[go: up one dir, main page]

JP2014149053A - Rotation support device - Google Patents

Rotation support device Download PDF

Info

Publication number
JP2014149053A
JP2014149053A JP2013018798A JP2013018798A JP2014149053A JP 2014149053 A JP2014149053 A JP 2014149053A JP 2013018798 A JP2013018798 A JP 2013018798A JP 2013018798 A JP2013018798 A JP 2013018798A JP 2014149053 A JP2014149053 A JP 2014149053A
Authority
JP
Japan
Prior art keywords
holding portion
radial
outer ring
axial direction
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013018798A
Other languages
Japanese (ja)
Inventor
Ken Hachisuga
賢 蜂須賀
Masato Higuchi
政人 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013018798A priority Critical patent/JP2014149053A/en
Publication of JP2014149053A publication Critical patent/JP2014149053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

【課題】ラジアル軸受と回転軸との接触状態を軸方向に亙り均一にして、このラジアル軸受の耐久性を十分に確保できる構造を実現する。
【解決手段】円筒状の保持部19の内側に、シェル型の外輪10を圧入固定し、この外輪10の内側に回転軸を、複数本のニードルを介して回転自在に支持する。(A)に示した前記保持部19の自由状態での内径を、剛性が低い開口部側で底部側よりも小さくする。そして、(B)に示した、前記保持部19に前記外輪10を内嵌固定した状態で、この保持部19の内径を軸方向一端から軸方向他端まで一定とする。
【選択図】図1
To achieve a structure capable of sufficiently ensuring the durability of the radial bearing by making the contact state between the radial bearing and the rotating shaft uniform in the axial direction.
A shell-type outer ring is press-fitted and fixed inside a cylindrical holding portion, and a rotating shaft is rotatably supported inside the outer ring via a plurality of needles. The inner diameter of the holding portion 19 shown in (A) in the free state is made smaller on the opening side where rigidity is lower than on the bottom side. In the state where the outer ring 10 is fitted and fixed to the holding portion 19 shown in (B), the inner diameter of the holding portion 19 is made constant from one axial end to the other axial end.
[Selection] Figure 1

Description

この発明は、例えば電動モータの回転軸をモータケースの一部に、ラジアル軸受により回転自在に支持する為の回転支持装置の改良に関する。具体的には、このラジアル軸受と前記回転軸との接触状態を軸方向に亙り均一にして、このラジアル軸受の耐久性を十分に確保できる構造の実現を図るものである。   The present invention relates to an improvement of a rotation support device for rotatably supporting a rotating shaft of an electric motor, for example, on a part of a motor case by a radial bearing. More specifically, the contact state between the radial bearing and the rotary shaft is made uniform in the axial direction, thereby realizing a structure capable of sufficiently ensuring the durability of the radial bearing.

例えば特許文献1には、図4〜5に示す様な電動モータの構造が記載されている。この構造では、ロータ1を中間部に固定した回転軸2の基端部を、モータケース3の一部に設けた有底円筒状の保持部4に、滑り軸受であり、特許請求の範囲に記載した軸受部品に相当するラジアル軸受5により、回転自在に支持している。この様な構造の場合、この保持部4の径方向に関する剛性が、軸方向に亙って均一でない為、使用条件が厳しくなると、前記ラジアル軸受5の耐久性確保が難しくなる。具体的には、前記保持部4の径方向に関する剛性が、軸方向に関して底板部6で塞がれた図4〜5の右側で大きく、開口した図4〜5の左側で小さくなる。この為、前記保持部4に前記ラジアル軸受5を、締り嵌めで内嵌固定すると、この保持部4の内径が、図4〜5の右側に比べて左側で大きくなり、前記ラジアル軸受5の内周面の形状も、これに倣って弾性変形する。この結果、このラジアル軸受5の内周面と前記回転軸2の外周面との接触状態が軸方向に関して不均一になり、このラジアル軸受5の耐久性が損なわれる。   For example, Patent Document 1 describes the structure of an electric motor as shown in FIGS. In this structure, the base end portion of the rotating shaft 2 with the rotor 1 fixed to the intermediate portion is a bottomed cylindrical holding portion 4 provided in a part of the motor case 3, and is a sliding bearing. It is rotatably supported by a radial bearing 5 corresponding to the described bearing component. In the case of such a structure, since the rigidity in the radial direction of the holding portion 4 is not uniform in the axial direction, it becomes difficult to ensure the durability of the radial bearing 5 if the use conditions become severe. Specifically, the rigidity in the radial direction of the holding portion 4 is large on the right side of FIGS. 4 to 5 closed by the bottom plate portion 6 in the axial direction, and is small on the left side of FIGS. Therefore, when the radial bearing 5 is fitted and fixed to the holding portion 4 by interference fitting, the inner diameter of the holding portion 4 becomes larger on the left side than the right side in FIGS. The shape of the peripheral surface is also elastically deformed following this. As a result, the contact state between the inner peripheral surface of the radial bearing 5 and the outer peripheral surface of the rotary shaft 2 becomes uneven in the axial direction, and the durability of the radial bearing 5 is impaired.

