[go: up one dir, main page]

JP2013228192A - Combustor apparatus for stoichiometric combustion - Google Patents

Combustor apparatus for stoichiometric combustion Download PDF

Info

Publication number
JP2013228192A
JP2013228192A JP2013087018A JP2013087018A JP2013228192A JP 2013228192 A JP2013228192 A JP 2013228192A JP 2013087018 A JP2013087018 A JP 2013087018A JP 2013087018 A JP2013087018 A JP 2013087018A JP 2013228192 A JP2013228192 A JP 2013228192A
Authority
JP
Japan
Prior art keywords
combustor
liner
working fluid
nozzle
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013087018A
Other languages
Japanese (ja)
Inventor
Abinash Baruah
アビナッシュ・バルアー
Gilbert Otto Kraemer
ギルバート・オットー・クレイマー
Hasan Ui Karim
ハサン・ユーアイ・カリム
Predrag Popovic
プレドラグ・ポポヴィック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2013228192A publication Critical patent/JP2013228192A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Gas Burners (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustor apparatus which achieves high efficiency combustion in gas turbine applications where a low oxygen working fluid is used.SOLUTION: The present invention relates to a gas turbine combustor with a specific fuel and oxidizer flow arrangement that provides high combustion efficiency for stoichiometric diffusion combustion in gas turbine applications operating with oxygen-deficient working fluids.

Description

本発明は、酸素不足の作動流体で作動するガスタービン用途における化学量論的拡散燃焼に対して高い燃焼効率をもたらす、特定の燃料及び酸化剤の流れ配置を有するガスタービン燃焼器の形状に関する。   The present invention relates to gas turbine combustor geometries having specific fuel and oxidant flow arrangements that provide high combustion efficiency for stoichiometric diffusion combustion in gas turbine applications operating with oxygen-deficient working fluids.

低酸素作動流体を使用するガスタービン用途が知られている。そのような用途の例は、炭素捕捉、オキシ燃料、及び高排気再循環であり、それらのすべては、経済的に実行可能であるために、高燃焼効率を必要とする。しかしながら、そのような高燃焼効率を達成することは、今までは不可能であった。   Gas turbine applications that use a low oxygen working fluid are known. Examples of such applications are carbon capture, oxyfuel, and high exhaust recirculation, all of which require high combustion efficiency in order to be economically viable. However, it has not been possible until now to achieve such a high combustion efficiency.

米国特許出願公開第2010/0170253号US Patent Application Publication No. 2010/0170253

低酸素作動流体が使用されるガスタービン用途において、高効率燃焼の必要性が存在する。本発明は、その必要性を満足することを探求する。   In gas turbine applications where a low oxygen working fluid is used, there is a need for high efficiency combustion. The present invention seeks to satisfy that need.

一態様では、本発明は、内面を有するハウジングと、内部空間と、ノズルと、ハウジング内に配置されたライナーアセンブリとを備える燃焼器を提供する。ライナーには、1以上のライナー混合孔及び1以上のライナー希釈孔が設けられる。ライナーアセンブリは、ハウジングの内面から離隔して作動流体をライナーの混合孔及び希釈孔を通して内部空間に移送するために、ライナーアセンブリとハウジングの内面との間の燃焼器に沿って長手方向に伸びる経路を画成する。ライナーの混合孔及び希釈孔は、ライナーアセンブリの中でライナーの直径に応じて特定の位置に軸方向に配置される。   In one aspect, the present invention provides a combustor comprising a housing having an inner surface, an interior space, a nozzle, and a liner assembly disposed within the housing. The liner is provided with one or more liner mixing holes and one or more liner dilution holes. The liner assembly is a longitudinally extending path along the combustor between the liner assembly and the inner surface of the housing to transfer the working fluid away from the inner surface of the housing and into the interior space through the mixing and dilution holes of the liner Is defined. Liner mixing and dilution holes are axially positioned at specific locations within the liner assembly depending on the diameter of the liner.

本発明の燃焼器は、安定な火炎及び高い燃焼効率をもたらしながら、十分なハードウェアの耐久性を確保する。炭素捕捉、オキシ燃料、高排気再循環の用途は、近化学量論的(near stoichiometric)燃焼を必要とするので、本発明の燃焼器は、高効率燃焼をもたらして、燃料及び酸化剤がガスタービンの作動流体で希釈される前に確実に燃焼が完了する。   The combustor of the present invention ensures sufficient hardware durability while providing a stable flame and high combustion efficiency. Because carbon capture, oxyfuel, and high exhaust recirculation applications require near stoichiometric combustion, the combustor of the present invention provides high efficiency combustion, where fuel and oxidant are gases. Combustion is reliably completed before being diluted with the turbine working fluid.

