[go: up one dir, main page]

JP2013202507A - Stripe coating method - Google Patents

Stripe coating method Download PDF

Info

Publication number
JP2013202507A
JP2013202507A JP2012074270A JP2012074270A JP2013202507A JP 2013202507 A JP2013202507 A JP 2013202507A JP 2012074270 A JP2012074270 A JP 2012074270A JP 2012074270 A JP2012074270 A JP 2012074270A JP 2013202507 A JP2013202507 A JP 2013202507A
Authority
JP
Japan
Prior art keywords
coating
nozzle
width
bead
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012074270A
Other languages
Japanese (ja)
Inventor
Kazuyuki Shishino
和幸 獅野
Shigeru Tono
繁 東野
Tetsuya Abe
哲也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2012074270A priority Critical patent/JP2013202507A/en
Publication of JP2013202507A publication Critical patent/JP2013202507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stripe coating method for reducing a coating width of pixels formed between banks to be 100 μm or less, in the stripe coating method by a bead method using a nozzle having a discharge port distal end part for which the periphery of a plurality of discharge ports provided in a nozzle longitudinal direction is projected in a coating liquid discharge direction.SOLUTION: In a stripe coating method, when a fixed coating speed of performing relative movement and coating is in a suitable range of 2.8 Pa or more and 35.0 Pa or less in terms of shearing force in a relative movement direction generated within a bead, by fixing a space amount of a gap without correcting or adjusting it for stable maintenance of the bead 52 and continuing coating at the fixed coating speed, the formation of the bead 52 is maintained, and the stripe of a coating film of a fixed width can be coated. Also, when the fixed coating speed is accelerated within the suitable range, the coating width can be reduced.

Description

本発明はディスプレイ用部材を製造する分野における発明であり、詳しくは、例えばガラスの基板などの被塗布部材表面にストライプ状に所定ピッチの平行な塗布膜を多数形成する塗布方法に関する。   The present invention is an invention in the field of manufacturing a display member, and more particularly, relates to a coating method in which a large number of parallel coating films having a predetermined pitch are formed on a surface of a member to be coated such as a glass substrate.

従来より知られているように、例えば、有機EL(Electro Luminescence)材と呼ばれる材料を用いたディスプレイ用パネルの製造工程には、所定ピッチで平行に配置された隔壁(以下、バンクと呼ぶ)の間に形成される画素にR(赤色)、G(緑色)、B(青色)の3色の塗布液やHIL(Hole Injection Layers)、HTL(Hole Transfer Layers)等の共通層を充填し乾燥させて、塗布膜を形成する工程がある。   As conventionally known, for example, in the manufacturing process of a display panel using a material called an organic EL (Electro Luminescence) material, partitions (hereinafter referred to as banks) arranged in parallel at a predetermined pitch are used. The pixels formed in between are filled with a common layer such as R (red), G (green), and B (blue) coating liquids, HIL (Hole Injection Layers), HTL (Hole Transfer Layers), etc., and dried. There is a step of forming a coating film.

このような画素の塗布膜を例えばガラスの基板上に所定ピッチに配置された平行なバンク間の溝に塗布液を充填して形成する一般的な手段としては、スリット塗布法などの全面塗布法やスクリーン印刷法などの画素塗分け法が知られている。   As a general means for forming such a pixel coating film by filling a groove between parallel banks arranged at a predetermined pitch on a glass substrate, for example, a whole surface coating method such as a slit coating method. And pixel coating methods such as screen printing are known.

前記スリット塗布法などの全面塗布法は、ある色の塗布液を基板全面に塗布した後に不要部分を除去し、次いで同様に、次の色の全面塗布、不要部分の除去を2回繰り返す工程が必要になる。しかし、有機EL材は自発光する材料であるため、前記不要部分を除去する工程に露光技術を用いることは出来ないという問題がある。   In the entire surface coating method such as the slit coating method, an unnecessary portion is removed after applying a coating solution of a certain color to the entire surface of the substrate, and then, similarly, the entire surface coating of the next color and the removal of the unnecessary portion are repeated twice. I need it. However, since the organic EL material is a self-luminous material, there is a problem that an exposure technique cannot be used in the process of removing the unnecessary portion.

前記スクリーン印刷法は、画素を塗分けることが可能であるが、別にスクリーンなどの資材が必要であり、資材が劣化する度に交換する必要がある。   In the screen printing method, pixels can be applied separately, but a material such as a screen is required separately, and it is necessary to replace the material whenever the material deteriorates.

このため、高価な塗布液を必要な量だけで塗布膜を形成できる画素塗分け法、中でも資材が不要なインクジェット法、連続吐出ノズル法が注目されている。   For this reason, a pixel coating method that can form a coating film with only a necessary amount of an expensive coating liquid, particularly an inkjet method and a continuous discharge nozzle method that do not require materials are drawing attention.

インクジェット法は、バンクの間に形成される画素に塗布液を充填する方式であり、ピエゾを駆動させる方式と、熱を加えて塗布液をノズルから間欠的に噴射する方式とに分けられる。   The ink jet method is a method of filling a pixel formed between banks with a coating solution, and is divided into a method of driving a piezo and a method of intermittently ejecting the coating solution from a nozzle by applying heat.

前記インクジェット法では、ノズルに設けられた多数の吐出口毎に塗布液の噴射を制御できるので、噴射する吐出口の選択と噴射する回数や塗布液量などを画素の幅形状や塗布膜の厚さに合わせて設定できる長所はあるが、すべてのノズルから均一な吐出量で噴射することは難しく、吐出の安定性や塗布膜の厚さの均一性などに課題がある。   In the inkjet method, since the ejection of the coating liquid can be controlled for each of a large number of ejection ports provided in the nozzle, the selection of the ejection ports to be ejected, the number of ejection times, the amount of the coating liquid, and the like can be set according to the pixel width shape and the coating film thickness. Although there are advantages that can be set according to the thickness, it is difficult to eject from all the nozzles with a uniform discharge amount, and there are problems in the stability of discharge and the uniformity of the thickness of the coating film.

また、ノズルの吐出口から噴射できる塗布液は粘度を調整する必要があり、適用できる塗布液に制限がある。   In addition, it is necessary to adjust the viscosity of the coating liquid that can be sprayed from the discharge port of the nozzle, and there is a limitation on the applicable coating liquid.

一方、前記連続吐出ノズル法では、ノズルの長手方向に設けられた多数の吐出口から塗布液を同時に連続的に吐出するので、ノズルの長手方向に直角な方向に被塗布部材を相対移動させることにより、バンクの間に形成された画素に同時に塗布液を塗布できる。吐出の安定性、塗布膜の厚さの均一性はインクジェット法より優れていることから、広く利用されている(例えば、特許文献1)。   On the other hand, in the continuous discharge nozzle method, since the coating liquid is continuously discharged from a large number of discharge ports provided in the longitudinal direction of the nozzle, the member to be coated is relatively moved in a direction perpendicular to the longitudinal direction of the nozzle. Thus, the coating liquid can be applied simultaneously to the pixels formed between the banks. Since the ejection stability and the uniformity of the coating film thickness are superior to those of the ink jet method, they are widely used (for example, Patent Document 1).

また、例えば特許文献2に示すように、プラズマディスプレイ用パネルの背面板の製造において、蛍光体ペーストを所定のバンク間の溝に塗布する工程に用いられている。   For example, as shown in Patent Document 2, in manufacturing a back plate of a plasma display panel, it is used in a step of applying a phosphor paste to a groove between predetermined banks.

特許文献2によると、一般的に、プラズマディスプレイ用パネルの背面板の製造に用いられる蛍光体ペーストの粘度は10Pa・s以下であり、被塗布部材に設けられたバンクの形状は、およそ幅20〜120μm、高さ50〜250μmとされる。   According to Patent Document 2, generally, the viscosity of the phosphor paste used for manufacturing the back plate of the plasma display panel is 10 Pa · s or less, and the shape of the bank provided on the member to be coated is about 20 in width. ˜120 μm and height 50 to 250 μm.