上述の図4〜5に示した従来構造の場合には、前記保持部4の開口部の周囲に端板部7が存在し、この保持部4の開口部の径方向の剛性に関しても或る程度は得られるし、前記ラジアル軸受5が滑り軸受である為、上述の様な耐久性低下は、あまり顕著にはならない。これに対して、例えば、図6に示す様な電動モータで、アルミニウム合金等の軽合金製のモータケース3aの内面の一部に、図6及び図7の(A)に示す様な有底円筒状の保持部8を突設し、この保持部8の径方向内側に、ロータ1aを中間部に固定した回転軸2aの端部を、ラジアルニードル軸受9により回転自在に支持する場合には、このラジアルニードル軸受9の耐久性低下が顕著になる。この理由は、以下の通りである。   In the case of the conventional structure shown in FIGS. 4 to 5 described above, the end plate portion 7 exists around the opening of the holding portion 4, and the radial rigidity of the opening of the holding portion 4 is also certain. The degree can be obtained, and since the radial bearing 5 is a sliding bearing, the above-described decrease in durability is not so remarkable. In contrast, for example, in an electric motor as shown in FIG. 6, a bottomed surface as shown in FIGS. 6 and 7A is formed on a part of the inner surface of a light alloy motor case 3a such as an aluminum alloy. In the case where a cylindrical holding portion 8 is projected and the end portion of the rotating shaft 2a with the rotor 1a fixed to the intermediate portion is rotatably supported by the radial needle bearing 9 on the radially inner side of the holding portion 8 The durability of the radial needle bearing 9 is significantly reduced. The reason for this is as follows.

軽合金製のモータケース3aの一部に、このモータケース3aと一体に設けられた前記保持部8の内周面は、そのまま前記ラジアルニードル軸受9の外輪軌道とする事はできない。外輪軌道として必要な硬さを得る為に、特許請求の範囲に記載した軸受部品に相当する、肌焼鋼等の硬質金属製の外輪(シェル)10を備えた、シェル型のラジアルニードル軸受9を使用し、図7の(B)に示す様に、この外輪10を前記保持部8に、締り嵌めで内嵌固定(圧入)する必要がある。この外輪10の圧入に伴ってこの保持部8に径方向外方に向いた力が加わり、この保持部8が径方向外方に弾性変形する。この様にして生じる保持部8の弾性変形量は、径方向に関する剛性が低い開口部側(図6〜7の左側)で多く、同剛性が高い底部側(図6〜7の右側)で少なくなる。   The inner peripheral surface of the holding portion 8 provided integrally with the motor case 3a in a part of the light alloy motor case 3a cannot be used as the outer ring raceway of the radial needle bearing 9 as it is. In order to obtain the required hardness for the outer ring raceway, a shell-type radial needle bearing 9 having an outer ring (shell) 10 made of hard metal such as case-hardened steel, corresponding to the bearing parts described in the claims. As shown in FIG. 7B, it is necessary to fix (press-fit) the outer ring 10 to the holding portion 8 with an interference fit. Along with the press-fitting of the outer ring 10, a force directed radially outward is applied to the holding portion 8, and the holding portion 8 is elastically deformed radially outward. The amount of elastic deformation of the holding portion 8 generated in this way is large on the opening side (left side in FIGS. 6 to 7) with low radial rigidity, and small on the bottom side (right side in FIGS. 6 to 7) with high rigidity. Become.

従って、前記保持部8が、図7の(B)に誇張して示す様に、開口部側の内径が大きく、底部側の内径が小さくなる方向に弾性変形し、前記外輪10も、これに倣って弾性変形する。この状態では、この外輪10の内周面である外輪軌道と、前記回転軸2aの端部外周面である内輪軌道との間隔(径方向距離)が、軸方向に亙り不均一になる。具体的には、この間隔が、前記保持部8の底部側で狭く、開口部側で広くなる。この為、前記外輪軌道及び前記内輪軌道と、これら両軌道同士の間に設けられた複数本のニードルの転動面との転がり接触部の面圧が、前記底部側で極端に高くなるか、或いは前記開口部側で極端に低くなる、所謂片当りが発生する。この結果、前記外輪軌道及び前記内輪軌道と前記各ニードルの転動面との転がり疲れ寿命が部分的に著しく短くなり、前記ラジアルニードル軸受9全体としての耐久性も、著しく短くなる。   Accordingly, as shown exaggeratedly in FIG. 7B, the holding portion 8 is elastically deformed in a direction in which the inner diameter on the opening side is larger and the inner diameter on the bottom side is smaller, and the outer ring 10 is Follow the elastic deformation. In this state, the distance (radial distance) between the outer ring track, which is the inner peripheral surface of the outer ring 10, and the inner ring track, which is the outer peripheral surface of the end portion of the rotary shaft 2a, is not uniform over the axial direction. Specifically, this interval is narrow on the bottom side of the holding portion 8 and wide on the opening side. For this reason, the surface pressure of the rolling contact portion between the outer ring raceway and the inner ring raceway and the rolling surfaces of a plurality of needles provided between the two raceways is extremely high on the bottom side, Alternatively, a so-called one-sided contact that becomes extremely low on the opening side occurs. As a result, the rolling fatigue life of the outer ring raceway and the inner ring raceway and the rolling surface of each needle is partially shortened, and the durability of the radial needle bearing 9 as a whole is also significantly shortened.