したがって、本発明の燃焼器は、従来の燃焼器を使用して得られる燃焼効率と比較して改善された燃焼効率を達成するために、低酸素作動流体が使用されるガスタービン用途において、コスト効率の高い解決策を提供する。   Accordingly, the combustor of the present invention is cost effective in gas turbine applications where a low oxygen working fluid is used to achieve improved combustion efficiency compared to that obtained using conventional combustors. Provide an efficient solution.

本発明の燃焼器の内部の部分的斜視図である。It is a partial perspective view inside the combustor of this invention. 混合孔及び希釈孔を示す、本発明の燃焼器のライナーアセンブリの側面図である。1 is a side view of a liner assembly of a combustor of the present invention showing mixing and dilution holes. FIG. 本発明の燃焼器内で使用されるノズル構造の斜視図である。It is a perspective view of the nozzle structure used in the combustor of this invention. 燃焼器の概略断面図である。It is a schematic sectional drawing of a combustor. 対向流スワール(counter−swirl)ノズル構成の概略図である。FIG. 2 is a schematic diagram of a counter-swirl nozzle configuration. 平行流スワール(co−swirl)ノズル構成の概略図である。FIG. 2 is a schematic view of a parallel flow swirl (co-swir) nozzle configuration. 内蔵点火器を示す、ノズルの部分的側面図である。FIG. 3 is a partial side view of a nozzle showing a built-in igniter.

図を参照すると、図1は、内面6を有するハウジング4と、内部空間8とを有する、本発明の燃焼器2の内部の斜視図を示す。ライナーアセンブリ10はハウジング4内に設けられ、ハウジングの内面6から離隔してライナーアセンブリ10と内面6との間の燃焼器2の長さに沿って長手方向に伸びる経路12を画成し、内面6に沿ってガスタービン(GT)の希釈剤に富む作動流体が流れる。   Referring to the drawings, FIG. 1 shows a perspective view of the interior of a combustor 2 of the present invention having a housing 4 having an inner surface 6 and an interior space 8. The liner assembly 10 is disposed within the housing 4 and defines a path 12 spaced longitudinally along the length of the combustor 2 between the liner assembly 10 and the inner surface 6 and spaced apart from the inner surface 6 of the housing. A working fluid rich in diluent of the gas turbine (GT) flows along 6.

図1及び図3はまた、燃焼器2の一端に設けられたノズル14を示す。ノズル14には、燃焼器2の内部空間8と流体連通している。ノズル14には、燃料孔16を画成する一連の同心円の開口が設けられる。   1 and 3 also show a nozzle 14 provided at one end of the combustor 2. The nozzle 14 is in fluid communication with the internal space 8 of the combustor 2. The nozzle 14 is provided with a series of concentric openings that define the fuel holes 16.

本発明で使用されるノズル構造は、本願出願人に譲渡された2008年3月5日出願の米国特許出願公開第2009/0223227号(その開示内容は援用によって本明細書の内容の一部をなす。)に詳しく記載されている。   The nozzle structure used in the present invention is disclosed in U.S. Patent Application Publication No. 2009/0223227 filed on March 5, 2008, assigned to the present applicant (the disclosure of which is incorporated herein by reference). Is described in detail.

図2は、ライナー10に沿った異なる軸方向位置にライナー混合孔18、20、ライナー希釈孔40、42及びライナー冷却孔44、46、48が設けられたライナーアセンブリ10を示す。本発明によれば、ライナー混合孔18、20は、燃料成分の良好な混合と完全燃焼とをもたらすように大きさを決められ、ライナーアセンブリ10の中で軸方向位置に配置される。一実施形態では、例えば、ライナー混合孔18、20が、GT流、すなわち圧縮器からの、燃焼器に利用可能な流れの約10%を供給するように大きさを決められる。燃料ノズルからライナー混合孔を通して噴射されるジェットは、燃料と酸化剤との間のせん断混合を促進する酸化剤の流れの膨張を制限する。ライナー混合孔の位置は、消炎(flame quenching)を回避するように最適化され得る。このことを、図4に関連して以下で論じる。   FIG. 2 shows the liner assembly 10 with liner mixing holes 18, 20, liner dilution holes 40, 42 and liner cooling holes 44, 46, 48 at different axial positions along the liner 10. In accordance with the present invention, the liner mixing holes 18, 20 are sized and arranged in an axial position within the liner assembly 10 to provide good mixing and complete combustion of the fuel components. In one embodiment, for example, the liner mixing holes 18, 20 are sized to provide about 10% of the GT flow, ie, the flow available from the compressor to the combustor. The jet injected from the fuel nozzle through the liner mixing hole limits the expansion of the oxidant stream that promotes shear mixing between the fuel and the oxidant. The location of the liner mixing holes can be optimized to avoid flame quenching. This is discussed below in connection with FIG.

