[go: up one dir, main page]

JP2014194375A - Radiation measuring device - Google Patents

Radiation measuring device Download PDF

Info

Publication number
JP2014194375A
JP2014194375A JP2013070971A JP2013070971A JP2014194375A JP 2014194375 A JP2014194375 A JP 2014194375A JP 2013070971 A JP2013070971 A JP 2013070971A JP 2013070971 A JP2013070971 A JP 2013070971A JP 2014194375 A JP2014194375 A JP 2014194375A
Authority
JP
Japan
Prior art keywords
radiation
radiation detection
detection element
group
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013070971A
Other languages
Japanese (ja)
Inventor
Kazutoshi Higuchi
和俊 樋口
Yoshitaka Imakado
義隆 今門
Yasuyuki Oki
靖之 黄木
Yasuhiro Nakano
康啓 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Priority to JP2013070971A priority Critical patent/JP2014194375A/en
Publication of JP2014194375A publication Critical patent/JP2014194375A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

【課題】
ピンホールコリメータを用い、放射線検出素子を縦列に配置することを特徴とした放射線測定装置では、縦列に配置した放射線検出素子の信号を単純に合成したのでは、撮影範囲の違いによるボケを生じ、特に中心部に比べて周辺部の解像度が低下するという欠点がある。
【解決手段】
ピンホールコリメータから適切な距離に配置された複数の放射線検出素子群に対し各々の画像を取得し、画像の大きさを各々の放射線検出素子群の撮影範囲で正規化した上で、各々の放射線検出素子群から得られた画像を合成する。
【選択図】 図1
【Task】
In a radiation measurement device characterized by using a pinhole collimator and arranging radiation detection elements in a column, simply synthesizing the signals of the radiation detection elements arranged in a column causes blurring due to the difference in imaging range, In particular, there is a drawback that the resolution of the peripheral portion is lower than that of the central portion.
[Solution]
Each image is acquired for a plurality of radiation detection element groups arranged at an appropriate distance from the pinhole collimator, the size of the image is normalized with the imaging range of each radiation detection element group, and then each radiation is detected. An image obtained from the detection element group is synthesized.
[Selection] Figure 1

Description

本発明は、放射線を可視化できる放射線測定装置に関するものである。   The present invention relates to a radiation measuring apparatus that can visualize radiation.

道路や公園、家屋における放射線量を測定するには、放射線測定器で空間放射線量を測定するのが一般的だが、放射性物質が堆積するなどして、局地的に放射線量が高くなっている場所である「ホットスポット」を特定するには、放射線の分布を特定するために多くの場所を測定する必要があり、測定に長い時間と多くの労力を要していた。   To measure the radiation dose on roads, parks, and houses, it is common to measure the radiation dose with a radiation meter, but the radiation dose is locally high due to the accumulation of radioactive materials. In order to specify a “hot spot” as a place, it is necessary to measure many places in order to specify the distribution of radiation, and the measurement takes a long time and a lot of labor.

特表2008−523405号公報Special table 2008-523405 gazette 特開2010−185752号公報JP 2010-185752 A 特開2010−185753号公報JP 2010-185753 A

放射線カメラの動作原理は、放射線源からの放射線が、鉛またはタングステン等の放射線遮蔽材で作られたピンホールまたはコーデッドマスク等のコリメータを介して、マトリクス状に配列された放射線検出素子と相互作用することにより、直接または間接的に得られる電気信号から、放射線源の位置ならびに放射線のエネルギーを決定し、これらを画像の明度や色相として表示するものである。   The principle of operation of a radiation camera is that radiation from a radiation source interacts with radiation detection elements arranged in a matrix through a collimator such as a pinhole or a coded mask made of a radiation shielding material such as lead or tungsten. Thus, the position of the radiation source and the energy of the radiation are determined from the electrical signals obtained directly or indirectly, and these are displayed as the brightness and hue of the image.

ここで、放射線の検出感度を向上させるべく、放射線検出素子1の体積を増やすことが考えられるが、そもそも放射線検出素子1は形状の大きい結晶を作ることが難しいという問題があった。   Here, it is conceivable to increase the volume of the radiation detection element 1 in order to improve the radiation detection sensitivity. However, the radiation detection element 1 has a problem that it is difficult to form a crystal having a large shape.