更にまた、連続吐出ノズル法にも、ノズルの吐出口と被塗布部材との間のすきま(以下、ギャップと呼ぶ)のすきま量を比較的大きくして、ノズルの吐出口から塗布液を柱状流(直線棒状)にして、柱状流を吐出しつつノズルの長手方向に直角な方向に被塗布部材を相対移動させることにより画素に塗布する柱状流法(例えば特許文献3)と、前記ギャップのすきま量を比較的小さくして、ノズルの吐出口と被塗布部材との間に液溜まりであるビードを形成して、ビードを形成しつつノズルの長手方向に直角な方向に被塗布部材を相対移動させることにより塗布膜を塗布するビード法とがある。   Furthermore, also in the continuous discharge nozzle method, the amount of clearance between the nozzle discharge port and the member to be coated (hereinafter referred to as a gap) is relatively large so that the coating liquid flows from the nozzle discharge port. A columnar flow method (e.g., Patent Document 3) in which the coated member is moved relative to a direction perpendicular to the longitudinal direction of the nozzle while discharging a columnar flow (for example, Patent Document 3), and the gap gap A relatively small amount is formed to form a bead as a liquid pool between the nozzle outlet and the coated member, and the coated member is relatively moved in a direction perpendicular to the longitudinal direction of the nozzle while forming the bead. There is a bead method in which a coating film is applied by applying the coating method.

ビード法は適用できる塗布液の粘度や塗布膜厚さの範囲が前記柱状流法よりも広く、利用しやすいという特長があり、例えば特許文献4で利用されている。   The bead method has a feature that the range of the viscosity of the coating liquid and the coating film thickness that can be applied is wider than that of the columnar flow method, and is easy to use.

特許文献4では、前記ビード法を適用するに際し、ノズルの吐出口と被塗布部材間に形成されたビードが塗布液の毛細管現象でノズルの長手方向(塗布方向に直角な方向)に拡がる問題に対し、ノズルの吐出口の周辺部を吐出させて塗布膜を形成するストライプ塗布に好適なノズルの吐出口を開示している。   In Patent Document 4, when the bead method is applied, the bead formed between the discharge port of the nozzle and the member to be coated spreads in the longitudinal direction of the nozzle (direction perpendicular to the coating direction) due to the capillary phenomenon of the coating liquid. On the other hand, a nozzle outlet suitable for stripe coating in which a peripheral portion of the nozzle outlet is discharged to form a coating film is disclosed.

特許文献4の前記ストライプ塗布に好適なノズルは、ノズルが複数の吐出口を有し、さらに各々の吐出口周辺を塗布液吐出方向に突出させた吐出口先端部を有しているので、ノズルを被塗布部材に近接させて塗布すると、吐出口先端部の存在によって塗布液の毛細管現象によるビードの拡幅が防止され、ギャップに形成された一定幅のビードにより、ストライプ状に塗布液を安定して塗布できるとして、カラーフィルターのブラックマトリックス間の色画素部への塗布に利用している。   The nozzle suitable for the stripe coating of Patent Document 4 has a plurality of discharge ports, and further has a discharge port front end portion in which the periphery of each discharge port protrudes in the coating liquid discharge direction. Is applied close to the member to be coated, the presence of the tip of the discharge port prevents the bead from widening due to the capillary action of the coating liquid, and the bead having a constant width formed in the gap stabilizes the coating liquid in a stripe shape. It can be applied to the color pixel portion between the black matrixes of the color filter.

特許文献5では、バンクの間に形成される画素の塗布幅を100μm以下にするため、特許文献4に開示されたノズルの吐出口の形状、より具体的には、ノズルの吐出口周辺部を塗布液吐出方向に突出させて形成された吐出口の形状を改良して、突出部から吐出される塗布液を塗布液吐出方向に案内する一対の対向平面を備え、この1対の対向平面はノズル長手方向と略直交する方向に平行となるように形成されているノズルの吐出口形状に関する技術を開示している。   In Patent Document 5, in order to make the application width of the pixels formed between the banks 100 μm or less, the shape of the discharge port of the nozzle disclosed in Patent Document 4, more specifically, the periphery of the discharge port of the nozzle is defined. The shape of the discharge port formed to protrude in the coating liquid discharge direction is improved, and a pair of opposed planes for guiding the coating liquid discharged from the protruding portion in the coating liquid discharge direction is provided. A technique related to the shape of the discharge port of a nozzle formed so as to be parallel to a direction substantially orthogonal to the nozzle longitudinal direction is disclosed.

しかしながら、ストライプ塗布の塗布幅を100μm以下にするノズルの吐出口の精密加工は加工上の限界から難しく、また、吐出口の形状が複雑になると塗布開始時のビード形成と維持も難しくなる。   However, precise processing of the discharge port of the nozzle with a stripe coating width of 100 μm or less is difficult due to processing limitations, and when the shape of the discharge port becomes complicated, it becomes difficult to form and maintain beads at the start of coating.

特開2007−313417号公報JP 2007-313417 A 特開2010−29836号公報JP 2010-29836 A 特許3808728号公報Japanese Patent No. 3808728 特開2007−187948号公報JP 2007-187948 A 特開2011−183291号公報JP 2011-183291 A

前記ビード法を適用し、前記特許文献4に開示されているストライプ塗布に好適なノズルを用いても、バンクの間に形成される塗布幅を100μm以下に小さくするには困難な課題がある。   Even if the bead method is applied and a nozzle suitable for stripe coating disclosed in Patent Document 4 is used, it is difficult to reduce the coating width formed between the banks to 100 μm or less.

一つ目の課題は、ギャップに形成された一定幅のビードにより塗布液を安定して被塗布部材表面に塗布する際に、形成されたビードの吐出口先端部のノズル長手方向の幅よりも被塗布部材表面での塗布幅は大きいことがビードの安定条件であることから、塗布幅を100μm以下に小さくするには、ノズルの吐出口周辺部を塗布液吐出方向に突出させて多数個形成した吐出口先端部のノズル長手方向の幅を100μm以下の塗布幅より更に小さく精密加工する必要性が生じることである。   The first problem is that when the coating liquid is stably applied to the surface of the member to be coated by the bead having a certain width formed in the gap, the width of the formed bead at the front end of the discharge port is longer than the width in the nozzle direction. Since a large coating width on the surface of the coated member is a stable condition of the bead, in order to reduce the coating width to 100 μm or less, a large number of nozzles are formed by projecting the periphery of the nozzle outlet in the coating liquid discharge direction. The need arises for precision processing to make the width in the longitudinal direction of the nozzle at the front end of the discharge port smaller than the coating width of 100 μm or less.

しかしながら、多数ある前記突出させた吐出先端部のノズル長手方向の幅を100μm以下の塗布幅より更に小さく精密加工することは製作加工の精度限界に近づくことから難しい。   However, it is difficult to precisely process a large number of the ejected discharge tip portions in the longitudinal direction of the nozzle smaller than the coating width of 100 μm or less because it approaches the accuracy limit of manufacturing processing.

また一方、特許文献4に示される様に、ビードを形成して塗布している状態で、ノズルの吐出口先端部のノズル長手方向の幅よりもバンクの間に形成される塗布幅が小さくなるとビードの形成が不安定と判断されるため、ギャップのすきま量をより小さくするなどして、ノズルの吐出口先端部の長手方向の幅よりもバンクの間に形成される塗布幅を同じか若干大きい状態に戻し、安定したビードが形成される状態にすることが好ましいとされている。   On the other hand, as shown in Patent Document 4, when the bead is formed and applied, when the application width formed between the banks is smaller than the width in the nozzle longitudinal direction at the tip of the nozzle outlet, Since it is determined that the formation of the bead is unstable, the coating width formed between the banks is the same or slightly larger than the width in the longitudinal direction of the tip of the nozzle outlet by reducing the gap clearance. It is said that it is preferable to return to a large state so that a stable bead is formed.

そのため、ビードの形成が不安定になればギャップのすきま量をより小さく補正調整してビード形成の安定な状態に直す必要性が生じるが、バンクの間に形成される塗布幅が100μm以下になってくるとギャップのすきま量はもともと100μm以下に小さく設定されているので、被塗布部材のたわみや厚さむら、不要な付着物などに起因して、吐出口先端部が被塗布部材あるいは前記付着物に衝突する危険性が増すため、ギャップのすきま量をより小さく補正調整することが出来ないという課題がある。   For this reason, if the bead formation becomes unstable, it becomes necessary to correct the gap gap to a smaller value and restore the bead formation to a stable state. However, the coating width formed between the banks becomes 100 μm or less. Since the gap clearance is originally set to be smaller than 100 μm, the tip of the discharge port is not attached to the member to be coated or the above-mentioned attachment due to the deflection or thickness unevenness of the member to be coated, unnecessary deposits, etc. Since there is an increased risk of collision with the kimono, there is a problem that the gap amount of the gap cannot be reduced and adjusted.