図4は、ノズル14から概して0.65〜1.05Dの軸方向距離Lに位置するライナー混合孔18、20を示す(ただし、Dはライナー10の内径である。)。ライナー混合孔は、ライナーの内部空間8の中への1.05〜1.4D1のジェット侵入を生成する(ただし、D1は混合孔の直径である。)。   FIG. 4 shows liner mixing holes 18, 20 located at an axial distance L of generally 0.65 to 1.05 D from nozzle 14 (where D is the inner diameter of liner 10). The liner mixing holes produce 1.05-1.4D1 jet penetration into the interior space 8 of the liner, where D1 is the diameter of the mixing hole.

冷却孔44、46、48は、異なる軸方向位置に配置され、圧縮器吐出部(すなわち、圧縮器の出口位置でかつ燃焼器の開始位置)において、例えばGT作動流体の約30〜32%を受け入れるように設計される。いずれかの特定の位置における冷却孔の大きさ及び数は、その位置における所望の効率的な熱伝達に基づく。   The cooling holes 44, 46, 48 are arranged at different axial positions, for example about 30-32% of the GT working fluid at the compressor discharge (ie at the compressor outlet position and at the combustor start position). Designed to accept. The size and number of cooling holes at any particular location is based on the desired efficient heat transfer at that location.

クラウンホール(crown hole)28は、圧縮器吐出部においてGT作動流体の約6〜9%を受け入れる。クラウンホール28は、0.65〜1.05Dの長さL2の再循環バブル50を生じる(ただし、Dはライナー10の内径である。)。これは燃焼効率を高める。   A crown hole 28 receives approximately 6-9% of the GT working fluid at the compressor discharge. The crown hole 28 produces a recirculating bubble 50 of length L2 between 0.65 and 1.05 D (where D is the inner diameter of the liner 10). This increases the combustion efficiency.

希釈孔40、42は、1.3〜1.7Dの軸方向距離L3に位置する(ただし、Dはライナーの内径である。)。希釈孔は、D2の1.4〜1.6倍であるL4のジェット侵入を生じる(ただし、D2は希釈孔の直径である。)。強いせん断混合が、酸化剤と燃料との間で生じ、短い滞留時間の間に速やかな反応をもたらして、より大きな反応ゾーンを進展させる。さらに、GT作動流体と混合することで、火炎のピーク温度を制御することと同時に、火炎をノズルから遠ざけておくことが支援される。希釈孔は、全燃焼器流の8〜11%を受け入れる。   The dilution holes 40 and 42 are located at an axial distance L3 of 1.3 to 1.7 D (where D is the inner diameter of the liner). The dilution holes produce a L4 jet penetration that is 1.4 to 1.6 times D2, where D2 is the diameter of the dilution hole. Strong shear mixing occurs between the oxidant and the fuel, leading to a rapid reaction during a short residence time, developing a larger reaction zone. Furthermore, mixing with the GT working fluid helps to keep the flame away from the nozzle while controlling the peak temperature of the flame. The dilution holes accept 8-11% of the total combustor flow.

