JP2014147195A - Insulation structure of electrical machine - Google Patents
Insulation structure of electrical machine Download PDFInfo
- Publication number
- JP2014147195A JP2014147195A JP2013013812A JP2013013812A JP2014147195A JP 2014147195 A JP2014147195 A JP 2014147195A JP 2013013812 A JP2013013812 A JP 2013013812A JP 2013013812 A JP2013013812 A JP 2013013812A JP 2014147195 A JP2014147195 A JP 2014147195A
- Authority
- JP
- Japan
- Prior art keywords
- electric field
- tank
- electrode
- gas
- switchgear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Gas-Insulated Switchgears (AREA)
Abstract
【課題】 タンク内に収納された断路器などの開閉機器の電極と対向するタンク間の電界を、不平等電界から平等電界に近づけ、耐電圧が向上するガス絶縁開閉装置を提供する。
【解決手段】 タンク内に収納された断路器などの開閉機器の電極の軸中心と同じ軸中心となる対向するタンク内側表面の平坦部の箇所にねじ切りを設け、球面状の樹脂にも同一サイズのねじ切りを施して、絶縁物で出来たスタッドにより双方を連結して、隙間無くタンク内側表面に固定することにより、電極と対向する平坦なタンク間の電界を不平等電界から平等電界に近づけ、絶縁破壊が発生するとされる最大電界強度の90%以上の電界強度となる部分の面積を減ずることにより耐電圧を向上する。
【選択図】 図1PROBLEM TO BE SOLVED: To provide a gas insulated switchgear in which a withstand voltage is improved by bringing an electric field between tanks facing an electrode of a switching device such as a disconnect switch housed in a tank close to an equal electric field.
SOLUTION: Threading is provided at the flat part of the inner surface of the opposing tank that is the same axis center as the axis of the electrode of an open / close device such as a disconnector housed in the tank, and the spherical resin is also the same size. By connecting both with a stud made of an insulating material and fixing it to the inner surface of the tank without a gap, the electric field between the flat tanks facing the electrodes is brought closer to the equal electric field from the unequal electric field, The withstand voltage is improved by reducing the area of the portion where the electric field strength is 90% or more of the maximum electric field strength at which dielectric breakdown occurs.
[Selection] Figure 1
Description
本発明は、ガス絶縁開閉装置の絶縁に関するものである。 The present invention relates to insulation of a gas insulated switchgear.
ガス絶縁開閉装置の内部構造の一例を説明する。図5に示すガス絶縁開閉装置は、電力系統とケーブルヘッド9を接続し、タンク6内には、接地開閉器10、避雷器11、遮断器12、断路器13、変圧器と接続する箇所などが配置・収納されている。タンク6内では、主に不活性ガスのSF6が使用されている。 An example of the internal structure of the gas insulated switchgear will be described. The gas-insulated switchgear shown in FIG. 5 connects the power system and the cable head 9, and the tank 6 has a ground switch 10, a lightning arrester 11, a circuit breaker 12, a disconnector 13, a point connected to a transformer, and the like. Arranged and stored. In the tank 6, the inert gas SF 6 is mainly used.
しかし、SF6は地球温暖化係数がCO2に対して約23900倍と高いことから、環境負荷のない乾燥空気などの絶縁気体に変わりつつあるが、絶縁能力はSF6に比較して同じ圧力では約1/3と低いことから、充電部位と接地間との絶縁距離が大きく必要となり、ガス絶縁開閉装置のタンク6のサイズが大きくなってしまう。 However, since SF 6 has a global warming potential of about 23,900 times that of CO 2 , it is changing to insulating gas such as dry air that has no environmental impact, but the insulation capacity is the same pressure as SF 6. However, since it is as low as about 1/3, it is necessary to increase the insulation distance between the charging site and the ground, and the size of the tank 6 of the gas insulated switchgear becomes large.
そのため、タンク6内に封入する乾燥空気などの絶縁気体の圧力を高くして絶縁能力を高めたり、接地されているタンク6に対向する高電圧充電部位の導体寸法を太くしたりして電界緩和を行い、ガス絶縁開閉装置のサイズが大きくなるのを抑制している。 For this reason, the electric field is reduced by increasing the pressure of an insulating gas such as dry air sealed in the tank 6 to increase the insulation capacity, or increasing the conductor size of the high voltage charging portion facing the grounded tank 6. The size of the gas insulated switchgear is suppressed from increasing.
