JP2014141868A - Incombustible spray material for foamed resin-based heat insulator, and incombustible heat insulation structure and construction method thereof - Google Patents
Incombustible spray material for foamed resin-based heat insulator, and incombustible heat insulation structure and construction method thereof Download PDFInfo
- Publication number
- JP2014141868A JP2014141868A JP2013113610A JP2013113610A JP2014141868A JP 2014141868 A JP2014141868 A JP 2014141868A JP 2013113610 A JP2013113610 A JP 2013113610A JP 2013113610 A JP2013113610 A JP 2013113610A JP 2014141868 A JP2014141868 A JP 2014141868A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- heat insulating
- foamed resin
- rock wool
- incombustible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 104
- 229920005989 resin Polymers 0.000 title claims abstract description 94
- 239000011347 resin Substances 0.000 title claims abstract description 94
- 238000009413 insulation Methods 0.000 title claims abstract description 21
- 238000010276 construction Methods 0.000 title claims abstract description 12
- 239000007921 spray Substances 0.000 title abstract description 31
- 239000012212 insulator Substances 0.000 title abstract 4
- 239000004568 cement Substances 0.000 claims abstract description 135
- 239000011490 mineral wool Substances 0.000 claims abstract description 80
- 239000002002 slurry Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000011810 insulating material Substances 0.000 claims description 100
- 238000005507 spraying Methods 0.000 claims description 48
- 239000004570 mortar (masonry) Substances 0.000 claims description 15
- 239000006260 foam Substances 0.000 claims description 7
- 229920003002 synthetic resin Polymers 0.000 claims description 6
- 239000000057 synthetic resin Substances 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 5
- 238000007664 blowing Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 43
- 230000006866 deterioration Effects 0.000 abstract description 9
- 230000020169 heat generation Effects 0.000 abstract description 9
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000004567 concrete Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000011398 Portland cement Substances 0.000 description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 239000010426 asphalt Substances 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 229920006243 acrylic copolymer Polymers 0.000 description 4
- 239000000378 calcium silicate Substances 0.000 description 4
- 229910052918 calcium silicate Inorganic materials 0.000 description 4
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- -1 tile Substances 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000006004 Quartz sand Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001739 density measurement Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011396 hydraulic cement Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 229910021487 silica fume Inorganic materials 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004795 extruded polystyrene foam Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Building Environments (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、発泡樹脂系断熱材用の吹付不燃材に関する。詳しくは、発泡樹脂系断熱材の表面に被覆すると、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない発泡樹脂系断熱材用の吹付不燃材に関する。また、本発明は、不燃性断熱構造に関する。詳しくは、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない発泡樹脂系断熱材を用いた不燃性断熱構造に関する。また、本発明は、不燃性断熱構造の構築方法に関する。詳しくは、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない発泡樹脂系断熱材を用いた不燃性断熱構造の構築方法に関する。 The present invention relates to a sprayed incombustible material for a foamed resin-based heat insulating material. More specifically, the present invention relates to a sprayed non-combustible material for a foamed resin-based heat insulating material that has non-flammability when coated on the surface of the foamed resin-based heat insulating material and has little decrease in heat insulating properties even when exposed to a flame. The present invention also relates to a nonflammable heat insulating structure. More specifically, the present invention relates to a nonflammable heat insulating structure using a foamed resin heat insulating material that has nonflammability and has little deterioration in heat insulating properties even when exposed to a flame. Moreover, this invention relates to the construction method of a nonflammable heat insulation structure. Specifically, the present invention relates to a method for constructing a nonflammable heat insulating structure using a foamed resin heat insulating material that has nonflammability and has little deterioration in heat insulating properties even when exposed to a flame.
建築構造物又は土木構造物は、鋼材、コンクリート、モルタル、石材、煉瓦、木材、タイル、漆喰、ガラス、土等の材料により構築されている。 しかし、これらの材料のみで構築された構造物は、熱伝導率が大きく熱が逃げ易いため、冷暖房の効率が悪い。このため、断熱材が用いられている。この断熱材として、ビーズ法ポリスチレンフォーム、押出法ポリスチレンフォーム、硬質ウレタンフォーム等の発泡樹脂系断熱材が広く用いられている。しかし、これらの多くは可燃性で、国内、国外を問わず、発泡樹脂系断熱材への引火が原因で火災も起こっている。 A building structure or a civil engineering structure is constructed of materials such as steel, concrete, mortar, stone, brick, wood, tile, plaster, glass, and earth. However, since the structure constructed only with these materials has high thermal conductivity and heat easily escapes, the efficiency of air conditioning is poor. For this reason, a heat insulating material is used. As this heat insulating material, foamed resin heat insulating materials such as beaded polystyrene foam, extruded polystyrene foam, and rigid urethane foam are widely used. However, many of these are flammable, and fires have occurred due to the flammability of foamed resin-based heat insulating materials, both domestically and overseas.
ところで、セメント、軽量骨材、混和材料及び水を混練した耐火被覆モルタルがある(例えば特許文献1参照。)。しかし、耐火被覆モルタルは発泡樹脂系断熱材に比べて硬く、或いは熱や乾燥等による長さ変化の挙動が異なるため、発泡樹脂系断熱材を耐火被覆モルタルで被覆すると、耐火被覆モルタルと発泡樹脂系断熱材との界面で剥離が起こる虞がある。また、ロックウール、セメント及び水からなる吹付けロックウールも耐火性があり、鋼材等の耐火被覆材として広く使用されている。 By the way, there is a fireproof mortar in which cement, lightweight aggregate, admixture and water are kneaded (for example, see Patent Document 1). However, refractory coated mortar is harder than foamed resin-based heat insulating materials, or the behavior of length change due to heat, drying, etc. is different. There is a possibility that peeling occurs at the interface with the heat insulating material. In addition, spray rock wool made of rock wool, cement and water has fire resistance and is widely used as a fireproof coating material for steel and the like.
本願発明者等は、ロックウール、セメント及び水からなる吹付けロックウールが発泡樹脂系断熱材用の吹付不燃材として適用できるか検討を行った。その検討の結果、JIS A 5430に規定される発熱性試験(以下、単に「試験」ということがある。)における総発熱量は小さな値であり、発泡樹脂系断熱材の厚みが試験により大きく減少してしまった。断熱材の厚みが大きく減少してしまうと、断熱性が大きく低下するため、断熱性を維持するには断熱材の補修が必要になる。そこで、火炎に曝されても断熱性の低下が少ない、即ち発泡樹脂系断熱材の厚みの減少量が小さい発泡樹脂系断熱材用の吹付不燃材が望まれている。 The inventors of the present application have examined whether a spray rock wool made of rock wool, cement, and water can be applied as a spray incombustible material for a foamed resin heat insulating material. As a result of the examination, the total calorific value in the exothermic test specified in JIS A 5430 (hereinafter sometimes simply referred to as “test”) is a small value, and the thickness of the foamed resin-based heat insulating material is greatly reduced by the test. have done. If the thickness of the heat insulating material is greatly reduced, the heat insulating property is greatly reduced. Therefore, it is necessary to repair the heat insulating material in order to maintain the heat insulating property. Therefore, there is a demand for a sprayed non-combustible material for a foamed resin-based heat insulating material that has a small decrease in heat insulating properties even when exposed to a flame, that is, a small decrease in the thickness of the foamed resin-based heat insulating material.
本発明は、発泡樹脂系断熱材の表面に被覆すると、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない、即ち、JIS A 5430に規定される発熱性試験における総発熱量が小さく、且つ試験後の発泡樹脂系断熱材の厚みの減少量が小さい発泡樹脂系断熱材用の吹付不燃材を提供することを目的とする。 The present invention is non-flammable when coated on the surface of a foamed resin-based heat insulating material and has little deterioration in heat insulating properties even when exposed to a flame. That is, the total heat generation in a heat generation test defined in JIS A 5430 It aims at providing the incombustible material for foaming resin type heat insulating materials for which the quantity is small and the reduction amount of the thickness of the foamed resin type heat insulating material after a test is small.
