[go: up one dir, main page]

JP2014092342A - Gas supply equipment and gas supply method using the same - Google Patents

Gas supply equipment and gas supply method using the same Download PDF

Info

Publication number
JP2014092342A
JP2014092342A JP2012244502A JP2012244502A JP2014092342A JP 2014092342 A JP2014092342 A JP 2014092342A JP 2012244502 A JP2012244502 A JP 2012244502A JP 2012244502 A JP2012244502 A JP 2012244502A JP 2014092342 A JP2014092342 A JP 2014092342A
Authority
JP
Japan
Prior art keywords
argon
liquid
nitrogen
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012244502A
Other languages
Japanese (ja)
Other versions
JP6091847B2 (en
Inventor
Akira Yoshino
明 吉野
Daisuke Furuhata
大輔 古畑
Masako Tanaka
真子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2012244502A priority Critical patent/JP6091847B2/en
Publication of JP2014092342A publication Critical patent/JP2014092342A/en
Application granted granted Critical
Publication of JP6091847B2 publication Critical patent/JP6091847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04636Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a hybrid air separation unit, e.g. combined process by cryogenic separation and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • F25J3/04715The auxiliary column system simultaneously produces oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/40Quasi-closed internal or closed external air refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

【課題】電気炉製鋼工場の同一用地内で液体酸素および高純度の液体アルゴンを得て、電気炉製鋼の電気炉に酸素ガスを供給し、精錬炉に高純度アルゴンガスを供給することができるガス供給設備およびそれを用いたガス供給方法を提供する。
【解決手段】電気炉製鋼工場の用地内において、液化ユニット11で得た液化ガスを導入した第1熱交換器3により、PSA装置1で得た、アルゴンおよび窒素を少量含む酸素ガスを、液体して第1液体酸素にし、その一部を液体酸素タンク4に貯留し、残部を第1精留塔5で、第2液体酸素とアルゴンおよび窒素の混合ガスとに深冷分離し、その混合ガスを第2精留塔6で、高純度液体アルゴンと窒素ガスとに深冷分離し、その高純度液体アルゴンを液体アルゴンタンク7に貯留する。第2液体酸素で冷却される第2熱交換器8ならびに第1および第2精留塔5,6を経由する窒素循環路9に循環用窒素を循環させる。
【選択図】図1
It is possible to obtain liquid oxygen and high-purity liquid argon in the same site of an electric furnace steelmaking factory, supply oxygen gas to the electric furnace steelmaking electric furnace, and supply high-purity argon gas to a refining furnace A gas supply facility and a gas supply method using the same are provided.
In a site of an electric furnace steelmaking factory, oxygen gas containing a small amount of argon and nitrogen obtained by a PSA device is obtained by a first heat exchanger into which a liquefied gas obtained by a liquefaction unit is introduced. The first liquid oxygen is partly stored in the liquid oxygen tank 4, and the remaining part is cryogenically separated into the second liquid oxygen and a mixed gas of argon and nitrogen by the first rectifying column 5, and the mixing is performed. The gas is cryogenically separated into high-purity liquid argon and nitrogen gas by the second rectification tower 6, and the high-purity liquid argon is stored in the liquid argon tank 7. Circulating nitrogen is circulated through the second heat exchanger 8 cooled by the second liquid oxygen and the nitrogen circulation path 9 via the first and second rectifying columns 5 and 6.
[Selection] Figure 1

Description

本発明は、電気炉製鋼工場の同一用地内で液体酸素および高純度の液体アルゴンを得て、電気炉製鋼での酸化溶解工程で電気炉に酸素ガスを供給し、還元精錬工程で精錬炉に高純度アルゴンガスを供給するガス供給設備およびそれを用いたガス供給方法に関するものである。   The present invention obtains liquid oxygen and high-purity liquid argon in the same site of an electric furnace steelmaking factory, supplies oxygen gas to the electric furnace in the oxidative dissolution process in electric furnace steelmaking, and into the smelting furnace in the reduction refining process The present invention relates to a gas supply facility for supplying high-purity argon gas and a gas supply method using the same.

鉄製品のスクラップやくず鉄を原料として製鉄する電気炉製鋼では、まず、電気炉で、酸素ガスを使用し、上記原料を酸化溶解して溶鋼にすることが行われる。ついで、精錬炉で、その溶鋼中に、少量の高純度アルゴンガス(純度99.9%程度)を吹き込んで撹拌し、その溶鋼中に含まれる酸素,硫黄,窒素を除去する還元精錬が行われる。   In electric furnace steelmaking that uses iron product scrap or scrap iron as a raw material, first, oxygen gas is used in an electric furnace to oxidize and dissolve the raw material into molten steel. Next, in a refining furnace, a small amount of high-purity argon gas (purity of about 99.9%) is blown into the molten steel and agitated to reduce oxygen, sulfur and nitrogen contained in the molten steel. .

電気炉製鋼工場の用地内には、上記酸化溶解工程に使用される酸素ガスを製造する目的で、酸素ガス製造用の圧力スイング吸着(PSA)装置(例えば、特許文献1参照)が、通常、設置されている。   In the site of the electric furnace steelmaking factory, for the purpose of producing oxygen gas used in the oxidation dissolution process, a pressure swing adsorption (PSA) device for producing oxygen gas (see, for example, Patent Document 1) is usually used. is set up.

上記酸化溶解工程に必要な酸素ガスの量は、常時変化しており、瞬間的にその必要量が平均の2倍程度に増加するピーク時が存在する。そのピーク時の必要量を製造できるように上記PSA装置を設計すると、そのPSA装置が過剰能力を有するものとなり、上記酸化溶解工程の通常運転では、その能力は殆ど発揮されず、非合理的である。そのため、実際には、上記PSA装置の酸素ガス製造能力を、ピーク時の必要量未満の合理的な能力にし、ピーク時の不足分は、予め電気炉製鋼工場の用地内に設置されている液体酸素タンクから、液体酸素を気化させて電気炉に供給している。上記タンク内の液体酸素は、電気炉製鋼工場の用地外の液体酸素製造工場から、タンクローリ等により運搬される。   The amount of oxygen gas required for the oxidation dissolution process is constantly changing, and there is a peak time when the required amount instantaneously increases to about twice the average. When the PSA apparatus is designed so that the required amount at the peak can be produced, the PSA apparatus has an excessive capacity, and the capacity is hardly exhibited in the normal operation of the oxidation dissolution process, which is irrational. . Therefore, in practice, the oxygen gas production capacity of the PSA apparatus is set to a reasonable capacity that is less than the required amount at the peak, and the shortage of the peak is the liquid that has been installed in the site of the electric furnace steel factory in advance. Liquid oxygen is vaporized from the oxygen tank and supplied to the electric furnace. The liquid oxygen in the tank is transported by a tank truck or the like from a liquid oxygen production factory outside the site of the electric furnace steelmaking factory.