又、図8は、内燃機関の吸気管11の内部にスロットルバルブ12を、揺動変位可能に支持する構造を示している。この構造では、このスロットルバルブ12の中心部に設けた揺動軸13の中間部と先端部とを保持部14a、14bの内径側に、それぞれラジアルニードル軸受9a、9bにより、揺動変位を自在に支持している。この様な構造の場合、前記両保持部14a、14bのうち、前記揺動軸13の中間部を支持する為の保持部14aの径方向に関する剛性は、前記吸気管11の本体部分に連続した基端部(図8の右端部)で大きく、先端部(図8の左端部)で小さくなる。これに対して、前記揺動軸13の端部を支持する為の保持部14bの径方向に関する剛性は、塞がれた底部側(図8の右側)で大きく、開口部側(図8の左側)で小さくなる。従って、この様な図8の構造の場合も、前記両保持部14a、14bに、シェル型の外輪を締り嵌めで内嵌固定すると、同様の問題を生じる。   FIG. 8 shows a structure in which the throttle valve 12 is supported in a swingable manner inside the intake pipe 11 of the internal combustion engine. In this structure, an intermediate portion and a tip portion of the swing shaft 13 provided at the center portion of the throttle valve 12 can be freely displaced by the radial needle bearings 9a and 9b on the inner diameter side of the holding portions 14a and 14b, respectively. I support it. In the case of such a structure, the rigidity in the radial direction of the holding portion 14a for supporting the intermediate portion of the swing shaft 13 among the holding portions 14a and 14b is continuous with the main body portion of the intake pipe 11. It is large at the base end (right end in FIG. 8) and small at the tip end (left end in FIG. 8). On the other hand, the rigidity in the radial direction of the holding portion 14b for supporting the end portion of the swing shaft 13 is large on the closed bottom side (right side in FIG. 8), and on the opening side (in FIG. 8). Smaller on the left). Therefore, in the case of such a structure of FIG. 8 as well, if a shell-type outer ring is fitted and fixed to the holding portions 14a and 14b by an interference fit, the same problem occurs.

又、この様な問題は、上述の図6〜8に示した様な構造に限らず、図9〜10に示す様な保持部15a、15bを備えた回転支持装置の場合も生じる。このうち、図9に示した保持部15aは、例えばステアリングコラムの前端部にステアリングシャフトの中間部前端寄り部分を、回転自在に、且つ、軸方向の変位を可能に支持する為のもので、厚肉の中空回転軸16の端部の内径を中間部に比べて大きくしたものである。又、図10に示した保持部15bは、回転軸を挿通する為の挿通孔17の開口部を囲む状態で、ハウジング18の内面に設けたものである。何れの保持部15a、15bに関しても、先端部(図9〜10の左端部)の剛性が基端部(図9〜10の右端部)の剛性に比べて低い為、シェル型の外輪10を圧入すると、図9〜10の(B)に誇張して示す様に弾性変形し、上述の様な問題を生じる。   Such a problem is not limited to the structure shown in FIGS. 6 to 8 described above, but also occurs in the case of a rotation support device having holding parts 15a and 15b as shown in FIGS. Among these, the holding portion 15a shown in FIG. 9 is for supporting, for example, a portion near the front end of the intermediate portion of the steering shaft at the front end of the steering column so as to be rotatable and capable of axial displacement. The inner diameter of the end portion of the thick hollow rotating shaft 16 is made larger than that of the intermediate portion. Further, the holding portion 15b shown in FIG. 10 is provided on the inner surface of the housing 18 so as to surround the opening portion of the insertion hole 17 through which the rotation shaft is inserted. For any of the holding portions 15a and 15b, the rigidity of the distal end portion (left end portion in FIGS. 9 to 10) is lower than the rigidity of the base end portion (right end portion in FIGS. 9 to 10). When press-fitted, it is elastically deformed as shown exaggeratedly in FIGS.

特許文献2には、動圧軸受装置を構成するハウジングの外周面を、このハウジングにスラスト部材を圧入する事に伴う変形量を見込んだ形状にする事が記載されている。又、特許文献3には、ハウジングからのシェル型の外輪の抜け止めを図る為、この外輪の外径を軸方向に関して漸次変化させた構造が記載されている。但し、これら特許文献2、3に記載された構造は、上述の様にして生じる、シェル型の外輪を備えたニードル軸受等のラジアル軸受の耐久性低下に利用できないか、仮に利用できても十分な効果は期待できない。   Patent Document 2 describes that the outer peripheral surface of a housing constituting the hydrodynamic bearing device has a shape that allows for the amount of deformation caused by press-fitting a thrust member into the housing. Patent Document 3 describes a structure in which the outer diameter of the outer ring is gradually changed in the axial direction in order to prevent the shell-type outer ring from coming off from the housing. However, the structures described in Patent Documents 2 and 3 cannot be used for reducing the durability of radial bearings such as needle bearings having a shell-type outer ring, which occur as described above, or even if they can be used temporarily. The effect is not expected.