また、本発明は、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない、即ち、JIS A 5430に規定される発熱性試験における総発熱量が小さく、且つ試験後の発泡樹脂系断熱材の厚みの減少量が小さい不燃性断熱構造を提供することを目的とする。 Further, the present invention is nonflammable and has little deterioration in heat insulation even when exposed to a flame, that is, the total heat generation in the exothermic test defined in JIS A 5430 is small, and foaming after the test is performed. It aims at providing the nonflammable heat insulation structure with the small reduction amount of the thickness of a resin-type heat insulating material.
また、本発明は、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない、即ち、JIS A 5430に規定される発熱性試験における総発熱量が小さく、且つ試験後の発泡樹脂系断熱材の厚みの減少量が小さい不燃性断熱構造が得られる不燃性断熱構造の構築方法を提供することを目的とする。 Further, the present invention is nonflammable and has little deterioration in heat insulation even when exposed to a flame, that is, the total heat generation in the exothermic test defined in JIS A 5430 is small, and foaming after the test is performed. It aims at providing the construction method of the nonflammable heat insulation structure from which the nonflammable heat insulation structure with a small reduction amount of the thickness of a resin-type heat insulating material is obtained.
本発明者は、前記課題解決のため鋭意検討した結果、ロックウール、セメント及び水を特定の方法で合流することにより、上記課題を解決できることを見出し、本発明を完成させた。即ち、本発明は、以下の(1)〜(3)で表す発泡樹脂系断熱材用の吹付不燃材、(4)で表す不燃性断熱構造、並びに、(5)又は(6)で表す不燃性断熱構造の構築方法である。
(1)(A)ロックウールとセメントを主成分として含有するセメント含有ロックウールと、(B)水とセメントを主成分として含有するセメントスラリーとを、吹付け装置で合流させてなることを特徴とする発泡樹脂系断熱材用の吹付不燃材。
(2)上記セメント含有ロックウール100質量部に対し、上記セメントスラリーが50〜200質量部である上記(1)の発泡樹脂系断熱材用の吹付不燃材。
(3)上記セメント含有ロックウールの軽装嵩密度が0.06〜0.70g/cm3であり、含有するセメントとロックウールの合計100質量部に対し、セメントを45質量部〜85質量部且つロックウールを15質量部〜55質量部とする上記(1)又は(2)に記載の吹付不燃材。
(4)発泡樹脂系断熱材の表面に、上記(1)〜(3)何れかの吹付不燃材が被覆されてなることを特徴とする不燃性断熱構造。
(5)構造物表面に発泡樹脂系断熱材を配置し、次に、該発泡樹脂系断熱材の表面に上記(1)〜(3)何れかの吹付不燃材を吹付け工法により被覆することを特徴とする不燃性断熱構造の構築方法。
(6)上記発泡樹脂系断熱材の表面に、合成樹脂及び瀝青質から選ばれる1種又は2種以上のエマルション、或いは更にセメント、セメントスラリー、モルタルから選ばれる1種又は2種以上を混合したセメントペースト又はモルタルからなるプライマーを塗布した上で、上記吹付不燃材を被覆することを特徴とする上記(5)の不燃性断熱構造の構築方法。
As a result of intensive studies for solving the above problems, the present inventors have found that the above problems can be solved by joining rock wool, cement and water in a specific method, and have completed the present invention. That is, the present invention is a non-flammable material for a foamed resin-based heat insulating material represented by the following (1) to (3), a nonflammable heat insulating structure represented by (4), and a non-flammable material represented by (5) or (6) It is a construction method of a heat insulating structure.
(1) (A) A cement-containing rock wool containing rock wool and cement as main components, and (B) a cement slurry containing water and cement as main components are joined together by a spraying device. Non-flammable material for foamed resin insulation.
(2) The incombustible material for foamed resin-based heat insulating material according to (1), wherein the cement slurry is 50 to 200 parts by mass with respect to 100 parts by mass of the cement-containing rock wool.
(3) The light weight bulk density of the cement-containing rock wool is 0.06 to 0.70 g / cm 3 , and the cement is 45 to 85 parts by mass with respect to a total of 100 parts by mass of cement and rock wool contained. The incombustible material for spraying according to the above (1) or (2), wherein the rock wool is 15 parts by mass to 55 parts by mass.
(4) A nonflammable heat insulating structure, wherein the surface of a foamed resin heat insulating material is coated with any of the above-mentioned sprayed nonflammable materials (1) to (3).
(5) A foamed resin-based heat insulating material is disposed on the surface of the structure, and then the surface of the foamed resin-based heat insulating material is coated with any one of the above-mentioned (1) to (3) spraying incombustible materials by a spraying method. The construction method of the nonflammable heat insulation structure characterized by this.
(6) One or two or more emulsions selected from synthetic resins and bitumen, or one or more selected from cement, cement slurry, and mortar were mixed on the surface of the foamed resin heat insulating material. The method for constructing a nonflammable heat insulating structure according to (5), wherein a primer made of cement paste or mortar is applied and then the sprayed nonflammable material is coated.
本発明によれば、発泡樹脂系断熱材の表面に被覆すると、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない、即ち、JIS A 5430に規定される発熱性試験における総発熱量が小さく、且つ試験後の発泡樹脂系断熱材の厚みの減少量が小さい発泡樹脂系断熱材用の吹付不燃材が得られる。また、本発明によれば、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない、即ち、JIS A 5430に規定される発熱性試験における総発熱量が小さく、且つ試験後の発泡樹脂系断熱材の厚みの減少量が小さい不燃性断熱構造が得られる。また、本発明によれば、不燃性を有し、且つ火炎に曝されても断熱性の低下が少ない、即ち、JIS A 5430に規定される発熱性試験における総発熱量が小さく、且つ試験後の発泡樹脂系断熱材の厚みの減少量が小さい不燃性断熱構造が得られる不燃性断熱構造の構築方法が得られる。本発明によれば、断熱性に優れ且つ不燃性の構造物が得られる。また、火炎に曝されても、断熱材の補修が不要である。 According to the present invention, when the surface of the foamed resin-based heat insulating material is coated, it has nonflammability, and even when exposed to a flame, there is little decrease in heat insulating properties, that is, in the exothermic test specified in JIS A 5430. A sprayable non-combustible material for a foamed resin-based heat insulating material having a small total heat generation and a small decrease in the thickness of the foamed resin-based heat insulating material after the test can be obtained. In addition, according to the present invention, it has nonflammability, and there is little deterioration in heat insulation even when exposed to a flame. That is, the total calorific value in the exothermic test specified in JIS A 5430 is small, and after the test. Thus, a nonflammable heat insulating structure with a small reduction in thickness of the foamed resin heat insulating material can be obtained. In addition, according to the present invention, it has nonflammability, and there is little deterioration in heat insulation even when exposed to a flame. That is, the total calorific value in the exothermic test specified in JIS A 5430 is small, and after the test. The construction method of the nonflammable heat insulation structure in which the nonflammable heat insulation structure with the small amount of reduction | decrease of the thickness of the foamed resin-type heat insulating material is obtained is obtained. According to the present invention, a structure that is excellent in heat insulation and incombustible can be obtained. Moreover, even if exposed to a flame, repair of a heat insulating material is unnecessary.
本発明の発泡樹脂系断熱材用の吹付不燃材は、(A)ロックウールとセメントを主成分として含有するセメント含有ロックウールと、(B)水とセメントを主成分として含有するセメントスラリーとを、吹付け装置で合流させてなることを特徴とする。 The incombustible material for foamed resin-based heat insulating material of the present invention comprises (A) a cement-containing rock wool containing rock wool and cement as main components, and (B) a cement slurry containing water and cement as main components. It is characterized by merging with a spraying device.