また、上記還元精錬工程で使用される高純度アルゴンガスを製造する装置(例えば、特許文献2参照)は、大型のものとなり、大量の高純度アルゴンガスを製造するものであることから、それを電気炉製鋼工場の用地内に設置すると、場所をとられるうえ、必要量以上の高純度アルゴンガスを製造することとなり、不合理である。そこで、高純度の液体アルゴンが、電気炉製鋼工場の用地外の液体アルゴン製造工場から、タンクローリ等により運搬され、電気炉製鋼工場の用地内の貯槽(タンク)に一旦移して貯留され、必要時に気化されて精錬炉に供給されるようになっている。   Moreover, since the apparatus (for example, refer patent document 2) which manufactures the high purity argon gas used by the said reductive refining process becomes a large-sized thing, and manufactures a lot of high purity argon gas, it is If it is installed in the site of an electric furnace steelmaking factory, it will take up space and produce more than the required amount of high-purity argon gas, which is unreasonable. Therefore, high-purity liquid argon is transported from a liquid argon manufacturing plant outside the electric furnace steel plant by a tank truck, etc., and once transferred to a storage tank (tank) on the site of the electric furnace steel plant, where it is stored. It is vaporized and supplied to the smelting furnace.

特開平10−286425号公報Japanese Patent Laid-Open No. 10-286425 特開平6−182136号公報JP-A-6-182136

しかしながら、上記のように液体酸素および液体アルゴンをタンクローリ等により運搬するような状況では、運搬路が長くなるうえ、震災等で道路等のアクセスが遮断されると、電気炉製鋼工場での製鉄ができなくなる。   However, in the situation where liquid oxygen and liquid argon are transported by a tank truck or the like as described above, if the transportation route becomes long and access to the road or the like is blocked due to an earthquake, etc., ironmaking at an electric furnace steel factory Can not be.

本発明は、このような事情に鑑みなされたもので、電気炉製鋼工場の同一用地内で液体酸素および高純度の液体アルゴンを得て、電気炉製鋼の電気炉に酸素ガスを供給し、精錬炉に高純度アルゴンガスを供給することができるガス供給設備およびそれを用いたガス供給方法の提供をその目的とする。   The present invention has been made in view of such circumstances, obtaining liquid oxygen and high-purity liquid argon in the same site of an electric furnace steelmaking factory, supplying oxygen gas to the electric furnace for electric furnace steelmaking, and refining An object of the present invention is to provide a gas supply facility capable of supplying high-purity argon gas to a furnace and a gas supply method using the same.

上記の目的を達成するため、本発明は、外気を導入して酸素を濃縮する圧力スイング吸着装置と、導入したガスを液化させる液化ユニットと、この液化ユニットで得られた液化ガスによって冷却される第1熱交換器と、上記圧力スイング吸着装置により得られた、アルゴンおよび窒素を少量含む酸素ガスを上記第1熱交換器に導入し液化してなる第1液体酸素の一部を貯留し、その貯留した第1液体酸素を電気炉製鋼の電気炉への酸素ガス供給源とする液体酸素タンクと、上記第1液体酸素の残部を深冷分離により第2液体酸素とアルゴンおよび窒素の混合ガスとに分離する第1精留塔と、この第1精留塔で分離生成された上記アルゴンおよび窒素の混合ガスを深冷分離により高純度液体アルゴンと窒素ガスとに分離する第2精留塔と、この第2精留塔で得られた高純度液体アルゴンを貯留し、その貯留した高純度液体アルゴンを電気炉製鋼の精錬炉への高純度アルゴンガス供給源とする液体アルゴンタンクと、上記第1精留塔で得られた第2液体酸素で冷却される第2熱交換器と、この第2熱交換器ならびに上記第1および第2精留塔を経由してその第1および第2精留塔内の窒素を循環用窒素として循環させる窒素循環路と、を電気炉製鋼工場の同一用地内に備えているガス供給設備を第1の要旨とする。   In order to achieve the above object, the present invention is cooled by a pressure swing adsorption device that introduces outside air to concentrate oxygen, a liquefaction unit that liquefies the introduced gas, and a liquefied gas obtained by the liquefaction unit. A part of the first liquid oxygen obtained by introducing and liquefying the first heat exchanger and oxygen gas containing a small amount of argon and nitrogen obtained by the pressure swing adsorption device into the first heat exchanger, A liquid oxygen tank using the stored first liquid oxygen as an oxygen gas supply source to an electric furnace of electric furnace steelmaking, and a mixed gas of second liquid oxygen, argon and nitrogen by cryogenic separation of the remainder of the first liquid oxygen And a second rectifying column that separates the mixed gas of argon and nitrogen separated and produced in the first rectifying column into high-purity liquid argon and nitrogen gas by cryogenic separation. And this 2. A high purity liquid argon obtained in a rectifying tower is stored, and the high purity liquid argon stored in the high purity liquid argon is supplied to a refining furnace for electric furnace steelmaking, and the first rectification The second heat exchanger cooled by the second liquid oxygen obtained in the tower, the second heat exchanger and the first and second rectifying towers through the first and second rectifying towers A first aspect is a gas supply facility provided with a nitrogen circulation path for circulating the nitrogen as circulation nitrogen in the same site of an electric furnace steelmaking factory.

また、本発明は、上記第1の要旨のガス供給設備を用いたガス供給方法であって、電気炉製鋼工場の同一用地内に、外気を導入して酸素を濃縮する圧力スイング吸着装置と、液化ユニットと、第1および第2熱交換器と、深冷分離用の第1および第2精留塔と、上記第2熱交換器ならびに上記第1および第2精留塔を経由してその第1および第2精留塔内の循環用窒素を循環させる窒素循環路と、液体酸素タンクと、液体アルゴンタンクとを設ける工程と、上記液化ユニットで作製された液化ガスを上記第1熱交換器に通してその第1熱交換器を冷却する工程と、上記圧力スイング吸着装置で得られた、アルゴンおよび窒素を少量含む酸素ガスを、上記第1熱交換器に通して液化させ、第1液体酸素にする工程と、その第1液体酸素の一部を上記液体酸素タンクに貯留し、残部を上記第1精留塔に導入する工程と、その第1精留塔で上記第1液体酸素の残部を、深冷分離により、第2液体酸素と、アルゴンおよび窒素の混合ガスとに分離する工程と、上記第2液体酸素を上記第1精留塔から取り出して上記第2熱交換器に通し気化させる工程と、上記窒素循環路に上記循環用窒素を循環させて上記第1および第2精留塔を冷却する工程と、上記第1精留塔で分離生成された上記アルゴンおよび窒素の混合ガスを上記第1精留塔から取り出して上記第2精留塔に導入し、深冷分離により、高純度液体アルゴンと、窒素ガスとに分離する工程と、上記高純度液体アルゴンを上記第2精留塔から取り出し、上記液体アルゴンタンクに貯留する工程と、上記液体酸素タンクに貯留された第1液体酸素を必要に応じて気化させて電気炉製鋼の電気炉に供給する工程と、上記液体アルゴンタンクに貯留された高純度液体アルゴンを必要に応じて気化させて電気炉製鋼の精錬炉に供給する工程とを備えているガス供給方法を第2の要旨とする。   Further, the present invention is a gas supply method using the gas supply facility of the first aspect, wherein the pressure swing adsorption device for introducing oxygen into the same site of the electric furnace steelmaking factory to concentrate oxygen, The liquefaction unit, the first and second heat exchangers, the first and second rectifying columns for cryogenic separation, the second heat exchanger and the first and second rectifying columns A step of providing a nitrogen circulation path for circulating circulation nitrogen in the first and second rectification towers, a liquid oxygen tank, and a liquid argon tank; and the liquefied gas produced by the liquefaction unit in the first heat exchange. A step of cooling the first heat exchanger through a vessel, oxygen gas containing a small amount of argon and nitrogen obtained by the pressure swing adsorption device is liquefied through the first heat exchanger, and the first A step of making liquid oxygen and a part of the first liquid oxygen The step of storing in the liquid oxygen tank and introducing the remaining portion into the first rectifying column, and the second liquid oxygen and argon in the first rectifying column by the cryogenic separation of the remaining portion of the first liquid oxygen. And a mixed gas of nitrogen, a step of taking out the second liquid oxygen from the first rectification column and evaporating it through the second heat exchanger, and a step of supplying the circulation nitrogen to the nitrogen circulation path. Circulating the cooling of the first and second rectification towers, and taking out the mixed gas of argon and nitrogen separated and generated in the first rectification tower from the first rectification tower to extract the second rectification tower. A step of introducing into the distillation column and separating into high purity liquid argon and nitrogen gas by cryogenic separation; a step of taking out the high purity liquid argon from the second rectification column and storing in the liquid argon tank; The first stored in the liquid oxygen tank A process of vaporizing body oxygen as needed and supplying it to an electric furnace steelmaking electric furnace, and vaporizing high-purity liquid argon stored in the liquid argon tank as necessary to supply to an electric furnace steelmaking refining furnace The gas supply method provided with the process to perform is made into the 2nd summary.

