[go: up one dir, main page]

JP2014077970A - Harmonic distortion rate measuring method and apparatus - Google Patents

Harmonic distortion rate measuring method and apparatus Download PDF

Info

Publication number
JP2014077970A
JP2014077970A JP2012235148A JP2012235148A JP2014077970A JP 2014077970 A JP2014077970 A JP 2014077970A JP 2012235148 A JP2012235148 A JP 2012235148A JP 2012235148 A JP2012235148 A JP 2012235148A JP 2014077970 A JP2014077970 A JP 2014077970A
Authority
JP
Japan
Prior art keywords
harmonic
distortion rate
measured
group
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012235148A
Other languages
Japanese (ja)
Inventor
Yasuo Sano
泰生 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012235148A priority Critical patent/JP2014077970A/en
Publication of JP2014077970A publication Critical patent/JP2014077970A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a harmonic distortion rate measuring method applied for an analog acoustic signal and a digital sound signal, which has no difference between hearing and perception sound quality and measured harmonic distortion rate.SOLUTION: Various harmonic distortion rates are measured by executing subtraction processing of harmonic components inducing a hearth effect (Time Discrimination) from a measured signal. Various Vintage instruments, vacuum tube instruments, coaxial loudspeakers and the like which obtain the evaluation of "sound quality is good" in spite of high distortion rate by various conventional harmonic distortion rate measuring methods are adjusted between superiority in specification and hearing and perception sound quality. In addition, the harmonic components are added to measured data to thereby weight ultra-low distortion rate measurement of a resistor, a capacitor and the like which is difficult to be measured in a normal environment and to perform measurement as normal level (voltage amplitude) distortion rate data subjected to scientific acoustic feeling correction. Thus, a measuring device and an acoustic signal measuring method are inexpensively provided, which can match the conventional distortion rate measurement theory and the sensitivity of "golden ears".

Description

本発明はアナログ音響信号およびディジタル音響信号に適用する人の聴感に合致した各種高調波歪率測定法および装置に関するものであり、特に自動計測における‘良い音’と‘悪い音’の判定基準を各種音響理論より体系化するものである。The present invention relates to various harmonic distortion measurement methods and devices that match human audibility applied to analog sound signals and digital sound signals, and in particular, the determination criteria for 'good sound' and 'bad sound' in automatic measurement. It is systematized from various acoustic theories.

‘良い音’と‘悪い音’は個人の嗜好が大きく関わり、従来より理論的体系化は困難であるとされている。しかし自然音や楽音の様な複合音もしくは人の声の様に多種多様でありながら毎日の生活で必ず耳にする音の聴取実験では主として高調波歪率に着眼する形ではあるが‘良い音’と‘悪い音’の判定基準に傾向が確認されている。従って高調波歪率に着眼する形での‘良い音’と‘悪い音’の科学的策定が可能であると考えられる。'Good sound' and 'bad sound' are greatly related to individual tastes, and it has been said that theoretical systematization has been difficult. However, in a listening experiment of sounds that are always heard in everyday life, such as complex sounds such as natural sounds and musical sounds, or human voices, it is a form that mainly focuses on harmonic distortion, but it is a good sound A trend has been confirmed in the criteria for 'and' bad sound '. Therefore, it is considered possible to scientifically formulate 'good sound' and 'bad sound' with a focus on harmonic distortion.

この科学的判定基準の組織的策定は1970年代に日本の研究者二階堂誠也によって初めて着手されている(非特許文献1参照)。この様に‘良い音’と‘悪い音’の判定基準は音源をある程度特定し、また高調波歪率に着眼する形に限れば特定傾向が確認され、また科学的研究も40年以上の歴史が存在する。しかし現実の音響信号や各種音響機器の‘良い音’と‘悪い音’の判定は100%熟練したゴールデンイヤーに委ねられている。This systematic formulation of scientific criteria was first initiated by Japanese researcher Seiya Nikaido in the 1970s (see Non-Patent Document 1). In this way, the criteria for 'good sound' and 'bad sound' specify the sound source to some extent, and if it is limited to a form that focuses on the harmonic distortion rate, a specific tendency is confirmed, and scientific research has a history of over 40 years Exists. However, the judgment of “good sound” and “bad sound” of actual sound signals and various sound devices is left to the 100% skilled Golden Year.