本発明で使用するセメント含有ロックウール(A成分)は、粒状又は粉状のロックウールと、セメントを混合したものである。用いるロックウールは、粒状のロックウールを主体としたものが、熱を発泡樹脂系断熱材に伝え難いことから好ましい。ロックウールを粒状とするには、ロックウールを解砕、解綿、切断、篩い分け等による分級、造粒等の工程の一種又は二種以上の組み合わせにより製造することができる。
本発明に使用するセメントは、水硬性セメントであればよく、例えば例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、並びにこれらのポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「スーパージェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント等が挙げられ、これらの一種又は二種以上を使用することができる。本発明に使用するセメントとして、好ましくはポルトランドセメント、エコセメント又は混合セメント等の珪酸カルシウム鉱物を主成分とするセメントであり、より好ましくはポルトランドセメントである。ここで珪酸カルシウム鉱物を主成分とするとは、含まれるセメントクリンカ粉砕物中において珪酸カルシウム鉱物(C3S、C2S)を50質量%以上含むことをいい、好ましくは60質量%以上含むことをいい、より好ましくは70質量%以上含むことをいう。
The cement-containing rock wool (component A) used in the present invention is a mixture of granular or powdered rock wool and cement. It is preferable that the rock wool to be used is mainly composed of granular rock wool because it is difficult to transfer heat to the foamed resin heat insulating material. In order to make rock wool granular, rock wool can be produced by one or a combination of two or more processes such as pulverization, cotton breaking, cutting, sieving classification, granulation, and the like.
The cement used in the present invention may be a hydraulic cement. For example, various ordinary Portland cements, eco-cements, low-temperature and moderately-heated portland cements, eco-cements, and portland cements or eco-cements, such as fly Various cements mixed with ash, blast furnace slag, silica fume, limestone fine powder, etc., super-hard cement such as “Super Jet Cement” (trade name) manufactured by Taiheiyo Cement Co., Ltd. and “Jet Cement” (trade name) manufactured by Sumitomo Osaka Cement Co., Ltd. , Alumina cement, and the like, and one or more of these can be used. The cement used in the present invention is preferably a cement mainly composed of calcium silicate mineral such as Portland cement, eco-cement or mixed cement, and more preferably Portland cement. Here, the main component of calcium silicate mineral is to contain 50% by mass or more, preferably 60% by mass or more of calcium silicate mineral (C 3 S, C 2 S) in the pulverized cement clinker. More preferably 70% by mass or more.
本発明で使用するセメント含有ロックウールには、ロックウール及びセメント以外に、混和材料、骨材、水から選ばれる一種又は二種以上を本発明の効果を実質損なわない範囲で併用することができる。この混和材料としては、例えばセメント用ポリマー、膨張材、石膏、セメント分散剤(減水剤、AE減水剤、高性能AE減水剤、高性能減水剤、流動化剤を含む。)、防水材、防錆剤、収縮低減剤、増粘剤、保水剤、顔料、繊維、撥水剤、白華防止剤、急結剤(材)、急硬剤(材)、凝結遅延剤、消泡剤、発泡剤、高炉スラグ微粉末、石粉、シリカフューム、火山灰、空気連行剤、表面硬化剤等が挙げられる。また、骨材としては、例えば、川砂、陸砂、海砂、砕砂、珪砂、川砂利、陸砂利、砕石、パーライトや発泡ガラス粒(ガラスバルーン)等の人工骨材、スラグ骨材等が挙げられる。 In addition to rock wool and cement, the cement-containing rock wool used in the present invention can be used in combination with one or more selected from admixtures, aggregates, and water within a range that does not substantially impair the effects of the present invention. . Examples of the admixture include a polymer for cement, an expansion material, gypsum, a cement dispersant (including a water reducing agent, an AE water reducing agent, a high performance AE water reducing agent, a high performance water reducing agent, and a fluidizing agent), a waterproof material, and an anti-proofing material. Rust agent, shrinkage reducing agent, thickener, water retention agent, pigment, fiber, water repellent, whitening prevention agent, quick setting agent (material), quick hardening agent (material), setting retarder, antifoaming agent, foaming Agent, blast furnace slag fine powder, stone powder, silica fume, volcanic ash, air entraining agent, surface hardener and the like. Examples of aggregates include river sand, land sand, sea sand, crushed sand, quartz sand, river gravel, land gravel, crushed stone, artificial aggregates such as perlite and foamed glass particles (glass balloons), and slag aggregate. It is done.
ロックウールとセメント、或いは必要により更に添加される材料を混合しセメント含有ロックウールを製造する方法及び装置は特に限定されない。例えば、V型混合機や可傾式コンクリートミキサ等の重力式ミキサ、ヘンシェル式ミキサ、リボンミキサ、パン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、ハンドミキサ、左官ミキサ等のミキサに、上記各材料を投入し混合することで製造することができる。また、ロックウールとセメントを別々の輸送管を通して別経路で圧送し、圧送途中でY字管等にて合流混合することで製造することもできる。また、圧送管やベルトコンベア等の輸送装置で輸送中のロックウールに、セメントを塗すように添加した後に圧送することで製造することもできる。ロックウールとセメント以外の材料は、ロックウール又はセメントと同様に材料の輸送経路中で添加しても良いし、予め、ロックウール及び/又はセメントと混合しても良い。 There are no particular limitations on the method and apparatus for producing cement-containing rock wool by mixing rock wool and cement or, if necessary, further added materials. For example, gravity mixers such as V type mixers and tiltable concrete mixers, Henschel mixers, ribbon mixers, pan type concrete mixers, pug mill type concrete mixers, gravity concrete mixers, grout mixers, hand mixers, plastering mixers, etc. It can be manufactured by putting the above materials into a mixer and mixing them. Moreover, it can also manufacture by pumping rock wool and cement by another path | route through a separate transport pipe, and merging and mixing with a Y-shaped pipe etc. in the middle of pumping. Moreover, it can also manufacture by pumping, after adding to rock wool currently transporting with transport apparatuses, such as a pressure feed pipe and a belt conveyor, so that cement may be applied. Materials other than rock wool and cement may be added in the material transportation route in the same manner as rock wool or cement, or may be mixed with rock wool and / or cement in advance.
セメント含有ロックウール(A成分)におけるセメントとロックウールの配合割合は、セメントとロックウールの合計100質量部に対し、セメントを20〜60質量部、ロックウールを40〜80質量部とすることが好ましい。セメントが20質量部より少ない、即ちロックウールが80質量部より多いと、試験後の発泡樹脂系断熱材の厚みの減少量が大きい或いは発泡樹脂系断熱材と吹付不燃材との界面における付着が悪い。また、セメントが60質量部より多い、即ちロックウールが40質量部より少ないと、吹付け施工時の粉塵発生量が多い。 The mixing ratio of cement and rock wool in cement-containing rock wool (component A) may be 20 to 60 parts by mass of cement and 40 to 80 parts by mass of rock wool with respect to a total of 100 parts by mass of cement and rock wool. preferable. When the amount of cement is less than 20 parts by mass, that is, the amount of rock wool is more than 80 parts by mass, the amount of decrease in the thickness of the foamed resin-based heat insulating material after the test is large, or adhesion at the interface between the foamed resin-based heat insulating material and the sprayed incombustible material. bad. Moreover, when there is more cement than 60 mass parts, that is, when there is less rock wool than 40 mass parts, there will be much dust generation amount at the time of spray construction.
セメント含有ロックウール(A成分)における軽装嵩密度は0.06〜0.70g/cm3とすることが好ましい。軽装嵩密度が0.05g/cm3未満であると試験後の発泡樹脂系断熱材の厚みの減少量が大きい。また、軽装嵩密度が0.70g/cm3を超えると吹付不燃材の断熱効果が低減し、発泡樹脂系断熱材に熱が伝わり易くなる。本発明における軽装嵩密度は、内容積(Vx)が判っている鋼製容器に試料(セメント含有ロックウール)を落差がつかないよう、静かに、溢れるまで充填し、容器上面より溢れた試料を定規ですり切ることで取り除いた後の、鋼製容器内の試料(セメント含有ロックウール)の質量(Wr)より、次式(1)により算出した値(Mr)を云う。
Mr=Wr/Vx ・・・・ (1)
The light bulk density in the cement-containing rock wool (component A) is preferably 0.06 to 0.70 g / cm 3 . When the light bulk density is less than 0.05 g / cm 3 , the amount of decrease in the thickness of the foamed resin-based heat insulating material after the test is large. On the other hand, when the light bulk density exceeds 0.70 g / cm 3 , the heat insulating effect of the sprayed incombustible material is reduced, and heat is easily transmitted to the foamed resin heat insulating material. The light bulk density in the present invention is such that the sample (cement-containing rock wool) is gently filled until it overflows into a steel container whose internal volume (Vx) is known, and the sample overflowing from the upper surface of the container is filled. The value (Mr) calculated by the following equation (1) from the mass (Wr) of the sample (cement-containing rock wool) in the steel container after being removed by scraping with a ruler.