本発明は、上記課題を解決し、放射線の検出感度を向上させ、より高解像度の画像を取得可能な放射線測定装置を提供するものである。   The present invention provides a radiation measurement apparatus that solves the above-described problems, improves the detection sensitivity of radiation, and can acquire a higher resolution image.

本願において開示された発明のうち代表的なものの概要を簡単に説明すれば次の通りである。
(1)ピンホールコリメータと、前記ピンホールコリメータの穴を通過した放射線を検出する複数の放射線検出素子と、前記複数の放射線検出素子を前記ピンホールコリメータからの距離に応じた群毎に複数段配置する放射線検出器カードと、前記複数段配置された複数の放射線検出素子の群毎に得られた放射線画像を合成して出力する放射線画像生成手段と、を備え、前記放射線画像生成手段は、前記群毎に得られた放射線画像に対して、各々の群とピンホールコリメータとの距離に応じた画像サイズ補正処理を施し、前記補正処理後の放射線画像を合成して出力することを特徴とする放射線測定装置である。
The outline of a representative one of the inventions disclosed in the present application will be briefly described as follows.
(1) A pinhole collimator, a plurality of radiation detection elements for detecting radiation that has passed through the holes of the pinhole collimator, and a plurality of stages of the plurality of radiation detection elements for each group according to the distance from the pinhole collimator A radiation detector card to be arranged; and a radiation image generating means for synthesizing and outputting a radiation image obtained for each group of the plurality of radiation detecting elements arranged in a plurality of stages, the radiation image generating means, The radiographic image obtained for each group is subjected to an image size correction process according to the distance between each group and the pinhole collimator, and the radiographic image after the correction process is synthesized and output. It is a radiation measuring device.

本発明によれば、放射線の検出感度を向上させ、より高解像度の画像を取得可能な放射線測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the detection sensitivity of a radiation can be improved and the radiation measuring device which can acquire a higher resolution image can be provided.

放射線測定装置の放射線検出素子の配列方法と撮影範囲を示す図である。It is a figure which shows the arrangement | sequence method and imaging | photography range of the radiation detection element of a radiation measuring device. 放射線測定装置の外観を示す図である。It is a figure which shows the external appearance of a radiation measuring device. 放射線測定装置の放射線検出器カードの構成を示す図である。It is a figure which shows the structure of the radiation detector card | curd of a radiation measuring device. 放射線測定装置の放射線検出器カードの保持方法を示す図である。It is a figure which shows the holding method of the radiation detector card | curd of a radiation measuring device. 放射線測定装置の放射線検出器モジュールの構成を示す図である。It is a figure which shows the structure of the radiation detector module of a radiation measuring device. 放射線測定装置の放射線検出器モジュールの保持方法を示す図である。It is a figure which shows the holding method of the radiation detector module of a radiation measuring device. 放射線測定装置の放射線カメラの構成を示す図である。It is a figure which shows the structure of the radiation camera of a radiation measuring device. 放射線測定装置における画像の合成方法を示す図である。It is a figure which shows the synthetic | combination method of the image in a radiation measuring device. 放射線測定装置の放射線カメラの動作原理を示す図である。It is a figure which shows the principle of operation of the radiation camera of a radiation measuring device. 放射線測定装置における画像合成の機能構成図を示す図である。It is a figure which shows the function block diagram of the image synthesis | combination in a radiation measuring device.

放射線の分布状況を可視化できる放射線測定装置としては、図2のような構成があり、この放射線測定装置21は放射線カメラ22で測定した放射線の画像と光学カメラ23で撮影した画像とを重ね合わせ、さらに対象物までの距離を距離計24で測定し、対象物の位置での放射線量を算定することで、放射線の強度を色の違い等で表示し、短時間で広範囲における放射線量を測定することができる。表示装置には、図10に示すとおり、放射線カメラ22にて得た信号を用いて信号処理手段100内の放射線画像生成手段102により生成された放射線画像と、光学カメラ23にて得た信号を用いて光学画像生成手段101により生成された光学画像との重畳画像が表示される。尚、ここでは表示装置は放射線測定装置の外部にあるものとしたが、放射線測定装置の構成として表示手段があっても構わない。   As a radiation measuring apparatus that can visualize the distribution state of radiation, there is a configuration as shown in FIG. 2, and this radiation measuring apparatus 21 superimposes an image of radiation measured by the radiation camera 22 and an image captured by the optical camera 23, Furthermore, the distance to the object is measured with the distance meter 24, and the radiation dose at the position of the object is calculated, so that the intensity of the radiation is displayed by a color difference or the like, and the radiation dose in a wide range is measured in a short time. be able to. As shown in FIG. 10, the display device receives the radiographic image generated by the radiographic image generation means 102 in the signal processing means 100 using the signal obtained by the radiographic camera 22 and the signal obtained by the optical camera 23. The superimposed image with the optical image generated by the optical image generation unit 101 is displayed. Here, the display device is provided outside the radiation measurement device, but a display unit may be provided as a configuration of the radiation measurement device.