近年のハイスペック音響機器や音響メディアの登場により測定値上は人の知覚限を超えると思われる音響機器や音響メディアが各種登場している。特にDSDに代表される1ビット音響機器群はCD等の旧音響メディアに比較し価格差間の‘良い音’と‘悪い音’の差が少なく感じられる。しかし愛好者の嗜好によるものか、‘良い音’と‘悪い音’を考慮し聴取試験を行なう場合、その優れたスペックに比較し万人向けの音質とは言い難い。With the advent of high-spec audio equipment and audio media in recent years, various types of audio equipment and audio media that appear to exceed human perception limits in terms of measurement values have appeared. In particular, a 1-bit audio equipment group represented by DSD feels that there is less difference between a “good sound” and a “bad sound” between price differences compared to an old audio medium such as a CD. However, it is hard to say that the sound quality for everyone is higher than that of the excellent specs when the listening test is performed in consideration of the preference of lovers or considering “good sound” and “bad sound”.

この傾向はラウドスピーカーではより顕著に確認されている、60年以上の販売実績を持つ米国ALTEC社の同軸型スピーカー604は計測される歪率や周波数特性がHIFIボトムライン製品群に比較しても悪く、測定データからその高音質を知る事が極めて困難である。しかしその基本設計は世界中に拡がり現在でも最先端のラウドスピーカーにおいて踏襲されている事から、良い特性と良い音質が必ずしも一致しない事が理解出来る。This trend has been confirmed more prominently in loudspeakers. The US-based ALTEC coaxial speaker 604, which has been sold for more than 60 years, has measured distortion and frequency characteristics compared to the HIFI bottom line product group. Unfortunately, it is extremely difficult to know the high sound quality from the measurement data. However, since its basic design has spread all over the world and is still followed by the latest loudspeakers, it can be understood that good characteristics and good sound quality do not necessarily match.

更に一部の愛好家のみが支持する‘銘機’と呼ばれるラウドスピーカーでは分割振動歪が大量に生じる同軸型スピーカーやフルレンジ型スピーカーの割合が比較的多く、計測データが優れたマルチウェイ・インラインタイプ・ラウドスピーカーが必ずしも高音質とイコールでは無い事が確認されている。In addition, loud speakers called 'special machines' supported only by some enthusiasts have a relatively large proportion of coaxial speakers and full-range speakers that generate a large amount of divided vibration distortion, and are multiway inline types with excellent measurement data. -It has been confirmed that loudspeakers are not necessarily high quality and equal.

近年では超低歪率の計測が可能になり抵抗器やキャパシター等、電子部品の高調波歪率計測が一般化している。しかしそこで計測される部品の高調波歪率と音質が良いとされる‘銘柄’部品の計測データの間で相関がはっきりしていない。In recent years, measurement of ultra-low distortion has become possible, and harmonic distortion measurement of electronic components such as resistors and capacitors has become common. However, there is no clear correlation between the measurement data of the 'brand' parts that are considered to have good harmonic distortion and sound quality.

非特許文献2は人の聴覚系がどのように聴覚マスキングを誘発するかを、純粋な医学的物理現象を参考に数学的に考察した論文である。Non-Patent Document 2 is a paper that mathematically discusses how the human auditory system induces auditory masking with reference to pure medical physical phenomena.

論文内解説は考察的内容であり結論に至っていない、しかし数学的考察から明らかな様に、論文内に記述された聴覚マスキング要素を純粋な物理現象により相殺可能であれば聴覚マスキング誘発時に聴取音の弁別性能を向上可能である事が理解出来る。The commentary in the paper is a discussion and no conclusion has been reached, but as is clear from mathematical considerations, if the auditory masking elements described in the paper can be offset by pure physical phenomena, the listening sound is triggered when auditory masking is triggered. It can be understood that the discrimination performance can be improved.

つまり蝸牛有毛細胞の検波特性は基音と遅延音が融合する状態において基音を弁別する為の‘取り込み窓’として機能する事が分かる、信号の複合状況により対称波形の周期が変動するものの人が知覚可能な空気振動は周期波形のみであるから、知覚可能な音響刺激は全てが対称波形に分解可能と結論出来る。In other words, the detection characteristics of the cochlear hair cells function as a 'capture window' for discriminating the fundamental tone in the state where the fundamental tone and the delayed tone are fused. Since perceptible air vibrations are only periodic waveforms, it can be concluded that all perceptible acoustic stimuli can be decomposed into symmetrical waveforms.