Mr = Wr / Vx (1)
次に、水とセメントを主成分として含有するセメントスラリー(B成分)は、水とセメントを混合したものである。更に、他の混和材料又は骨材から選ばれる一種又は二種以上を、本発明の効果を実質損なわない範囲で併用することができる。この混和材料としては、上記のA成分に添加可能なものを用いることができる。また、骨材としては、例えば、川砂、陸砂、海砂、砕砂、珪砂、パーライトや発泡ガラス粒(ガラスバルーン)等の人工細骨材、スラグ細骨材等が挙げられ、粒径2mm以下のものが材料分離し難い、即ちセメントスラリー(B成分)中において沈降し難いことから好ましい。また、セメントスラリー(B成分)に使用するセメントは、セメント含有ロックウール(A成分)に使用可能な上記の水硬性セメントの一種又は二種以上を使用することができる。 Next, the cement slurry (component B) containing water and cement as main components is a mixture of water and cement. Furthermore, 1 type, or 2 or more types chosen from another admixture or an aggregate can be used together in the range which does not impair the effect of this invention substantially. As this admixture, those which can be added to the above-mentioned component A can be used. Examples of aggregates include river sand, land sand, sea sand, crushed sand, quartz sand, artificial fine aggregates such as perlite and foamed glass particles (glass balloons), slag fine aggregates, and the like. Is preferable because it is difficult to separate the material, that is, it is difficult to settle in the cement slurry (component B). Moreover, the cement used for cement slurry (B component) can use 1 type, or 2 or more types of said hydraulic cement which can be used for cement containing rock wool (A component).
セメントスラリー(B成分)におけるセメントと水の配合割合は、水セメント比で50〜300%が好ましい。50%より小さいと、セメントスラリーの粘性が高く、A成分と混合し難い。300%を超えると、発泡樹脂系断熱材と吹付不燃材との界面における付着が悪い。セメントスラリー(B成分)において、より好ましい水の配合割合は、水セメント比で100〜250%とする。 The blending ratio of cement and water in the cement slurry (component B) is preferably 50 to 300% in terms of water cement ratio. When it is less than 50%, the viscosity of the cement slurry is high and it is difficult to mix with the component A. If it exceeds 300%, adhesion at the interface between the foamed resin heat insulating material and the sprayed incombustible material is poor. In the cement slurry (component B), a more preferable blending ratio of water is 100 to 250% in terms of water cement ratio.
セメント含有ロックウール(A成分)とセメントスラリー(B成分)とを合流させる吹付け装置は、吹付けロックウール、吹付けモルタル又は吹付けコンクリート或いは吹付け塗装等に用いられる吹付け装置を用いることができる。つまり、本発明の発泡樹脂系断熱材用の吹付不燃材は、セメント含有ロックウール(A成分)とセメントスラリー(B成分)とを、吹付けロックウール、吹付けモルタル又は吹付けコンクリート或いは吹付け塗装等に用いられる吹付け装置、或いはその他の吹付け装置で合流させて吹付け形成した吹付不燃材である。セメント含有ロックウール(A成分)とセメントスラリー(B成分)の合流は、A成分の圧送経路内にB成分を添加する方法、B成分の圧送経路内にA成分を添加する方法、吹付け装置の一部を形成する混合装置にA成分とB成分を別々に送りその混合装置で混合した後吐出口より吐き出し吹付ける方法、A成分を吹付け装置の一部を形成するノズルから吐き出しそのときB成分を噴霧することで混合する方法等が好適な例として挙げられる。このとき、B成分を吐き出し霧状に霧化させる噴霧ノズルの数は、1個でも複数でもよい。B成分用の噴霧ノズルが1個の場合は、A成分の吐出口の中央にB成分用噴霧ノズルを配置してもよく、A成分の吐出口から30cm以内の位置に配置し、吐出口から吐き出されるA成分に目掛けて霧化したB成分を合流させることができる位置にB成分用噴霧ノズルを配置してもよい。また、B成分用の噴霧ノズルが複数の場合は、吐出口から吐き出されるA成分に目掛けて霧化したB成分を合流させることができる位置に、A成分の吐出口を取り囲む用に各B成分用噴霧ノズルを配置することが好ましく、更にB成分用の噴霧ノズルの一部をA成分の吐出口の中央に配置してもよい。 The spraying device for joining cement-containing rock wool (component A) and cement slurry (component B) should be a spraying device used for spraying rock wool, spraying mortar, spraying concrete, spraying coating, etc. Can do. That is, the incombustible material for foamed resin-based heat insulating material according to the present invention comprises cement rock wool (component A) and cement slurry (component B), spray rock wool, spray mortar, spray concrete or spray concrete. It is a spraying incombustible material formed by spraying by joining with a spraying device used for painting or the like or other spraying devices. The merging of cement-containing rock wool (component A) and cement slurry (component B) is a method of adding component B in the pumping route of component A, a method of adding component A in the pumping route of component B, and a spraying device. A method in which the A component and the B component are separately fed to the mixing device that forms a part of the air and mixed by the mixing device, and then discharged from the discharge port, and the A component is discharged from the nozzle that forms a part of the spraying device. A method of mixing by spraying the B component is a suitable example. At this time, the number of spray nozzles for discharging the B component and atomizing it in the form of mist may be one or plural. In the case where there is one B component spray nozzle, the B component spray nozzle may be arranged in the center of the A component discharge port, located within 30 cm from the A component discharge port, You may arrange | position the B component spray nozzle in the position which can make the B component atomized aiming at the A component discharged. Further, when there are a plurality of B component spray nozzles, each B for surrounding the A component discharge port at a position where the B component atomized from the A component discharged from the discharge port can be joined. The component spray nozzle is preferably disposed, and a part of the component B spray nozzle may be disposed at the center of the A component discharge port.
セメント含有ロックウール(A成分)100質量部に対し、セメントスラリー(B成分)が50〜200質量部とすることが好ましい。B成分が50質量部よりも少ないと、試験後の発泡樹脂系断熱材の厚みの減少量が大きい。200質量部を超えると、発泡樹脂系断熱材と吹付不燃材との界面における付着が悪い。試験後の発泡樹脂系断熱材の厚みの減少量がより小さく且つ発泡樹脂系断熱材と吹付不燃材との界面における付着が良いことから、A成分100質量部に対し、B成分60〜150質量部とする。更に好ましくは、95〜145質量部とする。 The cement slurry (component B) is preferably 50 to 200 parts by mass with respect to 100 parts by mass of cement-containing rock wool (component A). If the B component is less than 50 parts by mass, the amount of decrease in the thickness of the foamed resin-based heat insulating material after the test is large. If it exceeds 200 parts by mass, adhesion at the interface between the foamed resin heat insulating material and the sprayed incombustible material is poor. Since the amount of decrease in the thickness of the foamed resin-based heat insulating material after the test is smaller and adhesion at the interface between the foamed resin-based heat insulating material and the sprayed incombustible material is good, the B component is 60 to 150 masses per 100 mass parts of the A component. Part. More preferably, it is 95-145 mass parts.