なお、本発明において、「同一用地」とは、得られた液体酸素および液体アルゴンをタンクローリ等の車両により運搬する必要のない範囲内の土地のことを意味し、工場敷地に限定するものではない。   In the present invention, the “same site” means land within a range where the obtained liquid oxygen and liquid argon need not be transported by a vehicle such as a tank truck, and is not limited to the factory site. .

また、本発明において、液体アルゴンおよびアルゴンガスの「高純度」とは、純度が99mol%以上のことを意味する。   In the present invention, “high purity” of liquid argon and argon gas means that the purity is 99 mol% or more.

本発明の第1の要旨であるガス供給設備は、同一用地内に必要装置類を設け、液化ユニットで得られた液化ガスによって冷却される第1熱交換器に、圧力スイング吸着装置で得られた、アルゴンおよび窒素を少量含む酸素ガスを、導入するようになっているため、その第1熱交換器で上記酸素ガスを液化して液体酸素(第1液体酸素)にすることができる。そして、その第1液体酸素の一部を液体酸素タンクに貯留するようになっているため、その液体酸素タンクの第1液体酸素を必要に応じて気化させて電気炉製鋼の電気炉に供給することができる。また、上記第1液体酸素の残部は、第1精留塔で深冷分離され、ついで、第2精留塔で深冷分離されるようになっているため、その第2精留塔での深冷分離により、高純度の液体アルゴンを得ることができる。そして、その高純度液体アルゴンは、液体アルゴンタンクに貯留されるするようになっているため、その液体アルゴンタンクの高純度液体アルゴンを必要に応じて気化させて電気炉製鋼の精錬炉に供給することができる。このように、本発明は、電気炉製鋼工場の用地内で、電気炉に供給する酸素ガスおよび精錬炉に供給する高純度アルゴンガスを得ることができるため、その用地外から液体酸素および高純度液体アルゴンをタンクローリ等により運搬する必要がない。そのため、運搬費を節約することができ、かつ、震災等で道路等のアクセスが遮断されたとしても、電気炉製鋼工場での製鉄が可能である。   The gas supply equipment which is the first gist of the present invention is obtained by a pressure swing adsorption device in a first heat exchanger provided with necessary devices in the same site and cooled by liquefied gas obtained by a liquefaction unit. In addition, since oxygen gas containing a small amount of argon and nitrogen is introduced, the oxygen gas can be liquefied and converted into liquid oxygen (first liquid oxygen) by the first heat exchanger. Since a part of the first liquid oxygen is stored in the liquid oxygen tank, the first liquid oxygen in the liquid oxygen tank is vaporized as necessary and supplied to the electric furnace of the electric furnace steelmaking. be able to. Further, since the remainder of the first liquid oxygen is cryogenically separated in the first rectification column and then cryogenically separated in the second rectification column, High purity liquid argon can be obtained by cryogenic separation. Since the high purity liquid argon is stored in the liquid argon tank, the high purity liquid argon in the liquid argon tank is vaporized as necessary and supplied to the refining furnace for electric furnace steelmaking. be able to. As described above, the present invention can obtain oxygen gas supplied to the electric furnace and high-purity argon gas supplied to the smelting furnace in the site of the electric furnace steel mill, so that liquid oxygen and high purity can be obtained from outside the site. There is no need to transport liquid argon by a tank truck. Therefore, transportation costs can be saved, and even if access to roads or the like is blocked due to an earthquake, etc., iron can be produced in an electric furnace steelmaking factory.

そして、本発明の第2の要旨であるガス供給方法は、上記第1の要旨のガス供給設備を用いたガス供給方法であるため、上記のようにして、電気炉製鋼工場の用地内で、電気炉に供給する酸素ガスおよび精錬炉に供給する高純度アルゴンガスを得ることができる。そのため、その用地外から液体酸素および高純度液体アルゴンをタンクローリ等により運搬する必要がなく、運搬費を節約することができ、かつ、震災等で道路等のアクセスが遮断されたとしても、電気炉製鋼工場での製鉄が可能である。   And since the gas supply method which is the 2nd summary of this invention is a gas supply method using the gas supply equipment of the said 1st summary, as mentioned above, in the site of an electric furnace steelmaking factory, Oxygen gas supplied to the electric furnace and high-purity argon gas supplied to the refining furnace can be obtained. Therefore, it is not necessary to transport liquid oxygen and high-purity liquid argon from outside the site with a tank truck, etc., so that transportation costs can be saved, and even if access to roads etc. is blocked due to an earthquake, etc. It is possible to make iron in a furnace steelmaking factory.

本発明のアルゴン製造設備の第1の実施の形態を模式的に示す構成図である。It is a block diagram which shows typically 1st Embodiment of the argon manufacturing equipment of this invention. 本発明のアルゴン製造設備の第2の実施の形態を模式的に示す構成図である。It is a block diagram which shows typically 2nd Embodiment of the argon manufacturing equipment of this invention.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。ただし、本発明は、以下の実施の形態に限定されるものではない。   Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments.