ノズルの中央通路24は、概ね、空気、酸素、希釈された酸素又は燃料など、酸化剤流のために使用される。外側通路22、26は、ガスタービン(GT)の作動流体(一般に希釈剤に富む流体)用に意図される。通路22、24、26は、一般に傾斜していて、酸化剤とGT作動流体との間で対向回転流(counter-rotating flow)を生じる。このことが図5に示されており、図5は、ノズルを出て、対向流スワールの形で内部空間8に入るガスを概略的に示す。図6は、ガスがノズルを出て、平行流スワールの形で内部空間8に入る平行流スワールの一例を示す。   The central passage 24 of the nozzle is generally used for oxidant streams such as air, oxygen, diluted oxygen or fuel. The outer passages 22, 26 are intended for gas turbine (GT) working fluids (generally diluent rich fluids). The passages 22, 24, 26 are generally inclined to create a counter-rotating flow between the oxidant and the GT working fluid. This is illustrated in FIG. 5, which schematically shows the gas leaving the nozzle and entering the interior space 8 in the form of a counter-flow swirl. FIG. 6 shows an example of a parallel flow swirl where gas exits the nozzle and enters the internal space 8 in the form of a parallel flow swirl.

ノズル14の中央通路24は、一般に、強いスワール流を生じるために、40〜60度の範囲の角度を有する斜めの燃料噴射孔を含む。ノズルの中央環状通路24は、ガス状の燃料流のために意図されており、一般的に、反時計回りのスワールを誘導するために、ノズル軸に対して、20〜26度の円錐角及び5〜16度のスワール角によって傾けられている(図5参照)。ノズルの外側環状通路26は、概ね、希釈流のために意図されており、時計回り回転を誘導するために、ノズル軸に対して、30〜36度の円錐角及び5〜16度のスワール角によって傾けられている。そのような流れ配置では、酸化剤と燃料との間の強いせん断混合が、短い滞留時間の間に速やかな反応をもたらして、従来の配置よりも大きな反応ゾーンを進展させる。   The central passage 24 of the nozzle 14 generally includes oblique fuel injection holes having an angle in the range of 40-60 degrees to produce a strong swirl flow. The central annular passage 24 of the nozzle is intended for gaseous fuel flow and generally has a cone angle of 20 to 26 degrees with respect to the nozzle axis and guides a counterclockwise swirl and It is tilted by a swirl angle of 5 to 16 degrees (see FIG. 5). The outer annular passage 26 of the nozzle is generally intended for dilution flow and has a cone angle of 30 to 36 degrees and a swirl angle of 5 to 16 degrees with respect to the nozzle axis to induce clockwise rotation. Is tilted by. In such a flow arrangement, strong shear mixing between the oxidant and the fuel results in a rapid reaction during a short residence time, developing a larger reaction zone than the conventional arrangement.

ノズルの中央通路24は、圧縮器吐出部において酸化剤の20〜80%とGT作動流体の80〜20%とを含む混合流体を流すように設計される。混合は、反応速度及び火炎温度を制御して、反応ゾーンからの解離損失を引き下げるように最適化される。外側通路26は、全燃焼器流の25〜30%を流すように設計される。この流れ配置は、ノズルの下流の燃焼反応を遅らせて、それによりハードウェアを損傷する潜在的なリスクを回避するように働く。   The central passage 24 of the nozzle is designed to flow a mixed fluid containing 20-80% of the oxidant and 80-20% of the GT working fluid at the compressor discharge. Mixing is optimized to control reaction rate and flame temperature to reduce dissociation loss from the reaction zone. The outer passage 26 is designed to flow 25-30% of the total combustor flow. This flow arrangement serves to delay the combustion reaction downstream of the nozzle, thereby avoiding the potential risk of damaging hardware.

図7は、可燃性燃料に点火するための、ノズル14における内蔵点火器(ingetraged igniter)30を示す。点火器は、一般に、ノズルの縦軸に対して25〜30度の角度で置かれる。パイロットノズル52が、代替として、始動の用途のために設けられてもよい。パイロットノズルは、存在する場合は通常、液体燃料を通過させる燃料ノズルの中ほどに置かれる。   FIG. 7 shows a built-in igniter 30 in the nozzle 14 for igniting combustible fuel. The igniter is generally placed at an angle of 25-30 degrees with respect to the longitudinal axis of the nozzle. A pilot nozzle 52 may alternatively be provided for startup applications. The pilot nozzle, if present, is typically located in the middle of the fuel nozzle that allows liquid fuel to pass through.

本発明を、現在のところ最も実際的で好ましい実施形態であるものとみなされるものに関して説明したが、本発明は、開示した実施形態に限定されるものではなく、反対に、添付の特許請求の範囲の趣旨及び範囲に含まれる種々の改変及び等価な配置を包含することが意図されていることを理解されたい。   Although the present invention has been described with respect to what is presently considered to be the most practical and preferred embodiments, the invention is not limited to the disclosed embodiments, but on the contrary, the appended claims It should be understood that various modifications and equivalent arrangements included in the spirit and scope of the scope are intended to be included.