タンク内に収納された断路器、遮断器などの開閉機器には、高電圧が充電されている。開閉機器に高電圧が充電されている部位の電極端子が球状で、それと対向した接地側となるタンクが平坦状の場合は、充電側と接地側が球状同士で対向した場合よりも不平等電界となっていることが多い。そのため、不平等電界となっている電極表面では、絶縁破壊が発生するとされる、最大電界強度の90%以上の電界強度となる部分の面積が大きくなり、絶縁破壊の発端となる欠点部分などが球状同士の対向の場合よりもその面積部分内に多く含まれている。 High voltage is charged in switchgears such as disconnectors and circuit breakers housed in the tank. When the electrode terminal of the part where the high voltage is charged to the switchgear is spherical and the tank on the ground side facing it is flat, the unequal electric field is larger than when the charging side and ground side are opposed to each other in a spherical shape. Often has become. Therefore, on the electrode surface that has an unequal electric field, the area of the portion where the electric field strength is 90% or more of the maximum electric field strength is increased, which is considered to cause dielectric breakdown. It is contained more in the area than in the case where the spheres are opposed to each other.
また、特許文献1に示すように高電圧が充電されている断路器などの開閉機器の電極などの導体を、矩形状にした絶縁カバーで覆ったりして、絶縁耐力の向上を行うことも考えられているが、絶縁カバーの製作費用や取り付けに時間が掛かってしまい、費用対効果が見込めず絶縁強度向上の実現は容易ではない。 In addition, as shown in Patent Document 1, it is also possible to improve the dielectric strength by covering a conductor such as an electrode of a switching device such as a disconnector that is charged with a high voltage with a rectangular insulating cover. However, it takes time to manufacture and attach the insulating cover, and it is not easy to realize the improvement of the insulation strength because the cost effectiveness is not expected.
本発明の目的は、最大電界強度の90%以上の電界強度となる部分の面積を減らし、容易に絶縁耐力の向上を図ることができるガス絶縁開閉装置を提供することにある。 An object of the present invention is to provide a gas-insulated switchgear which can easily improve the dielectric strength by reducing the area of the portion where the electric field strength is 90% or more of the maximum electric field strength.
本発明では、高電圧が充電される断路器などの開閉機器の電極に対向した接地側となる平坦なタンク内側の表面に比誘電率が2〜6のエポキシなどで製作した球面または楕円形球面の一部をなす形状(以降、球面状と称する)の樹脂を取り付ける。 In the present invention, a spherical surface or an elliptical spherical surface made of epoxy or the like having a relative dielectric constant of 2 to 6 on the surface inside the flat tank that is on the ground side facing the electrode of a switching device such as a disconnector that is charged with a high voltage A resin having a shape (hereinafter referred to as a spherical shape) is attached.
球面状の樹脂の直径サイズは、高電圧が充電される断路器などの開閉機器の電極直径より小さく、さらに電極表面からタンク表面までの絶縁距離の1/2以下の高さのものである。 The diameter size of the spherical resin is smaller than the electrode diameter of a switching device such as a disconnector that is charged with a high voltage, and further has a height that is 1/2 or less of the insulation distance from the electrode surface to the tank surface.
球面状の樹脂を取り付ける位置は、タンクに対して高電圧が充電される電極と中心軸が同じとなる位置であるが、周囲の機器、構造物との関係で軸中心ずれがあってもよい。 The position where the spherical resin is attached is a position where the central axis is the same as the electrode charged with a high voltage to the tank, but there may be an axial misalignment in relation to surrounding equipment and structures. .
球面状の樹脂の取り付け加工は、タンクと球面状の樹脂に同一サイズのネジ穴加工を施す。 The spherical resin is attached by processing a screw hole of the same size on the tank and the spherical resin.
球面状の樹脂の取り付けは、タンクと球面状の樹脂の双方に設けたネジ穴長さより少し短い絶縁性のあるスタッドを球面状の樹脂のネジ穴にねじ込んだあと、タンク表面に加工したネジ穴にスタッドをねじ込んで、球面状の樹脂をタンクとの隙間なくタンク表面に固定する。 Spherical resin is installed by screwing an insulating stud slightly shorter than the screw hole length on both the tank and the spherical resin into the spherical resin screw hole, and then machining the screw hole on the tank surface. The stud is screwed in to fix the spherical resin to the tank surface without any gap with the tank.
本発明によれば、球面状の樹脂をタンク表面に取り付けることにより、容易に高電圧が充電されている断路器などの開閉機器の電極とタンク間の絶縁強度を向上させ、その結果、絶縁距離を短縮化しタンクサイズを小さくすることができる。 According to the present invention, by attaching a spherical resin to the tank surface, the insulation strength between the electrode of the switchgear such as a disconnector that is easily charged with a high voltage and the tank is improved, and as a result, the insulation distance Can be shortened and the tank size can be reduced.