図1は、本発明のガス供給設備の第1の実施の形態を示す構成図である。この実施の形態のガス供給設備の全体は、電気炉製鋼工場の同一用地内に設置されるものであり、電気炉での酸化溶解工程で使用する酸素ガスを製造する目的で上記用地内に設置されている圧力スイング吸着(PSA)装置1(図示の左上端)を利用するものである。このPSA装置1で製造された酸素ガスには、アルゴンおよび窒素が少量含まれており、本発明のガス供給方法は、その酸素ガスから熱交換器(第1熱交換器3)(図示の左上端)を用いて液体酸素(第1液体酸素)を得て液体酸素タンク4(図示の右側)に貯留し、第1および第2精留塔5,6(図示の中央)を用いて高純度液体アルゴンを得て液体アルゴンタンク7に貯留し、必要に応じて気化させ、酸素ガスを電気炉21(図示の右側)に、高純度アルゴンガスを精錬炉22(図示の右側)に、それぞれ供給するものである。上記酸素ガスは、例えば、純度が90体積%以上95体積%以下程度であり、不純物としてアルゴンが4体積%以上5体積%以下程度、窒素が0体積%を超え6体積%以下程度含まれている。   FIG. 1 is a configuration diagram showing a first embodiment of a gas supply facility of the present invention. The whole gas supply facility of this embodiment is installed in the same site of an electric furnace steelmaking factory, and installed in the site for the purpose of producing oxygen gas used in the oxidative dissolution process in the electric furnace. The pressure swing adsorption (PSA) apparatus 1 (the upper left end in the figure) is used. The oxygen gas produced by the PSA apparatus 1 contains a small amount of argon and nitrogen. The gas supply method of the present invention uses a heat exchanger (first heat exchanger 3) (upper left in the figure) from the oxygen gas. Liquid oxygen (first liquid oxygen) is obtained using the end and stored in the liquid oxygen tank 4 (right side in the figure), and high purity is obtained using the first and second rectification columns 5 and 6 (center in the figure). Liquid argon is obtained, stored in the liquid argon tank 7, vaporized as necessary, and oxygen gas is supplied to the electric furnace 21 (right side in the figure) and high-purity argon gas is supplied to the refining furnace 22 (right side in the figure). To do. The oxygen gas has, for example, a purity of about 90% to 95% by volume, argon as impurities of 4% to 5% by volume, and nitrogen exceeding 0% by volume to about 6% by volume. Yes.

すなわち、上記ガス供給設備は、上記PSA装置1と、このPSA装置1により得られた上記酸素ガスを昇圧する酸素ガス圧縮機2と、この酸素ガス圧縮機2で昇圧された酸素ガスを液化する第1熱交換器3と、この第1熱交換器3に液体空気(寒冷)を導入する液化ユニット11と、その第1熱交換器3で液化された酸素ガス(第1液体酸素)の一部を貯留する液体酸素タンク4と、その第1液体酸素の残部を深冷分離により第2液体酸素とアルゴンおよび窒素の混合ガスとに分離する第1精留塔5と、この第1精留塔5で分離生成された上記アルゴンおよび窒素の混合ガスを深冷分離により高純度液体アルゴンと窒素ガスとに分離する第2精留塔6と、この第2精留塔6で得られた高純度液体アルゴンを貯留する液体アルゴンタンク7と、上記第1精留塔5で得られた第2液体酸素で冷却される第2熱交換器8と、この第2熱交換器8ならびに上記第1および第2精留塔5,6を経由してその第1および第2精留塔5,6内の窒素を循環用窒素として循環させる窒素循環路9と、上記第1液体酸素等の流体の流路となる配管A〜Pおよびその配管A〜Pに設けられた減圧弁9b,9c,10等とを備えている。そして、上記液体酸素タンク4から、第1液体酸素を必要に応じて第1蒸発器4aで気化させて電気炉製鋼の電気炉21に供給し、また、上記液体アルゴンタンク7から、高純度液体アルゴンを必要に応じて第2蒸発器7aで気化させて電気炉製鋼の精錬炉22に供給するようになっている。   That is, the gas supply facility liquefies the PSA device 1, an oxygen gas compressor 2 that pressurizes the oxygen gas obtained by the PSA device 1, and the oxygen gas that has been pressurized by the oxygen gas compressor 2. A first heat exchanger 3, a liquefaction unit 11 for introducing liquid air (cold) into the first heat exchanger 3, and an oxygen gas (first liquid oxygen) liquefied by the first heat exchanger 3 And a first rectifying column 5 for separating the remaining portion of the first liquid oxygen into a second liquid oxygen and a mixed gas of argon and nitrogen by cryogenic separation, and the first rectification A second rectifying column 6 for separating the mixed gas of argon and nitrogen separated and produced in the column 5 into high-purity liquid argon and nitrogen gas by cryogenic separation; and a high rectifying column 6 obtained in the second rectifying column 6. A liquid argon tank 7 for storing pure liquid argon; The second heat exchanger 8 cooled by the second liquid oxygen obtained in the first rectifying column 5, the second heat exchanger 8, and the first and second rectifying columns 5 and 6 are passed through. The nitrogen circulation path 9 for circulating the nitrogen in the first and second rectifying columns 5 and 6 as circulation nitrogen, the pipes A to P that serve as the flow paths for the fluid such as the first liquid oxygen, and the pipe A ~ P are provided with pressure reducing valves 9b, 9c, 10 and the like. Then, from the liquid oxygen tank 4, the first liquid oxygen is vaporized by the first evaporator 4a as necessary and supplied to the electric furnace 21 made of electric furnace steelmaking. From the liquid argon tank 7, the high purity liquid is supplied. If necessary, argon is vaporized by the second evaporator 7a and supplied to the refining furnace 22 for electric furnace steelmaking.

より詳しく説明すると、上記酸素ガス圧縮機2は、上記PSA装置1で得られた上記酸素ガスを昇圧させ、その状態で、その一部を、配管Aにより、電気炉製鋼の電気炉21に供給し、残部を、開閉弁12を開けて配管Bに導き、上記第1熱交換器3に導入するようになっている。そして、その第1熱交換器3で、上記酸素ガスを液化して第1液体酸素にし、その一部を、配管Cにより、液体酸素タンク4に貯留し、残部を、配管Dにより、第1精留塔5に導入するようになっている。   More specifically, the oxygen gas compressor 2 pressurizes the oxygen gas obtained by the PSA device 1, and in that state, a part of the oxygen gas compressor 2 is supplied to the electric furnace 21 of the electric furnace steelmaking by the pipe A. Then, the remainder is introduced to the first heat exchanger 3 by opening the on-off valve 12 and leading to the pipe B. Then, in the first heat exchanger 3, the oxygen gas is liquefied into first liquid oxygen, a part thereof is stored in the liquid oxygen tank 4 through the pipe C, and the remaining part is stored in the first pipe D through the first heat exchanger 3. It is introduced into the rectifying column 5.

上記第1および第2精留塔5,6は、それぞれ、上側の低圧塔部5A,6Aと、下側の高圧塔部5B,6Bとからなっている。上記上側の低圧塔部5A,6Aは、上記循環用窒素が循環途中に液体状態で一時溜まる液体窒素貯留室となっており、その内部に、下側の高圧塔部5B,6Bで気化したガスを冷却するコンデンサ5a,6aを備えている。上記下側の高圧塔部5B,6Bは、その底部に、上記循環用窒素を通して液化するリボイラ5b,6bを備えている。   Each of the first and second rectifying columns 5 and 6 includes an upper low-pressure column portion 5A and 6A and a lower high-pressure column portion 5B and 6B, respectively. The upper low pressure towers 5A and 6A are liquid nitrogen storage chambers in which the circulation nitrogen is temporarily stored in a liquid state during the circulation, and the gas vaporized in the lower high pressure towers 5B and 6B is contained therein. Are provided with capacitors 5a and 6a. The lower high-pressure towers 5B and 6B are provided with reboilers 5b and 6b which are liquefied through the circulation nitrogen at the bottom.