図2に示した放射線測定装置21の放射線カメラ22の構成を以下に述べる。
図3に放射線検出素子1の1次配列構造を示す。放射線検出素子1としては、テルル化カドミウムである化合物半導体の結晶を用い、一方の側面にはプラチナ電極を、他方の側面にはインジウムを蒸着して、半導体の構造を形成している。正極側電極基板31の上に直線上に配置され、さらにその上から負極側電極フレキシブル基板32に接続される。接続には導電性接着剤が使用される。放射線検出素子1は4個の電極に分割していて、一つの放射線検出素子1で画像の4画素分を構成する。この場合、1列に4個の放射線検出素子1を並べて16画素分としている。また、この放射線検出素子1の配列は、放射線検出器の検出感度を高めるために、図3に示すように、放射線検出素子A群11と放射線検出素子B群12とを上段と下段とに分けて配列している。このように、形状の大きい結晶を作ることが難しい放射線検出素子を複数段に分けて配列することで、小さい結晶のままでも検出感度を高めることが可能となる。尚、ここでは2段配列した例を示すがこれに限られず、3段以上配列するようにしても構わない。
The configuration of the radiation camera 22 of the radiation measuring apparatus 21 shown in FIG. 2 will be described below.
FIG. 3 shows a primary array structure of the radiation detection elements 1. As the radiation detection element 1, a compound semiconductor crystal of cadmium telluride is used, and a platinum electrode is deposited on one side and indium is deposited on the other side to form a semiconductor structure. It arrange | positions on the straight line on the positive electrode substrate 31, and is further connected to the negative electrode flexible substrate 32 from the top. A conductive adhesive is used for connection. The radiation detection element 1 is divided into four electrodes, and one radiation detection element 1 constitutes four pixels of the image. In this case, four radiation detection elements 1 are arranged in one row for 16 pixels. Further, the arrangement of the radiation detection elements 1 divides the radiation detection element A group 11 and the radiation detection element B group 12 into an upper stage and a lower stage as shown in FIG. 3 in order to increase the detection sensitivity of the radiation detector. Are arranged. In this way, by arranging the radiation detection elements, which are difficult to form a large crystal, in a plurality of stages, it is possible to increase the detection sensitivity even with a small crystal. Although an example in which two stages are arranged is shown here, the present invention is not limited to this, and three or more stages may be arranged.

また、正極側電極基板31は両面に電極を有しているので、正極側電極基板31の裏側にも同様に放射線検出素子1を配置することができる。このようにして2段2列に放射線検出素子1を配列した放射線検出器カード2を構成する。   In addition, since the positive electrode substrate 31 has electrodes on both sides, the radiation detection element 1 can be similarly disposed on the back side of the positive electrode substrate 31. In this way, the radiation detector card 2 in which the radiation detection elements 1 are arranged in two rows and two rows is configured.

放射線検出器カード2は図4に示すように、全部で8枚の放射線検出器カード2を収容できるように構成した放射線検出器カード保持部材33に組み込まれる。   As shown in FIG. 4, the radiation detector card 2 is incorporated in a radiation detector card holding member 33 configured to accommodate a total of eight radiation detector cards 2.

最終的に図5で示すように、8枚の放射線検出器カード2により16列の放射線検出素子1を配置することができる。これで、16×16の画素を持った放射線検出器モジュール34を構成する。なお、放射線検出器カードに配列される放射線検出素子の数や、放射線検出器カード保持部材に組み込まれる放射線検出器カードの数はこれに限られず、種々変更可能である。   Finally, as shown in FIG. 5, 16 rows of radiation detection elements 1 can be arranged by eight radiation detector cards 2. This constitutes a radiation detector module 34 having 16 × 16 pixels. The number of radiation detection elements arranged on the radiation detector card and the number of radiation detector cards incorporated in the radiation detector card holding member are not limited to this and can be variously changed.

