JP2013213778A - Camera movement-type two-dimensional coordinate measurement device - Google Patents
Camera movement-type two-dimensional coordinate measurement device Download PDFInfo
- Publication number
- JP2013213778A JP2013213778A JP2012085055A JP2012085055A JP2013213778A JP 2013213778 A JP2013213778 A JP 2013213778A JP 2012085055 A JP2012085055 A JP 2012085055A JP 2012085055 A JP2012085055 A JP 2012085055A JP 2013213778 A JP2013213778 A JP 2013213778A
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- camera
- workpiece
- image
- dimensional coordinate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 40
- 238000005286 illumination Methods 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims 1
- 239000004033 plastic Substances 0.000 claims 1
- 239000004417 polycarbonate Substances 0.000 claims 1
- 229920000515 polycarbonate Polymers 0.000 claims 1
- 230000007246 mechanism Effects 0.000 abstract description 4
- 238000003384 imaging method Methods 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
この発明は、2次元形状の測定ワークの輪郭や、パターン等を画像で捉え、画像処理を行い、その座標や幾何形状を自動測定する装置に関するものである。 The present invention relates to an apparatus for capturing an outline, a pattern, or the like of a measurement workpiece having a two-dimensional shape with an image, performing image processing, and automatically measuring the coordinates and geometric shape.
紙、光学シート、フイルム、その他金属やガラス等の板状材料から型抜きや切削で所定の2次元形状に加工された加工物が工業製品等で使われている。その形状が要求精度を満足してるかを検査し保証をするために、加工物をカメラで画像として捉え、座標や寸法、幾何学的形状を測定する事が行われている。 Work products processed into a predetermined two-dimensional shape by die cutting or cutting from paper, optical sheets, films, and other plate-like materials such as metal and glass are used in industrial products and the like. In order to inspect and assure that the shape satisfies the required accuracy, a workpiece is captured as an image by a camera, and coordinates, dimensions, and geometric shapes are measured.
この際に加工物を画像として捉えたパターンから座標等の数値データを得るために、所謂画像処理技術でコントラストの差の大きい部分であるエッジをラインとして抽出する。エッジは所定の太さを持つが、このエッジラインの太さを極力狭く、かつ測定面内で均一に抽出する事が測定の精度を高める上で大切であり、そのようなシステムを組み込んだ装置を提供する事を課題とする。 At this time, in order to obtain numerical data such as coordinates from a pattern in which the workpiece is captured as an image, an edge which is a portion having a large contrast difference is extracted as a line by a so-called image processing technique. An edge has a predetermined thickness, but it is important to make the edge line as narrow as possible and extract it uniformly within the measurement surface in order to increase the accuracy of the measurement. A device incorporating such a system The challenge is to provide
加工物を画像で捉え、その座標や寸法のデータを得るためにパターンの境界と成るエッジの位置データを使用する。正確なデータを得るには画像に現れるエッジの幅を狭く捉える必要がある。そのためには加工物(以下測定ワークと呼ぶ)のエッジ部分に明確なコントラストの差が必要であり、照明に依存するところが大である。 The workpiece is captured as an image, and the position data of the edge that becomes the boundary of the pattern is used to obtain the coordinate and dimension data. In order to obtain accurate data, it is necessary to grasp the width of the edge appearing in the image narrowly. For this purpose, a clear contrast difference is necessary at the edge portion of the workpiece (hereinafter referred to as a measurement workpiece), and it largely depends on illumination.
測定ワークがカメラの視野に収まらない大きさの場合はカメラをアクチュエータで移動させる方式の測定機が使われるが、測定ワークを載せる定盤の寸法は測定ワークより大きな寸法が必要である。このような測定装置の場合、電球などの点発光照明をレンズ等で拡大する照明装置の場合、局部的な照明の光線は測定面に対して放射状となる。多少とも厚さを持つ測定ワークの場合は光線の放射角度に依存してパターンのエッジに影を生ずる。これによってパタンの位置に依ってエッジの太さが変化し位置を正確に規定する事が困難と成る。本発明はこうした点に鑑がみ創案されたものである。 When the measurement workpiece does not fit in the field of view of the camera, a measuring machine that moves the camera with an actuator is used. However, the size of the surface plate on which the measurement workpiece is placed needs to be larger than the measurement workpiece. In the case of such a measuring apparatus, in the case of an illuminating apparatus that expands point-emitting illumination such as a light bulb with a lens or the like, the local illumination light beam is radial with respect to the measurement surface. In the case of a measuring work having a certain thickness, a shadow is generated at the edge of the pattern depending on the radiation angle of the light beam. As a result, the thickness of the edge changes depending on the position of the pattern, making it difficult to accurately define the position. The present invention has been devised based on these points.