2 燃焼器
4 ハウジング
6 内面
8 内部空間
10 ライナー
12 経路
14 ノズル
16 燃料孔
18、20 ライナー混合孔
22、26 外側通路
24 中央通路
26 外側環状通路
28 クラウンホール
30 内蔵点火器
40、42 ライナー希釈孔
44、46、48 ライナー冷却孔
50 バブル
52 パイロットノズル
2 Combustor 4 Housing 6 Inner surface 8 Internal space 10 Liner 12 Path 14 Nozzle 16 Fuel hole 18, 20 Liner mixing hole 22, 26 Outer passage 24 Central passage 26 Outer annular passage 28 Crown hole 30 Built-in igniter 40, 42 44, 46, 48 Liner cooling hole 50 Bubble 52 Pilot nozzle

Claims (13)

内面を有するハウジングと、ノズルと、ハウジング内に配置されたライナーアセンブリとを備える燃焼器であって、ライナーが内部空間を有しているとともに、ハウジングの内面から離隔して、作動流体を内部空間に移送するための燃焼器に沿って長手方向に延在する経路を画成しており、ライナーの内径の関数としてライナーに沿って長手方向に配置された混合孔及び希釈孔がライナーに設けられている、燃焼器。   A combustor comprising a housing having an inner surface, a nozzle, and a liner assembly disposed within the housing, wherein the liner has an inner space and is spaced from the inner surface of the housing to allow the working fluid to pass through the inner space. A longitudinally extending path along the combustor for transfer to the liner, and the liner is provided with mixing and dilution holes disposed longitudinally along the liner as a function of the inner diameter of the liner The combustor. ライナー混合孔がノズルから0.65〜1.05Dの軸方向距離に配置される(ただし、Dはライナーの内径である。)、請求項1記載の燃焼器。   The combustor according to claim 1, wherein the liner mixing hole is disposed at an axial distance of 0.65 to 1.05 D from the nozzle, where D is an inner diameter of the liner. ライナー混合孔が、ライナーの内部空間に、1.05〜1.4D1のジェット侵入を生成する(ただし、D1は混合孔の直径である。)、請求項1記載の燃焼器。   The combustor of claim 1, wherein the liner mixing holes produce a 1.05 to 1.4 D1 jet penetration in the interior space of the liner, where D1 is the diameter of the mixing holes. 希釈孔がノズルから1.3〜1.7Dの軸方向距離に配置される(ただし、Dはライナーの内径である。)、請求項1記載の燃焼器。   The combustor according to claim 1, wherein the dilution hole is disposed at an axial distance of 1.3 to 1.7 D from the nozzle (where D is an inner diameter of the liner). 希釈孔が、ライナーの内部空間に、1.4〜1.6D2のジェット侵入を生じる(ただし、D2は希釈孔の直径である。)、請求項1記載の燃焼器。   The combustor of claim 1, wherein the dilution holes cause 1.4 to 1.6 D2 jet penetration in the interior space of the liner, where D2 is the diameter of the dilution holes. 作動流体の約6〜9%を受け入れるクラウンホールが設けられる、請求項1記載の燃焼器。   The combustor of claim 1, wherein a crown hole is provided to receive about 6-9% of the working fluid. クラウンホールが0.65〜1.05Dの長さの再循環バブルを生じる(ただし、Dはライナーの内径である。)、請求項5記載の燃焼器。   The combustor of claim 5, wherein the crown hole produces a recirculation bubble having a length of 0.65 to 1.05 D, where D is the inner diameter of the liner. 希釈孔が全燃焼器流の8〜11%を受け入れる、請求項1記載の燃焼器。   The combustor of claim 1, wherein the dilution holes receive 8-11% of the total combustor flow. 圧縮器吐出部の作動流体の30〜32%を受け入れる冷却孔が設けられる、請求項1記載の燃焼器。   The combustor according to claim 1, further comprising a cooling hole that receives 30 to 32% of the working fluid of the compressor discharge. 外側通路が圧縮器吐出部の作動流体の25〜30%を流す、請求項1記載の燃焼器。   The combustor of claim 1, wherein the outer passage flows 25-30% of the working fluid in the compressor discharge. 内蔵点火器が作動流体を点火するために設けられる、請求項1記載の燃焼器。   The combustor of claim 1, wherein an internal igniter is provided to ignite the working fluid. ノズル通路が傾斜していて、酸化剤と作動流体との間に対向回転流を生じる、請求項1記載の燃焼器。   The combustor of claim 1, wherein the nozzle passage is inclined to create an opposing rotational flow between the oxidant and the working fluid. ノズル通路が傾斜していて、酸化剤と作動流体との間に平行回転流を生じる、請求項1記載の燃焼器。   The combustor of claim 1, wherein the nozzle passage is inclined to produce a parallel rotating flow between the oxidant and the working fluid.
JP2013087018A 2012-04-24 2013-04-18 Combustor apparatus for stoichiometric combustion Pending JP2013228192A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/454,327 US20130276450A1 (en) 2012-04-24 2012-04-24 Combustor apparatus for stoichiometric combustion
US13/454,327 2012-04-24

