JP2014206463A - Target substance capture device - Google Patents
Target substance capture device Download PDFInfo
- Publication number
- JP2014206463A JP2014206463A JP2013084205A JP2013084205A JP2014206463A JP 2014206463 A JP2014206463 A JP 2014206463A JP 2013084205 A JP2013084205 A JP 2013084205A JP 2013084205 A JP2013084205 A JP 2013084205A JP 2014206463 A JP2014206463 A JP 2014206463A
- Authority
- JP
- Japan
- Prior art keywords
- photonic crystal
- target substance
- light
- metal film
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】センサとして適正な出力を得られる確率を高くすることができる標的物質捕捉装置およびそれを備えた標的物質検出装置を提供すること。【解決手段】複数の非平坦部が配列され、標的物質を捕捉し、照射された光を反射する反射面を含む。2以上の自然数をMとし、Mとは異なる2以上の自然数をNとしたとき、複数の非平坦部が並べられた配列は、非平坦部がM回対称である図形における頂点の位置に、非平坦部の中心を1つずつ重ねるように配置された単位配列を複数含み、複数の単位配列がN回対称である格子模様の交点の位置に、M回対称である図形の重心を1つずつ重ねるように配置される。反射面で反射された反射光は、特定の波長で極値を示し、当該極値の数は複数ある。【選択図】図3A target substance capturing device capable of increasing the probability of obtaining an appropriate output as a sensor and a target substance detecting device including the target substance capturing device are provided. A plurality of non-flat portions are arranged and include a reflecting surface that captures a target substance and reflects irradiated light. When a natural number of 2 or more is set to M and a natural number of 2 or more different from M is set to N, an array in which a plurality of non-flat portions are arranged is arranged at a vertex position in a figure in which the non-flat portions are M times symmetric. A plurality of unit arrays arranged so that the centers of the non-flat portions are overlapped one by one, and the center of gravity of the figure that is M times symmetrical is one at the intersection of the lattice pattern in which the plurality of unit arrays are N times symmetrical They are arranged so as to overlap each other. The reflected light reflected by the reflecting surface exhibits an extreme value at a specific wavelength, and there are a plurality of extreme values. [Selection] Figure 3
Description
本発明は、標的物質を検出する標的物質捕捉装置およびそれを備えた標的物質検出装置に関する。 The present invention relates to a target substance capturing apparatus that detects a target substance and a target substance detection apparatus including the target substance capturing apparatus.
タンパク質、細胞などの標的物質を検出したり濃度を測定したりする手段として、フォトニック結晶を用いたバイオセンサーが知られている(例えば、非特許文献1)。非特許文献1に記載されているバイオセンサーは、金薄膜を形成したフォトニック結晶基板に光を照射し、フォトニック結晶基板で反射された反射光を測定することにより、標的物質の検出や標的物質の濃度の計測などを行っている。 Biosensors using photonic crystals are known as means for detecting target substances such as proteins and cells and measuring concentrations (for example, Non-Patent Document 1). The biosensor described in Non-Patent Document 1 irradiates light on a photonic crystal substrate on which a gold thin film is formed, and measures the reflected light reflected by the photonic crystal substrate, thereby detecting target substances and targets. Measuring the concentration of substances.
非特許文献1に記載されているバイオセンサーは、照射された光の反射光の極値のうち1つの極値を用いてセンシングをしている。しかし、微細構造であるフォトニック結晶基板を作製することは容易ではなく、少しの欠陥が反射光の波長スペクトルに大きな影響を及ぼし、センサとして適正な出力を得られない可能性がある。このため、フォトニック結晶基板に少しの欠陥があっても、センサとして適正な出力を得られるバイオセンサーが望まれる。 The biosensor described in Non-Patent Document 1 performs sensing using one extreme value among the extreme values of reflected light of irradiated light. However, it is not easy to fabricate a photonic crystal substrate having a fine structure, and a few defects may greatly affect the wavelength spectrum of reflected light, and an appropriate output as a sensor may not be obtained. For this reason, a biosensor capable of obtaining an appropriate output as a sensor even if there is a slight defect in the photonic crystal substrate is desired.
本発明は、センサとして適正な出力を得られる確率を高くすることができる標的物質捕捉装置およびそれを備えた標的物質検出装置を提供することを目的とする。 An object of the present invention is to provide a target substance capturing device that can increase the probability of obtaining an appropriate output as a sensor, and a target substance detection device including the target substance capturing device.