従って蝸牛有毛細胞の検波特性は聴取音の1/2周期を切り出す事で、基音が同じにもかかわらず各種信号の複合状況により対称波形の周期が変動する得意な周期波形から一定の基音を抽出する事を容易にする様働く事が理解出来る。Therefore, the detection characteristic of cochlear hair cells is to extract a half period of the listening sound, so that even if the fundamental sound is the same, a constant fundamental sound is obtained from a good periodic waveform in which the period of the symmetric waveform varies depending on the complex situation of various signals I understand that it works to make it easier to extract.

また論文内に解説される様に、この状況下では上記、蝸牛検波特性による聴取音の1/2周期マスクと聴ニューロンの遅延が影響する事で聴覚マスキングが生じるが、これはどちらかといえば知覚状況が特異であり、聴覚が発達した各種動物が類似な聴覚系を有する事実を考えれば、聴ニューロンの遅延特性を組み合わせる事で、より複雑な遅延音知覚下で聴覚が基音を弁別し易くする様、あえて聴ニューロンに遅延特性が表れていると考えられる(聴ニューロンに遅延特性が不要であれば、その補償系が発達するはずなので)。Also, as explained in the paper, in this situation, auditory masking occurs due to the influence of the half-period mask of the listening sound due to the cochlear detection characteristics and the delay of the auditory neuron, but this is rather Considering the fact that perceptual conditions are unique and various animals with developed hearing have similar auditory systems, combining the delay characteristics of auditory neurons makes it easier for auditory to distinguish fundamental sounds under more complex delayed sound perception. It seems that the delay characteristic appears in the auditory neuron. (If the delay characteristic is unnecessary in the auditory neuron, the compensation system should be developed).

以上の様に非特許文献2はハース効果の医学的側面解説と同内容であるがハース効果の医学的原典の入手が困難な事やハース効果原典を語る事その事自体が一部で‘タブー視’される事、さらに現状では類似内容の各種論文の多くが極めて難解であり、また人体実験のニュアンスが強い事から、あえて非特許文献2を参考文献とし、抽象的ながら解説を試みた。As described above, Non-Patent Document 2 has the same content as the explanation of the medical aspect of the Haas effect, but it is difficult to obtain the medical source of the Haas effect and talking about the Haas effect source itself is a part of the taboo. In addition, many of the various similar papers are extremely difficult to understand, and because of the strong nuances of human experimentation, I tried non-patent literature 2 as a reference and tried to explain it abstractly.

特許文献1、特許文献2は電子工学的に高調波成分を制御し誘発されるハース効果により非特許文献2で示される聴覚マスキングを相殺する発明である。特異な知覚状況におけるCMR(共変調マスキング解除)として知られて来たが、これまでに人工的なCMR(共変調マスキング解除)の強制誘発技術は未開発であった。Patent Documents 1 and 2 are inventions that cancel out the auditory masking shown in Non-Patent Document 2 by the Haas effect induced by controlling harmonic components electronically. Although known as CMR (unmodulation masking) in a unique perception situation, artificial CMR (unmodulation masking) forced induction techniques have not been developed so far.

また一見、この特異な知覚状況におけるCMR(共変調マスキング解除)は意味が無い様に思われるが‘音楽制作’の様な分野では楽曲の抑揚を作曲者の意図に合わせる為、各パートの音量や音質、残響等の特殊効果を演奏者やスタッフが操作する、しかしこの様な状況下であっても制作者や作曲者のほとんどはスコア上の全ての音が抑揚を伴いながらも聞こえる事を望む。At first glance, it seems that CMR (comodulation masking cancellation) in this unique perception situation does not make sense, but in fields such as 'music production', the volume of each part is adjusted to match the inflection of the music to the composer's intention. Performers and staff operate special effects such as sound quality, reverberation, etc. However, even under such circumstances, most producers and composers can hear all the sounds on the score with inflection. I hope.

この状況は大きな矛盾であるが、この矛盾を科学的に改善する事が可能な現状で唯一の発明(2012年現在)が特許文献1、特許文献2である。Although this situation is a major contradiction, Patent Document 1 and Patent Document 2 are the only inventions (as of 2012) that can scientifically improve the contradiction.