A成分とB成分とを合流させた後の吹付不燃材におけるセメントとロックウールの割合が、セメントとロックウールの合計100質量部に対し、セメントを45質量部〜85質量部且つロックウールを15質量部〜55質量部することが、発熱性試験後の発泡樹脂系断熱材の厚みの減少量が小さく且つ発泡樹脂系断熱材と吹付不燃材との界面における付着強度が高いことから好ましい。セメントが45質量部より少ない、即ちロックウールが55質量部より多いと、発熱性試験後の発泡樹脂系断熱材の厚みの減少量が大きい或いは発泡樹脂系断熱材と吹付不燃材との界面における付着が悪い虞がある。また、セメントが85質量部より多い、即ちロックウールが15質量部より少ないと、発泡樹脂系断熱材に対する変形追従性が悪く、発泡樹脂系断熱材と吹付不燃材がその界面で剥離又は吹付不燃材が破損し発熱性試験後の発泡樹脂系断熱材の厚みの減少量が大きい。より発熱性試験後の発泡樹脂系断熱材の厚みの減少量が小さく且つ発泡樹脂系断熱材と吹付不燃材との界面における付着強度が高いことから、セメントとロックウールの合計100質量部に対し、セメントを45質量部〜65質量部、ロックウールを55質量部〜35質量部することが更に好ましい。 The proportion of cement and rock wool in the incombustible material after joining the A component and the B component is 45 parts by weight to 85 parts by weight of cement and 15 parts of rock wool for a total of 100 parts by weight of cement and rock wool. It is preferable that the amount is from 55 to 55 parts by mass because the amount of decrease in the thickness of the foamed resin heat insulating material after the exothermic test is small and the adhesion strength at the interface between the foamed resin heat insulating material and the sprayed incombustible material is high. When the amount of cement is less than 45 parts by mass, that is, when the amount of rock wool is more than 55 parts by mass, the amount of decrease in the thickness of the foamed resin-based heat insulating material after the exothermic test is large or at the interface between the foamed resin-based heat insulating material and the sprayed incombustible material. Adhesion may be bad. Further, when the cement is more than 85 parts by mass, that is, when the rock wool is less than 15 parts by mass, the deformation followability to the foamed resin-based heat insulating material is poor, and the foamed resin-based heat insulating material and the sprayed incombustible material are peeled off or sprayed incombustible. The material is damaged and the amount of decrease in the thickness of the foamed resin-based heat insulating material after the exothermic test is large. Since the decrease in the thickness of the foamed resin-based heat insulating material after the exothermic test is small and the adhesive strength at the interface between the foamed resin-based heat insulating material and the sprayed incombustible material is high, the total amount of cement and rock wool is 100 parts by mass. More preferably, the cement is 45 to 65 parts by mass and the rock wool is 55 to 35 parts by mass.
A成分とB成分とを合流させた後の吹付不燃材の見掛け密度は0.3〜1.0g/cm3とすることが、試験後の発泡樹脂系断熱材の厚みの減少量が小さく且つ吹付け施工後に自重による落下が起き難いことから好ましく、0.35〜1.0g/cm3が更に好ましい。見掛け密度が0.3g/cm3より小さいと試験後の発泡樹脂系断熱材の厚みの減少量が大きい。また、見掛け密度が1.0g/cm3より大きいと、施工後において自重により落下する虞が高い。A成分とB成分とを合流させた後の吹付不燃材の見掛け密度は0.3〜1.0g/cm3とするには、軽装嵩密度が0.06〜0.70g/cm3のA成分を用い、A成分とB成分とを合流させた後の吹付不燃材におけるセメントとロックウールの割合が、セメントとロックウールの合計100質量部に対し、セメントを45質量部〜85質量部且つロックウールを15質量部〜55質量部となるように、A成分中のセメントとロックウールの配合割合、B成分の水セメント比及びA成分とB成分の質量割合を調整すればよい。 The apparent density of the sprayed incombustible material after joining the A component and the B component is 0.3 to 1.0 g / cm 3, and the decrease in the thickness of the foamed resin-based heat insulating material after the test is small. It is preferable because falling due to its own weight hardly occurs after spraying, and 0.35-1.0 g / cm 3 is more preferable. When the apparent density is less than 0.3 g / cm 3, the amount of decrease in the thickness of the foamed resin-based heat insulating material after the test is large. Moreover, when the apparent density is larger than 1.0 g / cm 3 , there is a high possibility of dropping due to its own weight after construction. In order to set the apparent density of the sprayed incombustible material after the A component and the B component are merged to 0.3 to 1.0 g / cm 3 , the light bulk density is 0.06 to 0.70 g / cm 3 . The proportion of cement and rock wool in the sprayed incombustible material after combining the components A and B is 45 parts by weight to 85 parts by weight with respect to a total of 100 parts by weight of cement and rock wool. What is necessary is just to adjust the mixture ratio of the cement and rock wool in A component, the water cement ratio of B component, and the mass ratio of A component and B component so that rock wool may be 15 mass parts-55 mass parts.
また、本発明の不燃性断熱構造は、発泡樹脂系断熱材の表面に、上記の吹付不燃材が被覆されてなることを特徴とする。つまり、セメント含有ロックウール(A成分)とセメントスラリー(B成分)とを吹付け装置で合流させ、発泡樹脂系断熱材の表面に吹付け、吹付不燃材を発泡樹脂系断熱材表面に被覆することで、本発明の不燃性断熱構造を形成する。発泡樹脂系断熱材の表面に吹付不燃材を被覆するときに、発泡樹脂系断熱材と吹付不燃材との接着強度を高めるために所謂プライマー即ち接着剤が塗布され、発泡樹脂系断熱材層と吹付不燃材層との間に、プライマー層(接着剤層)が形成されていてもよく、またその方が好ましい。プライマーとしては、例えば、スチレン・ブタジエン共重合体,クロロプレンゴム,アクリロニトリル・ブタジエン共重合体又はメチルメタクリレート・ブタジエン共重合体等の合成ゴム、天然ゴム、ポリエチレンやポリプロピレン等のポリオレフィン、ポリクロロピレン、ポリアクリル酸エステル、スチレン・アクリル共重合体、オールアクリル共重合体、ポリ酢酸ビニル,酢酸ビニル・アクリル共重合体,酢酸ビニル・アクリル酸エステル共重合体,変性酢酸ビニル,エチレン・酢酸ビニル共重合体,エチレン・酢酸ビニル・塩化ビニル共重合体,酢酸ビニルビニルバーサテート共重合体,アクリル・酢酸ビニル・ベオバ(t-デカン酸ビニルの商品名)共重合体等の酢酸ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、アルキド樹脂及びエポキシ樹脂等の合成樹脂、アスファルト及びゴムアスファルト等の瀝青質等が好ましい例として挙げられ、これらの1種又は2種以上を用いることができる。また、プライマーとしては、合成樹脂及び瀝青質から選ばれる1種又は2種以上と、セメント、セメントスラリー、モルタルから選ばれる1種又は2種以上とを混合したセメントペースト又はモルタルをプライマーとして用いることも好ましい。発泡樹脂系断熱材の表面に吹付不燃材を被覆するときに、合成樹脂及び瀝青質から選ばれる1種又は2種以上のエマルション、或いは更にセメント、セメントスラリー、モルタルから選ばれる1種又は2種以上を混合したセメントペースト又はモルタルからなるプライマーを発泡樹脂系断熱材の表面に塗布した上で吹付不燃材を被覆することで、発泡樹脂系断熱材層と吹付不燃材層との間にプライマー層を設けると、発泡樹脂系断熱材層と吹付不燃材層との接着力がますことから好ましい。 The nonflammable heat insulating structure of the present invention is characterized in that the above-mentioned sprayed nonflammable material is coated on the surface of a foamed resin heat insulating material. That is, cement-containing rock wool (component A) and cement slurry (component B) are joined together by a spraying device, sprayed onto the surface of the foamed resin-based heat insulating material, and the surface of the foamed resin-based heat insulating material is coated with the sprayed incombustible material. Thus, the nonflammable heat insulating structure of the present invention is formed. When covering the surface of the foamed resin-based heat insulating material with the sprayed noncombustible material, a so-called primer or adhesive is applied to increase the adhesive strength between the foamed resin-based heat insulating material and the sprayed noncombustible material, A primer layer (adhesive layer) may be formed between the sprayed incombustible material layer, and that is preferable. Examples of the primer include synthetic rubber such as styrene / butadiene copolymer, chloroprene rubber, acrylonitrile / butadiene copolymer or methyl methacrylate / butadiene copolymer, natural rubber, polyolefin such as polyethylene or polypropylene, polychloropyrene, polyacrylic. Acid ester, styrene / acrylic copolymer, all acrylic copolymer, polyvinyl acetate, vinyl acetate / acrylic copolymer, vinyl acetate / acrylic acid ester copolymer, modified vinyl acetate, ethylene / vinyl acetate copolymer, Vinyl acetate resins such as ethylene / vinyl acetate / vinyl chloride copolymer, vinyl acetate vinyl versatate copolymer, acrylic / vinyl acetate / veova (trade name of vinyl t-decanoate) copolymer, unsaturated polyester resin , Polyurethane resin, al De resins and synthetic resins such as epoxy resin, are mentioned as examples bituminous are preferable, such as asphalt and rubber asphalt can be used alone or in combination of two or more thereof. Moreover, as a primer, the cement paste or mortar which mixed the 1 type (s) or 2 or more types chosen from a synthetic resin and a bitumen, and 1 type (s) or 2 or more types chosen from cement, a cement slurry, and mortar is used as a primer. Is also preferable. When coating the surface of a foamed resin-based heat insulating material with a sprayed incombustible material, one or more emulsions selected from synthetic resins and bituminous materials, or one or two types selected from cement, cement slurry, and mortar. The primer layer is applied between the foamed resin-based heat insulating material layer and the sprayed non-combustible material layer by coating the surface of the foamed resin-based heat insulating material with a primer made of cement paste or mortar mixed with the above and then covering the sprayed non-combustible material. Is preferable because the adhesive strength between the foamed resin-based heat insulating material layer and the sprayed incombustible material layer is increased.