本発明は、複数の非平坦部が配列され、標的物質を捕捉し、照射された光を反射する反射面を含む標的物質捕捉装置であって、2以上の自然数をMとし、Mとは異なる2以上の自然数をNとしたとき、前記複数の非平坦部が並べられた配列は、前記非平坦部がM回対称である図形における頂点の位置に、前記非平坦部の中心を1つずつ重ねるように配置された単位配列を複数含み、複数の前記単位配列がN回対称である格子模様の交点の位置に、前記M回対称である図形の重心を1つずつ重ねるように配置され、前記反射面で反射された反射光は、特定の波長で極値を示し、当該極値の数は複数あることを特徴とする標的物質捕捉装置である。 The present invention is a target substance capturing device in which a plurality of non-flat portions are arranged, includes a reflecting surface that captures a target substance and reflects irradiated light, and a natural number of 2 or more is M, which is different from M When the natural number of 2 or more is N, the array in which the plurality of non-flat portions are arranged is such that the centers of the non-flat portions are one by one at the positions of the vertices in the figure in which the non-flat portions are M-fold symmetric. Including a plurality of unit arrays arranged so as to overlap each other, the plurality of unit arrays are arranged to overlap one by one the center of gravity of the figure that is M times symmetrical at the position of the intersection of the lattice pattern that is N times symmetrical, The reflected light reflected by the reflecting surface exhibits an extreme value at a specific wavelength, and there are a plurality of the extreme values.
本発明に係る標的物質検出装置に対して照射された光の反射光は、特定の波長で極値を示し、当該極値の数は複数ある。これより、本発明に係る標的物質検出装置は、複数ある極値のうちのいずれかの極値を用いて測定を行うことができれば、センサとして適正な出力を得られる。よって、本発明に係る標的物質検出装置は、非平坦部の形状に欠陥があり、複数ある極値のうち例えば1つの極値の測定を行うことができなくても、他の極値の測定を行うことができるので、センサとして適正な出力を得られる可能性が高い。したがって、本発明に係る標的物質検出装置は、センサとして機能できる確率を高くすることができる。 The reflected light of the light irradiated to the target substance detection device according to the present invention exhibits an extreme value at a specific wavelength, and there are a plurality of such extreme values. Accordingly, the target substance detection device according to the present invention can obtain an appropriate output as a sensor if measurement can be performed using any one of a plurality of extreme values. Therefore, the target substance detection device according to the present invention has a defect in the shape of the non-flat portion, and even if it is not possible to measure one extreme value among a plurality of extreme values, measurement of other extreme values is possible. Therefore, there is a high possibility that an appropriate output as a sensor can be obtained. Therefore, the target substance detection device according to the present invention can increase the probability that it can function as a sensor.
本発明において、前記Mは3であり、前記Nは6であることが好ましい。 In the present invention, it is preferable that the M is 3 and the N is 6.
本発明の標的物質捕捉装置を用いれば、センサとして適正な出力を得られる確率を高くすることができる。本発明の標的物質捕捉装置を備えた標的物質検出装置は、センサとして適正な出力を得られる確率を高くすることができる。 If the target substance capturing device of the present invention is used, the probability of obtaining an appropriate output as a sensor can be increased. The target substance detection apparatus provided with the target substance capturing apparatus of the present invention can increase the probability of obtaining an appropriate output as a sensor.
以下、本発明に係る標的物質検出装置を実施するための形態(以下、実施形態という)を図面に基づいて詳細に説明する。なお、下記の実施形態により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out a target substance detection apparatus according to the present invention (hereinafter referred to as embodiments) will be described in detail based on the drawings. In addition, this invention is not limited by the following embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the following embodiments can be appropriately combined.