非特許文献3は特許文献1、特許文献2の科学的解説である。従来、前述の様に人工的なCMR(共変調マスキング解除)は不可能と考えられていた、しかしそれはCMR(共変調マスキング解除)と現実に知覚される音響現象の言語的相互変換が正確に行なわれていない為であり、非特許文献3は科学の場でそれを初めて示した文献である。論文内ではフラッターエコーによる知覚向上効果を例にハース効果による弁別性の向上が共変調マスキング解除と等価である事を示唆し、その電子的対策法を提示している。Non-Patent Document 3 is a scientific explanation of Patent Document 1 and Patent Document 2. In the past, it was thought that artificial CMR (co-modulation masking removal) was impossible as described above, but it was not possible to accurately interpret linguistic interconversion between CMR (co-modulation masking removal) and actually perceived acoustic phenomena. This is because it has not been carried out, and Non-Patent Document 3 is the first document showing it in science. The paper suggests that the improvement of discrimination by the Haas effect is equivalent to the cancellation of co-modulation masking, taking the perceptual improvement effect by flutter echo as an example, and presents an electronic countermeasure method.

本来のハース効果は空気振動(電力量)を対象に実験が行なわれ最大10dBの知覚向上が確認されたとしている。特許文献1、特許文献2は純電子的(電圧量)にハース効果を誘発する発明であり、この原理を従来の高調波歪率計測に用いる場合の知覚向上量は20dB(10倍)となる。これは電子部品の高調波歪率計測等、極低歪の計測データに対し10倍の重み付けが可能な事を意味している。As for the original Hearth effect, an experiment was conducted on air vibration (amount of electric power), and the perception improvement of 10 dB at the maximum was confirmed. Patent Documents 1 and 2 are inventions that induce the Haas effect purely (voltage amount), and the perceptual improvement when this principle is used for conventional harmonic distortion measurement is 20 dB (10 times). . This means that 10 times weighting is possible for measurement data of extremely low distortion such as harmonic distortion measurement of electronic parts.

従ってハース効果により得られる高調波歪を歪率計測時に加減算する事で、電子部品固有の歪や電子部品振動時に確認されるマイクロフォニック雑音等の機械系歪がなぜ音質に影響するのかと言った問題や、ディジタルオーディオにおけるタイムジッター等の時間軸系歪が微小値であるにも関わらず、なぜ‘良い音’に影響するのかと言った問題も聴感と高調波歪率の相関からより詳細に数値化する事が可能になる。
特許第4427672号 特開2008−219844 日本音響学会誌28(9),485−495,1972−09−01 二階堂 誠也 非直線ひずみの検知限ならびに測定法に関する考察 京都大学工学部 喜多 一 聴神経の時系列発火に基づく音調性認識のニューラルネットモデル AES Tokyo Convention 2009 佐野 泰生 Methods for Sound Improve Articulation and Discrimination Performances
Therefore, by adding and subtracting the harmonic distortion obtained by the Hearth effect when measuring the distortion factor, it is said why the distortion inherent in the electronic component and the mechanical distortion such as microphonic noise that is confirmed when the electronic component vibrates affect the sound quality. Despite the problems and time-axis distortions such as time jitter in digital audio are very small, the question of why it affects 'good sound' is more detailed from the correlation between hearing and harmonic distortion. It becomes possible to digitize.
Japanese Patent No. 4427672 JP2008-219844 Journal of the Acoustical Society of Japan 28 (9), 485-495, 1972-09-01 Seiya Nikaido Consideration on detection limit and measurement method of non-linear strain Kazuichi Kita Faculty of Engineering, Kyoto University Neural network model for tone recognition based on time-series firing of auditory nerve AES Tokyo Convention 2009 Yasuo Sano Methods for Sound Improving Arts and Discrimination Performances

本発明は日本国特許第4427672号で示されるハース効果により得られる高調波群を音響機器や音響信号の解析時に加減算処理する事で各種計測データとゴールデンイヤーによる聴感評価のすり合わせを行ない、人の聴感を電子機器により実現する新たな手法を提案するものである。In the present invention, the harmonic group obtained by the Haas effect shown in Japanese Patent No. 4427672 is subjected to addition / subtraction processing at the time of analysis of an acoustic device or an acoustic signal, thereby performing a combination of various measurement data and a hearing evaluation by a golden ear, We propose a new method for realizing audibility with electronic devices.