Publications (1)

Publication Number Publication Date
JP2013228192A true JP2013228192A (en) 2013-11-07

Family

ID=48139844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087018A Pending JP2013228192A (en) 2012-04-24 2013-04-18 Combustor apparatus for stoichiometric combustion

Country Status (5)

Country Link
US (1) US20130276450A1 (en)
EP (1) EP2657607A2 (en)
JP (1) JP2013228192A (en)
CN (1) CN103375810A (en)
RU (1) RU2013118439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118896A1 (en) 2014-11-12 2016-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell and fuel cell system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724741B2 (en) 2016-05-10 2020-07-28 General Electric Company Combustors and methods of assembling the same
US11774100B2 (en) * 2022-01-14 2023-10-03 General Electric Company Combustor fuel nozzle assembly

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601000A (en) * 1947-05-23 1952-06-17 Gen Electric Combustor for thermal power plants having toroidal flow path in primary mixing zone
US2974485A (en) * 1958-06-02 1961-03-14 Gen Electric Combustor for fluid fuels
JPS56124834A (en) * 1980-03-05 1981-09-30 Hitachi Ltd Gas-turbine combustor
JPS5960127A (en) * 1982-09-29 1984-04-06 Toshiba Corp Combustor for gas turbine
US5289686A (en) * 1992-11-12 1994-03-01 General Motors Corporation Low nox gas turbine combustor liner with elliptical apertures for air swirling
JPH1151394A (en) * 1997-07-07 1999-02-26 General Electric Co <Ge> Combustor with rapid cooling axial step
JPH11201453A (en) * 1997-10-29 1999-07-30 Soc Natl Etud Constr Mot Aviat <Snecma> Combustion chamber for turbo machine
JPH11311416A (en) * 1998-03-18 1999-11-09 General Electric Co <Ge> Low emission gas turbine combustion equipment
JP2000171038A (en) * 1998-12-08 2000-06-23 Mitsubishi Heavy Ind Ltd Gas turbine combustor
JP2000304261A (en) * 1999-04-15 2000-11-02 United Technol Corp <Utc> Combustion can for turbine engine
US20010020359A1 (en) * 1995-06-16 2001-09-13 Power Tech Associates, Inc. Low NOX gas turbine combustor liner
JP2009103438A (en) * 2007-10-22 2009-05-14 Snecma Combustion chamber with optimized dilution and turbomachine provided with the same
JP2011141112A (en) * 2010-01-06 2011-07-21 General Electric Co <Ge> Apparatus and method for supplying fuel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785146A (en) * 1972-05-01 1974-01-15 Gen Electric Self compensating flow divider for a gas turbine steam injection system
US3851462A (en) * 1973-06-29 1974-12-03 United Aircraft Corp Method for reducing turbine inlet guide vane temperatures
US3934408A (en) * 1974-04-01 1976-01-27 General Motors Corporation Ceramic combustion liner
US4255927A (en) * 1978-06-29 1981-03-17 General Electric Company Combustion control system
US4232527A (en) * 1979-04-13 1980-11-11 General Motors Corporation Combustor liner joints
US4944149A (en) * 1988-12-14 1990-07-31 General Electric Company Combustor liner with air staging for NOx control
US5309710A (en) * 1992-11-20 1994-05-10 General Electric Company Gas turbine combustor having poppet valves for air distribution control
DE69930455T2 (en) * 1998-11-12 2006-11-23 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US6691515B2 (en) * 2002-03-12 2004-02-17 Rolls-Royce Corporation Dry low combustion system with means for eliminating combustion noise
US20090223227A1 (en) * 2008-03-05 2009-09-10 General Electric Company Combustion cap with crown mixing holes
US20100269513A1 (en) * 2009-04-23 2010-10-28 General Electric Company Thimble Fan for a Combustion System
US20100300102A1 (en) * 2009-05-28 2010-12-02 General Electric Company Method and apparatus for air and fuel injection in a turbine
US8252251B2 (en) * 2010-03-30 2012-08-28 General Electric Company Fluid cooled reformer and method for cooling a reformer
US8763401B2 (en) * 2011-05-30 2014-07-01 Pratt & Whitney Canada Corp. Integrated fuel nozzle and ignition assembly for gas turbine engines