[第1の実施形態]
<標的物質検出装置>
第1の実施形態に係る標的物質捕捉装置を備えた標的物質検出装置について説明する。図1は、標的物質検出装置を示す図である。標的物質検出装置10は、第1の実施形態に係るフォトニック結晶バイオセンサー(標的物質捕捉装置)11と、光検出部12と、処理部13とを含む。
[First Embodiment]
<Target substance detection device>
A target substance detection apparatus provided with a target substance capturing apparatus according to the first embodiment will be described. FIG. 1 is a diagram illustrating a target substance detection device. The target
(フォトニック結晶バイオセンサー)
まず、フォトニック結晶バイオセンサー11について説明する。フォトニック結晶バイオセンサー11は、金属膜被覆フォトニック結晶21と、上部プレート22と、下部プレート23とを含む。上部プレート22は、開口部24が設けられている。第1の実施形態においては、フォトニック結晶バイオセンサー11は、上部プレート22と下部プレート23とにより金属膜被覆フォトニック結晶21を挟む構造である。なお、第1の実施形態においては、フォトニック結晶バイオセンサー11は、上部プレート22および下部プレート23を含んで形成されているが、これに限定されるものではなく、金属膜被覆フォトニック結晶21のみで形成されていてもよい。
(Photonic crystal biosensor)
First, the
(金属膜被覆フォトニック結晶)
図2は、金属膜被覆フォトニック結晶21の斜視図である。図3は、金属膜被覆フォトニック結晶21の平面図である。図4は、図3におけるA−A断面を示す図であり、フォトニック結晶25の表面27と直交する平面でフォトニック結晶25を切ったときの断面を示す。なお、図2〜図4は、模式的に示した図であるため、金属膜被覆フォトニック結晶21を構成する成分の厚さ、大きさ等は実際とは異なる。以下、第1の実施形態及び後述する他の実施形態においても同様である。図2〜図4に示すように、金属膜被覆フォトニック結晶21は、フォトニック結晶25および金属膜26を含んでいる。金属膜被覆フォトニック結晶21は、フォトニック結晶25の表面27に非平坦部28Aが複数配列された反射面29を金属膜26で被覆している。非平坦部28Aは、表面27に対して窪んだ円柱状の凹部である。なお、金属膜26はなくてもよい。
(Metal film coated photonic crystal)
FIG. 2 is a perspective view of the metal film-coated
まず、フォトニック結晶25について説明する。一般的に、フォトニック結晶は、表面に所定深さの凹部または所定高さの凸部が周期的に形成された反射面を有し、前記反射面に特定波長の光(平行光)を照射すると、その反射光が得られる構造体である。表面に凹部または凸部が周期的に形成された反射面に光を照射すると、特定波長の反射光が得られる構造体は、一般にフォトニック結晶と呼ばれる。
First, the
フォトニック結晶とは、サブ波長間隔の格子構造を有する構造体である。そして、それは構造体の表面(以後、反射面という)に広領域波長の光を照射すると、フォトニック結晶の表面状態に依存した特定の波長帯の光を、反射または透過するものである。フォトニック結晶の表面状態は、たとえばフォトニック結晶の形状及び材質に依存する。この反射光または透過光の変化を読み取ることにより、フォトニック結晶の表面状態の変化を定量化することができる。フォトニック結晶の表面状態の変化としては、表面への物質の吸着、構造変化などが挙げられる。表面に金属薄膜が形成されたフォトニック結晶も、光が照射されると、光の反射率または光の透過率に極値(極大値または極小値)が現れる。この反射率または透過率の極値は、金属の種類、金属の膜厚、フォトニック結晶の表面形状に依存するものである。この光の反射率または光の透過率を読み取ることにより、フォトニック結晶の表面状態の変化を定量化することができる。金属薄膜については後述する。フォトニック結晶の表面状態の変化を反射光または透過光の変化から定量化するには、次の方法を用いることができる。例えば、極値(極大値または極小値)での反射率または透過率の変化量、あるいは反射率または透過率が極値となる波長のシフト量を求めるなどである。なお、反射率または透過率の極値が複数ある場合には、任意の極値に着目する。そして、着目した極値について変化量を求めるか着目した極値となる波長のシフト量を求めることにより、フォトニック結晶の表面状態の変化を定量することができる。以下の説明では、「極値」という文言は、フォトニック結晶の表面状態の変化を定量化するために用いるのに適切な極値という意味で使用する。 A photonic crystal is a structure having a lattice structure with sub-wavelength intervals. And when it irradiates the surface of a structure (henceforth a reflective surface) with the light of a wide region wavelength, it reflects or permeate | transmits the light of the specific wavelength band depending on the surface state of a photonic crystal. The surface state of the photonic crystal depends on, for example, the shape and material of the photonic crystal. By reading the change in the reflected light or transmitted light, the change in the surface state of the photonic crystal can be quantified. Examples of changes in the surface state of the photonic crystal include adsorption of substances on the surface and structural changes. Even in a photonic crystal having a metal thin film formed on its surface, when it is irradiated with light, an extreme value (maximum value or minimum value) appears in light reflectance or light transmittance. This extreme value of reflectance or transmittance depends on the type of metal, the thickness of the metal, and the surface shape of the photonic crystal. The change in the surface state of the photonic crystal can be quantified by reading the light reflectance or light transmittance. The metal thin film will be described later. In order to quantify the change in the surface state of the photonic crystal from the change in reflected light or transmitted light, the following method can be used. For example, the amount of change in reflectance or transmittance at the extreme value (maximum value or minimum value) or the shift amount of the wavelength at which the reflectance or transmittance becomes an extreme value is obtained. Note that when there are a plurality of extreme values of reflectance or transmittance, attention is paid to arbitrary extreme values. Then, the change in the surface state of the photonic crystal can be quantified by obtaining the amount of change with respect to the extreme value of interest or by obtaining the amount of shift of the wavelength that is the extreme value of interest. In the following description, the term “extreme value” is used to mean an extreme value suitable for use in quantifying a change in the surface state of a photonic crystal.