特開2007−239777号公報JP 2007-239777 A 特開2004−176778号公報JP 2004-176778 A 特開2007−155053号公報JP 2007-155053 A

本発明は、上述の様な事情に鑑みて、ラジアル軸受と回転軸との接触状態を軸方向に亙り均一にして、このラジアル軸受の耐久性を十分に確保できる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has been invented to realize a structure capable of sufficiently ensuring the durability of the radial bearing by making the contact state between the radial bearing and the rotating shaft uniform in the axial direction. It is.

本発明の回転支持装置は、円筒状の保持部と、この保持部の内側に配置された軸部材と、これら保持部の内周面と軸部材の外周面との間に設けられたラジアル軸受とを備える。又、この保持部の径方向に関する剛性が軸方向一端部で軸方向他端部よりも小さい。そして、前記ラジアル軸受のうちで少なくとも最も径方向外側に存在する軸受部品は、前記保持部の径方向内側に、軸方向一端側から圧入する事により、締り嵌めで内嵌固定されている。   A rotation support device according to the present invention includes a cylindrical holding portion, a shaft member disposed inside the holding portion, and a radial bearing provided between the inner peripheral surface of the holding portion and the outer peripheral surface of the shaft member. With. Further, the rigidity of the holding portion in the radial direction is smaller at one axial end than at the other axial end. Of the radial bearings, at least the bearing part that is present at the outermost radial direction is press-fitted from the one end side in the axial direction to the inner side in the radial direction of the holding portion, and is fitted and fixed with an interference fit.

特に、本発明の回転支持装置に於いては、前記保持部の自由状態での内径を、軸方向一端側で軸方向他端側よりも小さくしている。
そして、好ましくは請求項2に記載した発明の様に、この保持部に前記軸受部品を内嵌固定した状態で、この保持部の内径を軸方向一端から軸方向他端まで一定としている。
又、この様な本発明の回転支持装置を実施するのに、好ましくは、請求項3に記載した発明の様に、前記保持部の径方向に関する厚さを、軸方向一端側で大きく、軸方向他端側に向けて漸次小さくする。
更に、この様な本発明の回転支持装置を実施するのに、具体的には、請求項4に記載した発明の様に、前記ラジアル軸受を、シェル型の外輪の径方向内側に複数本のニードルを配置したシェル型ラジアルニードル軸受とし、前記軸受部品を前記外輪とする。
In particular, in the rotation support device of the present invention, the inner diameter of the holding portion in the free state is made smaller at one axial end than at the other axial end.
Preferably, as in the invention described in claim 2, the inner diameter of the holding portion is constant from one end in the axial direction to the other end in the axial direction in a state in which the bearing part is fitted and fixed to the holding portion.
In order to implement such a rotation support device of the present invention, preferably, as in the invention described in claim 3, the thickness in the radial direction of the holding portion is increased at one end side in the axial direction. Decrease gradually toward the other end in the direction.
Furthermore, in order to implement such a rotation support device of the present invention, specifically, as in the invention described in claim 4, a plurality of the radial bearings are arranged radially inward of the shell type outer ring. It is set as the shell type radial needle bearing which has arrange | positioned the needle, and the said bearing component is set as the said outer ring | wheel.

上述の様に構成する本発明の回転支持装置によれば、ラジアル軸受を保持する為の保持部の径方向に関する剛性が、軸方向に関して互いに相違しているにも拘らず、このラジアル軸受と、このラジアル軸受の径方向内側に配置される軸との接触状態を軸方向に亙り均一若しくはほぼ均一にして、このラジアル軸受の耐久性を十分に確保できる。   According to the rotary support device of the present invention configured as described above, the radial bearings for holding the radial bearing have different radial stiffnesses with respect to the axial direction. The contact state with the shaft disposed radially inward of the radial bearing can be made uniform or substantially uniform over the axial direction, and sufficient durability of the radial bearing can be ensured.

本発明の実施の形態の第1例を示す、保持部の自由状態の形状を、軸方向の傾斜角度を誇張して示す断面図(A)と、この保持部にシェル型の外輪を圧入した状態を示す断面図(B)。Sectional view (A) showing the shape of the holding portion in the free state, exaggerating the inclination angle in the axial direction, showing a first example of the embodiment of the present invention, and a shell-type outer ring pressed into the holding portion Sectional drawing (B) which shows a state. 同第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example. 同第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example. 回転支持部を備えた電動モータの従来構造を示す断面図。Sectional drawing which shows the conventional structure of the electric motor provided with the rotation support part. 図4の右端部拡大図。The right end part enlarged view of FIG. 回転支持部を備えた電動モータの構造の別例を示す断面図。Sectional drawing which shows another example of the structure of the electric motor provided with the rotation support part. この図6に示した構造の場合に生じる問題を説明する為の、図1と同様の図。The same figure as FIG. 1 for demonstrating the problem which arises in the case of the structure shown in this FIG. 揺動支持部を備えたスロットルバルブ装置の1例を示す断面図。Sectional drawing which shows an example of the throttle valve apparatus provided with the rocking | fluctuation support part. 従来構造の場合に生じる問題を説明する為の、図2と同様の図。The same figure as FIG. 2 for demonstrating the problem which arises in the case of the conventional structure. 同じく図3と同様の図。The same figure as FIG.