また、本発明の不燃性断熱構造の構築方法は、構造物表面に発泡樹脂系断熱材を配置し、次に、該発泡樹脂系断熱材の表面に上記の吹付不燃材を吹付け工法により被覆することを特徴とする。つまり、構造物表面に発泡樹脂系断熱材を配置し、その発泡樹脂系断熱材表面に、セメント含有ロックウール(A成分)とセメントスラリー(B成分)とを吹付け装置で合流させ吹付け被覆することを特徴とする。構造物表面に発泡樹脂系断熱材を配置する方法は特に限定されない。例えば、構造物表面に発泡樹脂系断熱材を刷毛、ローラー、吹付け装置等を用いて塗布する方法、構造物表面に発泡樹脂系断熱材を接着剤を用いて接着する方法、構造物表面に発泡樹脂系断熱材を螺子、ボルト、ナット、釘又は取付け具等を用いて取り付ける方法、発泡樹脂系断熱材を塗布又は接着したシート、板又はブロックを構造物表面に接着剤を用いて貼り付ける方法、発泡樹脂系断熱材を塗布又は接着したシート、板又はブロックを構造物表面に螺子、ボルト、ナット、釘又は取付け具等を用いて取り付ける方法、発泡樹脂系断熱材を塗布又は接着したシート、板又はブロックを構造物表面を覆うように、構造物又はその空隙に嵌め込む方法等が挙げられ、これらを併用してもよい。また、発泡樹脂系断熱材の表面に上記の吹付不燃材を吹付け工法により被覆する前に、該発泡樹脂系断熱材の表面にプライマー(接着剤)を塗布してもよい。プライマーとしては、上記のプライマー、特に合成樹脂及び瀝青質から選ばれる1種又は2種以上のエマルション、或いは更にセメント、セメントスラリー、モルタルから選ばれる1種又は2種以上を混合したセメントペースト又はモルタルからなるプライマーを用いることが好ましい。 Further, the method for constructing a non-combustible heat insulating structure of the present invention is a method in which a foamed resin-based heat insulating material is disposed on the surface of the structure, and then the surface of the foamed resin-based heat insulating material is coated with the sprayed non-combustible material by a spraying method. It is characterized by doing. In other words, a foamed resin-based heat insulating material is disposed on the surface of the structure, and cement-containing rock wool (component A) and cement slurry (component B) are joined to the surface of the foamed resin-based heat insulating material by a spraying device. It is characterized by doing. The method for disposing the foamed resin heat insulating material on the structure surface is not particularly limited. For example, a method of applying a foamed resin heat insulating material to the structure surface using a brush, roller, spraying device, etc., a method of bonding a foamed resin heat insulating material to the structure surface using an adhesive, A method of attaching a foamed resin-based heat insulating material using screws, bolts, nuts, nails or attachments, etc., and affixing a sheet, plate or block coated or bonded with a foamed resin-based heat insulating material to the structure surface using an adhesive Method, sheet coated or bonded with foamed resin-based heat insulating material, method of attaching a plate or block to the surface of the structure using screws, bolts, nuts, nails or fittings, etc., sheet coated or bonded with foamed resin-based heat insulating material A method of fitting a plate or a block into a structure or its gap so as to cover the surface of the structure may be used, and these may be used in combination. Moreover, you may apply | coat a primer (adhesive) to the surface of this foamed resin-type heat insulating material, before coat | covering said spraying noncombustible material on the surface of a foamed resin-type heat insulating material with a spraying construction method. As a primer, cement paste or mortar in which one or more emulsions selected from the above-mentioned primers, particularly synthetic resins and bitumen, or one or more selected from cement, cement slurry, and mortar are further mixed. It is preferable to use a primer comprising
[実施例1]
フレキシブルボード(910×910×5mm)の一平面に、硬質ウレタンを吹付け、厚み20mmの硬質ウレタンフォームからなる発泡樹脂系断熱材層を形成した。1週間室内で養生後、半乾式吹付けロックウールの吹付けに使用されている吹付け装置を用いて、表1に示す配合割合作製した吹付材を発泡樹脂系断熱材の表面に、厚み30mmになるように吹付けた。吹付材を発泡樹脂系断熱材の表面に吹付ける前に、プライマーとして、プライマーA;41.4g又はプライマーB;414.1gを発泡樹脂系断熱材の表面に塗布した。
[Example 1]
Hard urethane was sprayed on one plane of a flexible board (910 × 910 × 5 mm) to form a foamed resin heat insulating material layer made of hard urethane foam having a thickness of 20 mm. After curing for one week indoors, using a spraying device used for spraying semi-dry spraying rock wool, the spraying material prepared as shown in Table 1 on the surface of the foamed resin-based heat insulating material is 30 mm thick. It was sprayed to become. Before spraying the spray material on the surface of the foamed resin-based heat insulating material, Primer A (41.4 g) or Primer B (414.1 g) was applied as a primer to the surface of the foamed resin-based heat insulating material.
また、吹付材は、解綿機及び定量供給機が備わり且つブロアが接続された吹付け機で定量圧送されたA成分(予めミキサで粒状ロックウールとセメントを乾式混合により製造したセメント含有ロックウール)と、ポンプで定量圧送されたB成分(水とセメントをミキサで混合して製造したセメントスラリー)を、ノズル先端から別々に吐出させた上で合流させ吹付材を製造した。吹付材を製造すると同時に発泡樹脂系断熱材の表面に吹付けた。吹付材の使用材料及び使用したプライマーを以下に示した。
[吹付材の使用材料]
・セメント : 普通ポルトランドセメント(太平洋セメント社製、珪酸カルシウム鉱物を70質量%以上含有)
・粒状ロックウール : ロックウール粒状綿(太平洋マテリアル社製)
・水 : 水道水(千葉県佐倉市上水道水)
[使用したプライマー]
・プライマーA : 太平洋マテリアル社製「太平洋スプレーボンド」(商品名、アクリル系共重合体エマルジョン、固形分60質量%)、記号:A
・プライマーB : 水セメント比33.3%のセメントペースト100質量部に対し、太平洋マテリアル社製「太平洋フェンドライト用プライマー」(商品名、スチレン・ブタジエン共重合体ラテックス)を36.4質量部を混合したセメントペースト、記号:B
Also, the spray material is a component-containing rock wool produced by dry mixing granulated rock wool and cement in advance with a mixer, which is equipped with an anti-cotton machine and a quantitative supply machine and is quantitatively pumped by a blower connected to a blower. ) And B component (cement slurry produced by mixing water and cement with a mixer), which were metered by a pump, were discharged separately from the nozzle tip and joined to produce a spray material. The spray material was manufactured and sprayed on the surface of the foamed resin heat insulating material at the same time. The materials used for the spray material and the primers used are shown below.
[Materials used for spraying materials]
・ Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement Co., containing 70 mass% or more of calcium silicate mineral)
・ Granular rock wool: Rock wool granular cotton (manufactured by Taiheiyo Materials)
・ Water: Tap water (Sakata City, Chiba Pref.)