図2〜図4に示すように、フォトニック結晶25は、表面27に複数の非平坦部28Aが配列されている反射面29を有している。この反射面29に光を照射すると、フォトニック結晶25の形状と材質に依存した特定波長の光が反射される。
As shown in FIGS. 2 to 4, the
第1の実施形態において、複数の非平坦部28Aが並べられた配列は、3つの非平坦部28Aが3回対称の図形である正三角形Poにおける頂点の位置に、非平坦部28Aの中心G1を1つずつ重ねるように配置された単位配列Uを複数含む。複数の非平坦部28Aが並べられた配列は、6回対称である格子模様Laの交点の位置に、正三角形Poの重心G2を1つずつ重ねるように複数の単位配列Uが配置される。これにより、単位配列Uは、格子模様Laを形成するように配置される。ここで、フォトニック結晶25の反射面29に入射した光の反射光が極値を示す波長は、反射面29の格子模様Laの周期に依存する。反射面29において、格子模様Laの周期は、隣り合う正三角形Poの重心G2間の距離に等しい。よって、第1の実施形態において、反射面29に入射した光の反射光が極値を示す波長は、隣り合う正三角形Poの重心G2間の距離に依存する。
In the first embodiment, the arrangement in which the plurality of
また、単位配列Uに含まれる非平坦部28Aの数は3つでなくてもよい。例えば、単位配列Uに含まれる非平坦部28Aの数は、2つであってもよいし、4つ以上であってもよい。また、単位配列Uにおいて非平坦部28Aの中心G1が重なる位置は、正三角形Poの頂点でなくてもよい。例えば、単位配列Uにおいて非平坦部28Aの中心G1が重なる位置は、正三角形以外の回転対称である図形の頂点でもよい。また、正三角形Poの重心G2が重なる位置は、6回対称である格子模様Laの交点でなくてもよい。例えば、正三角形Poの重心G2が重なる位置は、6回対称以外の回転対称である格子模様の交点でもよい。ただし、2以上の自然数をMとNとし、単位配列Uにおいて非平坦部28Aの中心G1が重なる位置をM回対称の図形の頂点とし、正三角形Poの重心G2が重なる位置をN回対称である格子模様の交点としたとき、MとNは異なることが必要である。
Further, the number of
また、非平坦部28Aの直径D1は、50nm以上1000nm以下であることが好ましく、より好ましくは、100nm以上500nm以下である。また、非平坦部28Aの中心間の距離C1は、100nm以上2000nm以下であることが好ましく、より好ましくは、200nm以上1000nm以下である。また、非平坦部28Aの深さをH1としたとき、非平坦部28Aのアスペクト比(H1/D1)は、0.1以上10以下であることが好ましく、より好ましくは、0.5以上5.0以下である。なお、非平坦部28Aの寸法は、上記のものに限定されない。
Further, the diameter D1 of the
フォトニック結晶25の材質としては、合成樹脂などの有機材料、金属・セラミックなどの無機材料を使用することができる。
As a material of the
合成樹脂としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリシクロオレフィン、ポリアミド、ポリイミド、アクリル、ポリメタクリル酸エステル、ポリカーボネート、ポリアセタール、ポリテトラフルオロエチレン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリフェニレンサルファイド、ポリエーテルサルフォン、ポリエーテルエーテルケトンなどの熱可塑性樹脂、フェノール樹脂、ユリア樹脂、エポキシ樹脂などの熱硬化性樹脂を使用することができる。 Synthetic resins include polyethylene, polypropylene, polymethylpentene, polycycloolefin, polyamide, polyimide, acrylic, polymethacrylic acid ester, polycarbonate, polyacetal, polytetrafluoroethylene, polybutylene terephthalate, polyethylene terephthalate, polyvinyl chloride, polyvinyl chloride Thermosetting resins such as vinylidene, polystyrene, polyphenylene sulfide, polyether sulfone, and polyether ether ketone, and phenol resins, urea resins, and epoxy resins can be used.
セラミックとしては、シリカ、アルミナ、ジルコニア、チタニア、イットリアなどのセラミックを好適に使用することができる。 As the ceramic, ceramics such as silica, alumina, zirconia, titania and yttria can be suitably used.
金属としては、鉄鋼材料をはじめとして各種合金が使用可能である。具体的には、ステンレス鋼、チタンまたはチタン合金などを好適に使用することができる。 As the metal, various alloys including steel materials can be used. Specifically, stainless steel, titanium, a titanium alloy, or the like can be preferably used.