[実施の形態の第1例]
図1は、本発明の実施の形態の第1例を示している。本例の構造では、アルミニウム合金等の軽合金製のモータケース3a(全体の形状は図6参照)の内面の一部に、図1の(A)に示す様な有底円筒状の保持部19を設け、この保持部19の径方向内側に回転軸を、シェル型の外輪10を備えたラジアルニードル軸受により、回転自在に支持する様にしている。この点に関しては、前述の図6に示した構造の場合と同様である。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention. In the structure of this example, a bottomed cylindrical holding portion as shown in FIG. 1A is formed on a part of the inner surface of a motor case 3a made of a light alloy such as an aluminum alloy (see FIG. 6 for the entire shape). 19 is provided, and the rotating shaft is rotatably supported by a radial needle bearing provided with a shell-type outer ring 10 on the radially inner side of the holding portion 19. This is the same as the case of the structure shown in FIG.

特に、本例の構造の場合には、前記保持部19の内周面20を、軸方向に関して僅かに傾斜させている。具体的には、この内周面20の母線を、前記保持部19の軸方向に対し僅かに(例えば0.1〜1度程度)傾斜させて、前記内周面20の形状を、純粋な円筒面ではなく、僅かに傾斜した部分円すい筒状の凹面としている。傾斜方向は、前記保持部19の開口部に向かう程この保持部19の自由状態での内径が小さくなる方向としている。これに対して、この保持部19の外径は、端縁部に存在する面取り部分等を除き、実質的に同じとしている。従って、この保持部19の径方向に関する厚さは、特許請求の範囲に記載した軸方向一端側に対応する開口部側(図1の左側)で大きく、同じく軸方向他端側に対応する底部側(図1の右側)に向けて漸次小さくなっている。   In particular, in the case of the structure of this example, the inner peripheral surface 20 of the holding portion 19 is slightly inclined with respect to the axial direction. Specifically, the bus bar of the inner peripheral surface 20 is slightly inclined (for example, about 0.1 to 1 degree) with respect to the axial direction of the holding portion 19 to make the shape of the inner peripheral surface 20 pure. It is not a cylindrical surface, but is a partially conical concave surface that is slightly inclined. The inclination direction is a direction in which the inner diameter of the holding portion 19 in the free state decreases toward the opening of the holding portion 19. On the other hand, the outer diameter of the holding portion 19 is substantially the same except for a chamfered portion or the like existing at the end edge portion. Therefore, the thickness in the radial direction of the holding portion 19 is large on the opening side (left side in FIG. 1) corresponding to the one axial end side described in the claims, and also the bottom corresponding to the other axial end side. It gradually becomes smaller toward the side (the right side in FIG. 1).

前記内周面20の母線の傾斜角度θは、前記保持部19の剛性、この保持部19に圧入するシェル型の外輪10の剛性、締め代に基づいて、計算或いは実験により、適切に規制する。何れにしても、前記傾斜角度θは、0.1〜1度程度の小さな値である。そして、前記保持部19に前記外輪10を締り嵌めで内嵌固定した状態で、図1の(B)に示す様に、この保持部19の内径が、軸方向一端から軸方向他端まで同じとなる様にしている。   The inclination angle θ of the generatrix of the inner peripheral surface 20 is appropriately regulated by calculation or experiment based on the rigidity of the holding portion 19, the rigidity of the shell-type outer ring 10 press-fitted into the holding portion 19, and the tightening allowance. . In any case, the inclination angle θ is a small value of about 0.1 to 1 degree. In the state where the outer ring 10 is fitted and fixed to the holding portion 19 with an interference fit, the inner diameter of the holding portion 19 is the same from one axial end to the other axial end as shown in FIG. It is trying to become.

上述の様な保持部19と外輪10とを備えた本例の回転支持装置によれば、ラジアルニードル軸受を構成するシェル型の外輪10を保持する為の保持部19の剛性が、軸方向に関して互いに相違しているにも拘らず、組立状態での前記外輪10の内径を、軸方向に亙って一定にできる。即ち、この外輪10を前記保持部19に圧入するのに伴って、この保持部19に径方向外方に向いた力が加わり、この保持部19が径方向外方に弾性変形する。この様にして生じる保持部19の弾性変形量は、径方向に関する剛性が低い開口部側(図1の左側)で多く、同剛性が高い底部側(図1の右側)で少なくなる。   According to the rotation support device of the present example including the holding portion 19 and the outer ring 10 as described above, the rigidity of the holding portion 19 for holding the shell-type outer ring 10 constituting the radial needle bearing is in the axial direction. Despite being different from each other, the inner diameter of the outer ring 10 in the assembled state can be made constant over the axial direction. That is, as the outer ring 10 is press-fitted into the holding portion 19, a force directed radially outward is applied to the holding portion 19, and the holding portion 19 is elastically deformed radially outward. The amount of elastic deformation of the holding portion 19 generated in this way is large on the opening side (left side in FIG. 1) where the rigidity in the radial direction is low and decreases on the bottom side (right side in FIG. 1) where the rigidity is high.