図5に示すように事故電流などを遮断するガス絶縁開閉装置は、ケーブルヘッド9、接地開閉器10、避雷器11、遮断器12、断路器13、変圧器と接続する箇所などが配置・収納されて、乾燥空気などの絶縁気体が封入されている。 As shown in FIG. 5, the gas-insulated switchgear that cuts off the accident current and the like is provided with a cable head 9, a grounding switch 10, a lightning arrester 11, a circuit breaker 12, a disconnector 13, and a portion to be connected to the transformer. Insulating gas such as dry air is enclosed.
ガス絶縁開閉装置のタンク6内に配置、収納された機器には高電圧が充電されており、それらの充電された機器と接地されたタンク6間はある間隔の絶縁距離によって隔たれ、その間を絶縁するための乾燥空気などの絶縁気体がタンク6内に充填されている。 High voltage is charged in the equipment placed and housed in the tank 6 of the gas-insulated switchgear, and the charged equipment and the tank 6 that is grounded are separated by a certain insulation distance and insulated between them. The tank 6 is filled with an insulating gas such as dry air.
図1に示す高電圧が充電された断路器などの開閉機器3の端子となる電極1近傍は高電界になっているので、接地側となるタンク6間で絶縁破壊しないようにしなければならない。 Since the vicinity of the electrode 1 serving as a terminal of the switchgear 3 such as a disconnector charged with a high voltage shown in FIG. 1 has a high electric field, it is necessary to prevent dielectric breakdown between the tanks 6 on the ground side.
そのため、図2に示すように電極1が対向するタンク6の内側表面には、比誘電率の範囲が2〜6の球面状の樹脂2を取り付ける。球面状の樹脂2の直径φBは、電極1のφAより小さく、球面状の樹脂2の高さL2は電極1表面とタンク6間の絶縁寸法L1の1/2より小さい寸法である。 Therefore, as shown in FIG. 2, a spherical resin 2 having a relative dielectric constant in the range of 2 to 6 is attached to the inner surface of the tank 6 facing the electrode 1. The diameter φB of the spherical resin 2 is smaller than φA of the electrode 1 and the height L2 of the spherical resin 2 is smaller than 1/2 of the insulation dimension L1 between the surface of the electrode 1 and the tank 6.
球面状の樹脂2の固定は、図3に示すようにタンク6に対して高電圧が充電されている電極1と中心軸を合わせる。球面状の樹脂2がタンク6に対向する平坦部の箇所にねじ切り15を設け、タンク6の取り付け箇所にも同一サイズのねじ切り15を設ける。球面状の樹脂2をタンク6に固定するため、絶縁性のあるスタッド5を用いて球面状の樹脂2をタンク6に接続して、隙間無くタンク6内側表面に固定する。 The spherical resin 2 is fixed by aligning the central axis with the electrode 1 charged with a high voltage to the tank 6 as shown in FIG. A threaded portion 15 is provided at a flat portion where the spherical resin 2 faces the tank 6, and a threaded portion 15 of the same size is also provided at a location where the tank 6 is attached. In order to fix the spherical resin 2 to the tank 6, the spherical resin 2 is connected to the tank 6 using an insulating stud 5 and fixed to the inner surface of the tank 6 without a gap.
これにより、電極1に高電圧が充電されると、電極1とタンク6間は図4に示すような電界分布となる。電界強度の大きさ7の長さは電界強度の強さを示している。電界強度7が電極1の表面に分布し、電極1とタンク6の最短距離となる部分が最大電界強度14となる。タンク6表面に比誘電率の範囲が2〜6の球面状の樹脂2があることで、電極1と対向しているタンク6近傍の電界分布は球面状の樹脂2に沿って盛り上がるような等電位線4となる。 Thus, when the electrode 1 is charged with a high voltage, an electric field distribution as shown in FIG. 4 is formed between the electrode 1 and the tank 6. The length of the electric field strength magnitude 7 indicates the strength of the electric field strength. The electric field strength 7 is distributed on the surface of the electrode 1, and the portion where the shortest distance between the electrode 1 and the tank 6 becomes the maximum electric field strength 14. The presence of the spherical resin 2 having a relative dielectric constant range of 2 to 6 on the surface of the tank 6 causes the electric field distribution in the vicinity of the tank 6 facing the electrode 1 to rise along the spherical resin 2. This is the potential line 4.