放射線検出器モジュール34は図6に示すように、放射線を遮蔽する材料でできた放射線検出器モジュール保持部材35の中に収容し、図7に示すように撮影面の前面に、同じく放射線を遮蔽する材料でできたピンホールコリメータ3を取り付けて、放射線カメラ22を構成する。   As shown in FIG. 6, the radiation detector module 34 is housed in a radiation detector module holding member 35 made of a material that shields radiation, and also shields radiation on the front surface of the imaging surface as shown in FIG. A pinhole collimator 3 made of a material to be attached is attached to constitute a radiation camera 22.

一方で、放射線検出の電気的な動作と信号処理について、本実施例での半導体検出素子による放射線検出原理を図9に示す。本実施例では、先にも述べたとおり、放射線検出素子1としてカドミウムテルライドの結晶を用い、一方の側面にはプラチナを、他方の側面にはインジウムを電極として蒸着して、半導体の構造を形成しており、基本的には、通常電子回路に使用されているショットキダイオードと同じくP層、空乏層、N層を形成する。   On the other hand, FIG. 9 shows the principle of radiation detection by the semiconductor detection element in this embodiment regarding the electrical operation and signal processing of radiation detection. In this embodiment, as described above, a cadmium telluride crystal is used as the radiation detecting element 1, and platinum is deposited on one side surface and indium is deposited on the other side surface to form a semiconductor structure. Basically, a P layer, a depletion layer, and an N layer are formed in the same manner as a Schottky diode normally used in an electronic circuit.

放射線検出素子1のキャリアが存在しない空乏層に放射線が入射すると、放射線が電離を起こし電子とホールを生成する。プラチナ電極側である負極側電極37には負荷抵抗91を介して高電圧電源95によって負のバイアス電圧が印加されているので、放射線の電離によって生じた電子とホールをインジウム電極(正極側電極36)とプラチナ電極(負極側電極37)に集め負荷抵抗91に流れるパルス電流に変換する。パルス電流は低雑音増幅器92により増幅された後、マルチチャネル波高分析器93により波高分布として測定される。この波高分布をもとに、スペクトル解析器94により信号ピーク部分の解析・処理が行われ、放射能の核種とその量を求めることができる。   When radiation is incident on a depletion layer in which no carrier exists in the radiation detection element 1, the radiation causes ionization to generate electrons and holes. Since a negative bias voltage is applied to the negative electrode 37, which is the platinum electrode side, by a high voltage power supply 95 via a load resistor 91, electrons and holes generated by ionization of radiation are converted into indium electrodes (positive electrode 36). ) And platinum electrode (negative electrode 37) and converted to a pulse current flowing through the load resistor 91. The pulse current is amplified by the low noise amplifier 92 and then measured as a wave height distribution by the multichannel wave height analyzer 93. Based on this wave height distribution, the spectrum analyzer 94 analyzes and processes the signal peak portion, and the radionuclide and its amount can be obtained.

ところで、放射線検出装置としての放射線の検出感度を高めるためには、放射線検出素子1の内部での放射線の飛程が長くなるように放射線検出素子1の長さまたは厚さを増加させる必要がある。本実施例では、このために図3に示したように、放射線検出素子1を放射線検出素子A群11と放射線検出素子B群12に分けて放射線を検出する方向に対して縦列になるように配置している。   By the way, in order to increase the radiation detection sensitivity of the radiation detection apparatus, it is necessary to increase the length or thickness of the radiation detection element 1 so that the range of the radiation inside the radiation detection element 1 is increased. . In this embodiment, for this purpose, as shown in FIG. 3, the radiation detection element 1 is divided into the radiation detection element A group 11 and the radiation detection element B group 12 so as to be arranged in a column in the direction in which the radiation is detected. It is arranged.