前記保持部19の自由状態での内径は、図1の(A)に示す様に、開口部側で小さく、底部側で大きくなっているので、前記外輪10の圧入に伴って前記保持部19は、前記傾斜角度θを解消する方向に弾性変形する。本例の場合、この傾斜角度θを、この保持部19の剛性、前記外輪10の剛性、締め代に基づいて適切に規制しているので、この保持部19にこの外輪10を圧入し切った状態で、この保持部19の内径が、軸方向全長に亙り実質的に一定に(完全に内径が同じであるか、若しくは、ラジアルニードル軸受の耐久性の悪影響を及ぼす事がない程度に迄内径の差が小さく)なる。そして、前記保持部19に締り嵌めで内嵌固定された前記外輪10のうち、内周面に外輪軌道を形成した部分の直径に関しても、軸方向に関して実質的に一定となる。   As shown in FIG. 1A, the inner diameter of the holding portion 19 in the free state is small on the opening side and large on the bottom side, so that the holding portion 19 is pressed with the outer ring 10 being press-fitted. Is elastically deformed in a direction to eliminate the inclination angle θ. In the case of this example, the inclination angle θ is appropriately regulated based on the rigidity of the holding portion 19, the rigidity of the outer ring 10, and the tightening allowance, so that the outer ring 10 is press-fitted into the holding portion 19. In this state, the inner diameter of the holding portion 19 is substantially constant over the entire length in the axial direction (to the extent that the inner diameter is completely the same or does not adversely affect the durability of the radial needle bearing. The difference between the two is small). The diameter of the portion of the outer ring 10 in which the outer ring raceway is formed on the inner peripheral surface of the outer ring 10 that is internally fitted and fixed to the holding portion 19 is substantially constant in the axial direction.

この状態では、前記外輪軌道と、前記ラジアルニードル軸受により支持される回転軸の外周面である内輪軌道との間隔が軸方向に亙り均一になる。言い換えれば、この内輪軌道と前記外輪軌道とが、軸方向全長に亙り平行になる。この結果、これら外輪軌道及び内輪軌道と、これら両軌道同士の間に設けられた複数本のニードルの転動面とが、軸方向全長に亙り均一に転がり接触する。この結果、これら各ニードルの転動面と前記両軌道との転がり接触部の面圧が部分的に過大となる事がなく、これら各ニードルの転動面と前記両軌道との転がり疲れ寿命を確保できて、前記ラジアルニードル軸受全体としての耐久性も確保できる。   In this state, the distance between the outer ring raceway and the inner ring raceway which is the outer peripheral surface of the rotating shaft supported by the radial needle bearing is uniform over the axial direction. In other words, the inner ring track and the outer ring track are parallel to the entire axial length. As a result, the outer ring raceway and the inner ring raceway and the rolling surfaces of a plurality of needles provided between the two raceways are in uniform rolling contact over the entire length in the axial direction. As a result, the surface pressure of the rolling contact portion between the rolling surface of each needle and the both raceways does not partially become excessive, and the rolling fatigue life between the rolling surface of each needle and the both raceways is increased. It is possible to ensure the durability of the radial needle bearing as a whole.

尚、本例の場合には、前記保持部19の自由状態での内外両周面のうち、外周面を、軸方向に関して外径が一定である単なる円筒面とし、内周面を、開口部に向かうに従って内径が小さくなる方向に傾斜した部分円すい状凹面としている。従って、前記保持部19の径方向に関する厚さは、開口部に向かうに従って大きく(厚く)なり、この保持部19の径方向に関する剛性が開口部に向かう程小さくなる程度は、厚さが軸方向に関して一定である場合よりも緩和される。従って、前記傾斜角度θは、僅かな値で足りるが、前記保持部19の開口部の内径が前記外輪10の外径よりも小さくなる程度は、通常の締め代分(締り嵌めの為の直径寸法差)よりも大きくなる。但し、その程度は、前記外輪10の軸方向端部外周縁に存在する、断面形状が四分の一円弧の曲面部の径方向幅よりも十分に小さい。従って、前記外輪10を前記保持部19に圧入する作業は、前記曲面部によりこの保持部19の開口部を押し広げつつ、容易に行える。   In the case of this example, of the inner and outer peripheral surfaces of the holding portion 19 in the free state, the outer peripheral surface is a simple cylindrical surface having a constant outer diameter in the axial direction, and the inner peripheral surface is the opening. The conical concave surface is inclined in a direction in which the inner diameter becomes smaller as it goes to. Therefore, the thickness in the radial direction of the holding portion 19 increases (thickens) toward the opening, and the thickness decreases in the axial direction to such an extent that the rigidity in the radial direction of the holding portion 19 decreases toward the opening. Is more relaxed than if it is constant. Accordingly, the inclination angle θ may be a small value, but the extent to which the inner diameter of the opening of the holding portion 19 is smaller than the outer diameter of the outer ring 10 is equal to a normal tightening allowance (diameter for interference fit). Larger than the dimension difference). However, the degree is sufficiently smaller than the radial width of the curved surface portion of the outer ring 10 in the outer peripheral edge of the axial end portion of the outer ring 10 whose cross-sectional shape is a quarter arc. Therefore, the operation of press-fitting the outer ring 10 into the holding portion 19 can be easily performed while the opening portion of the holding portion 19 is expanded by the curved surface portion.