上記第1精留塔5の高圧塔部5Bには、上記PSA装置1で得られ上記酸素ガス圧縮機2で昇圧され上記第1熱交換器3で冷却されて生成した上記第1液体酸素が配管Dを経由して導入される。そして、第1精留塔5での精留により、上記第1液体酸素が高純度化し、第2液体酸素となって底部に溜まり、アルゴンおよび窒素の混合ガスの一部が配管Fを通って上記第2精留塔6の高圧塔部6Bの高さ方向の中間部に導入されるようになっており、残部は配管Eによりコンデンサ5aを通って液化し、還流液として配管Gにより、第1精留塔5の高圧塔部5Bの上部に戻されるようになっている。上記第1精留塔5の高圧塔部5Bの底部に溜まった上記第2液体酸素は、配管Nを経て上記液体酸素タンク4に貯留される。   In the high-pressure tower section 5B of the first rectifying tower 5, the first liquid oxygen obtained by the PSA device 1 and pressurized by the oxygen gas compressor 2 and cooled by the first heat exchanger 3 is generated. It is introduced via the pipe D. And by the rectification in the first rectification column 5, the first liquid oxygen becomes highly purified and becomes the second liquid oxygen and accumulates at the bottom, and a part of the mixed gas of argon and nitrogen passes through the pipe F. The second rectifying column 6 is introduced into an intermediate portion in the height direction of the high-pressure column 6B, and the remainder is liquefied through the condenser 5a by the pipe E, and is circulated by the pipe G as the reflux liquid. The rectifying column 5 is returned to the upper part of the high-pressure column 5B. The second liquid oxygen collected at the bottom of the high-pressure tower 5B of the first rectification tower 5 is stored in the liquid oxygen tank 4 via a pipe N.

上記第2精留塔6の高圧塔部6Bには、先に述べたように、アルゴンおよび窒素の混合ガスが導入され、精留により、その混合ガス中のアルゴンガスが液化して高純度液体アルゴンとして底部に溜まり、配管Oを経由して液体アルゴンタンク7に貯留される。上記混合ガス中の窒素ガスの一部は、配管Hを経由してコンデンサ6aに送られ、そこで冷却され、液体窒素となり、配管Jを経て還流液として高圧塔部6Bの上部に戻される。上記混合ガス中の窒素ガスの残部は、配管Iから取り出され、上記第2熱交換器8を冷却した後、排窒素ガスとして大気中に投棄される。   As described above, a mixed gas of argon and nitrogen is introduced into the high-pressure tower section 6B of the second rectifying tower 6, and the argon gas in the mixed gas is liquefied by the rectification, so that a high-purity liquid is obtained. It accumulates at the bottom as argon and is stored in the liquid argon tank 7 via the pipe O. A part of the nitrogen gas in the mixed gas is sent to the condenser 6a via the pipe H, cooled there, becomes liquid nitrogen, and returns to the upper part of the high-pressure tower 6B as the reflux liquid via the pipe J. The remainder of the nitrogen gas in the mixed gas is taken out from the pipe I, and after cooling the second heat exchanger 8, it is dumped into the atmosphere as exhausted nitrogen gas.

先に述べた窒素循環路9は、循環用窒素圧縮機9aを備え、その取り込み側が上記第1および第2精留塔5,6の低圧塔部5A,6Aの上部と連通し、送出側が上記第1および第2精留塔5,6の高圧塔部5B,6Bの各リボイラ5b,6bの取り込み側と連通している。そして、上記リボイラ5b,6bの送出側は、配管Lによって上記第1および第2精留塔5,6の低圧塔部5A,6Aの上部空間と連通している。このようにして窒素循環路9が形成されている。そして、上記循環用窒素圧縮機9aで昇圧された循環用窒素ガスは、配管Kにより、上記第2熱交換器8を通って、上記第1および第2精留塔5,6の高圧塔部5B,6Bの各リボイラ5b,6bに導入されるようになっている。そして、各リボイラ5b,6bを通った循環用窒素ガスは、液化された状態で、配管Lにより送られ、分岐し減圧弁9b,9cを通って、上記第1および第2精留塔5,6の各液体窒素貯留室(低圧塔部5A,6A)に導入され、そこで溜まるようになっている。その低圧塔部5A,6A内のコンデンサ5a,6aを冷却し気化して生成した循環用窒素ガスは、配管Mにより、合流され、再度、上記第2熱交換器8を通って、上記循環用窒素圧縮機9aで昇圧されるようになっている。このようにして、上記循環用窒素が気体や液体の状態で循環するようになっている。   The nitrogen circulation path 9 described above includes a circulation nitrogen compressor 9a, the intake side of which communicates with the upper portions of the low-pressure towers 5A and 6A of the first and second rectification columns 5 and 6, and the delivery side of which is the above-mentioned. The first and second rectification columns 5 and 6 communicate with the intake sides of the reboilers 5b and 6b of the high-pressure column sections 5B and 6B. The delivery side of the reboilers 5b and 6b communicates with the upper spaces of the low-pressure towers 5A and 6A of the first and second rectifying towers 5 and 6 through a pipe L. In this way, the nitrogen circulation path 9 is formed. The circulating nitrogen gas boosted by the circulating nitrogen compressor 9a passes through the second heat exchanger 8 through the pipe K and passes through the second heat exchanger 8 to the high-pressure towers of the first and second rectifying columns 5 and 6. The reboilers 5b and 6b of 5B and 6B are introduced. The circulating nitrogen gas that has passed through the reboilers 5b and 6b is sent in a liquefied state through the pipe L, branches, passes through the pressure reducing valves 9b and 9c, and passes through the first and second rectifying columns 5 and 5. 6 are introduced into the respective liquid nitrogen storage chambers (low-pressure towers 5A, 6A) and stored there. The circulating nitrogen gas generated by cooling and vaporizing the condensers 5a and 6a in the low-pressure towers 5A and 6A is joined by the pipe M, and again passes through the second heat exchanger 8 to be used for the circulation. The pressure is increased by the nitrogen compressor 9a. In this way, the nitrogen for circulation circulates in a gas or liquid state.

上記ガス供給設備を用いたガス供給方法は、つぎのようなものである。   The gas supply method using the gas supply equipment is as follows.