しかしながら、ピンホールコリメータ3と放射線検出器カード2の放射線検出素子1の配列ならびに放射線検出素子A群11と放射線検出素子B群12の位置関係を模式的に示した図1の通り、放射線検出素子A群11と放射線検出素子B群12とでは、ピンホールコリメータ3からの距離が必然的に異なるために、放射線検出素子A群11と放射線検出素子B群12とを同一の形状にした場合には、その撮影範囲が異なってしまう。このため、図1に示すように、被写体4に対して、放射線検出素子A群11での撮影範囲は放射線検出素子B群12の撮影範囲よりも広くなる。したがって、単純に縦列に配列された放射線検出素子A群11で得られた画像と放射線検出素子B群12で得られた画像とを加算したのでは、撮影範囲、焦点距離の違いによるボケを生じ、特に中心部に比べて周辺部の解像度が低下しうる。放射線測定装置21の放射線カメラ22で得られた画像から放射線源の位置を特定する用途においては、この点が特に問題となり、放射線源の正確な位置を認識できない場合を生じさせたり、誤った位置を認識してしまう等の事態への対応が必要となる。   However, as shown in FIG. 1 schematically showing the arrangement of the radiation detection elements 1 of the pinhole collimator 3 and the radiation detector card 2 and the positional relationship between the radiation detection elements A group 11 and the radiation detection elements B group 12, the radiation detection elements Since the distance from the pinhole collimator 3 inevitably differs between the A group 11 and the radiation detection element B group 12, the radiation detection element A group 11 and the radiation detection element B group 12 have the same shape. The shooting range will be different. Therefore, as shown in FIG. 1, the imaging range of the radiation detection element A group 11 is wider than the imaging range of the radiation detection element B group 12 for the subject 4. Therefore, when the image obtained by the radiation detection element A group 11 and the image obtained by the radiation detection element B group 12 simply added in a column are added, blur due to the difference in the photographing range and the focal length occurs. In particular, the resolution of the peripheral part may be lower than that of the central part. This is a particular problem in applications where the position of the radiation source is identified from the image obtained by the radiation camera 22 of the radiation measuring device 21, and may cause a case where the exact position of the radiation source cannot be recognized, or an incorrect position. It is necessary to deal with situations such as recognizing

そこで、本実施例では、検出感度を向上させるべく、放射線検出素子A群11と放射線検出素子B群12とによる多段配列の構成としつつ、図10の放射線画像生成手段102では、それぞれの放射線検出素子群で得られた放射線画像に対して、ピンホールコリメータ3から各放射線検出素子群までの距離に応じた信号処理を施し、これらを合成して合成放射線画像を生成して出力する構成とすr。具体的な合成方法について図8を用いて以下に説明する。   Therefore, in this embodiment, in order to improve the detection sensitivity, the radiation image generating unit 102 in FIG. 10 uses the radiation detection element A group 11 and the radiation detection element B group 12 to form a multi-stage arrangement. The radiation image obtained by the element group is subjected to signal processing corresponding to the distance from the pinhole collimator 3 to each radiation detection element group, and these are combined to generate and output a synthesized radiation image. r. A specific synthesis method will be described below with reference to FIG.

放射線検出素子A群11と放射線検出素子B群12とで得られる画像は、図8に示すように、撮影範囲に対する被写体4の画像の大きさが、ピンホールコリメータ3から放射線検出素子群までの距離に比例し、図8の場合には、放射線検出素子A群11で得られる画像に対して、放射線検出素子B群12で得られる被写体4の画像の大きさは、L2/L1倍になる。   As shown in FIG. 8, the image obtained by the radiation detection element A group 11 and the radiation detection element B group 12 has an image size of the subject 4 with respect to the imaging range from the pinhole collimator 3 to the radiation detection element group. In the case of FIG. 8, the size of the image of the subject 4 obtained by the radiation detection element B group 12 is L2 / L1 times as large as the image obtained by the radiation detection element A group 11 in the case of FIG. .

そこで、本実施例では、放射線検出素子A群11と放射線検出素子B群12とで得られた各々の画像を合成する際に、放射線検出素子A群11で得られた画像を基準にして、放射線検出素子B群12で得られた画像をL1/L2倍に縮小して、画像を合成する際に被写体4の大きさが等しくなるようにして、各々の画像を合成している。   Therefore, in this embodiment, when combining the images obtained by the radiation detection element A group 11 and the radiation detection element B group 12, the image obtained by the radiation detection element A group 11 is used as a reference. The images obtained by the radiation detection element B group 12 are reduced to L1 / L2 times so that the size of the subject 4 becomes equal when the images are combined, and the respective images are combined.