言い換えると、第1の課題は、バンクの間に形成される塗布幅が100μm以下に小さくなると、塗布液の安定的なビード形成の観点から、ノズルの吐出口先端部の長手方向の幅は求める塗布幅より更に小さく加工する必要性が生じるが、加工精度の制約からノズルの吐出口先端部の長手方向の幅を100μm以下に精度良く加工するのには限界があるという課題である。   In other words, the first problem is that when the coating width formed between the banks is reduced to 100 μm or less, the width in the longitudinal direction of the nozzle discharge port tip is obtained from the viewpoint of stable bead formation of the coating liquid. Although it is necessary to process the coating width smaller than the coating width, there is a problem that there is a limit to accurately processing the width in the longitudinal direction of the discharge port tip of the nozzle to 100 μm or less due to processing accuracy limitations.

また、第2の課題は、バンクの間に形成される塗布幅が100μm以下に小さくなると、ギャップのすきま量はもともと小さく設定されているので、被塗布部材のたわみや厚さむら、不要な付着物などにより吐出口先端部が被塗布部材あるいは不要な付着物に衝突する危険性から、塗布液の安定的なビード形成を維持するためにギャップのすきま量をより小さく補正調整することが出来ないという課題である。   The second problem is that when the coating width formed between the banks is reduced to 100 μm or less, the gap amount is originally set to be small, so that the deflection or thickness unevenness of the member to be coated is unnecessary. Due to the risk of the tip of the discharge port colliding with the coated member or unnecessary deposits due to the kimono, etc., the gap clearance cannot be corrected and adjusted smaller in order to maintain stable bead formation of the coating liquid. It is a problem.

これらの課題に対して、本発明では、前記ビード法を適用し、前記特許文献4に開示されている吐出口先端部を有するノズル形状を用いて、ギャップのすきま量を補正調整しないで一定にして、一定の塗布速度で塗布液のビード形成を維持して、ノズルの吐出口先端部の長手方向の幅と同等の幅の塗布幅を安定的に形成することができる塗布方法を提供する。   In response to these problems, the present invention applies the bead method and uses the nozzle shape having the discharge port front end portion disclosed in Patent Document 4 to make the gap clearance constant without correction adjustment. Thus, the present invention provides a coating method capable of stably forming a coating width having a width equivalent to the width in the longitudinal direction of the tip of the discharge port of the nozzle while maintaining the bead formation of the coating liquid at a constant coating speed.

バンクの間に形成される塗布幅を100μm以下にすることから出てくる前記課題に鑑み、発明者らは、前記ノズルと被塗布部材とを相対移動させて塗布する塗布速度に注目して、前記塗布速度が塗布液の安定的なビード形成の維持に与える効果について塗布試験を行った。   In view of the above-mentioned problem that arises from the application width formed between the banks of 100 μm or less, the inventors pay attention to the application speed at which application is performed by relatively moving the nozzle and the member to be applied, A coating test was conducted on the effect of the coating speed on maintaining stable bead formation of the coating solution.

種々の塗布試験の結果から、塗布速度が好適な範囲にあれば、ギャップのすきま量を補正調整しないで一定にし、一定の塗布速度で塗布を継続することでビードの形成が維持され、吐出口先端部のノズル長手方向の幅と同等の幅の塗布膜を安定的に形成することができることを見出した。   From the results of various coating tests, if the coating speed is within a suitable range, the gap gap amount is kept constant without correction adjustment, and by continuing the coating at a constant coating speed, the bead formation is maintained, and the discharge port It has been found that a coating film having a width equal to the width in the nozzle longitudinal direction of the tip can be stably formed.

また、相対移動させて塗布する一定の塗布速度を速くすると、ノズルの吐出口先端部のノズル長手方向の幅と同等の幅まで塗布幅を小さくすることができ、更に、前記塗布速度を速くし過ぎると、前記吐出口先端部のノズル長手方向の幅以下の塗布膜が点線状になりかけることから、ビードを安定的に形成できる上限の塗布速度があることを見出した。   In addition, when the constant application speed applied by relatively moving is increased, the application width can be reduced to a width equal to the width in the nozzle longitudinal direction of the nozzle outlet, and further, the application speed is increased. After that, the coating film having a width equal to or less than the width in the nozzle longitudinal direction at the tip of the discharge port tends to be dotted, and it has been found that there is an upper limit coating speed at which beads can be stably formed.

本発明はかかる知見に基づいてなされたもので、請求項1に係る発明は、ノズルが長手方向に複数の吐出口を有し、さらに各々の前記吐出口の周辺を塗布液吐出方向にノズルから突出させて形成した複数の吐出口先端部を有し、前記吐出口先端部を塗布液吐出方向に被塗布部材表面と対向させ、近接させて、前記吐出口先端部と被塗布部材とのギャップに塗布液のビードを形成した後、前記ノズルの長手方向と直交する方向に前記ノズルと被塗布部材とを相対移動させて塗布するストライプ塗布方法であって、前記吐出口先端部と被塗布部材とのギャップのすきま量を一定にし、相対移動させて塗布する一定の塗布速度を前記ビード内に発生する相対移動方向の剪断力で2.8Pa以上、35.0Pa以下で塗布することを特徴とするストライプ塗布方法である。   The present invention has been made based on such knowledge. In the invention according to claim 1, the nozzle has a plurality of discharge ports in the longitudinal direction, and the periphery of each of the discharge ports from the nozzle in the coating liquid discharge direction. A plurality of discharge port tip portions formed so as to protrude; the discharge port tip portions are opposed to and close to the surface of the application member in the coating liquid discharge direction; and a gap between the discharge port tip portion and the application member A stripe coating method in which a coating liquid bead is formed and then the nozzle and the member to be coated are moved relative to each other in a direction perpendicular to the longitudinal direction of the nozzle. And a constant coating speed for coating by moving relative to each other with a shearing force in the relative movement direction generated in the bead applied at 2.8 Pa or more and 35.0 Pa or less. Stra It is a flop application method.

また、本発明の請求項2に係る発明は、前記ビード内に発生する前記相対移動方向の剪断力で35.0Paを上限に相対移動させて塗布する一定の塗布速度を速くして、ノズルの吐出口先端部のノズル長手方向の幅と同等の幅まで塗布幅を小さくすることを特徴とする請求項1に記載のストライプ塗布方法である。   Further, the invention according to claim 2 of the present invention increases the constant application speed by applying a relative movement of 35.0 Pa to the upper limit by the shear force in the relative movement direction generated in the bead, 2. The stripe coating method according to claim 1, wherein the coating width is reduced to a width equivalent to the width in the nozzle longitudinal direction of the discharge port tip.

また、本発明の請求項3に係る発明は、所定ピッチで平行に複数設けられたバンクを有する前記塗布部材表面に塗布する請求項2に記載のストライプ塗布方法において、前記バンクの間に形成された画素に塗布される塗布幅が前記バンクの間のバンク幅になるように相対移動させて塗布する一定の塗布速度を設定することを特徴とするストライプ塗布方法である。   The invention according to claim 3 of the present invention is the stripe coating method according to claim 2, wherein the coating is applied to the surface of the coating member having a plurality of banks provided in parallel at a predetermined pitch. The stripe coating method is characterized in that a constant coating speed is set by applying relative movement so that a coating width applied to each pixel becomes a bank width between the banks.

請求項1の本発明によれば、相対移動させて塗布する後述の塗布試験の結果から、前記塗布速度を前記ビード内に発生する相対移動方向の剪断力で2.8Pa以上、35.0Pa以下で塗布することが好適であり、一定の塗布速度によりビードの形成が維持され、一定の塗布幅のストライプ塗布ができる。   According to the first aspect of the present invention, from the result of a later-described coating test in which coating is performed while relatively moving, the coating speed is 2.8 Pa or more and 35.0 Pa or less in terms of shearing force generated in the relative movement direction in the bead. The bead formation is maintained at a constant application speed, and stripe application with a constant application width can be achieved.

請求項2の本発明によれば、前記ビード内に発生する前記相対移動方向の剪断力で35.0Paを上限に相対移動させて塗布する一定の塗布速度を速くすると、後述の塗布試験の結果から、前記吐出口先端部のノズル長手方向の幅と同等の幅の塗布幅を有するストライプ塗布ができる。   According to the second aspect of the present invention, when a constant coating speed is increased by applying a relative movement of 35.0 Pa to the upper limit by the shearing force generated in the bead in the relative movement direction, a result of a coating test described later. Thus, stripe coating having a coating width equal to the width in the nozzle longitudinal direction of the discharge port tip can be performed.