図2は一般的な歪率計の基本構成である、歪率計入力バッファ/較正用信号出力手段(7)、帯域除去フィルターおよびフィルターfc同調手段(8)、較正用信号/帯域除去信号切り替え回路および検波、増幅手段(9)、各種メーター、映像信号変調回路等計測結果表示手段(10)により被計測対象の高調波歪含有量を測定するものである。FIG. 2 shows a basic configuration of a general distortion factor meter, that is, a distortion factor meter input buffer / calibration signal output means (7), a band elimination filter and a filter fc tuning means (8), and a calibration signal / band elimination signal switching. The harmonic distortion content of the measurement object is measured by the measurement result display means (10) such as a circuit, detection, amplification means (9), various meters, video signal modulation circuit and the like.

この様な従来の計測法では真空管増幅器や同軸型ラウドスピーカー等が高歪率と計測される。またオーラルエキサイターを最良に調整し高調波加算を行なったコーラス音やギター音等の特定音源(オーラルエキサイターは全ての音源に効果を期待できない)も聴感上は歪が知覚されず‘良い音’と知覚されるが同様に従来の計測法では高歪率が計測される。In such a conventional measurement method, a vacuum tube amplifier, a coaxial loudspeaker, or the like is measured with a high distortion. In addition, chorus sounds and guitar sounds with the best adjustment of the oral exciter and the addition of harmonics (oral exciters cannot be expected to have any effect on all sound sources) are audible and have no perceived distortion. Although it is perceived, a high distortion rate is similarly measured in the conventional measurement method.

図3は本発明による歪率計の基本構成である。歪率計入力バッファ/較正用信号出力手段(7)、帯域除去フィルターおよびフィルターfc同調手段(8)、較正用信号/帯域除去信号切り替え回路および検波、増幅手段(9)、ESSENCE高調波成分加減算手段(11)、各種メーター、映像信号変調回路等計測結果表示手段(10)により被計測対象の高調波歪含有量を測定するものである。FIG. 3 shows the basic configuration of the distortion meter according to the present invention. Distortion meter input buffer / calibration signal output means (7), band elimination filter and filter fc tuning means (8), calibration signal / band elimination signal switching circuit and detection, amplification means (9), ESSENCE harmonic component addition / subtraction The harmonic distortion content to be measured is measured by the measurement result display means (10) such as means (11), various meters, video signal modulation circuit and the like.

図2との相違点はESSENCE高調波成分加減算手段(11)である。ESSENCEとは特許第4427672号の英文解釈Electronic Super Sonic Enhance with Noise Corresponding Ear Parameterの頭文字略称で、2009年度のAES東京コンベンション中で同様の表現を用いた事から略語として使用している。The difference from FIG. 2 is the ESSENCE harmonic component addition / subtraction means (11). ESSENCE is an acronym for English Supersonic Sonic with Noise Corresponding Ear Parameter in Japanese Patent No. 4427672, and is used as an abbreviation for the same expression used in the 2009 AES Tokyo Convention.

図1は特許第4427672号中の実施例から派生した実働回路である。バッファ/位相反転1回路(1)、位相反転2回路(2)、ESSENCE高調波加減算回路(6)の各種リニア増幅系の他、基本高調波を生成するスペクトル制御および高調波発生1回路(3)、スペクトル制御および高調波発生1回路(3)と入力信号の非対称差動演算/高調波発生2および可聴限高周波濾過回路(4)、ESSENCE高調波加減算極性調整ボリューム(5)により‘良い音’の為に重要なCMR(共変調マスキング解除)を誘発する高調波成分に対し重み付けを行なう。なおスペクトル制御および高調波発生1回路(3)内のトリマーはCMR(共変調マスキング解除)を誘発する為に必要な高調波成分の移相開始閾値を設定するものでDSP利用時は自動適応動作が望ましいが実働回路では各種測定状況に応じ計測値が最低値を示す様設定している。FIG. 1 shows an actual circuit derived from the embodiment in Japanese Patent No. 4427672. In addition to various linear amplification systems such as a buffer / phase inversion 1 circuit (1), a phase inversion 2 circuit (2), and an ESSENCE harmonic addition / subtraction circuit (6), spectrum control and harmonic generation 1 circuit (3 ), Spectrum control and harmonic generation 1 circuit (3), asymmetric differential operation of input signal / harmonic generation 2 and audible high-frequency filtering circuit (4), ESSENCE harmonic addition / subtraction polarity adjustment volume (5) Weighting is applied to harmonic components that induce CMR (comodulation masking cancellation), which is important for '. The trimmer in the spectrum control and harmonic generation 1 circuit (3) sets the phase shift start threshold of the harmonic component necessary for inducing CMR (comodulation masking cancellation), and automatically adapts when using the DSP. However, the actual circuit is set so that the measured value shows the minimum value according to various measurement conditions.

