparatus and plasma processing method
KR101425629B1 (en) Smooth siconi etch for silicon-containing films
KR20200053623A (en) High Energy ALE (ATOMIC LAYER ETCHING)
KR102309941B1 (en) Method of processing target object
TW201903833A (en) Selective deposition with atomic layer etch reset
KR20130141639A (en) Uniform dry etch in two stages
JP2013102221A (en) Methods and arrangement for reduction of by-product deposition in plasma processing system
JP2021510932A (en) Addition of argon to oxidation by remote plasma
TW201706449A (en) Eliminating first wafer metal contamination effect in high density plasma chemical vapor deposition systems
US20230170189A1 (en) Etching method and plasma processing apparatus
JP2013247150A (en) Plasma processing apparatus
US20070034604A1 (en) Method and apparatus for tuning a set of plasma processing steps
TW202015128A (en) Area selective etching method of silicon nitride layer for manufacturing microelectronic workpiece
US10685848B2 (en) Workpiece processing method
US11257662B2 (en) Annular member, plasma processing apparatus and plasma etching method
US20220298620A1 (en) Enhanced oxidation with hydrogen radical pretreatment
KR100965400B1 (en) Thin film deposition method using plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301