請求項3の本発明によれば、所定ピッチに平行に複数設けられたバンクを有する前記塗布部材の表面に請求項2に記載のストライプ塗布方法を用いて塗布する際に、相対移動させて塗布する一定の塗布速度を、素ガラスを用いた塗布試験の結果から、前記バンクの間に形成された画素に塗布される塗布幅が前記バンクの間のバンク幅になるように設定するので、バンク間からの溢れがない好適なストライプ塗布方法となる。   According to the third aspect of the present invention, when coating is performed on the surface of the coating member having a plurality of banks provided in parallel with a predetermined pitch using the stripe coating method according to the second aspect, the coating is performed by relatively moving. The constant application speed is set so that the application width applied to the pixels formed between the banks is the bank width between the banks based on the result of the application test using the raw glass. This is a preferred stripe coating method with no overflow.

本発明の実施形態に係る塗布装置1を示す斜視図である。1 is a perspective view showing a coating apparatus 1 according to an embodiment of the present invention. 図1に示す塗布装置1の主要な一部分であるノズル20が基台部10上に載置され、所定ピッチに平行に複数設けられたバンクを有する被塗布部材14に塗布している塗布動作中の状態を示す概略図である。A nozzle 20 which is a main part of the coating apparatus 1 shown in FIG. 1 is placed on the base 10 and is applied to a member 14 having a plurality of banks provided in parallel to a predetermined pitch. It is the schematic which shows the state of. ギャップに塗布液のビードを形成しつつ、ノズル20を一定速度で相対移動させて塗布している状態を表わす概念図である。It is a conceptual diagram showing the state which has applied the nozzle 20 relatively moving at a fixed speed, forming the bead of a coating liquid in a gap.

以下に、本発明を実施するための形態を図面を参照して詳細に説明する。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated in detail with reference to drawings.

本発明の実施形態に係る塗布装置1は、ガラスの基板などの被塗布部材表面に所定ピッチに平行に複数配置された所定長さのバンクの間に形成される画素に塗布液を充填し乾燥させて、ストライプ状の塗布膜を形成してディスプレイ用パネルを製造する工程で用いられる。   The coating apparatus 1 according to the embodiment of the present invention fills a pixel formed between banks of a predetermined length arranged in parallel with a predetermined pitch on the surface of a member to be applied such as a glass substrate, and dries the coating liquid. Thus, it is used in a process of manufacturing a display panel by forming a stripe-shaped coating film.

図1は本発明の実施形態に係る塗布装置1を示す斜視図である。図1に示すように、塗布装置1は、基台部10と、基台部10に被塗布部材14を載置して吸着保持するための吸着ステージ13と、吸着ステージ13を基台部10上でX軸方向に所定の速度で移動可能に構成されるステージ駆動部12とを備えている。   FIG. 1 is a perspective view showing a coating apparatus 1 according to an embodiment of the present invention. As shown in FIG. 1, the coating apparatus 1 includes a base unit 10, a suction stage 13 for mounting and holding a member to be coated 14 on the base unit 10, and a suction stage 13. The stage drive unit 12 is configured to be movable at a predetermined speed in the X-axis direction.

なお、ここで、吸着ステージ13が所定の速度で移動する方向をX軸方向、これと水平面上で直交する方向をY軸方向、X軸およびY軸に直交する上下方向をZ軸方向とする。   Here, the direction in which the suction stage 13 moves at a predetermined speed is the X-axis direction, the direction orthogonal to this on the horizontal plane is the Y-axis direction, and the vertical direction orthogonal to the X-axis and Y-axis is the Z-axis direction. .

吸着ステージ13の表面には、図示しない複数の吸着孔が配設されており、配設された吸着孔には吸気配管を介して吸引ポンプ(図示せず)と連結されている。吸引ポンプを作動させると負圧によって被塗布部材14が吸着ステージ13の表面に吸引保持される。   A plurality of suction holes (not shown) are provided on the surface of the suction stage 13 and are connected to a suction pump (not shown) via an intake pipe. When the suction pump is operated, the coated member 14 is sucked and held on the surface of the suction stage 13 by the negative pressure.

塗布装置1には、更に、塗布液を被塗布部材14に塗布する塗布ユニット30が、基台部10上に、X軸方向に移動可能な吸着ステージ13を跨ぐように門型形状に配設されている。   Further, in the coating apparatus 1, a coating unit 30 for coating a coating solution on the coating target member 14 is arranged in a gate shape on the base unit 10 so as to straddle the suction stage 13 movable in the X-axis direction. Has been.

前記門型形状の塗布ユニット30は、被塗布部材14の所定位置に塗布液を吐出して塗布するノズル20を吸着ステージ13の上方から被塗布部材14に対向して支持するように、門型両脇の2本の支柱部31と、前記2本の支柱部を支柱部上部で連結する梁部32と、前記梁部32のほぼ中央でノズル20をZ軸方向、Y軸方向に昇降および移動可能に構成されるノズル駆動部21と、ノズル駆動部21の下部に固定されたノズル20とを備えている。   The portal-shaped application unit 30 is configured to support the nozzle 20 that discharges and applies the application liquid to a predetermined position of the member to be coated 14 from above the suction stage 13 so as to support the member to be coated 14. The two column portions 31 on both sides, the beam portion 32 connecting the two column portions at the upper portion of the column portion, and the nozzle 20 is moved up and down in the Z-axis direction and the Y-axis direction substantially at the center of the beam portion 32. The nozzle drive part 21 comprised so that a movement is possible, and the nozzle 20 fixed to the lower part of the nozzle drive part 21 are provided.

ノズル駆動部21は、吸着ステージ13に吸着保持された被塗布部材14の表面からの高さを検出する高さ検出手段(図示せず)と、ノズル20をY軸方向の所定の場所に位置合わせ調整する位置合わせ調整手段(図示せず)とを備えている。ノズル20の高さ検出手段からの高さの情報に基づいて、Z軸方向に昇降するノズル駆動部21を後述の制御装置で制御することによって、ノズル20の吐出口先端面と被塗布部材14の表面とのすきま、すなわち、ギャップ(クリアランスとも呼ばれる)のすきま量を所定高さに設定することが出来るようになっている。   The nozzle drive unit 21 has a height detection means (not shown) for detecting the height from the surface of the member 14 to be applied that is sucked and held by the suction stage 13 and the nozzle 20 at a predetermined position in the Y-axis direction. Alignment adjusting means (not shown) for adjusting the alignment. Based on the height information from the height detection means of the nozzle 20, the nozzle drive unit 21 that moves up and down in the Z-axis direction is controlled by a control device to be described later. It is possible to set the clearance with the surface, that is, the gap (also called clearance), to a predetermined height.

また、所定ピッチに平行に複数設けられたバンクを有する前記塗布部材表面に塗布する際には、所定のバンクとバンクの間の溝の中央にノズルの吐出口先端部の中央を位置合わせ調整できるようになっている。   Further, when applying to the surface of the coating member having a plurality of banks provided in parallel to a predetermined pitch, the center of the nozzle discharge port tip can be aligned and adjusted to the center of the groove between the predetermined bank. It is like that.

塗布装置1には、更にノズル20に塗布液を供給する塗布液供給部40を備えている。塗布液供給部40は、塗布液供給ポンプ41と塗布液供給配管42と塗布液タンク43とで構成され、塗布液タンク43が塗布液供給配管42を介してノズル20に連結されている。   The coating apparatus 1 further includes a coating liquid supply unit 40 that supplies the coating liquid to the nozzle 20. The coating liquid supply unit 40 includes a coating liquid supply pump 41, a coating liquid supply pipe 42, and a coating liquid tank 43, and the coating liquid tank 43 is connected to the nozzle 20 via the coating liquid supply pipe 42.

塗布液供給配管42の塗布液タンク43側には塗布液を送液供給する塗布液供給ポンプ41が配置されており、後述の制御装置で制御することによって、ノズル20に塗布液を所定時間に所定量を供給することが出来るようになっている。   A coating liquid supply pump 41 for supplying and supplying the coating liquid is disposed on the coating liquid tank 43 side of the coating liquid supply pipe 42, and the coating liquid is supplied to the nozzle 20 at a predetermined time by being controlled by a control device described later. A predetermined amount can be supplied.