定常運転時には、窒素循環路9において、気体状態の循環用窒素が、循環用窒素圧縮機9aで、例えば0.92MPaG(「G」はゲージ圧であることを意味する。以下同様)程度に昇圧され、第2熱交換器8で、例えば−169℃程度まで冷却された状態で、配管Kにより第1および第2精留塔5,6の底部の各リボイラ5b,6bに導入され、液化される。そして、各リボイラ5b,6bを通った循環用窒素は、液化された状態で、配管Lにより合流した後に2つに分岐される。その一方は、減圧弁9bで、例えば0.35MPaG程度に減圧された状態で、第1精留塔5の液体窒素貯留室(低圧塔部5A)に導入され、もう一方は、減圧弁9cで、例えば0.10MPaG程度に減圧された状態で、第2精留塔6の液体窒素貯留室(低圧塔部6A)に導入される。その後、各液体窒素貯留室(低圧塔部5A,6A)で気化した循環用窒素は、配管Mにより、合流され、上記第2熱交換器8で加熱された後、上記循環用窒素圧縮機9aで昇圧される。   During steady operation, in the nitrogen circulation path 9, the nitrogen in the gaseous state is increased to about 0.92 MPaG (“G” means a gauge pressure, the same applies hereinafter) by the circulation nitrogen compressor 9 a. In the second heat exchanger 8, for example, cooled to about −169 ° C., it is introduced into the reboilers 5 b and 6 b at the bottom of the first and second rectifying columns 5 and 6 through the pipe K, and liquefied. The And the nitrogen for circulation which passed through each reboiler 5b, 6b is branched into two after joining by the piping L in the liquefied state. One of them is introduced into the liquid nitrogen storage chamber (low pressure tower 5A) of the first rectifying column 5 in a state where the pressure is reduced to about 0.35 MPaG by the pressure reducing valve 9b, and the other is supplied by the pressure reducing valve 9c. For example, in a state where the pressure is reduced to about 0.10 MPaG, the liquid nitrogen storage chamber (low pressure tower section 6A) of the second rectifying tower 6 is introduced. Thereafter, the circulating nitrogen vaporized in the respective liquid nitrogen storage chambers (low pressure towers 5A, 6A) is joined by the pipe M and heated by the second heat exchanger 8, and then the circulating nitrogen compressor 9a. Is boosted.

ところで、PSA装置1により得られた、アルゴンおよび窒素を少量含む酸素ガスは、定常運転時には、酸素ガス圧縮機2で、例えば0.66MPaG程度に昇圧される。そして、その一部は、従来と同様、配管Aにより電気炉製鋼の電気炉21に供給され、残部は、配管Bを通り、第1熱交換器3で、例えば−159℃程度まで冷却され、全体が液化され液体酸素(第1液体酸素)になる。そして、その第1液体酸素の一部は、配管Cを経て液体酸素タンク4に貯留され、残部は、配管Dにより第1精留塔5の高圧塔部5Bの高さ方向の中間部に導入される。そして、その導入された上記酸素ガスは、還流液(液体窒素と液体アルゴンの混合液)に接し、深冷分離により、第2液体酸素と、アルゴンおよび窒素の混合ガスとに分離される。ついで、第1精留塔5の高圧塔部5Bの上部から抜き出された、アルゴンガスと窒素ガスの混合ガスの一部は、配管Fを通り、減圧弁10で、例えば0.15MPaG程度に減圧された状態で、第2精留塔6の高圧塔部6Bの高さ方向の中間部に導入される。そして、その導入された上記混合ガスは、還流液(液体窒素)に接し、深冷分離により、液体アルゴンと、窒素ガスとに分離される。ついで、その窒素ガスは、第2精留塔6の高圧塔部6Bの上部から抜き出され、その一部は、配管Hを通り第2精留塔6のコンデンサ6aを経て上記還流液となり、配管Jにより上記高圧塔部6Bの上部に導入され、残部は、配管Iにより第2熱交換器8を通り、その第2熱交換器8で加熱され、排気される。   Meanwhile, the oxygen gas containing a small amount of argon and nitrogen obtained by the PSA apparatus 1 is boosted to, for example, about 0.66 MPaG by the oxygen gas compressor 2 during steady operation. And the part is supplied to the electric furnace 21 of an electric furnace steelmaking by the piping A like the past, and the remainder passes the piping B, and is cooled to about -159 degreeC by the 1st heat exchanger 3, for example, The whole is liquefied and becomes liquid oxygen (first liquid oxygen). A part of the first liquid oxygen is stored in the liquid oxygen tank 4 through the pipe C, and the remaining part is introduced into the intermediate portion in the height direction of the high-pressure tower 5B of the first rectifying tower 5 through the pipe D. Is done. The introduced oxygen gas comes into contact with the reflux liquid (mixed liquid of liquid nitrogen and liquid argon) and is separated into the second liquid oxygen and the mixed gas of argon and nitrogen by cryogenic separation. Next, a part of the mixed gas of argon gas and nitrogen gas extracted from the upper part of the high-pressure tower section 5B of the first rectifying tower 5 passes through the pipe F and is reduced to, for example, about 0.15 MPaG by the pressure reducing valve 10. It is introduced into the intermediate portion in the height direction of the high-pressure tower section 6B of the second rectifying tower 6 in a decompressed state. The introduced mixed gas comes into contact with the reflux liquid (liquid nitrogen) and is separated into liquid argon and nitrogen gas by cryogenic separation. Then, the nitrogen gas is extracted from the upper part of the high pressure column section 6B of the second rectification column 6, and a part of the nitrogen gas passes through the pipe H and passes through the condenser 6a of the second rectification column 6 to become the reflux liquid. The pipe J introduces the upper portion of the high-pressure tower 6B, and the remainder passes through the second heat exchanger 8 through the pipe I, and is heated and exhausted by the second heat exchanger 8.

そして、第1精留塔5の高圧塔部5Bの底部から、高純度の液体酸素(第2液体酸素)が取り出され、配管Nにより取り出され、上記液体酸素タンク4に貯留される。また、第2精留塔6の高圧塔部6Bの底部から、高純度の液体アルゴンが、配管Oにより取り出され、液体アルゴンタンク7に貯留される。   Then, high-purity liquid oxygen (second liquid oxygen) is taken out from the bottom of the high-pressure tower 5B of the first rectifying tower 5, taken out through the pipe N, and stored in the liquid oxygen tank 4. Further, high-purity liquid argon is taken out from the bottom of the high-pressure tower 6 </ b> B of the second rectification tower 6 through the pipe O and stored in the liquid argon tank 7.

そして、上記液体酸素タンク4から、第1液体酸素が必要に応じて第1蒸発器4aで気化させて電気炉製鋼の電気炉21に供給され、また、上記液体アルゴンタンク7から、高純度液体アルゴンが必要に応じて第2蒸発器7aで気化させて電気炉製鋼の精錬炉22に供給される。   Then, the first liquid oxygen is vaporized by the first evaporator 4a as needed from the liquid oxygen tank 4 and supplied to the electric furnace 21 made of electric furnace steelmaking. From the liquid argon tank 7, a high-purity liquid is supplied. If necessary, argon is vaporized by the second evaporator 7a and supplied to the refining furnace 22 for electric furnace steelmaking.