図4は、本発明における電界分布を示した図である。タンク6表面に球面状の樹脂2を取り付けることで、等電位線4が盛り上がり図6に示すような不平等電界から平等電界に近づくので、電極1表面の最大電界強度の90%以上となる部分の面積8が小さくなり、その面積が小さくなることで絶縁破壊に影響する欠点部分の数が少なくなり絶縁耐力の向上が図られる。 FIG. 4 shows the electric field distribution in the present invention. By attaching the spherical resin 2 to the surface of the tank 6, the equipotential line 4 rises and approaches the equal electric field from the non-uniform electric field as shown in FIG. The area 8 is reduced, and by reducing the area, the number of defective portions that affect dielectric breakdown is reduced, and the dielectric strength can be improved.
この例で、数値計算を行った結果の数値としては、最大電界強度14は49.5kV/mmから51.9kV/mmへ5%程度高くなるが、絶縁破壊の発端となる最大電界強度の90%以上の電界強度となる部分の面積8は、1235mm2から911mm2へと26%も低減し、絶縁耐力の向上が図られたことが判る。 In this example, as a result of the numerical calculation, the maximum electric field strength 14 is increased by about 5% from 49.5 kV / mm to 51.9 kV / mm, but more than 90% of the maximum electric field strength at the beginning of dielectric breakdown. It can be seen that the area 8 of the portion where the electric field strength is reduced by 26% from 1235 mm 2 to 911 mm 2 , improving the dielectric strength.
1 電極
2 球面状の樹脂
3 断路器などの開閉機器
4 等電位線
5 スタッド
6 タンク
7 電界強度の大きさ
8 最大電界強度の90%以上の電界強度となる部分の面積
9 ケーブルヘッド
10 接地開閉器
11 避雷器
12 遮断器
13 断路器
14 最大電界強度
15 ねじ切り
DESCRIPTION OF SYMBOLS 1 Electrode 2 Spherical resin 3 Switchgear such as disconnect switch 4 Equipotential line 5 Stud 6 Tank 7 Electric field strength 8 Area of electric field strength more than 90% of maximum electric field strength 9 Cable head 10 Ground switching Device 11 Lightning Arrestor 12 Breaker 13 Disconnector 14 Maximum Electric Field Strength 15 Thread Cutting
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013013812A JP2014147195A (en) | 2013-01-29 | 2013-01-29 | Insulation structure of electrical machine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013013812A JP2014147195A (en) | 2013-01-29 | 2013-01-29 | Insulation structure of electrical machine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2014147195A true JP2014147195A (en) | 2014-08-14 |
| JP2014147195A5 JP2014147195A5 (en) | 2015-12-17 |
Family
ID=51427031
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013013812A Pending JP2014147195A (en) | 2013-01-29 | 2013-01-29 | Insulation structure of electrical machine |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2014147195A (en) |
-
2013
- 2013-01-29 JP JP2013013812A patent/JP2014147195A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7990687B2 (en) | Gas-insulated switchgear | |
| KR101151989B1 (en) | External connector for solid insulated load break switchs | |
| JP7600383B2 (en) | High voltage apparatus and method for increasing dielectric strength in high voltage apparatus - Patents.com | |
| WO2018051959A1 (en) | Lightning arrester | |
| US9312669B2 (en) | Resistor, method of assembling the same, and switchgear | |
| EP3217416B1 (en) | Vacuum circuit breaker and direct current circuit breaker | |
| KR20130010876A (en) | Conductor arrangement for reducing impact of very fast transients | |
| KR100952686B1 (en) | Circuit breaker compartmemt of an insulated switchgear with an electrode for decreasing electric field intensity | |
| KR101580088B1 (en) | Composite insulated switchboard | |
| CN102388514B (en) | Bushing for connecting gas insulated switchgear with air insulated switchgear | |
| JP2010093968A (en) | Gas-insulated switchgear | |
| KR100339924B1 (en) | arc-inducing type driven rod with needles | |
| JP6071209B2 (en) | Gas insulated switchgear and gas insulated bus | |
| JP2014147195A (en) | Insulation structure of electrical machine | |
| JP6352782B2 (en) | Insulating spacer | |
| JP7123705B2 (en) | dry transformer | |
| JP2016046843A (en) | Circuit breaker for electric power | |
| RU106992U1 (en) | BLOCK OF NON-LINEAR VOLTAGE LIMITER OF HIGH VOLTAGE COMPLETE DISTRIBUTION DEVICE WITH ELEGAS INSULATION | |
| JP5486641B2 (en) | Power equipment | |
| RU2696248C2 (en) | Current transformer and distribution device with current transformer | |
| KR101622459B1 (en) | Solid insulated switchgear | |
| KR102066227B1 (en) | Gas Insulated Switchgear | |
| US11962133B2 (en) | Air insulated switch with very compact gap length | |
| CN202586316U (en) | Angle form overvoltage protection device | |
| JP5161608B2 (en) | Gas circuit breaker |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20140620 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151028 |