更にまた、本発明の実施形態に係る塗布装置1を構成する上述の各部位の動作、すなわち、被塗布部材14の吸着ステージ13への吸着固定、ノズル駆動部21のY軸方向移動、ノズル20のZ軸方向の昇降とギャップのすきま量の所定高さ設定、塗布液供給ポンプ41の塗布液の送液、吸着ステージ13のX軸方向の所定速度の移動など、塗布装置1の塗布に係る一連動作を制御する制御装置(図示せず)を塗布装置1は備えている。   Furthermore, the operation of each part described above constituting the coating apparatus 1 according to the embodiment of the present invention, that is, the suction fixing of the member 14 to be applied to the suction stage 13, the movement of the nozzle drive unit 21 in the Y-axis direction, the nozzle 20 Related to coating of the coating apparatus 1, such as raising and lowering in the Z-axis direction and setting a predetermined height of the gap clearance, feeding the coating liquid of the coating liquid supply pump 41, and moving the suction stage 13 at a predetermined speed in the X-axis direction. The coating apparatus 1 includes a control device (not shown) that controls a series of operations.

前記制御装置は、CPUからなる演算手段、プログラムやデータを記憶するROM、RAM、HDD等の記憶手段、外部に対する信号を入出力するための入出力インターフェース等を含むコンピュータからなり、記憶手段に記憶された各種プログラムを演算手段が実行して、ノズル20による被塗布部材14への塗布が出来るように構成されている。   The control device is composed of a computer including arithmetic means comprising a CPU, storage means such as a ROM, RAM, and HDD for storing programs and data, an input / output interface for inputting and outputting signals to the outside, and the like stored in the storage means The various programs thus executed are executed by the calculation means so that the nozzle 20 can be applied to the application target member 14.

図2は、図1に示す塗布装置1の主要な一部分であるノズル20が、基台部10上に保持され、所定ピッチに平行に複数設けられたバンクを有する被塗布部材14を塗布している塗布動作中の状態を示す概略図である。   FIG. 2 shows a case where a nozzle 20, which is a main part of the coating apparatus 1 shown in FIG. 1, is applied to a coated member 14 having a bank which is held on a base 10 and is provided in parallel with a predetermined pitch. FIG.

図1、図2に示すように、ノズル20の長手方向はY軸方向に一致するようにノズル駆動部21に固定される。   As shown in FIGS. 1 and 2, the longitudinal direction of the nozzle 20 is fixed to the nozzle driving unit 21 so as to coincide with the Y-axis direction.

ノズル20は、長手方向に長く伸びた形状を有する柱状の中空容器様態の部材であり、被塗布部材14の表面と対向する側に、塗布液を吐出する複数の吐出口をY軸方向に所定のピッチ間隔で備えている。ノズル20のそれぞれの吐出口は、吐出口周辺を塗布液吐出方向に突出させて形成した吐出口先端部22を有している。   The nozzle 20 is a column-shaped hollow container-like member having a shape extending long in the longitudinal direction, and a plurality of discharge ports for discharging the coating liquid are predetermined in the Y-axis direction on the side facing the surface of the coated member 14. With a pitch interval of. Each discharge port of the nozzle 20 has a discharge port front end portion 22 formed by protruding the periphery of the discharge port in the coating liquid discharge direction.

また、吐出口先端部22から塗布液が吐出される方向に配置される被塗布部材14には、ノズル20の複数の吐出口の所定の前記ピッチと同じピッチで平行に複数配置されたバンクの間に形成される画素が形成されている。   Further, a plurality of banks arranged in parallel at the same pitch as the predetermined pitch of the plurality of discharge ports of the nozzle 20 are applied to the member to be coated 14 disposed in the direction in which the coating liquid is discharged from the discharge port front end portion 22. Pixels formed between them are formed.

ノズル駆動部21のY軸方向の位置合わせ調整とZ軸方向の昇降により、ノズル20の吐出口先端部22を被塗布部材14の画素に近接させて、被塗布部材14の画素とのギャップのすきま量を所定高さに維持するとともに、塗布液供給部40からノズル20の吐出口先端部22に塗布液を供給して吐出させ、吐出口先端部22と被塗布部材14の画素とのギャップ(すきま)に塗布液のビードを形成した後、被塗布部材14を吸着支持した吸着ステージ13を所定の一定速度で口金20の長手方向と直行するX軸方向に所定長を相対移動させると、被塗布部材14の画素に塗布液が塗布される。   By adjusting the alignment of the nozzle drive unit 21 in the Y-axis direction and raising and lowering in the Z-axis direction, the discharge port front end portion 22 of the nozzle 20 is brought close to the pixel of the member 14 to be coated, and the gap with the pixel of the member 14 to be coated is increased. While maintaining the gap amount at a predetermined height, the coating liquid is supplied from the coating liquid supply unit 40 to the discharge port front end portion 22 of the nozzle 20 to be discharged, and the gap between the discharge port front end portion 22 and the pixel of the coated member 14 After forming the bead of the coating liquid in (gap), when the suction stage 13 that sucks and supports the member 14 to be coated is relatively moved a predetermined length in the X-axis direction perpendicular to the longitudinal direction of the base 20 at a predetermined constant speed, A coating liquid is applied to the pixels of the member to be coated 14.

被塗布部材14の画素に塗布された塗布液を乾燥して、ストライプ状の塗布膜を形成する工程が完了する。   The step of drying the coating liquid applied to the pixels of the member 14 to be coated to form a stripe-shaped coating film is completed.

上述の塗布装置1を用いて、発明者らは塗布試験を行った。
塗布試験では、厚さ0.7mmの素ガラス板(100mm×100mm)を被塗布部材とし、塗布長さは80mm、乾燥前の塗布膜厚さは4μmである。
The inventors performed a coating test using the coating device 1 described above.
In the coating test, a 0.7 mm thick glass plate (100 mm × 100 mm) is used as a member to be coated, the coating length is 80 mm, and the coating film thickness before drying is 4 μm.

塗布試験に用いたノズル20は、塗布可能な長手方向の長さが30mmであり、101個の吐出口をピッチ間隔300μmで備えており、各吐出口周辺の塗布液吐出方向に突出させて形成した吐出口先端部22のノズル長手方向の幅は60μmである。   The nozzle 20 used in the coating test has a length in the longitudinal direction that can be applied of 30 mm, has 101 discharge ports with a pitch interval of 300 μm, and is formed by protruding in the coating liquid discharge direction around each discharge port. The width in the nozzle longitudinal direction of the discharge port front end portion 22 is 60 μm.

塗布試験では、塗布幅100μm以下の微細なストライプ状の塗布膜を安定的に形成することを目的とすることから、被塗布部材である素ガラスの表面にはバンクを設けずに、前記ノズル20を用いて、塗布液を300μmピッチの塗布長さ80mmの平行直線となる様に塗布し乾燥させて、塗布幅を計測した。   The purpose of the coating test is to stably form a fine stripe-shaped coating film having a coating width of 100 μm or less. Therefore, the nozzle 20 is not provided on the surface of the raw glass as the member to be coated. The coating solution was applied and dried so as to be a parallel straight line having a coating length of 80 mm with a pitch of 300 μm, and the coating width was measured.

塗布試験に使用した有機EL用の塗布液は、粘度が0.035Pa・sである。   The coating liquid for organic EL used in the coating test has a viscosity of 0.035 Pa · s.

ギャップのすきま量が小さいと、被塗布部材14のたわみや厚さむら、付着物などにより吐出口先端部22と被塗布部材14が衝突する危険性が増加し、ギャップのすきま量が大きいと経済的な塗布速度の範囲でビードを形成できなくなるため、粘度が0.035Pa・sの塗布試験では、ギャップのすきま量を70μm〜40μmの範囲で変化させ、また、吸着ステージ13の移動による塗布速度は4.2mm/s〜66.8mm/sの範囲で変化させて塗布試験を行った。   If the gap clearance is small, the risk of collision between the discharge port tip 22 and the coated member 14 due to deflection, thickness unevenness, deposits, etc. of the coated member 14 increases, and if the gap clearance is large, it is economical. In the coating test with a viscosity of 0.035 Pa · s, the gap clearance is changed in the range of 70 μm to 40 μm, and the coating speed by moving the suction stage 13 is not possible. Was changed in the range of 4.2 mm / s to 66.8 mm / s, and the coating test was performed.