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601000A (en) * 1947-05-23 1952-06-17 Gen Electric Combustor for thermal power plants having toroidal flow path in primary mixing zone
US2974485A (en) * 1958-06-02 1961-03-14 Gen Electric Combustor for fluid fuels
JPS56124834A (en) * 1980-03-05 1981-09-30 Hitachi Ltd Gas-turbine combustor
JPS5960127A (en) * 1982-09-29 1984-04-06 Toshiba Corp Combustor for gas turbine
US5289686A (en) * 1992-11-12 1994-03-01 General Motors Corporation Low nox gas turbine combustor liner with elliptical apertures for air swirling
US20010020359A1 (en) * 1995-06-16 2001-09-13 Power Tech Associates, Inc. Low NOX gas turbine combustor liner
JPH1151394A (en) * 1997-07-07 1999-02-26 General Electric Co <Ge> Combustor with rapid cooling axial step
JPH11201453A (en) * 1997-10-29 1999-07-30 Soc Natl Etud Constr Mot Aviat <Snecma> Combustion chamber for turbo machine
JPH11311416A (en) * 1998-03-18 1999-11-09 General Electric Co <Ge> Low emission gas turbine combustion equipment
JP2000171038A (en) * 1998-12-08 2000-06-23 Mitsubishi Heavy Ind Ltd Gas turbine combustor
JP2000304261A (en) * 1999-04-15 2000-11-02 United Technol Corp <Utc> Combustion can for turbine engine
JP2009103438A (en) * 2007-10-22 2009-05-14 Snecma Combustion chamber with optimized dilution and turbomachine provided with the same
JP2011141112A (en) * 2010-01-06 2011-07-21 General Electric Co <Ge> Apparatus and method for supplying fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118896A1 (en) 2014-11-12 2016-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell and fuel cell system

Also Published As

Publication number Publication date
CN103375810A (en) 2013-10-30
EP2657607A2 (en) 2013-10-30
US20130276450A1 (en) 2013-10-24
RU2013118439A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
RU2632073C2 (en) Fuel injection unit and device, containing fuel injection unit
JP6463947B2 (en) Burner, combustor, and gas turbine
JP5100287B2 (en) Equipment for operating a turbine engine
RU2560099C2 (en) Fuel nozzle (versions)
US8147121B2 (en) Pre-mixing apparatus for a turbine engine
US8955329B2 (en) Diffusion nozzles for low-oxygen fuel nozzle assembly and method
US20190162414A1 (en) Gas turbine combustor
US8015814B2 (en) Turbine engine having folded annular jet combustor
JP4922878B2 (en) Gas turbine combustor
EP2754963A1 (en) Gas turbine combustor
CN101644435A (en) Lean direct injection diffusion tip and related method
US20120282558A1 (en) Combustor nozzle and method for supplying fuel to a combustor
US8365534B2 (en) Gas turbine combustor having a fuel nozzle for flame anchoring
KR20100080428A (en) Dln dual fuel primary nozzle
CN103438480A (en) Nozzle and combustor for a gas turbine engine, and corresponding methods
CN102032569A (en) Combustor
JP6176707B2 (en) Secondary combustion system
EP2515041B1 (en) Fuel Nozzle And Method For Operating A Combustor
US20150135723A1 (en) Combustor nozzle and method of supplying fuel to a combustor
JP2010096487A (en) Vanelet of combustor burner
JP2013245935A (en) Liquid cartridge with passively fueled premixed air blast circuit for gas operation
JP2017180267A (en) gas turbine
EP2868972A1 (en) Gas turbine combustor
JP7183868B2 (en) combustor burner and combustor
JP2013228192A (en) Combustor apparatus for stoichiometric combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926