上記した各種材料の中でも、光学特性、加工性、標的物質(ターゲットとなる物質)を含有する溶液に対する耐性、標的物質捕捉物質(特異的結合物質)の吸着性、洗浄剤に対する耐性などを考慮すると、ポリシクロオレフィン系合成樹脂若しくはシリカ系のセラミックがより好ましい。この中でも、ポリシクロオレフィン系合成樹脂は、加工性に優れており最も好適である。 Considering optical properties, processability, resistance to solutions containing target substances (target substances), adsorptivity of target substance capture substances (specific binding substances), resistance to cleaning agents, etc. Polycycloolefin synthetic resin or silica ceramic is more preferable. Among these, the polycycloolefin synthetic resin is most suitable because of its excellent processability.
フォトニック結晶25は、上記材料基板の表面に微細な加工を施すことにより作製される。加工方法としては、レーザー加工、熱ナノインプリント、光ナノインプリント、フォトマスクとエッチングの組合せなどが使用できる。特に、ポリシクロオレフィン系合成樹脂などの熱可塑性樹脂を材料とする場合には、熱ナノインプリントによる方法が好適である。
The
次に、金属膜26について説明する。例えば、第1の実施形態においては、図4に示すように、フォトニック結晶25は、その反射面29が金属膜26で被覆されている。金属膜26は、金(Au)、銀(Ag)、白金(Pt)またはアルミニウム(Al)のうちの何れか1種類以上を用いて形成されることが好ましい。第1の実施形態において、金属膜26はAuで形成されている。Auは、安定性に優れるため、反射面29として好ましい。金属膜26に銀(Ag)またはアルミニウム(Al)のうちの何れか1種類以上を用いる場合、金で表面を被覆することが好ましい。このようにすることで、金の使用量を低減してフォトニック結晶25の製造コストを抑制することができる。
Next, the
金属膜26の膜厚が小さいと、フォトニック結晶25への入射光の一部は金属膜26を透過することがある。その結果、反射光から得られる情報量の低下、回折光またはフォトニック結晶25の裏面からの反射光など、フォトニック結晶25からの反射光には不要な情報が多く含まれる可能性がある。金属膜26の膜厚を適度に大きくすることにより、フォトニック結晶25からの反射光に含まれる不要な情報を低減して、標的物質の検出精度及び濃度の計測精度を向上させることができる。また、金属膜26の膜厚が適度に小さいと、フォトニック結晶25の表面27に詳細なパターン形状を作製することが容易であるので好ましい。例えば、パターンの角がシャープになって、パターンの寸法を確保することが容易となる。このような観点から、第1の実施形態において、金属膜26の膜厚は、好ましくは30nm以上1000nm以下であり、より好ましくは150nm以上500nm以下であり、さらに好ましくは200nm以上400nm以下である。波長に対する反射率の変化は、金属膜26の膜厚が200nmを超えるとほぼ同様になるためである。
When the thickness of the
また、金属膜26は、スパッタリングまたは蒸着装置などによってフォトニック結晶25の反射面29に形成することができる。金属膜26の最表面は、Auとすることが好ましい。金属膜26にAg、Pt、Alを用いた場合、それぞれの極値における反射光の波長は、Auを金属膜26として用いた場合に対して1.5倍となる。このように、Ag、Pt、Alは、Auよりも1.5倍の感度を有する。なお、Agは酸化されやすいので、フォトニック結晶25の反射面29にAgを形成した後、酸化されにくいAuまたはSiO2などの酸化物薄膜を形成することが好ましい。この場合、200nmの厚さを有するAgの膜の表面に、5nmの厚さを有するAuの膜を形成することができる。200nmの厚さを有するAgの膜の表面に5nmの厚さを有するAuの膜を形成した場合、200nmの厚さを有するAuの膜に比べて、感度が1.5倍になる。また、5nmのAuの膜の有無で、感度の変化は見られなかった。AlもAgと同様に酸化されやすいので、フォトニック結晶25の表面27にAlの膜を形成した後、酸化されにくいAuまたはSiO2などの酸化物薄膜を形成することが好ましい。抗体などで修飾するために、Ptも、AuまたはSiO2などの酸化物薄膜を形成することが好ましい。
Further, the
また、フォトニック結晶25の反射面29は、3-triethoxysilylpropylamine(APTES)などを用いて改質されることが好ましい。フォトニック結晶25の反射面29に、AuまたはAgの金属膜26を形成させた場合には、APTESではなく、一端にチオール基を有し、他端にアミノ基やカルボキシル基などの官能基を有する炭素鎖を用いてフォトニック結晶25の反射面29を改質することが好ましい。AuまたはAg以外の金属膜26をフォトニック結晶25の反射面29に形成させた場合は、一端に官能基を有するシラン系カップリング剤、例えばAPTESを使用して、フォトニック結晶25の反射面29を改質することが好ましい。