Figure 2013202507
Figure 2013202507

塗布試験の結果を表1に示す。なお、表1では、前記の塗布試験の試験条件に追加して、有機EL用の塗布液の粘度が0.005Pa・s〜0.014Pa・sの範囲で異なる塗布液で、ギャップのすきま量は40μm〜30μmの追実験データとを合わせて示している。   Table 1 shows the results of the coating test. In addition, in Table 1, in addition to the test conditions of the above-described coating test, the gap amount of the gap with a coating solution having a different viscosity in the range of 0.005 Pa · s to 0.014 Pa · s for the organic EL coating solution. Is shown together with additional experiment data of 40 μm to 30 μm.

塗布試験の結果では、表1に示す通り、塗布速度が同じ16.7mm/sの塗布試験で、ギャップのすきま量を70μmから小さくして40μmまで変えた4っの実験データから、ギャップのすきま量が60μmで最も塗布幅が広くなり、ギャップのすきま量が40μになると塗布幅が100μmに近づく傾向が認められた。   As shown in Table 1, in the coating test results, the gap clearance was determined from four experimental data in which the gap clearance amount was reduced from 70 μm to 40 μm in the same 16.7 mm / s coating test. When the amount was 60 μm, the coating width was the widest, and when the gap clearance was 40 μm, the coating width tended to approach 100 μm.

このことから、付着物のない、たわみや厚さむらの小さな被塗布部材14に対しては、ギャップのすきま量を更に小さくすることにより塗布幅100μm以下にできるものと考えられるが、吐出口先端部22と被塗布部材14が衝突する危険性が増加することに留意する必要性が生じる。   From this, it is considered that the coating width can be reduced to 100 μm or less by further reducing the gap clearance for the coated member 14 having no deposit and small deflection and uneven thickness. There is a need to note that the risk of collision between the portion 22 and the member to be coated 14 increases.

更に、塗布試験の結果では、表1に示すとおり、ギャップのすきま量60μmを同じにして、塗布速度を4.2mm/s〜66.8mm/sの範囲で異なる6っの実験データからは、塗布速度が速くなると塗布幅が小さくなる傾向が認められ、塗布幅100μm以下の微細なストライプ状の塗布膜を安定的に形成する可能性が見出される。   Furthermore, as shown in Table 1, in the results of the application test, from the six experimental data with the gap gap amount of 60 μm being the same and the application speed being different in the range of 4.2 mm / s to 66.8 mm / s, When the coating speed increases, the tendency of the coating width to decrease is recognized, and the possibility of stably forming a fine stripe-shaped coating film having a coating width of 100 μm or less is found.

また、前記の塗布試験の結果において、ギャップのすきま量60μmで塗布速度を66.8mm/sに速くすると、ストライプ状の複数の平行直線が一定の塗布幅とはならず、一部は点線になりかけている状況となった。   Further, in the result of the coating test, when the gap speed is 60 μm and the coating speed is increased to 66.8 mm / s, a plurality of striped parallel straight lines do not have a constant coating width, and some of them are dotted lines. It became a situation.

ギャップのすきま量60μmで、塗布速度が66.8mm/sより低い塗布速度では、ストライプ状の複数の平行直線が一定の塗布幅で形成されるが、同じギャップのすきま量60μmで塗布速度を66.8mm/sに速くすると、ストライプ状の複数の平行直線が一定の塗布幅とはならず、一部は点線になりかけている状況となったことは、塗布液のビード内部に生じる相対移動方向の剪断力τに許容される上限があるためと考えられる。   When the gap clearance is 60 μm and the coating speed is lower than 66.8 mm / s, a plurality of stripe-like parallel straight lines are formed with a constant coating width. However, the coating speed is 66 with the same gap clearance of 60 μm. When the speed is increased to 8 mm / s, the striped parallel straight lines do not have a constant coating width, and a part of the strips are becoming dotted lines. This is considered to be because there is an upper limit allowed for the shearing force τ in the direction.

図3は、ノズル20の吐出口先端部22を被塗布部材14に近接させて、被塗布部材14のストライプ状の溝とのギャップのすきま量を所定の高さに維持するとともに、ノズル20の吐出口先端部22から塗布液を吐出して、ギャップに塗布液のビードを形成しつつ、ノズル20を一定速度で相対移動させて塗布している状態を表わしている。   In FIG. 3, the discharge port tip 22 of the nozzle 20 is brought close to the member to be coated 14 to maintain the gap amount with the stripe-shaped groove of the member to be coated 14 at a predetermined height. This represents a state where the coating liquid is discharged from the discharge port tip 22 to form a bead of the coating liquid in the gap and the nozzle 20 is relatively moved at a constant speed for coating.

前記ビード内に発生する相対移動方向の剪断力τは、一般に、ずり速度と塗布液の粘度による式、τ=μU/hで表現される。   The shearing force τ in the relative movement direction generated in the bead is generally expressed by an equation based on the shear rate and the viscosity of the coating solution, τ = μU / h.

ここに、τは塗布液内部に発生する相対移動方向の剪断力、μは塗布液の粘度、Uは吸着ステージ13の移動速度(塗布速度)、hはギャップのすきま量である。   Here, τ is the shearing force in the relative movement direction generated in the coating liquid, μ is the viscosity of the coating liquid, U is the moving speed (coating speed) of the adsorption stage 13, and h is the gap clearance.

前記式で表わされる剪断力τを算定した結果を表1に併せて示す。   The results of calculating the shearing force τ represented by the above formula are also shown in Table 1.

表1の剪断力τの値から、相対移動している塗布速度による剪断力が小さいと、ストライプ状の複数の平行直線が隣の塗布線どうしでくっついて、塗布幅を測定できなくなった。また、塗布速度による剪断力が上限の値以上になると、ストライプ状の複数の平行直線が一定の塗布幅とはならず、一部の塗布幅が狭くなってとぎれて、点線状になりかけている状況となった。   From the value of the shearing force τ shown in Table 1, when the shearing force due to the relatively moving coating speed is small, a plurality of stripe-like parallel straight lines stick to each other between adjacent coating lines, making it impossible to measure the coating width. Also, when the shearing force due to the coating speed exceeds the upper limit value, a plurality of stripe-like parallel straight lines do not have a constant coating width, and some coating widths become narrower and become dotted lines. It became a situation.

言い換えると、前記ビード内に発生する相対移動方向の剪断力が2.8Pa以上であれば、ストライプ状の複数の平行直線が隣の塗布線どうしでくっつかずに塗布でき、また、前記ビード内に発生する相対移動方向の剪断力が、35.0Pa以下であれば、ストライプ状の複数の平行直線は一定の塗布幅で塗布できた。   In other words, if the shearing force in the relative movement direction generated in the bead is 2.8 Pa or more, a plurality of striped parallel straight lines can be applied without adhering to each other between adjacent application lines, When the generated shearing force in the relative movement direction was 35.0 Pa or less, a plurality of stripe-like parallel straight lines could be applied with a constant application width.

すなわち、相対移動させて塗布する前記塗布速度を前記ビード内に発生する相対移動方向の剪断力で2.8Pa以上、35.0Pa以下の範囲で塗布することが好適なストライプ塗布の条件と言える。   That is, it can be said that the preferred application condition for stripe application is that the application speed applied by relative movement is within the range of 2.8 Pa or more and 35.0 Pa or less by the shear force in the relative movement direction generated in the bead.

また、表1に示す通り、前記ビード内に発生する前記相対移動方向の剪断力で35.0Paを上限に相対移動させて塗布する塗布速度を速くすると、塗布幅を前記吐出口先端部の幅60μmに対して10%以内の同等の細い塗布幅65μmに出来た。   Further, as shown in Table 1, when the application speed is increased by relatively moving the upper limit of 35.0 Pa with the shear force in the relative movement direction generated in the bead, the application width becomes the width of the tip of the discharge port. An equivalent thin coating width of 65 μm within 10% with respect to 60 μm was achieved.

これまでは、特許文献4に示される様に、安定したビードを形成して塗布している状態では、ノズルの吐出先端部22のノズル長手方向の幅よりバンクの間に形成されるストライプ状の塗布幅の方が大きくなると言われてきた。   Until now, as shown in Patent Document 4, in a state where a stable bead is formed and applied, a stripe-like shape formed between banks from the width in the nozzle longitudinal direction of the discharge tip portion 22 of the nozzle. It has been said that the coating width becomes larger.

また、相対移動させて塗布した塗布幅がノズルの吐出口先端部のノズル長手方向の幅より小さくなるときは、ビードの形成が不安定と判断されるため、ギャップのすきま量をより小さくするなどして、ノズルの吐出先端部22の長手方向の幅よりもバンクの間に形成される塗布幅を同じか若干大きい状態に戻し、安定したビードが形成される状態にすることが好ましいとされてきた。   In addition, when the application width applied by relative movement becomes smaller than the width in the nozzle longitudinal direction of the nozzle outlet, the bead formation is determined to be unstable, and therefore the gap clearance is made smaller. Therefore, it is preferable to return the coating width formed between the banks to the same or slightly larger than the width in the longitudinal direction of the discharge tip 22 of the nozzle so that a stable bead is formed. It was.