[Primers used]
Primer A: “Pacific Spray Bond” (trade name, acrylic copolymer emulsion, solid content 60% by mass) manufactured by Taiheiyo Materials Co., Ltd., symbol: A
Primer B: 36.4 parts by mass of “Primer for Pacific Fendrite” (trade name, styrene / butadiene copolymer latex) manufactured by Taiheiyo Materials Co., Ltd. is added to 100 parts by mass of cement paste having a water cement ratio of 33.3%. Mixed cement paste, symbol: B
作製したA成分(セメント含有ロックウール)、吹付材(吹付不燃材)又は不燃性断熱構造の品質試験として、以下に示す通り、軽装嵩密度の測定、見掛け密度の測定、付着強度試験及び発熱性試験を行った。A成分の軽装嵩密度の測定結果については表1に、その他の試験結果については表2にそれぞれ示した。
<軽装嵩密度の測定>
以下の手順により、作製したA成分(セメント含有ロックウール)の軽装嵩密度を求めた。
・内容積(Vx)が判っている鋼製容器に(本試験においては2Lとした。)の質量(Wx)を測定した。
・セメント含有ロックウールを鋼製容器に、落差がつかないよう、静かに、鋼製容器から溢れるまでA成分の試料を充填した。
・次に、容器上面に盛られた状態のA成分の試料(容器上面より溢れた試料)を、定規ですり切ることで取り除いた。
・A成分の試料で満たした容器の質量(試料と鋼製容器の合計質量)(Wy)を測定し、以下の(2)式より鋼製容器内の試料(セメント含有ロックウール)の質量(Wr)を算出した。
Wr=Wy−Wx ・・・・ (2)
・次式(3)により、A成分(セメント含有ロックウール)の軽装嵩密度(Mr)を算出した。
Mr=Wr/Vx ・・・・ (3)
As a quality test of the produced A component (cement-containing rock wool), spraying material (spraying incombustible material) or nonflammable heat insulating structure, as shown below, light bulk density measurement, apparent density measurement, adhesion strength test and heat generation A test was conducted. The measurement results of the light bulk density of the component A are shown in Table 1, and the other test results are shown in Table 2.
<Measurement of light bulk density>
The lightly loaded bulk density of the prepared component A (cement-containing rock wool) was determined by the following procedure.
-The mass (Wx) of a steel container whose internal volume (Vx) was known (in this test, 2 L) was measured.
-Cement-containing rock wool was gently filled in the steel container until it overflowed from the steel container so as not to drop.
-Next, the sample of the A component in a state of being piled up on the upper surface of the container (sample overflowing from the upper surface of the container) was removed by scraping with a ruler.
・ Measure the mass of the container filled with the A component sample (total mass of the sample and the steel container) (Wy), and calculate the mass of the sample (cement-containing rock wool) in the steel container from the following formula (2) ( Wr) was calculated.
Wr = Wy−Wx (2)
-The lightly loaded bulk density (Mr) of the component A (cement-containing rock wool) was calculated by the following formula (3).
Mr = Wr / Vx (3)
<見掛け密度の測定>
以下の手順により、作製した吹付材(吹付不燃材)の見掛け密度を求めた。
・上記で作製したフレキシブルボードの上に硬質ウレタンフォームからなる発泡樹脂系断熱材と吹付材(吹付不燃材)が積層した上記試験体を、作製後1ヶ月間室内で養生した。
・厚みゲージにより、不燃性断熱構造の吹付材(吹付不燃材)と発泡樹脂系断熱材を合わせた厚み(Xa)を測定した。
・内径80mmの吹付けロックウール専用切抜き器により、吹付材(吹付不燃材)のみ切抜きを行った。
・吹付材(吹付不燃材)のみ切抜いた箇所の、発泡樹脂系断熱材の厚み(Xb)を、厚みゲージを用いて測定した。
・次式(4)により、切り抜いた吹付材の体積を算出した。
V(cm3)=4×4×π×(Xa−Xb) ・・・・ (4)
・切り抜いた吹付材を、乾燥器を用いて105℃において質量が恒量となるまで乾燥させた。
・次式(5)により、質量が恒量となったときの質量w(g)を用いて、吹付材(吹付不燃材)の見掛け密度ρを求めた。
ρ(g/cm3)=w(g)÷V(cm3) ・・・・・ (5)
<Measurement of apparent density>
The apparent density of the produced sprayed material (sprayed incombustible material) was determined by the following procedure.
-The said test body which laminated | stacked the foaming resin-type heat insulating material and spray material (spraying incombustible material) which consist of hard urethane foam on the flexible board produced above was cured indoors for one month after preparation.
-The thickness (Xa) which combined the spraying material (spraying incombustible material) of a nonflammable heat insulation structure and the foamed resin-type heat insulating material with the thickness gauge was measured.
-Only the spraying material (spraying incombustible material) was cut out with a spray rock wool exclusive cutting device with an inner diameter of 80 mm.
-The thickness (Xb) of the foamed resin-based heat insulating material at the location where only the spraying material (spraying incombustible material) was cut out was measured using a thickness gauge.
-The volume of the sprayed material cut out was calculated by the following formula (4).
V (cm 3 ) = 4 × 4 × π × (Xa−Xb) (4)
-The cut-out spray material was dried using a dryer until the mass became constant at 105 ° C.
-By the following formula (5), the apparent density ρ of the sprayed material (sprayed incombustible material) was determined using the mass w (g) when the mass became constant.
ρ (g / cm 3 ) = w (g) ÷ V (cm 3 ) (5)
<付着強度試験>
・上記で作製したフレキシブルボードの上に硬質ウレタンフォームからなる発泡樹脂系断熱材と吹付材(吹付不燃材)が積層した上記試験体に、吹付材(吹付不燃材)からフレキシブルボードまで届く切込みを表面から見て井桁状にカッターナイフで入れ、井桁状の中央が真上から見て100×100mmの正方形になるようにした。
・1辺が100mmの正方形の鋼製平板に、上端がフック状の鋼棒が該平板中央に垂直に立設し固定されている試験治具の該平板を上記切込み中央の1辺が100mmの正方形の表面に、エポキシ系接着剤で接着した。
・接着剤が硬化後に、プッシュプルゲージを前記試験治具のフック状の箇所に取り付け、垂直に当該記試験治具を引張り、破断させ、そのときの最大荷重を測定した。
・最大荷重を破断面積で割り、付着強度を求めた。
<Adhesion strength test>
・ Incision to reach the flexible board from the spray material (spraying incombustible material) to the above test body in which the foamed resin-based heat insulating material made of rigid urethane foam and the spraying material (spraying incombustible material) are laminated on the flexible board produced above. When viewed from the surface, it was put in a cross-beam shape with a cutter knife so that the center of the cross-beam shape was a 100 × 100 mm square when viewed from directly above.
-A flat plate of a test jig in which a steel plate having a square end with a side of 100 mm and a hook-shaped steel bar at the top end is vertically set up and fixed to the center of the flat plate has a side of 100 mm at the center of the cut. The square surface was bonded with an epoxy adhesive.
-After the adhesive was cured, a push-pull gauge was attached to the hook-shaped portion of the test jig, the test jig was pulled vertically to break, and the maximum load at that time was measured.
・ The maximum load was divided by the breaking area to determine the bond strength.
<発熱性試験>
・JIS A 5430の発熱性試験を行い、加熱開始後20分間の総発熱量を求めた。このとき、試験体は、フレキシブルボード(100×100×5mm)の上に厚み20mm硬質ウレタンフォームからなる発泡樹脂系断熱材と、厚み25mm吹付材(吹付不燃材)が積層した試験体とした。作製した試験体を、作製後1ヶ月間室内で養生した後に試験に供した。
・20分間加熱して、加熱前後の硬質ウレタンフォームからなる発泡樹脂系断熱材の厚みの減少量を求めた。
・不燃性の評価として、加熱開始後20分間の総発熱量が8.0MJ/m2以下、且つ20分間の加熱による発泡樹脂系断熱材の厚みの減少量が10mm以下である場合を、不燃性良好と判断し、それ以外を不良と判断した。
<Exothermic test>
-Exothermic test of JIS A 5430 was conducted, and the total calorific value for 20 minutes after the start of heating was determined. At this time, the test body was a test body in which a foamed resin-based heat insulating material made of rigid urethane foam having a thickness of 20 mm and a spraying material having a thickness of 25 mm (blowing incombustible material) were laminated on a flexible board (100 × 100 × 5 mm). The prepared specimen was cured in the room for one month after preparation and then subjected to the test.
-It heated for 20 minutes and calculated | required the reduction | decrease amount of the thickness of the foamed resin-type heat insulating material which consists of a rigid urethane foam before and behind a heating.