このように放射線検出素子1を放射線検出素子A群11と放射線検出素子B群12とで構成し、各々の放射線検出素子群から得られる画像を、撮影範囲で正規化し合成することで、放射線検出装置21の放射線カメラ22としての放射線に対する検出感度を高め、撮影範囲の違いによるボケ等の問題を解決することが可能となる。   In this way, the radiation detection element 1 is composed of the radiation detection element A group 11 and the radiation detection element B group 12, and images obtained from the respective radiation detection element groups are normalized within the imaging range and combined to detect radiation. The detection sensitivity of the apparatus 21 with respect to the radiation as the radiation camera 22 can be increased, and problems such as blur due to a difference in imaging range can be solved.

以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. Not too long.

1 放射線検出素子
2 放射線検出器カード
3 ピンホールコリメータ
4 被写体
11 放射線検出素子A群
12 放射線検出素子B群
21 放射線測定装置
22 放射線カメラ
23 光学カメラ
24 距離計
31 正極側電極基板
32 負極側電極フレキシブル基板
33 放射線検出器カード保持部材
34 放射線検出器モジュール
35 放射線検出器モジュール保持部材
36 正極側電極
37 負極側電極
91 負荷抵抗
92 低雑音増幅器
93 マルチチャネル波高分析器
94 スペクトル解析器
95 高電圧電源
100 信号処理部
101 光学画像生成手段
102 放射線画像生成手段
103 画像合成手段
DESCRIPTION OF SYMBOLS 1 Radiation detection element 2 Radiation detector card 3 Pinhole collimator 4 Subject 11 Radiation detection element A group 12 Radiation detection element B group 21 Radiation measuring device 22 Radiation camera 23 Optical camera 24 Distance meter 31 Positive electrode side electrode substrate 32 Negative electrode side electrode flexible Substrate 33 Radiation detector card holding member 34 Radiation detector module 35 Radiation detector module holding member 36 Positive electrode side electrode 37 Negative electrode side electrode 91 Load resistance 92 Low noise amplifier 93 Multichannel wave height analyzer 94 Spectrum analyzer 95 High voltage power supply 100 Signal processing unit 101 Optical image generation means 102 Radiation image generation means 103 Image composition means

Claims (1)

ピンホールコリメータと、
前記ピンホールコリメータの穴を通過した放射線を検出する複数の放射線検出素子と、
前記複数の放射線検出素子を前記ピンホールコリメータからの距離に応じた群毎に複数段配置する放射線検出器カードと、
前記複数段配置された複数の放射線検出素子の群毎に得られた放射線画像を合成して出力する放射線画像生成手段と、
を備え、
前記放射線画像生成手段は、前記群毎に得られた放射線画像に対して、各々の群とピンホールコリメータとの距離に応じた画像サイズ補正処理を施し、前記補正処理後の放射線画像を合成して出力することを特徴とする放射線測定装置。
A pinhole collimator,
A plurality of radiation detection elements for detecting radiation that has passed through the holes of the pinhole collimator;
A radiation detector card in which the plurality of radiation detection elements are arranged in a plurality of stages for each group according to the distance from the pinhole collimator;
A radiation image generating means for combining and outputting the radiation images obtained for each group of the plurality of radiation detection elements arranged in a plurality of stages;
With
The radiological image generation unit performs an image size correction process on the radiographic image obtained for each group according to the distance between each group and the pinhole collimator, and synthesizes the radiographic image after the correction process. A radiation measuring apparatus characterized by outputting the output.
JP2013070971A 2013-03-29 2013-03-29 Radiation measuring device Pending JP2014194375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070971A JP2014194375A (en) 2013-03-29 2013-03-29 Radiation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070971A JP2014194375A (en) 2013-03-29 2013-03-29 Radiation measuring device

Publications (1)

Publication Number Publication Date
JP2014194375A true JP2014194375A (en) 2014-10-09

Family

ID=51839714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070971A Pending JP2014194375A (en) 2013-03-29 2013-03-29 Radiation measuring device

Country Status (1)