しかし、種々の塗布試験の結果から、ノズルの吐出先端部のノズル長手方向の幅よりもバンクの間に形成される塗布幅が小さくなりビードの形成が不安定と判断される状況に近づいても、塗布速度が好適な範囲にあれば、一定の塗布速度で塗布を継続することでビードの形成が維持され、吐出口先端部のノズル長手方向の幅と同等の幅の塗布膜を安定的に形成することができた。   However, from the results of various coating tests, the width of the coating formed between the banks is smaller than the width in the nozzle longitudinal direction of the discharge tip of the nozzle, and the situation where it is determined that the formation of beads is unstable is approached. If the coating speed is within a suitable range, bead formation is maintained by continuing coating at a constant coating speed, and a coating film having a width equivalent to the width in the nozzle longitudinal direction of the discharge port tip can be stably formed. Could be formed.

このことは、塗布速度による剪断力が上限の値以上になると、ストライプ状の複数の平行直線が一定の塗布幅とはならず、一部は塗布幅が狭くなってとぎれて点線状になりかけている状況となった現象と合わせて考えると、一定の塗布速度を与えることによって生じるビード内部の相対移動方向の剪断力で被塗布部材表面でのビードの塗布液が塗布方向に引っ張られるため、塗布幅と平衡しているものと推察された。   This means that when the shearing force due to the coating speed exceeds the upper limit value, the striped parallel straight lines do not have a constant coating width, and some of the coating width becomes narrower and becomes almost dotted. When combined with the phenomenon that has become a situation, because the bead coating liquid on the surface of the coated member is pulled in the coating direction by the shear force in the relative movement direction inside the bead caused by giving a constant coating speed, It was inferred to be balanced with the coating width.

よって、ギャップのすきま量を補正調整しないで一定にし、好適な範囲の一定の塗布速度で塗布を継続することでビードの形成が維持され、ノズルの吐出先端部のノズル長手方向の幅と同等の塗布幅までの細い塗布膜が安定的に形成することができる。   Therefore, the gap gap amount is made constant without correction adjustment, and the formation of beads is maintained by continuing the application at a constant application speed within a suitable range, which is equivalent to the width in the nozzle longitudinal direction of the discharge tip of the nozzle. A thin coating film up to the coating width can be stably formed.

上述の塗布装置1を用いた実施例として、所定ピッチで平行に複数設けられたバンク51を有する被塗布部材14の表面に塗布を行った。   As an example using the coating apparatus 1 described above, coating was performed on the surface of the coated member 14 having a plurality of banks 51 provided in parallel at a predetermined pitch.

実施例に用いたノズル20は、前記塗布試験と同じく長手方向の長さが30mmであり、101個の吐出口をピッチ間隔300μmで備えており、各吐出口周辺の塗布液吐出方向に突出させて形成した吐出口先端部22のノズル長手方向の幅は60μmである。また、実施例に用いた有機EL用の塗布液は、粘度が0.014Pa・sのものである。   The nozzle 20 used in the example has a length of 30 mm in the longitudinal direction as in the coating test, has 101 discharge ports with a pitch interval of 300 μm, and protrudes in the coating liquid discharge direction around each discharge port. The width in the nozzle longitudinal direction of the discharge port tip 22 formed in this way is 60 μm. The coating liquid for organic EL used in the examples has a viscosity of 0.014 Pa · s.

実施例に用いた被塗布部材14の表面には、ピッチ間隔100μmで平行に複数設けられた高さ2μm×幅20μm、長さ80mmのバンク51を有している。   On the surface of the member to be coated 14 used in the example, a plurality of banks 51 having a height of 2 μm, a width of 20 μm, and a length of 80 mm are provided in parallel at a pitch interval of 100 μm.

前記バンク51と隣のバンク51との間のバンク幅80μmの(3列毎の)画素の中央に、実施例に用いたノズルの吐出口先端部22の先端面を対向させ、近接させて、前記吐出口先端部22と被塗布部材14とのギャップのすきま量は35μmとして、塗布液のビードを形成した後、前記ノズル20の長手方向と直交するX軸方向に前記ノズルと被塗布部材とを一定の塗布速度で相対移動させて塗布するストライプ塗布を行った。   The front end surface of the discharge port front end portion 22 of the nozzle used in the example is opposed and brought close to the center of a pixel (every three columns) having a bank width of 80 μm between the bank 51 and the adjacent bank 51, After forming a bead of coating liquid with a gap amount of 35 μm between the discharge port front end portion 22 and the coated member 14, the nozzle and the coated member are arranged in the X-axis direction perpendicular to the longitudinal direction of the nozzle 20. Stripe coating was carried out by relatively moving at a constant coating speed.

本実施例では、前記ノズル20と被塗布部材14とを相対移動させる一定の塗布速度は50mm/sを選定し、前記ビード52内に発生する相対移動方向の剪断力は20.0Paとした。これは、先述の素ガラスを用いた塗布試験の結果から、塗布される塗布幅が前記バンク51の間のバンク幅になるように、相対移動させて塗布できる前記一定の塗布速度を設定したからである。   In this embodiment, the constant coating speed for relatively moving the nozzle 20 and the member to be coated 14 is selected to be 50 mm / s, and the shearing force generated in the bead 52 in the relative movement direction is 20.0 Pa. This is because, based on the result of the application test using the above-described raw glass, the constant application speed at which application can be performed by relative movement is set so that the application width to be applied becomes the bank width between the banks 51. It is.

塗布後に乾燥させて得られた塗布厚さは80nmで、塗布の状況はバンク51間からの溢れが無く、前記バンクの間の画素に塗布されていた。   The coating thickness obtained by drying after coating was 80 nm, and the coating was applied to the pixels between the banks without overflowing from between the banks 51.

同様に、前記バンク51と隣のバンク51との間のバンク幅65μmの(3列毎の)画素の中央に、実施例に用いたノズルの吐出口先端部22の先端面を対向させ、近接させて、吐出口先端部22と被塗布部材14とのギャップのすきま量は40μmとして、塗布液のビードを形成した後、前記ノズル20の長手方向と直交するX軸方向に前記ノズルと被塗布部材とを一定の塗布速度100mm/sで相対移動させて塗布するストライプ塗布を行った結果においても、バンク51間からの溢れが無く、前記バンク51の間の画素に塗布されていた。   Similarly, the front end surface of the discharge port front end portion 22 of the nozzle used in the example is opposed to the center of a pixel having a bank width of 65 μm (every three columns) between the bank 51 and the adjacent bank 51, The gap between the discharge port tip 22 and the member 14 to be coated is 40 μm, and after forming a bead of coating liquid, the nozzle and the coating in the X-axis direction perpendicular to the longitudinal direction of the nozzle 20 are formed. Even in the result of performing stripe coating in which the member is moved relative to the member at a constant coating speed of 100 mm / s, there is no overflow from between the banks 51, and the coating is applied to the pixels between the banks 51.

上述の通り、相対移動させて塗布する前記塗布速度を、前記ビード内に発生する相対移動方向の剪断力で2.8Pa以上、35.0Pa以下の好適な範囲で塗布する本発明のストライプ塗布方法を用いて、前記ビード内に発生する前記相対移動方向の剪断力で35.0Paを上限に相対移動させて塗布する一定の塗布速度を速くして塗布すると、塗布幅をノズルの吐出先端部のノズル長手方向の幅と同等の塗布幅まで細く出来る。   As described above, the stripe coating method of the present invention is such that the coating speed applied by relative movement is applied in a preferred range of 2.8 Pa or more and 35.0 Pa or less by the shear force in the relative movement direction generated in the bead. , The coating width is set at the discharge tip of the nozzle by applying a constant coating speed by applying a relative movement of 35.0 Pa to the upper limit by the shear force in the relative movement direction generated in the bead. The coating width can be reduced to the same width as the nozzle longitudinal direction.