上記課題を解決するために、図1乃至図3を参照して説明する。測定ワーク(5)は2次元座標測定装置フレーム(1)上に設置された光透過度の高いガラス板等で出来た定盤(4)の上に置かれる。定盤(4)は任意の測定面で設定したCCDカメラ(6)の焦点位置が、全ての測定面で適用できるように定盤(4)を支える3カ所以上の高さ調節機構(3)で支持固定されている。 In order to solve the above problem, a description will be given with reference to FIGS. The measurement workpiece (5) is placed on a surface plate (4) made of a glass plate or the like having a high light transmittance, which is installed on the two-dimensional coordinate measuring device frame (1). The surface plate (4) has three or more height adjustment mechanisms (3) that support the surface plate (4) so that the focal position of the CCD camera (6) set on any measurement surface can be applied to all measurement surfaces. It is supported and fixed by.
定盤(4)の下に面照明(2)が置かれている。面照明(2)は導光板(10)、その端面に設けられる発光体のLED(9)、光を表面方向に反射させる反射板(12)と光を均一化する拡散板(11)で構成されている。導光板(10)は透明のアクリル樹脂板等で出来ていて、端面のLED(9)から入射した光は導光板(10)裏面の図示しない光を乱反射する印刷処理されたドットパターンと反射板(12)によって表面に放射される。 The surface illumination (2) is placed under the surface plate (4). The surface illumination (2) is composed of a light guide plate (10), a light emitting LED (9) provided on the end face thereof, a reflection plate (12) for reflecting light in the surface direction, and a diffusion plate (11) for uniformizing light. Has been. The light guide plate (10) is made of a transparent acrylic resin plate or the like, and the light incident from the LED (9) on the end surface is a dot pattern and a reflection plate subjected to printing processing for irregularly reflecting light (not shown) on the back surface of the light guide plate (10). Radiated to the surface by (12).
上記の面照明(2)は照明光(13)を発光面の全面で垂直に放射する。照明光(13)は定盤(4)に垂直に進入する事で屈折する事無く透過し、測定ワーク(5)が光透過性を持つ場合も同様に照明光(13)は屈折する事なく透過しカメラに直進する。これにより測定ワーク(5)のエッジ部分に影などの無用な像を作る事がなく、エッジ位置を画像で検出する高精度の非接触型の2次元測定器を実現する。 The surface illumination (2) emits illumination light (13) vertically on the entire surface of the light emitting surface. The illumination light (13) is transmitted without being refracted by vertically entering the surface plate (4), and the illumination light (13) is also not refracted in the same manner when the measurement work (5) has light transmittance. Go through and go straight to the camera. This realizes a highly accurate non-contact type two-dimensional measuring device that detects an edge position from an image without creating an unnecessary image such as a shadow on the edge portion of the measurement work (5).