The
金属膜被覆フォトニック結晶21は、フォトニック結晶25の反射面29を金属膜26で被覆したものであるため、フォトニック結晶25の非平坦部28Aに対応して反射面29に金属膜被覆フォトニック結晶21の非平坦部28Bが形成されている。また、非平坦部28Bの直径D2は、金属膜26の厚さにもよるが、50nm以上1000nm以下であることが好ましく、より好ましくは、100nm以上500nm以下である。また、非平坦部28Bの中心間の距離C2は、非平坦部28Aの中心間の距離C1と同様、100nm以上2000nm以下であることが好ましく、より好ましくは、200nm以上1000nm以下である。また、非平坦部28Bの深さをH2としたとき、非平坦部28Bのアスペクト比(H2/D2)は、0.1以上10以下であることが好ましく、より好ましくは、0.5以上5.0以下である。なお、非平坦部28Bの寸法は、上記のものに限定されない。
Since the metal film-coated
次に、図2〜4に示す第1の実施形態の金属膜被覆フォトニック結晶21に照射された光の反射光の特性について説明する。図5は、第1の実施形態の金属膜被覆フォトニック結晶21に照射された光の反射光の波長に対する反射率を示す図である。図5において極値は、波長700nm付近で反射光のスペクトルの形状が変化する2つの箇所における極小値である。波長500nm付近で現れる反射光のスペクトルの形状の変化は、Auで形成された金属膜26に起因し、非平坦部28A、28Bの有無に関わらず現れる。このため、波長500nm付近で現れる反射光のスペクトルの形状の変化は、第1の実施形態の極値とは数えない。第1の実施形態の金属膜被覆フォトニック結晶21に照射された光の反射光は、特定の波長で極値を示し、当該極値の数は2つである。これより、第1の実施形態の金属膜被覆フォトニック結晶21を用いたセンサは、2つある極値のうち少なくとも1つの極値を用いて測定を行うことができれば、センサとして適正な出力を得られる。よって、第1の実施形態の金属膜被覆フォトニック結晶21を用いたセンサは、非平坦部28A、28Bの形状に欠陥があり、2つある極値のうち1つの極値の測定を行うことができなくても、他の極値の測定を行うことができるので、センサとして適正な出力を得られる可能性が高い。したがって、第1の実施形態の金属膜被覆フォトニック結晶21を用いたセンサは、センサとして機能できる確率を高くすることができる。なお、第1の実施形態の金属膜被覆フォトニック結晶21に照射された光の反射光は、特定の波長で極値を示し、当該極値の数は3つで以上であってもよい。
Next, the characteristics of the reflected light of the light irradiated on the metal film-coated
なお、上記の説明において、第1の実施形態に係る非平坦部は、図4で示したような凹部であるとしたが、図9に示すように凸部であってもよい。このとき非平坦部28A、8Bは、表面27に対して突出した円柱状の凸部である。図9は、非平坦部が凸部である場合の図3におけるA−A断面を示す図である。
In the above description, the non-flat portion according to the first embodiment is a concave portion as shown in FIG. 4, but may be a convex portion as shown in FIG. At this time, the non-flat portions 28 </ b> A and 8 </ b> B are cylindrical convex portions that protrude from the
(フォトニック結晶の作製方法)
次に、熱ナノインプリントにより金属膜被覆フォトニック結晶21を作製する工程の一例を説明する。図7、図8及び図9は、フォトニック結晶の作製方法を説明する図である。図7に示すように、熱ナノインプリントでは、ナノメートルレベルの微細構造、またはナノメートルレベルの周期構造のパターンを有する金型DIを用いる。そして、図8に示すように、加熱した金型DIをシート状の樹脂Pに押し付けて、所定圧力で所定時間押圧し、金型DIの表面温度が所定温度になったところで離型し、微細構造及び周期構造をシート状の樹脂Pに転写する。これにより、フォトニック結晶25が得られる。
(Method for producing photonic crystal)
Next, an example of a process for producing the metal film-coated
樹脂Pがシクロオレフィン系ポリマーの場合には、金型DIを160℃程度まで加熱し、約12MPaの圧力で所定時間押圧し、金型DIの表面温度が60℃程度になったところで離型することが好ましい。 When the resin P is a cycloolefin polymer, the mold DI is heated to about 160 ° C., pressed at a pressure of about 12 MPa for a predetermined time, and released when the surface temperature of the mold DI reaches about 60 ° C. It is preferable.