図2は、本発明のガス供給設備の第2の実施の形態を示す構成図である。この実施の形態のガス供給設備は、上記第1の実施の形態(図1参照)において、液化ユニット11に導入するガスを、別個に設けた窒素ガス製造用のPSA装置30からの窒素ガスとしたものである。電気炉製鋼工場では、酸化防止用のシールガスや底吹き等で使用される窒素ガスを得るために、窒素ガス製造用のPSA装置30が同一用地内に設置されている場合があり、この実施の形態は、そのような場合に有効である。それ以外の部分は、上記第1の実施の形態と同様であり、同様の部分には同じ符号を付している。   FIG. 2 is a configuration diagram showing a second embodiment of the gas supply facility of the present invention. In the gas supply facility of this embodiment, in the first embodiment (see FIG. 1), the gas introduced into the liquefaction unit 11 is separated from the nitrogen gas from the PSA device 30 for producing nitrogen gas provided separately. It is what. In an electric furnace steel factory, there is a case where a PSA device 30 for producing nitrogen gas is installed in the same site in order to obtain nitrogen gas used for anti-oxidation sealing gas or bottom blowing, etc. This form is effective in such a case. Other parts are the same as those in the first embodiment, and the same reference numerals are given to the same parts.

この実施の形態のように、液化ユニット11に導入するガスを窒素ガスにすると、上記第1の実施の形態と比較して、液化ユニット11内の上記窒素ガスの圧力および流量に変化はあるものの、上記第1熱交換器3を通って液化されてなる第1液体酸素の圧力および温度は、変化しない。このため、上記第1の実施の形態と同様にして、第1液体酸素および高純度液体アルゴンを得て液体酸素タンク4および液体アルゴンタンク7に貯留し、必要に応じて気化させて電気炉製鋼の電気炉21および精錬炉22に供給することができる。さらに、液化ユニット11は、大気を導入する場合(第1の実施の形態)と比べ、酸素が含まれていないため、装置の酸化や摩擦熱に基づく爆発を防ぐことができる。   When the gas introduced into the liquefaction unit 11 is changed to nitrogen gas as in this embodiment, the pressure and flow rate of the nitrogen gas in the liquefaction unit 11 are changed as compared with the first embodiment. The pressure and temperature of the first liquid oxygen liquefied through the first heat exchanger 3 do not change. For this reason, in the same manner as in the first embodiment, the first liquid oxygen and high-purity liquid argon are obtained, stored in the liquid oxygen tank 4 and the liquid argon tank 7, and vaporized as necessary to make electric furnace steelmaking. The electric furnace 21 and the smelting furnace 22 can be supplied. Furthermore, since the liquefaction unit 11 does not contain oxygen as compared with the case where the atmosphere is introduced (first embodiment), the liquefaction unit 11 can prevent an explosion based on oxidation of the apparatus and frictional heat.

なお、各実施の形態で用いた上記液化ユニット11は、市販品でも、本発明者らが作成した独創的な液化ユニットでもよい。   The liquefaction unit 11 used in each embodiment may be a commercially available product or an original liquefaction unit created by the present inventors.

本発明は、電気炉製鋼工場の同一用地内で液体酸素および高純度の液体アルゴンを得て、電気炉製鋼での酸化溶解工程で電気炉に酸素ガスを供給し、還元精錬工程で精錬炉に高純度アルゴンガスを供給することに利用することができる。   The present invention obtains liquid oxygen and high-purity liquid argon in the same site of an electric furnace steelmaking factory, supplies oxygen gas to the electric furnace in the oxidative dissolution process in electric furnace steelmaking, and into the smelting furnace in the reduction refining process It can be used to supply high purity argon gas.

1 PSA装置
3 第1熱交換器
4 液体酸素タンク
5 第1精留塔
6 第2精留塔
7 液体アルゴンタンク
8 第2熱交換器
9 窒素循環路
11 液化ユニット
DESCRIPTION OF SYMBOLS 1 PSA apparatus 3 1st heat exchanger 4 Liquid oxygen tank 5 1st rectification tower 6 2nd rectification tower 7 Liquid argon tank 8 2nd heat exchanger 9 Nitrogen circulation path 11 Liquefaction unit

Claims (2)

外気を導入して酸素を濃縮する圧力スイング吸着装置と、導入したガスを液化させる液化ユニットと、この液化ユニットで得られた液化ガスによって冷却される第1熱交換器と、上記圧力スイング吸着装置により得られた、アルゴンおよび窒素を少量含む酸素ガスを上記第1熱交換器に導入し液化してなる第1液体酸素の一部を貯留し、その貯留した第1液体酸素を電気炉製鋼の電気炉への酸素ガス供給源とする液体酸素タンクと、上記第1液体酸素の残部を深冷分離により第2液体酸素とアルゴンおよび窒素の混合ガスとに分離する第1精留塔と、この第1精留塔で分離生成された上記アルゴンおよび窒素の混合ガスを深冷分離により高純度液体アルゴンと窒素ガスとに分離する第2精留塔と、この第2精留塔で得られた高純度液体アルゴンを貯留し、その貯留した高純度液体アルゴンを電気炉製鋼の精錬炉への高純度アルゴンガス供給源とする液体アルゴンタンクと、上記第1精留塔で得られた第2液体酸素で冷却される第2熱交換器と、この第2熱交換器ならびに上記第1および第2精留塔を経由してその第1および第2精留塔内の窒素を循環用窒素として循環させる窒素循環路と、を電気炉製鋼工場の同一用地内に備えていることを特徴とするガス供給設備。   Pressure swing adsorption device for introducing outside air to concentrate oxygen, liquefaction unit for liquefying the introduced gas, first heat exchanger cooled by the liquefied gas obtained by this liquefaction unit, and the pressure swing adsorption device A part of the first liquid oxygen obtained by introducing and liquefying oxygen gas containing a small amount of argon and nitrogen into the first heat exchanger, and storing the first liquid oxygen obtained by electric furnace steelmaking. A liquid oxygen tank as an oxygen gas supply source to the electric furnace, a first rectifying column for separating the remainder of the first liquid oxygen into a second liquid oxygen and a mixed gas of argon and nitrogen by cryogenic separation, A second rectifying column that separates the mixed gas of argon and nitrogen produced by the first rectifying column into high-purity liquid argon and nitrogen gas by cryogenic separation, and the second rectifying column. High purity liquid algo And the liquid argon tank using the stored high-purity liquid argon as a high-purity argon gas supply source to the refining furnace of the electric furnace steelmaking, and the second liquid oxygen obtained in the first rectification tower. A second heat exchanger, and a nitrogen circulation path for circulating the nitrogen in the first and second rectifying towers as circulating nitrogen through the second heat exchanger and the first and second rectifying towers And a gas supply facility comprising the same site in an electric furnace steelmaking factory. 請求項1記載のガス供給設備を用いたガス供給方法であって、電気炉製鋼工場の同一用地内に、外気を導入して酸素を濃縮する圧力スイング吸着装置と、液化ユニットと、第1および第2熱交換器と、深冷分離用の第1および第2精留塔と、上記第2熱交換器ならびに上記第1および第2精留塔を経由してその第1および第2精留塔内の循環用窒素を循環させる窒素循環路と、液体酸素タンクと、液体アルゴンタンクとを設ける工程と、上記液化ユニットで作製された液化ガスを上記第1熱交換器に通してその第1熱交換器を冷却する工程と、上記圧力スイング吸着装置で得られた、アルゴンおよび窒素を少量含む酸素ガスを、上記第1熱交換器に通して液化させ、第1液体酸素にする工程と、その第1液体酸素の一部を上記液体酸素タンクに貯留し、残部を上記第1精留塔に導入する工程と、その第1精留塔で上記第1液体酸素の残部を、深冷分離により、第2液体酸素と、アルゴンおよび窒素の混合ガスとに分離する工程と、上記第2液体酸素を上記第1精留塔から取り出して上記第2熱交換器に通し気化させる工程と、上記窒素循環路に上記循環用窒素を循環させて上記第1および第2精留塔を冷却する工程と、上記第1精留塔で分離生成された上記アルゴンおよび窒素の混合ガスを上記第1精留塔から取り出して上記第2精留塔に導入し、深冷分離により、高純度液体アルゴンと、窒素ガスとに分離する工程と、上記高純度液体アルゴンを上記第2精留塔から取り出し、上記液体アルゴンタンクに貯留する工程と、上記液体酸素タンクに貯留された第1液体酸素を必要に応じて気化させて電気炉製鋼の電気炉に供給する工程と、上記液体アルゴンタンクに貯留された高純度液体アルゴンを必要に応じて気化させて電気炉製鋼の精錬炉に供給する工程とを備えていることを特徴とするガス供給方法。   A gas supply method using the gas supply facility according to claim 1, wherein a pressure swing adsorption device for concentrating oxygen by introducing outside air into the same site of an electric furnace steelmaking factory, a liquefaction unit, The second heat exchanger, the first and second rectification columns for cryogenic separation, the first and second rectifications via the second heat exchanger and the first and second rectification columns A step of providing a nitrogen circulation path for circulating the circulation nitrogen in the tower, a liquid oxygen tank, and a liquid argon tank; and passing the liquefied gas produced by the liquefaction unit through the first heat exchanger to A step of cooling the heat exchanger, a step of oxygen gas containing a small amount of argon and nitrogen obtained by the pressure swing adsorption device is liquefied through the first heat exchanger to be first liquid oxygen, Part of the first liquid oxygen is removed from the liquid oxygen tank. The step of storing and introducing the remaining portion into the first rectifying column, and the remaining portion of the first liquid oxygen in the first rectifying column, by the cryogenic separation, is a mixed gas of the second liquid oxygen and argon and nitrogen. Separating the second liquid oxygen from the first rectification column and evaporating the second liquid oxygen through the second heat exchanger, circulating the circulation nitrogen through the nitrogen circulation path, and A step of cooling the first and second rectification towers, and the mixed gas of argon and nitrogen separated and generated in the first rectification tower is taken out from the first rectification tower and introduced into the second rectification tower. Separating the high-purity liquid argon and nitrogen gas by cryogenic separation, removing the high-purity liquid argon from the second rectifying column and storing it in the liquid argon tank, and the liquid oxygen tank 1st liquid oxygen stored in Vaporizing and supplying to the electric furnace steelmaking electric furnace, and supplying the high purity liquid argon stored in the liquid argon tank to the electric furnace steelmaking refining furnace after vaporizing as necessary. A gas supply method comprising:
JP2012244502A 2012-11-06 2012-11-06 Gas supply equipment and gas supply method using the same Active JP6091847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244502A JP6091847B2 (en) 2012-11-06 2012-11-06 Gas supply equipment and gas supply method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244502A JP6091847B2 (en) 2012-11-06 2012-11-06 Gas supply equipment and gas supply method using the same