本発明により人の知覚に合致した高調波歪率計測が可能となった。前述の様に、ロビンソンのラウドネスカーブに代表される振幅と周波数特性に関わる旧式の聴感補正値と並び、計測される高調波歪への科学的な重み付けが可能になった。更に本技術の確立はスピーカー設計者の一部が古くから力説する‘音場内での一様なパワースペクトル放射’の重要性が、ハース効果を誘発する高調波歪の放射により実現可能な事を物理的、心理学的、医学的等、多方面から同時に提示する事を可能にし、また同様の結論へ電子工学がアプローチ可能な事を実働回路の提示により証明した。According to the present invention, it is possible to measure a harmonic distortion rate that matches human perception. As described above, along with the old-style auditory correction values related to the amplitude and frequency characteristics represented by Robinson's loudness curve, scientific weighting to the measured harmonic distortion has become possible. Furthermore, the establishment of this technology means that the importance of 'uniform power spectrum radiation in the sound field' that some speaker designers have long advocated can be realized by the radiation of harmonic distortion that induces the Haas effect. It was possible to present simultaneously from various aspects such as physical, psychological, medical, etc., and it was proved by presenting a working circuit that electronic engineering could be approached to the same conclusion.

デリケートな適応動作にはDSPが最適であるが計測対象が高調波歪であり帯域幅を出来る限り広く取りたい事や、セミ・オート計測装置の様に計測法をユーザーに指定する事で計測点ごとにパラメーター操作が可能であれば、コスト、保守性共に演算増幅器で構成したアナログ回路が最適である。The DSP is optimal for delicate adaptive operation, but the measurement target is harmonic distortion and you want to make the bandwidth as wide as possible, or you can specify the measurement method to the user like a semi-automatic measurement device. If parameter operation is possible for each, an analog circuit composed of operational amplifiers is optimal for both cost and maintainability.

図3が本発明利用による歪率計への実施例である。なおCCIR、IHF等各種規格や全高調波歪率と雑音歪率等計測法の違いは本発明の本質に影響しない為、割愛する。FIG. 3 shows an embodiment of a distortion meter using the present invention. It should be noted that differences in various standards such as CCIR and IHF and differences in measurement methods such as total harmonic distortion and noise distortion do not affect the essence of the present invention, and are therefore omitted.

また図3を全自動化する方法は従来の自動歪率計の構成法と同様に帯域除去フィルターをアナログPLL等で自動同調させる事と図1回路内の2つのトリマーを同様の手法で自動同調化する事で実現可能である。The method of fully automating FIG. 3 is that the band elimination filter is automatically tuned with an analog PLL or the like and the two trimmers in FIG. This is possible.

以下は各部の構成と解説である。歪率計入力バッファ/較正用信号出力手段(7)は、計測器として必要な入力バッファの他、専用信号源出力を較正用信号/帯域除去信号切り替え回路および検波、増幅手段(9)へ直結する事で各種メーター、映像信号変調回路等計測結果表示手段(10)を構成するCAL(calibration)機能である。The following is the configuration and explanation of each part. The distortion meter input buffer / calibration signal output means (7) directly connects the dedicated signal source output to the calibration signal / band-removal signal switching circuit and detection / amplification means (9) in addition to the input buffer required as a measuring instrument. By doing so, it is a CAL (calibration) function that constitutes the measurement result display means (10) such as various meters and video signal modulation circuits.