フォトニック結晶25を作製した後、図9に示すように、金型DIと接していた表面に、スパッタリングまたは蒸着装置などによって金属膜26を形成して、金属膜被覆フォトニック結晶21が完成する。
After producing the
(標的物質捕捉物質)
次に、標的物質を捕捉する標的物質捕捉物質について説明する。標的物質とは、標的物質検出装置10が検出する対象物であって、タンパク質などの高分子、オリゴマー、低分子のいずれであってもよい。標的物質は、単分子に限定されず、複数の分子からなる複合体であってもよい。標的物質として、例えば、大気中の汚染物質、水中の有害物質、人体内のバイオマーカー(Biomarker)などが挙げられる。中でも、コルチゾールなどが好ましい。コルチゾールは、分子量362g/molの低分子物質である。コルチゾールは、人間がストレスを感じると唾液中のコルチゾール濃度が増加するため、人間が感じているストレスの度合いを評価する物質として注目されている。コルチゾールを標的物質としてその濃度を測定すれば、例えば、ヒトの唾液中に含まれるコルチゾールの濃度を測定することで、ストレスの度合いを評価することができる。ストレスの度合いを評価すれば、被測定者がうつ病などの精神疾患につながるレベルのストレス状態にあるか否かを判断することができる。
(Target substance capture substance)
Next, the target substance capturing substance that captures the target substance will be described. The target substance is an object to be detected by the target
標的物質捕捉物質とは、標的物質と結合し、標的物質を捕捉する物質である。ここで、結合するとは、化学的に結合する場合の他、例えば物理吸着、ファンデルワールス力による結合のように、化学的結合によらない結合であってもよい。好ましくは、標的物質捕捉物質は、標的物質と特異的に反応して標的物質を捕捉するものであり、標的物質を抗原とした抗体であることが好ましい。特異的に反応するとは、選択的に標的物質と可逆的または不可逆的な結合をして複合体を形成することを意味し、化学反応に限定されない。また、特異的に反応する物質が標的物質以外に存在していても構わない。試料中に標的物質の他に標的物質捕捉物質と反応する物質があっても、その親和性が標的物質と比較して非常に小さい場合は、標的物質を定量することができる。標的物質捕捉物質は、標的物質を抗原とした抗体、人工的に作製した抗体、アデニン、チミン、グアニン、シトシンなどのDNAを構成する物質から構成される分子、ペプチドなどを用いることができる。標的物質がコルチゾールである場合は、標的物質捕捉物質は、コルチゾール抗体であることが好ましい。 The target substance capturing substance is a substance that binds to the target substance and captures the target substance. Here, the term “bonded” refers to a bond that is not chemically bonded, such as a bond by chemical adsorption or van der Waals force, in addition to the case of chemically bonding. Preferably, the target substance capturing substance is a substance that specifically reacts with the target substance to capture the target substance, and is preferably an antibody having the target substance as an antigen. Specific reaction means selectively forming a complex by reversibly or irreversibly binding to a target substance, and is not limited to a chemical reaction. Further, a substance that reacts specifically may exist in addition to the target substance. Even if there is a substance that reacts with the target substance capturing substance in addition to the target substance in the sample, the target substance can be quantified if the affinity is very small compared to the target substance. As the target substance capturing substance, an antibody using the target substance as an antigen, an artificially prepared antibody, a molecule composed of a substance constituting DNA such as adenine, thymine, guanine, and cytosine, a peptide, and the like can be used. When the target substance is cortisol, the target substance capturing substance is preferably a cortisol antibody.
標的物質捕捉物質を作製するには公知の方法を採用することができる。例えば、抗体は、血清法、ハイブリドーマ法、ファージディスプレイ法によって作製できる。DNAを構成する物質から構成される分子は、例えばSELEX法(Systematic Evolution of Ligands by Exponential Enrichment:試験管内人工進化法)により作製できる。ペプチドは、例えばファージディスプレイ法により作製できる。標的物質捕捉物質は、何らかの酵素・同位体により標識されている必要はない。しかし、酵素・同位体によって標識されていてもよい。 A known method can be employed to produce the target substance capturing substance. For example, the antibody can be produced by a serum method, a hybridoma method, or a phage display method. Molecules composed of substances constituting DNA can be prepared by, for example, the SELEX method (Systematic Evolution of Ligands by Exponential Enrichment). The peptide can be prepared by, for example, a phage display method. The target substance capturing substance does not need to be labeled with any enzyme / isotope. However, it may be labeled with an enzyme / isotope.