[実施の形態の第2例]
図2は、本発明の実施の形態の第2例を示している。本例は、前述の図9に示した、例えばステアリングコラムの前端部にステアリングシャフトの中間部前端寄り部分を、回転自在に、且つ、軸方向の変位を可能に支持する為の回転支持装置に、本発明を適用した場合に就いて示している。
本例の場合には、厚肉の中空回転軸16aの端部の内径を中間部に比べ大きくして、この端部に保持部19aを設けている。この保持部19aの形状、この保持部19aにシェル型の外輪10を締り嵌めで内嵌固定した状態でのこの外輪10の性状等に関しては、上述した実施の形態の第1例と同様であるから、重複する説明は省略する。
[Second Example of Embodiment]
FIG. 2 shows a second example of the embodiment of the present invention. In this example, the rotation support device shown in FIG. 9 described above, for example, supports the portion near the front end of the intermediate portion of the steering shaft at the front end of the steering column so as to be rotatable and displaceable in the axial direction. The case where the present invention is applied is shown.
In the case of this example, the inner diameter of the end portion of the thick hollow rotating shaft 16a is made larger than that of the intermediate portion, and the holding portion 19a is provided at this end portion. The shape of the holding portion 19a, the properties of the outer ring 10 in a state in which the shell-type outer ring 10 is fitted and fixed to the holding portion 19a by interference fit, and the like are the same as in the first example of the above-described embodiment. Therefore, the overlapping description is omitted.

[実施の形態の第3例]
図3は、本発明の実施の形態の第3例を示している。本例は、前述の図10に示した構造に、本発明を適用した場合に就いて示している。本例の保持部19bは、回転軸を挿通する為の挿通孔17の開口部を囲む状態で、ハウジング18の内面に設けている。この保持部19bの形状、この保持部19bにシェル型の外輪10を締り嵌めで内嵌固定した状態でのこの外輪10の性状等に関しては、前述した実施の形態の第1例及び上述した実施の形態の第2例と同様であるから、重複する説明は省略する。
[Third example of embodiment]
FIG. 3 shows a third example of the embodiment of the present invention. In this example, the present invention is applied to the structure shown in FIG. The holding portion 19b of this example is provided on the inner surface of the housing 18 so as to surround the opening portion of the insertion hole 17 through which the rotation shaft is inserted. Regarding the shape of the holding portion 19b and the properties of the outer ring 10 in a state in which the shell-type outer ring 10 is fitted and fixed to the holding portion 19b by interference fitting, the first example of the above-described embodiment and the above-described implementation are described. Since it is the same as that of the 2nd example of this form, the overlapping description is abbreviate | omitted.

本例を実施する場合に、保持部の厚さは、必ずしも開口部に向かう程大きく(厚く)する必要はない。径方向に関する厚さを軸方向に亙り一定とする代わりに、自由状態での内周面の傾斜角度を大きめに設定しても良い。
又、保持部の内径側に圧入固定するラジアル軸受に関しても、シェル型の外輪を備えたニードル軸受に限らず、前述の図4〜5に示した様な滑り軸受とする事もできる。
更に、前述の図8に示した様な保持部14a、14bに対して、本発明を適用する事もできるし、固定の支持軸の周囲に回転部材を設けた構造で本発明を実施する事もできる。
In the case of carrying out this example, the thickness of the holding portion does not necessarily need to be increased (thickened) toward the opening. Instead of making the thickness in the radial direction constant over the axial direction, the inclination angle of the inner peripheral surface in the free state may be set larger.
Further, the radial bearing that is press-fitted and fixed to the inner diameter side of the holding portion is not limited to the needle bearing having the shell-type outer ring, and may be a sliding bearing as shown in FIGS.
Furthermore, the present invention can be applied to the holding portions 14a and 14b as shown in FIG. 8, and the present invention can be implemented with a structure in which a rotating member is provided around a fixed support shaft. You can also.