請求項1および請求項2に記載の2次元座標測定装置は定盤(4)の全面で板状の測定ワークの形状やプリントされたパタンの座標、寸法、形状等の幾何学データを高精度で繰り返し誤差の極めて小さい測定を行う事が出来る。
The two-dimensional coordinate measuring apparatus according to claim 1 and
1 2次元座標測定装置フレーム
2 面照明
3 高さ調節機構
4 定盤
5 測定ワーク
6 カメラ
7 Y軸アクチュエータ
8 X軸アクチュエータ
9 LED照明
10 導光板
11 拡散板
12 反射板
13 照明光
DESCRIPTION OF SYMBOLS 1 Two-dimensional coordinate
測定ワーク(5)の画像を捉えるカメラ(6)は測定ワーク(5)の1部分を画像として捉える視野のサイズであり、カメラ(6)の中心を測定するエッジや形状の所定の位置にY軸アクチュエータ(7)とX軸アクチュエータ(8)で移動させ、Y軸アクチュエータ(7)とX軸アクチュエータ(8)に設けられている図示しないエンコーダの位置データを読み取る事で座標を測定する。これによりカメラの視野より大きな測定ワーク(5)を測定できるし、カメラが捉える画像の歪み等を完全にキャンセルする事で、高精度が得られる。 The camera (6) that captures the image of the measurement work (5) is the size of a field of view that captures a portion of the measurement work (5) as an image, and Y is placed at a predetermined position of the edge or shape for measuring the center of the camera (6). The coordinates are measured by reading the position data of an encoder (not shown) provided in the Y-axis actuator (7) and the X-axis actuator (8) by moving the axis actuator (7) and the X-axis actuator (8). As a result, a measurement workpiece (5) larger than the camera's field of view can be measured, and high accuracy can be obtained by completely canceling the distortion of the image captured by the camera.
カメラ(6)の中心を測定するエッジや形状の所定の位置に設定するには、予め測定対象がカメラ(6)の画像として捉えられる位置に前記のXY両アクチュエータで位置決めをしておく必要がある。XY両アクチュエータに大凡の移動先座標データを渡し自動移動指示を行う事等や画面を見ながらのマニアル操作でこの位置決めを行う。 In order to set the center of the camera (6) to the predetermined position of the edge or shape to be measured, it is necessary to position the measurement object in advance at the position where the measurement object is captured as the image of the camera (6) with the XY both actuators. is there. This positioning is performed by handing over the approximate coordinate data of the movement destination to both XY actuators and instructing automatic movement, or by manual operation while looking at the screen.
カメラ(6)で撮影した画像の所定のエッジ位置は画像内の2次元座標データとして得られる。カメラ(6)の中心の2次元画像座標データとの差分をX軸、Y軸方向で求め、Y軸アクチュエータ(7)とX軸アクチュエータ(8)に位置合わせ移動指示する事でカメラ(6)は目的とする位置に近接する。差分が0に成るまで複数回くり返す事が必要である。これにより両アクチュエータに設けられている図示しないエンコーダの位置データが測定座標となる。 A predetermined edge position of the image photographed by the camera (6) is obtained as two-dimensional coordinate data in the image. The difference between the two-dimensional image coordinate data at the center of the camera (6) is obtained in the X-axis and Y-axis directions, and the camera (6) is instructed to move the alignment to the Y-axis actuator (7) and the X-axis actuator (8). Is close to the target position. It is necessary to repeat several times until the difference becomes zero. As a result, position data of encoders (not shown) provided in both actuators become measurement coordinates.
測定座標位置を前記エンコーダの位置データとする方法に加え、カメラの差分データとY軸アクチュエータ(7)とX軸アクチュエータ(8)のエンコータデータを加減算して座標を決定する方法を行っても良い。この場合、幾分測定精度は犠牲に成るが、測定が短時間で済む事に成る。 In addition to the method of using the measurement coordinate position as the position data of the encoder, a method of determining the coordinates by adding / subtracting the difference data of the camera and the encoder data of the Y-axis actuator (7) and the X-axis actuator (8) may be performed. good. In this case, the measurement accuracy is sacrificed somewhat, but the measurement can be completed in a short time.
カメラ(6)の視野内に対象のパターンが全て収まるサイズのパターンで円形や矩形等の形状は目的とする幾何データを幾何学的な画像処理を行う事で寸法や角度などのデータを得る事も出来る。 A pattern of a size that fits all of the target pattern within the field of view of the camera (6), and the shape such as a circle or rectangle can be obtained by performing geometric image processing on the target geometric data to obtain data such as dimensions and angles. You can also.