Publications (2)

Publication Number Publication Date
JP2014092342A true JP2014092342A (en) 2014-05-19
JP6091847B2 JP6091847B2 (en) 2017-03-08

Family

ID=50936524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244502A Active JP6091847B2 (en) 2012-11-06 2012-11-06 Gas supply equipment and gas supply method using the same

Country Status (1)

Country Link
JP (1) JP6091847B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296500A (en) * 2014-10-14 2015-01-21 开封空分集团有限公司 Device and method for cryogenic separation and purification of nitrogen and liquid ammonia
CN114646188A (en) * 2022-05-18 2022-06-21 河南心连心深冷能源股份有限公司 Crude argon purifying and liquefying device and purifying method used by separation from air separation system
CN118500050A (en) * 2024-06-04 2024-08-16 南通深冷装备有限公司 Method for extracting high-purity liquid oxygen by liquid oxygen low-temperature rectification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777385A (en) * 1993-06-30 1995-03-20 Nippon Sanso Kk Method and apparatus for separating high-purity argon
JP2000088455A (en) * 1998-09-14 2000-03-31 Nippon Sanso Kk Method and apparatus for recovering and purifying argon
US6351971B1 (en) * 2000-12-29 2002-03-05 Praxair Technology, Inc. System and method for producing high purity argon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777385A (en) * 1993-06-30 1995-03-20 Nippon Sanso Kk Method and apparatus for separating high-purity argon
JP2000088455A (en) * 1998-09-14 2000-03-31 Nippon Sanso Kk Method and apparatus for recovering and purifying argon
US6351971B1 (en) * 2000-12-29 2002-03-05 Praxair Technology, Inc. System and method for producing high purity argon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296500A (en) * 2014-10-14 2015-01-21 开封空分集团有限公司 Device and method for cryogenic separation and purification of nitrogen and liquid ammonia
CN114646188A (en) * 2022-05-18 2022-06-21 河南心连心深冷能源股份有限公司 Crude argon purifying and liquefying device and purifying method used by separation from air separation system
CN118500050A (en) * 2024-06-04 2024-08-16 南通深冷装备有限公司 Method for extracting high-purity liquid oxygen by liquid oxygen low-temperature rectification

Also Published As

Publication number Publication date
JP6091847B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
TWI887267B (en) High-purity oxygen production system
CN110307695B (en) Method and device for manufacturing product nitrogen and product argon
TW201213692A (en) Integrated liquid storage
CN103373729B (en) The purifying of carbonic acid gas
FR2975478A1 (en) Method for liquefying gas stream rich in carbon dioxide, involves heating part of liquid flow in heat exchanger, and sending recycled molecules of refrigerant to be cooled in exchanger during partial or total failure of compressor
KR100240323B1 (en) Method and apparatus for producing liquid products from air in various proportions
JP6091847B2 (en) Gas supply equipment and gas supply method using the same
JP5642923B2 (en) Air separation method
CN111406191B (en) Single package air separation plant with reverse main heat exchanger
US8549878B2 (en) Method of generating nitrogen and apparatus for use in the same
US9746233B2 (en) Process for the separation of a gas rich in carbon dioxide
CN100334412C (en) Technology and apparatus producing high-purity nitrogen through low-temp. air fraction distilation
US9581386B2 (en) Apparatus and process for separating air by cryogenic distillation
RU2647297C2 (en) Method and plant for producing liquid and gaseous oxygenates by low-temperature air separation
JP6084437B2 (en) Argon production method and argon production equipment used therefor
JP4206083B2 (en) Argon production method using cryogenic air separator
US6276172B1 (en) Process for producing ultrapure nitrogen
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
CA2976341C (en) Method for recovering helium
KR20140143081A (en) Air separator
JP4519010B2 (en) Air separation device
JPH11118350A (en) Air separation method and air separation system
JP6130567B1 (en) Oxygen gas production method and apparatus
JPS6038631B2 (en) Air liquefaction separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6091847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250