Country Link
JP (1) JP2014194375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023516986A (en) * 2020-03-06 2023-04-21 クロメック リミテッド Radiation detection system
KR102870583B1 (en) 2024-12-24 2025-10-14 한국해양과학기술원 Device for acquiring scattered images using multiple pinholes and method for image acquisition thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252482A (en) * 1985-08-31 1987-03-07 Shimadzu Corp Mwpc type gamma camera
JPH10227861A (en) * 1997-02-12 1998-08-25 Toshiba Corp Radiation distribution measuring device
JP2000298198A (en) * 1999-02-08 2000-10-24 Fuji Photo Film Co Ltd Method and device for acquiring radiograph data
JP2006284472A (en) * 2005-04-04 2006-10-19 Axion Japan:Kk Radiation diagnostic device and radiation detection instrument
JP2008523405A (en) * 2004-12-14 2008-07-03 コミッサリア タ レネルジー アトミーク Improved gamma ray imaging device
JP2009198343A (en) * 2008-02-22 2009-09-03 Hitachi Ltd Detector arrangement substrate and nuclear medicine diagnosis device using it
JP2010185752A (en) * 2009-02-12 2010-08-26 Hitachi Cable Ltd Radiation detector
WO2012060873A1 (en) * 2010-11-03 2012-05-10 Ryan James M Tri-material dual-species neutron spectrometer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252482A (en) * 1985-08-31 1987-03-07 Shimadzu Corp Mwpc type gamma camera
JPH10227861A (en) * 1997-02-12 1998-08-25 Toshiba Corp Radiation distribution measuring device
JP2000298198A (en) * 1999-02-08 2000-10-24 Fuji Photo Film Co Ltd Method and device for acquiring radiograph data
JP2008523405A (en) * 2004-12-14 2008-07-03 コミッサリア タ レネルジー アトミーク Improved gamma ray imaging device
JP2006284472A (en) * 2005-04-04 2006-10-19 Axion Japan:Kk Radiation diagnostic device and radiation detection instrument
JP2009198343A (en) * 2008-02-22 2009-09-03 Hitachi Ltd Detector arrangement substrate and nuclear medicine diagnosis device using it
JP2010185752A (en) * 2009-02-12 2010-08-26 Hitachi Cable Ltd Radiation detector
WO2012060873A1 (en) * 2010-11-03 2012-05-10 Ryan James M Tri-material dual-species neutron spectrometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023516986A (en) * 2020-03-06 2023-04-21 クロメック リミテッド Radiation detection system
JP7698325B2 (en) 2020-03-06 2025-06-25 クロメック リミテッド Radiation Detection Systems
KR102870583B1 (en) 2024-12-24 2025-10-14 한국해양과학기술원 Device for acquiring scattered images using multiple pinholes and method for image acquisition thereof

Similar Documents

Publication Publication Date Title
JP7157699B2 (en) Radiation imaging apparatus, radiation imaging system, method for controlling radiation imaging apparatus, and program for executing the method
CN104414676B (en) X-ray detector and method
CN107850678B (en) Detector unit for a detector array of a radiation imaging modality
RU2647206C1 (en) Sensor device and visualization system for detecting radiation signals
JP5150325B2 (en) X-ray detector
CN1750786A (en) X-ray detector
JP6350281B2 (en) Current / voltage conversion circuit and imaging apparatus
JP6887812B2 (en) Radiation imaging device and radiation imaging system
JP5560338B2 (en) X-ray stress measurement device
US7138632B2 (en) Radiation detector
JP2016134776A (en) Defect inspection unit, radiation detector, and defect inspection method
JP5027832B2 (en) Radiation detection module and radiation imaging apparatus
TWI762195B (en) Using methods for image sensor
JP2014194375A (en) Radiation measuring device
JP4934826B2 (en) Radiation image detection module and radiation image detection apparatus
CN107068701B (en) Array substrate for X-ray detector and X-ray detector including the same
CN108324298A (en) X-ray detector with an arrangement of a pixelated second electrode and a scattered radiation grid
US20140183607A1 (en) Complementary Metal-Oxide-Semiconductor (CMOS) X-Ray Detector With A Repaired CMOS Pixel Array
WO2022147812A1 (en) Imaging methods using multiple radiation beams
JP2015141037A (en) radiation detector
JP2014194374A (en) Radiation measuring device
JP2018021828A (en) Radiation imaging apparatus and radiation imaging system
JP2007155565A (en) Radiological image detection module
JP5136736B2 (en) Radiation image detection module and radiation image detection apparatus
JP2014098605A (en) Measurement system and measurement display method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801