1、1a ロータ
2、2a 回転軸
3、3a モータケース
4 保持部
5 ラジアル軸受
6 底板部
7 端板部
8 保持部
9、9a、9b ラジアルニードル軸受
10 外輪(シェル)
11 吸気管
12 スロットバルブ
13 揺動軸
14a、14b 保持部
15a、15b 保持部
16 中空回転軸
17 挿通孔
18 ハウジング
19、19a、19b 保持部
20 内周面
DESCRIPTION OF SYMBOLS 1, 1a Rotor 2, 2a Rotating shaft 3, 3a Motor case 4 Holding part 5 Radial bearing 6 Bottom plate part 7 End plate part 8 Holding part 9, 9a, 9b Radial needle bearing 10 Outer ring (shell)
DESCRIPTION OF SYMBOLS 11 Intake pipe 12 Slot valve 13 Oscillating shaft 14a, 14b Holding part 15a, 15b Holding part 16 Hollow rotating shaft 17 Insertion hole 18 Housing 19, 19a, 19b Holding part 20 Inner peripheral surface

Claims (4)

円筒状の保持部と、この保持部の内側に配置された軸部材と、これら保持部の内周面と軸部材の外周面との間に設けられたラジアル軸受とを備え、前記保持部の径方向に関する剛性が軸方向一端部で軸方向他端部よりも小さく、前記ラジアル軸受のうちで少なくとも最も径方向外側に存在する軸受部品は、前記保持部の径方向内側に、軸方向一端側から圧入する事により、締り嵌めで内嵌固定されている回転支持装置に於いて、この保持部の自由状態での内径を、軸方向一端側で軸方向他端側よりも小さくした事を特徴とする回転支持装置。   A cylindrical holding portion; a shaft member disposed inside the holding portion; and a radial bearing provided between an inner peripheral surface of the holding portion and an outer peripheral surface of the shaft member. The rigidity in the radial direction is smaller at one axial end than at the other axial end, and at least one of the radial bearings that is present at the outermost radial side is axially located on the radial inner side of the holding portion. In the rotary support device that is fitted and fixed with an interference fit, the inner diameter of the holding portion in the free state is made smaller at one end in the axial direction than at the other end in the axial direction. Rotating support device. 前記保持部に前記軸受部品を内嵌固定した状態で、この保持部の内径を軸方向一端から軸方向他端まで一定とした、請求項1に記載した回転支持装置。   The rotation support device according to claim 1, wherein an inner diameter of the holding portion is constant from one axial end to the other axial end in a state in which the bearing part is fitted and fixed to the holding portion. 前記保持部の径方向に関する厚さが、軸方向一端側で大きく、軸方向他端側に向けて漸次小さくなっている、請求項1〜2のうちの何れか1項に記載した回転支持装置。   3. The rotation support device according to claim 1, wherein a thickness of the holding portion in a radial direction is large on one end side in the axial direction and gradually decreases toward the other end side in the axial direction. . 前記ラジアル軸受が、シェル型の外輪の径方向内側に複数本のニードルを配置したシェル型ラジアルニードル軸受であって、前記軸受部品が前記外輪である、請求項1〜3のうちの何れか1項に記載した回転支持装置。   The radial bearing is a shell-type radial needle bearing in which a plurality of needles are arranged radially inside a shell-type outer ring, and the bearing component is the outer ring. The rotation support apparatus described in the item.
JP2013018798A 2013-02-01 2013-02-01 Rotation support device Pending JP2014149053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013018798A JP2014149053A (en) 2013-02-01 2013-02-01 Rotation support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013018798A JP2014149053A (en) 2013-02-01 2013-02-01 Rotation support device

Publications (1)

Publication Number Publication Date
JP2014149053A true JP2014149053A (en) 2014-08-21

Family

ID=51572186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013018798A Pending JP2014149053A (en) 2013-02-01 2013-02-01 Rotation support device

Country Status (1)

Country Link
JP (1) JP2014149053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023065858A (en) * 2021-10-28 2023-05-15 Ntn株式会社 Drawn cup roller bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320460A (en) * 1999-05-12 2000-11-21 Sanden Corp Bearing structure of compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320460A (en) * 1999-05-12 2000-11-21 Sanden Corp Bearing structure of compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023065858A (en) * 2021-10-28 2023-05-15 Ntn株式会社 Drawn cup roller bearing
JP7697868B2 (en) 2021-10-28 2025-06-24 Ntn株式会社 Drawn cup roller bearing

Similar Documents

Publication Publication Date Title
JP5071150B2 (en) Bearing device for turbocharger
CN105121872B (en) Axially self-locating radial support bearings
CN100564933C (en) Rotating shaft device
JP6047999B2 (en) Rotating support device
JP2007071355A (en) Pinion support structure for planetary gears
JP2010203504A (en) Squeeze film damper bearing
JP2011021623A (en) Outer ring of roller bearing, and roller bearing
JP2014040844A (en) Rolling bearing
JP2007278406A (en) Roller bearing with cage
JP2014149053A (en) Rotation support device
JP2012241774A (en) Rotation body and rocker arm
JP2014105732A (en) Rolling bearing
JP2007303598A (en) Two piece roller bearing
JP4545122B2 (en) Roller bearing
JP2008039036A (en) Tripod type constant velocity joint
JP2007139154A (en) Needle roller bearing and crankshaft supporting structure
JP2009127803A (en) Shaft device with bearing
JP2005098405A (en) Roller bearing
JP2014105733A (en) Rolling bearing
JP2011241860A (en) Rolling bearing with retainer
JP2008019986A (en) Roller bearing
JP2014211228A (en) Rotation support device
JP2008106833A (en) Roller bearing
JP2008039055A (en) Roller support bearing device
JP6451090B2 (en) Radial needle bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228