よって、本実施例の様に、吐出口先端部と被塗布部材とのギャップのすきま量を適正に設定して、事前の素ガラスを用いた塗布試験の結果から、塗布される塗布幅が前記バンクの間のバンク幅になるように相対移動させて塗布する一定の塗布速度を設定するストライフ塗布の方法は、バンク間からの溢れが無い好適なストライプ塗布方法となる。   Therefore, as in this example, the gap width between the discharge port tip and the member to be coated is set appropriately, and the coating width to be coated is determined from the result of the coating test using the raw glass in advance. A strife coating method in which a constant coating speed is set so as to be relatively moved so as to have a bank width between the banks, and is a suitable stripe coating method in which there is no overflow from between the banks.

なお、適正な吐出口先端部と被塗布部材とのギャップのすきま量は、ストライプ塗布する被塗布部材のたわみや厚さむら、不要な付着物などの状況から設定される。   Note that the appropriate gap clearance between the front end of the discharge port and the member to be coated is set based on the situation such as the deflection and thickness unevenness of the member to be coated with stripes, unnecessary deposits, and the like.

本発明のストライプ塗布方法を用いて、低コストで高品質のディスプレイ用部材が製造できるディスプレイ用部材の製造装置を提供することが出来る。   By using the stripe coating method of the present invention, it is possible to provide a display member manufacturing apparatus capable of manufacturing a high-quality display member at low cost.

1 塗布装置
10 基台部
12 ステージ駆動部
13 吸着ステージ
14 被塗布部材
20 ノズル
21 ノズル駆動部
22 吐出口先端部
30 塗布ユニット
31 支柱部
32 梁部
40 塗布液供給部
41 塗布液供給ポンプ
42 塗布液供給配管
43 塗布液タンク
51 バンク
52 ビード
53 吐出口
54 ノズルの吐出先端部の長手方向の幅
55 バンク幅
DESCRIPTION OF SYMBOLS 1 Application | coating apparatus 10 Base part 12 Stage drive part 13 Adsorption stage 14 Application | coating member 20 Nozzle 21 Nozzle drive part 22 Discharge port front-end | tip part 30 Application | coating unit 31 Support | pillar part 32 Beam part 40 Application liquid supply part 41 Application liquid supply pump 42 Application Liquid supply piping 43 Coating liquid tank 51 Bank 52 Bead 53 Discharge port 54 Width in the longitudinal direction of the discharge tip of the nozzle 55 Bank width

Claims (3)

ノズルが長手方向に複数の吐出口を有し、さらに各々の前記吐出口の周辺を塗布液吐出方向にノズルから突出させて形成した複数の吐出口先端部を有し、前記吐出口先端部を塗布液吐出方向に被塗布部材表面と対向させ、近接させて、前記吐出口先端部と被塗布部材とのギャップに塗布液のビードを形成した後、前記ノズルの長手方向と直交する方向に前記ノズルと被塗布部材とを相対移動させて塗布するストライプ塗布方法であって、前記吐出口先端部と被塗布部材とのギャップのすきま量を一定にし、相対移動させて塗布する一定の塗布速度を前記ビード内に発生する相対移動方向の剪断力で2.8Pa以上、35.0Pa以下で塗布することを特徴とするストライプ塗布方法。   The nozzle has a plurality of discharge ports in the longitudinal direction, and further has a plurality of discharge port tip portions formed by projecting the periphery of each of the discharge ports from the nozzle in the coating liquid discharge direction. The bead of the coating liquid is formed in the gap between the tip of the discharge port and the member to be coated, facing the surface of the member to be coated in the coating liquid discharge direction and in the vicinity thereof, and then in the direction orthogonal to the longitudinal direction of the nozzle A stripe coating method for coating by moving the nozzle and the member to be coated relative to each other, wherein the gap amount between the tip of the discharge port and the member to be coated is constant, and the coating is performed by moving the nozzle relative to the coating member. A stripe coating method, wherein coating is performed at 2.8 Pa or more and 35.0 Pa or less by a shearing force in a relative movement direction generated in the bead. 前記ビード内に発生する前記相対移動方向の剪断力で35.0Paを上限に相対移動させて塗布する一定の塗布速度を速くして、ノズルの吐出口先端部のノズル長手方向の幅と同等の幅まで塗布幅を小さくすることを特徴とする請求項1に記載のストライプ塗布方法。   A constant coating speed is increased by applying a relative movement of 35.0 Pa to the upper limit by the shearing force generated in the bead in the relative movement direction, and is equivalent to the width in the nozzle longitudinal direction of the nozzle discharge port tip. 2. The stripe coating method according to claim 1, wherein the coating width is reduced to the width. 所定ピッチで平行に複数設けられたバンクを有する前記塗布部材表面に塗布する請求項2に記載のストライプ塗布方法において、前記バンクの間に形成された画素に塗布される塗布幅が前記バンクの間のバンク幅になるように相対移動させて塗布する一定の塗布速度を設定することを特徴とするストライプ塗布方法。   3. The stripe coating method according to claim 2, wherein the coating is applied to the surface of the coating member having a plurality of banks provided in parallel at a predetermined pitch, and a coating width applied to pixels formed between the banks is between the banks. A stripe coating method characterized in that a constant coating speed is set so as to be relatively moved so as to have a bank width of 2.
JP2012074270A 2012-03-28 2012-03-28 Stripe coating method Pending JP2013202507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074270A JP2013202507A (en) 2012-03-28 2012-03-28 Stripe coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074270A JP2013202507A (en) 2012-03-28 2012-03-28 Stripe coating method

Publications (1)

Publication Number Publication Date
JP2013202507A true JP2013202507A (en) 2013-10-07

Family

ID=49522212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074270A Pending JP2013202507A (en) 2012-03-28 2012-03-28 Stripe coating method

Country Status (1)

Country Link
JP (1) JP2013202507A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187948A (en) * 2006-01-16 2007-07-26 Toray Ind Inc Nozzle, coating method and device using nozzle, and manufacturing method and device of color filter
US20090256875A1 (en) * 2008-04-11 2009-10-15 Icf Technology Limited. Method for manufacturing patterned thin-film layer
JP2011183291A (en) * 2010-03-08 2011-09-22 Toray Ind Inc Nozzle, coating apparatus, coating method, and method for manufacturing display member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187948A (en) * 2006-01-16 2007-07-26 Toray Ind Inc Nozzle, coating method and device using nozzle, and manufacturing method and device of color filter
US20090256875A1 (en) * 2008-04-11 2009-10-15 Icf Technology Limited. Method for manufacturing patterned thin-film layer
JP2011183291A (en) * 2010-03-08 2011-09-22 Toray Ind Inc Nozzle, coating apparatus, coating method, and method for manufacturing display member

Similar Documents

Publication Publication Date Title
TWI613933B (en) Inkjet print head and apparatus and method for manufacturing organic light emitting display using the same
CN107128069A (en) Adjust method, inkjet printing methods, device and its system of inkjet-printing device
TWI741426B (en) Coating device and coating method
JP2016215096A (en) Ink drying preventing device
JP4702287B2 (en) Droplet ejection device, functional film forming method, liquid crystal alignment film forming device, and liquid crystal alignment film forming method for liquid crystal display device
CN115246266A (en) Printing control method, printing control device, electronic equipment and computer readable storage medium
JP2009175681A (en) Liquid crystal applying method and liquid crystal applying device for liquid crystal display panel
JP5832779B2 (en) Droplet coating apparatus and droplet coating method
CN110385926B (en) Printing method, printing apparatus, EL, and method for manufacturing solar cell
JP2013202507A (en) Stripe coating method
KR102440567B1 (en) Substrate processing apparatus and method
JP6243278B2 (en) Coating liquid coating apparatus and method
KR102559882B1 (en) Method and Apparatus for Droplet Formation
JP5657998B2 (en) Droplet coating apparatus and droplet coating method
JP5121425B2 (en) Alignment film coating device
CN108394197A (en) Ink jet printing method
KR20030093952A (en) Film forming apparatus, filling method of liquid-shape body thereof, device manufacturing method and device manufacturing apparatus, and device
JP2007187948A (en) Nozzle, coating method and device using nozzle, and manufacturing method and device of color filter
JP2007130536A (en) Droplet discharge amount measuring method, droplet discharge amount measuring jig, droplet discharge amount adjusting method, droplet discharge amount measuring apparatus, drawing apparatus, device, electro-optical apparatus and electronic apparatus
JP2009028675A (en) Thin film forming apparatus
CN100398219C (en) Solution coating device and coating method
JP2017109339A (en) Application method and application device of droplet
JP4994094B2 (en) Droplet coating apparatus and droplet coating method
JP2010175919A (en) Spinless coat device and color filter substrate
JP5333204B2 (en) Recording method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160216