・ As a nonflammability evaluation, the case where the total calorific value for 20 minutes after the start of heating is 8.0 MJ / m 2 or less and the amount of decrease in the thickness of the foamed resin-based heat insulating material by heating for 20 minutes is 10 mm or less. Judgment was good, and the others were judged as poor.
本発明の実施例に当たる吹付材(配合No.1〜6)は、何れも加熱開始後20分間の総発熱量が8.0MJ/m2以下、且つ20分間の加熱による発泡樹脂系断熱材の厚みの減少量が10mm以下であり、不燃性の評価が良好であった。特に、セメント含有ロックウール(A成分)100質量部に対し、セメントスラリー(B成分)が99〜142質量部であり、且つセメントスラリー(B成分)の水セメント比が100〜200%である配合No.2〜6の吹付材は、加熱開始後20分間の総発熱量が4.0MJ/m2以下、且つ20分間の加熱による発泡樹脂系断熱材の厚みの減少量が4mm以下と不燃性が特に優れていた。それに対し、本発明の比較例に当たる配合No.7の吹付材は、20分間の加熱による発泡樹脂系断熱材の厚みの減少量が10mmを超えており不燃性の評価が不良であった。また、本発明の実施例に当たる吹付材(配合No.1〜6)は、何れも、軽装嵩密度が0.06〜0.70g/cm3の範囲内のA成分を用い、A成分とB成分とを合流させた後の吹付材(吹付不燃材)におけるセメントとロックウールの割合がセメントとロックウールの合計100質量部に対しセメントを45質量部〜85質量部且つロックウールを15質量部〜55質量部の範囲内であり、A成分とB成分とを合流させた後の吹付材の見掛け密度は0.3〜1.0g/cm3の範囲内の0.35〜0.96g/cm3であった。 Each of the spray materials (formulation Nos. 1 to 6) corresponding to the examples of the present invention has a total calorific value of not more than 8.0 MJ / m 2 for 20 minutes after the start of heating, and a foamed resin-based heat insulating material by heating for 20 minutes. The amount of reduction in thickness was 10 mm or less, and the evaluation of nonflammability was good. In particular, a blend of 99 to 142 parts by mass of cement slurry (component B) and 100 to 200% of the water-cement ratio of cement slurry (component B) to 100 parts by mass of cement-containing rock wool (component A) No. The spray materials of 2 to 6 are particularly non-flammable, with a total heat generation amount of 4.0 MJ / m 2 or less for 20 minutes after the start of heating and a thickness reduction amount of the foamed resin-based heat insulating material by heating for 20 minutes of 4 mm or less. It was excellent. On the other hand, the formulation No. corresponding to the comparative example of the present invention. In the spray material of No. 7, the amount of decrease in the thickness of the foamed resin heat insulating material by heating for 20 minutes exceeded 10 mm, and the evaluation of nonflammability was poor. Moreover, as for the spraying material (formulation No. 1-6) which hits the Example of this invention, all use A component in the range whose light load bulk density is 0.06-0.70 g / cm < 3 >, A component and B The ratio of cement and rock wool in the spray material (spraying incombustible material) after combining the components is 45 to 85 parts by mass of cement and 15 parts by mass of rock wool for a total of 100 parts by mass of cement and rock wool. in the range of 55 parts by weight, an apparent density of Coatings after being merged with the a component and the B component in the range of 0.3~1.0g / cm 3 0.35~0.96g / cm 3 .
本発明は、発泡樹脂系断熱材を不燃性にすることができることから、ビル、マンション、倉庫、工場又は戸建住宅等の建設工事に好適に使用することができる。 INDUSTRIAL APPLICABILITY Since the foamed resin heat insulating material can be made nonflammable, the present invention can be suitably used for construction work such as a building, a condominium, a warehouse, a factory, or a detached house.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013113610A JP2014141868A (en) | 2012-12-28 | 2013-05-30 | Incombustible spray material for foamed resin-based heat insulator, and incombustible heat insulation structure and construction method thereof |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012289160 | 2012-12-28 | ||
| JP2012289160 | 2012-12-28 | ||
| JP2013113610A JP2014141868A (en) | 2012-12-28 | 2013-05-30 | Incombustible spray material for foamed resin-based heat insulator, and incombustible heat insulation structure and construction method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2014141868A true JP2014141868A (en) | 2014-08-07 |
Family
ID=51423365
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013113610A Pending JP2014141868A (en) | 2012-12-28 | 2013-05-30 | Incombustible spray material for foamed resin-based heat insulator, and incombustible heat insulation structure and construction method thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2014141868A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017125341A (en) * | 2016-01-14 | 2017-07-20 | 太平洋マテリアル株式会社 | Blowing incombustible material for foamed resin heat insulating material, incombustible heat insulating structure and construction method thereof |
| JP2018146283A (en) * | 2017-03-02 | 2018-09-20 | 太平洋マテリアル株式会社 | Method for evaluating granular fiber spraying condition and method for spraying granular fiber |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005139798A (en) * | 2003-11-07 | 2005-06-02 | Waku Sangyo:Kk | Rock wool spraying method and spraying device |
| JP2008168615A (en) * | 2006-10-05 | 2008-07-24 | Bekku Kk | Firesafe heat-insulating body |
-
2013
- 2013-05-30 JP JP2013113610A patent/JP2014141868A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005139798A (en) * | 2003-11-07 | 2005-06-02 | Waku Sangyo:Kk | Rock wool spraying method and spraying device |
| JP2008168615A (en) * | 2006-10-05 | 2008-07-24 | Bekku Kk | Firesafe heat-insulating body |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017125341A (en) * | 2016-01-14 | 2017-07-20 | 太平洋マテリアル株式会社 | Blowing incombustible material for foamed resin heat insulating material, incombustible heat insulating structure and construction method thereof |
| JP2018146283A (en) * | 2017-03-02 | 2018-09-20 | 太平洋マテリアル株式会社 | Method for evaluating granular fiber spraying condition and method for spraying granular fiber |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7234001B2 (en) | Repair method for polymer cement mortar and reinforced concrete | |
| CN101880145B (en) | Tunnel fire retardant coating and preparation process and construction process thereof | |
| CN104973840B (en) | A kind of fireproof bonding mortar and its preparation method and application | |
| JP5120122B2 (en) | Construction method of waterproof floor structure | |
| JP2003306369A (en) | Spraying material and spraying method using the same | |
| JP2014141868A (en) | Incombustible spray material for foamed resin-based heat insulator, and incombustible heat insulation structure and construction method thereof | |
| ES2948300T3 (en) | Process for waterproofing porous construction materials | |
| JP5494049B2 (en) | Premix powder of cement composition, hydraulic mortar and hardened mortar | |
| JP6214923B2 (en) | Non-combustible coating material, non-combustible heat insulating material, and method for constructing non-combustible heat insulating material | |
| JP2019104643A (en) | Hydraulic composition for use in dry spray construction method | |
| JP2016011230A (en) | Adhesive for ship deck, construction method of heat-resistant floor structure using the same, and structure | |
| JP6888909B2 (en) | Sprayed non-combustible material for foamed resin-based heat insulating material, non-combustible heat insulating structure and its construction method | |
| JP6355449B2 (en) | Method for producing sprayed noncombustible material for foamed resin-based heat insulating material and method for constructing noncombustible heat insulating structure | |
| JP6745120B2 (en) | Spray insulation and construction method of the insulation | |
| JP6732521B2 (en) | Mortar for spraying | |
| JP2008156136A (en) | Refractory coating material for plaster | |
| JP4553503B2 (en) | Cement mortar for wet spraying | |
| JP5801554B2 (en) | Cement mortar coating material | |
| JP7596037B2 (en) | Spraying System | |
| JP4476859B2 (en) | Dry mortar spraying method | |
| JP7256002B2 (en) | Construction method of noncombustible sprayed insulation | |
| JP2006016218A (en) | Refractory shotcrete and high strength lining concrete | |
| JP2003342053A (en) | Spraying material and spraying method using the same | |
| JP7553301B2 (en) | Inorganic insulation material and method for forming inorganic insulation material layer | |
| JP7723783B1 (en) | Polymer cement mortar composition and polymer cement mortar |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160225 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161207 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170127 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170328 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170905 |