帯域除去フィルターおよびフィルターfc同調手段(8)は入力スペクトルと等しいバンド幅へ手動または自動同調し入力信号のみを除去する選択性帯域除去手段である。ESSENCE高調波成分加減算手段(11)は各種メーター、映像信号変調回路等計測結果表示手段(10)により表示される値が最低値を示す様、2か所の内部トリムを手動または自動調整する同調手段で、従来‘良い歪’とされながらも計測上捉える事が困難であり、ゆえに高歪率の要因とされたCMR(共変調マスキング解除)を誘発する高調波成分の加減算手段である。各種メーター、映像信号変調回路等計測結果表示手段(10)はCAL(calibration)信号もしくは被計測信号を各種メーター駆動信号や、映像信号変調用信号へ変換し所定の表示手段に所定の数値を表示するものである。The band elimination filter and the filter fc tuning means (8) are selective band elimination means for manually or automatically tuning to a bandwidth equal to the input spectrum and removing only the input signal. The ESSENCE harmonic component adding / subtracting means (11) is tuned to manually or automatically adjust the two internal trims so that the value displayed by the measurement result display means (10) such as various meters, video signal modulation circuits, etc. shows the lowest value. It is a means for adding and subtracting harmonic components that induces CMR (comodulation masking cancellation), which has been conventionally considered as “good distortion” but difficult to grasp in measurement, and is therefore a factor of high distortion. Various meter, video signal modulation circuit, etc. measurement result display means (10) converts a CAL (calibration) signal or signal to be measured into various meter drive signals or video signal modulation signals and displays predetermined numerical values on predetermined display means To do.

アクティブノイズキャンセリング技術へ本技術を利用する事で人の精神に影響を与える不快音のみを減衰させる事、もしくは雑音そのものの聞こえ方を変化させる事で聴感上心地よく雑音を感じさせる(例えばスポーツカーのエンジン音等)等、人に優しい音環境を効率よく実現可能であり、携帯音楽装置の音漏れ対策等の他、高速鉄道の風切音対策、各種飛行機のエンジン音対策に適用可能と考えられる。Applying this technology to active noise canceling technology attenuates only unpleasant sounds that affect the human spirit, or changes the way the noise is heard (for example, sports cars) It is possible to efficiently realize a human-friendly sound environment, such as sound leakage from portable music devices, wind noise from high-speed railways, and engine sound from various airplanes. It is done.

ESSENCE高調波加減算回路例である。It is an example of an ESSENCE harmonic addition / subtraction circuit. 一般的な高調波歪率計の構成例ブロック図である。It is a block diagram of a configuration example of a general harmonic distortion meter. 本発明による高調波歪率計の構成例ブロック図である。It is a block diagram of a configuration example of a harmonic distortion meter according to the present invention.

1 バッファ/位相反転1回路
2 位相反転2回路
3 スペクトル制御および高調波発生1回路
4 差動演算、高調波発生2および可聴限高周波濾過回路
5 ESSENCE高調波バランス調整ボリューム
6 ESSENCE高調波加減算回路
7 歪率計入力バッファ回路、較正用信号出力回路ブロック図表記
8 帯域除去フィルターおよびフィルターfc同調回路ブロック図表記
9 較正用信号/帯域除去信号切り替え回路および検波、増幅回路ブロック図表記
10 各種メーター、映像信号変調回路等表示手段ブロック図表記
11 ESSENCE高調波成分加減算手段ブロック図表記
DESCRIPTION OF SYMBOLS 1 Buffer / phase inversion 1 circuit 2 Phase inversion 2 circuit 3 Spectral control and harmonic generation 1 circuit 4 Differential operation, harmonic generation 2 and audible limit high frequency filter circuit 5 ESSENCE harmonic balance adjustment volume 6 ESSENCE harmonic addition / subtraction circuit 7 Distortion meter input buffer circuit, calibration signal output circuit block diagram notation 8 Band elimination filter and filter fc tuning circuit block diagram notation 9 Calibration signal / band elimination signal switching circuit and detection, amplification circuit block diagram notation 10 Various meters, video Signal modulation circuit display means block diagram notation 11 ESSENCE harmonic component addition / subtraction means block diagram notation

Claims (5)