2次元座標測定装置フレーム(1)上に設置された光透過度の高いガラス板等で出来た定盤(4)が置かれる。定盤(4)は任意の測定面で設定したCCDカメラ(6)の焦点が、全ての測定面で適用できるように定盤(4)を支える3カ所以上の高さ調節機構(3)で固定されている。 A surface plate (4) made of a glass plate or the like having a high light transmittance is placed on the two-dimensional coordinate measuring device frame (1). The surface plate (4) has three or more height adjustment mechanisms (3) that support the surface plate (4) so that the focus of the CCD camera (6) set on any measurement surface can be applied to all measurement surfaces. It is fixed.
定盤(4)の下に面照明(2)が置かれている。面照明(2)は照明光(13)を発光面の全面で垂直に放射する。照明光(13)は定盤(4)や光透過性の測定ワークに垂直に進入する事で屈折する事無く透過しカメラに直進する。これにより測定ワーク(5)のエッジ部分に影などの無用な像を作る事がなく、エッジ位置を高精度に非接触で検出する。 The surface illumination (2) is placed under the surface plate (4). The surface illumination (2) emits illumination light (13) vertically on the entire surface of the light emitting surface. The illumination light (13) passes through the surface plate (4) and the light-transmitting measurement workpiece vertically without being refracted and goes straight to the camera. As a result, a useless image such as a shadow is not formed on the edge portion of the measurement work (5), and the edge position is detected in a non-contact manner with high accuracy.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012085055A JP2013213778A (en) | 2012-04-03 | 2012-04-03 | Camera movement-type two-dimensional coordinate measurement device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012085055A JP2013213778A (en) | 2012-04-03 | 2012-04-03 | Camera movement-type two-dimensional coordinate measurement device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2013213778A true JP2013213778A (en) | 2013-10-17 |
Family
ID=49587190
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2012085055A Pending JP2013213778A (en) | 2012-04-03 | 2012-04-03 | Camera movement-type two-dimensional coordinate measurement device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2013213778A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109323658A (en) * | 2018-09-18 | 2019-02-12 | 赵文富 | A kind of Steel Structure Installation engineering detection device |
-
2012
- 2012-04-03 JP JP2012085055A patent/JP2013213778A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109323658A (en) * | 2018-09-18 | 2019-02-12 | 赵文富 | A kind of Steel Structure Installation engineering detection device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI579941B (en) | Detection apparatus, imprint apparatus, and method of manufacturing products | |
| KR101808388B1 (en) | Probe apparatus and probe method | |
| JP6516453B2 (en) | Image measuring device and measuring device | |
| JP2017107201A (en) | Dynamic autofocus system | |
| JP2013086288A (en) | Substrate top-surface detection method and scribing device | |
| KR20180132104A (en) | Projection-type exposure apparatus and method | |
| CN102472986B (en) | Processing Equipment | |
| KR20190032475A (en) | Machine vision systems and alignment devices for substrate alignment | |
| US11372222B2 (en) | Confocal microscope and method for taking image using the same | |
| JPWO2019155886A1 (en) | Proximity exposure equipment, proximity exposure method, and light irradiation equipment for proximity exposure equipment | |
| KR101631184B1 (en) | System for measuring shape of work and control method | |
| JP5268749B2 (en) | Substrate condition inspection method, laser processing apparatus, and solar panel manufacturing method | |
| JP2017116401A (en) | Substrate position adjustment device and substrate position adjustment method | |
| JP2013213778A (en) | Camera movement-type two-dimensional coordinate measurement device | |
| JP6718281B2 (en) | Board positioning method and board positioning apparatus | |
| JP2016001131A (en) | Measurement device | |
| US7570801B2 (en) | Device suitable for placing components on a substrate | |
| JP2005049222A (en) | High precision positioning device | |
| TWI688820B (en) | Impurity removal assembly of light-transmitting thin film on mask glass substrate | |
| CN106841228B (en) | Dust detection mechanism | |
| CN204788270U (en) | Fine module gear precision measurement device | |
| JP6014386B2 (en) | Glass plate lighting device and processing device | |
| JP2018077227A (en) | Automatable or automated detection method for focus position of laser beam generated by exposure device | |
| TWM545929U (en) | Micro-dust detection mechanism | |
| JP2010245123A (en) | Table with transmissive lighting |