音響信号の記録、伝送、増幅、再生の各過程において、ハース効果(Time Discrimination)を誘発するに足りる遅延時間を音響信号の振幅関数として制御する事により得られる奇数次高調波群と偶数次高調波群や正弦位相高調波群と余弦位相高調波群等、2種類の高調波群を独立または、混合状態で音響信号に加減算する事により聴感雑音レベルを増加することなく音響機器や音響信号の弁別性能を向上させる高調波成分を生成し、この高調波成分より抽出したスペクトル情報を加減算する事により全高調波歪率を計測する測定技法。In each process of recording, transmitting, amplifying, and reproducing an acoustic signal, an odd-order harmonic group and an even-order harmonic obtained by controlling a delay time sufficient to induce a Haas effect (Time Discrimination) as an amplitude function of the acoustic signal. By adding or subtracting two types of harmonic groups such as wave group, sine phase harmonic group and cosine phase harmonic group independently or in a mixed state, the acoustic noise level can be reduced without increasing the audible noise level. A measurement technique that generates harmonic components that improve discrimination performance and measures total harmonic distortion by adding and subtracting spectral information extracted from these harmonic components. 請求項1を適用する計測機器。A measuring instrument to which claim 1 is applied. 音響信号の記録、伝送、増幅、再生の各過程において、ハース効果(Time Discrimination)を誘発するに足りる遅延時間を音響信号の振幅関数として制御する事により得られる奇数次高調波群と偶数次高調波群や正弦位相高調波群と余弦位相高調波群等、2種類の高調波群を独立または、混合状態で音響信号に加減算する事により聴感雑音レベルを増加することなく音響機器や音響信号の弁別性能を向上させる高調波成分を生成し、この高調波成分より抽出したスペクトル情報を加減算する事により雑音歪率を計測する測定技法。In each process of recording, transmitting, amplifying, and reproducing an acoustic signal, an odd-order harmonic group and an even-order harmonic obtained by controlling a delay time sufficient to induce a Haas effect (Time Discrimination) as an amplitude function of the acoustic signal. By adding or subtracting two types of harmonic groups such as wave group, sine phase harmonic group and cosine phase harmonic group independently or in a mixed state, the acoustic noise level can be reduced without increasing the audible noise level. A measurement technique that measures the noise distortion rate by generating harmonic components that improve discrimination performance and adding / subtracting spectral information extracted from the harmonic components. 請求2を適用する計測機器。A measuring instrument to which claim 2 is applied. 請求項1、請求項2、請求項3、請求項4、をディジタル信号処理(DSP)によって実現するバイナリーコードを含むソフトウェアおよび媒体。Software and media including binary code that implements claims 1, 2, 3, and 4 by digital signal processing (DSP).
JP2012235148A 2012-10-07 2012-10-07 Harmonic distortion rate measuring method and apparatus Pending JP2014077970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012235148A JP2014077970A (en) 2012-10-07 2012-10-07 Harmonic distortion rate measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012235148A JP2014077970A (en) 2012-10-07 2012-10-07 Harmonic distortion rate measuring method and apparatus

Publications (1)

Publication Number Publication Date
JP2014077970A true JP2014077970A (en) 2014-05-01

Family

ID=50783297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012235148A Pending JP2014077970A (en) 2012-10-07 2012-10-07 Harmonic distortion rate measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2014077970A (en)

Similar Documents

Publication Publication Date Title
US11503421B2 (en) Systems and methods for processing audio signals based on user device parameters
US8229135B2 (en) Audio enhancement method and system
JP4666229B2 (en) Audio playback device
CN102855882A (en) Perceptual enhancement of low frequency sound components
JP3605363B2 (en) Acoustic effect device, its method and program recording medium
TW201836369A (en) Bass enhancement
Temme et al. The correlation between distortion audibility and listener preference in headphones
Chasin Hearing aids for musicians: understanding and managing the four key physical differences between music and speech: understanding and managing the four physical differences between music and speech.
CN112511941B (en) Audio output method and system and earphone
JPH0936685A (en) Method and device for reproducing sound signal
RU2559821C1 (en) Simulation device of noise suppression system with frequency predistortions
JP2014077970A (en) Harmonic distortion rate measuring method and apparatus
JP7741234B2 (en) Virtual Bass Enhancement based on Source Separation
JP5998357B2 (en) In-vehicle sound playback device
US20230143062A1 (en) Automatic level-dependent pitch correction of digital audio
JPS63314099A (en) Noise compensation device for audio equipment
SUZUKI et al. Nonlinear Tone Control Method by ThACE for Evaluation of Minute Sounds
CN116320899A (en) Sounding method, device and equipment
Choadhry et al. Headphone Filtering in Spectral Domain
Simpson et al. The effect of loudness overflow on equal-loudness-level contours
Lopatka et al. Personal adaptive tuning of mobile computer audio
Enlund How do bass enhancement algorithms impact mixing decisions when monitoring on headphones?
MOORMAN How Does Engineering Bridge into the Traditionally ‘Creative’Realm of Music?
JP2019522450A (en) Signal enhancement
Marshall Chasin 20Q: Optimizing Hearing Aid Processing for Listening to Music