第1の実施形態において、標的物質捕捉物質は、図4に示す金属膜被覆フォトニック結晶21の反射面29に固定される。標的物質捕捉物質を金属膜被覆フォトニック結晶21の反射面29に固定する手段として、共有結合、化学吸着、物理吸着などの化学的結合、物理的結合方法が挙げられる。これらの手段を、標的物質捕捉物質の性質に応じて適宜選択することができる。例えば、固定する手段として吸着を選択した場合、吸着の操作は以下のようなものである。例えば、標的物質捕捉物質を含んだ溶液を、金属膜被覆フォトニック結晶21の反射面29に滴下し、金属膜被覆フォトニック結晶21を、所定の時間、室温で、または必要に応じて冷却・加温して、標的物質捕捉物質を反射面29に吸着させる。
In the first embodiment, the target substance trapping substance is fixed to the
フォトニック結晶バイオセンサー11は、特定の抗原(例えばコルチゾール)とのみ結合する抗体(例えばコルチゾール抗体)を金属膜被覆フォトニック結晶21の反射面29の表面に予め吸着(固定)させておく。これにより、フォトニック結晶バイオセンサー11は、特定の抗原を検出することができる。これは、フォトニック結晶25の光学的特性と、フォトニック結晶25の表面または表面近傍で起こる各種の生体・化学反応、例えば特定の抗原は特定の抗体とのみ反応するという抗原抗体反応とを利用するものである。
In the
フォトニック結晶バイオセンサー11は、標的物質捕捉物質である抗体が固定された反射面29に、ブロッキング剤(保護物質)が固定されたものであってもよい。ブロッキング剤は、標的物質がフォトニック結晶バイオセンサー11に接触させられる前に固定される。フォトニック結晶25の反射面29の表面は、一般的に超疎水性である。このため、疎水性相互作用によって標的物質捕捉物質である抗体以外の不純物が、反射面29に吸着してしまうおそれがある。さらに、フォトニック結晶25の光学特性は表面状態に大きく影響されるので、フォトニック結晶25の反射面29には、不純物が吸着されていないことが好ましい。フォトニック結晶25の反射面29にブロッキング剤が固定されることで、反射光の検出精度を向上させることができる。
The
したがって、標的物質捕捉物質である抗体がフォトニック結晶25の反射面29に吸着(固定)された部分以外の箇所には、不純物などが固定されないように、いわゆるブロッキング剤を予め固定させておくことが好ましい。ブロッキング剤を予め吸着させておくには、ブロッキング剤を、フォトニック結晶25の表面に接触させる。ブロッキング剤として、スキムミルクやウシ血清アルブミン(BSA)などを使用することができる。
Therefore, a so-called blocking agent is fixed in advance so that impurities and the like are not fixed to a portion other than the portion where the antibody that is the target substance capturing substance is adsorbed (fixed) to the
次に、フォトニック結晶バイオセンサー11が標的物質である抗原及びその濃度を検出する基本的な原理を説明する。図10〜図13は、フォトニック結晶バイオセンサー11の原理を説明する図である。一般的に、フォトニック結晶バイオセンサー11は、フォトニック結晶25の光学的特性と、フォトニック結晶25の表面または表面近傍で起こる各種生体・化学反応、例えば、特定の抗原は特定の抗体とのみ反応するという抗原抗体反応とを利用して、微量のタンパク質または低分子物質を検出するものである。そして、フォトニック結晶バイオセンサー11は、金属膜被覆フォトニック結晶21の反射面29に特定波長の光を照射したときの表面プラズモン共鳴現象及び/または局在表面プラズモン共鳴現象による反射光の波長の極値がシフトする現象を利用する。
Next, the basic principle by which the
図10に示すように、金属膜被覆フォトニック結晶21の反射面29の表面には、抗体(標的物質捕捉物質)34が吸着により固定されている。
As shown in FIG. 10, an antibody (target substance-capturing substance) 34 is fixed to the surface of the
次に、図11に示すように、反射面29の抗体34が吸着した部分以外の箇所、すなわち、抗体34が吸着した部分以外の反射面29に、ブロッキング剤(保護物質)35を予め吸着させる。これにより、反射面29の抗体34が吸着した部分以外の箇所に不純物などが吸着しないようにする。
Next, as shown in FIG. 11, a blocking agent (protective substance) 35 is adsorbed in advance on a portion of the
次に、図12に示すように、抗体34とブロッキング剤35とが吸着されているフォトニック結晶バイオセンサー11に抗原(標的物質)36を接触させ、抗原抗体反応を行う。抗体34に抗原36が捕捉された複合体37が、反射面29に固定される。
Next, as shown in FIG. 12, an antigen (target substance) 36 is brought into contact with the
次に、図1に示す光検出部12は、図13に示すように、抗原36がフォトニック結晶25の反射面29に捕捉されている状態で特定波長の光(入射光)LIを平行光で金属膜被覆フォトニック結晶21の反射面29に照射する。そして、図1に示す光検出部12は、反射面29で反射された反射光LRを検出し、反射光LRの極値の波長を求める。そして、図1に示す処理部13は、反射光LRの強度の極値における波長及び強度の極値における波長のシフト量を求めて、金属膜被覆フォトニック結晶21の反射面29に捕捉された抗原36の有無を検出したり、抗原36の濃度を求めたりする。
Next, as illustrated in FIG. 13, the
フォトニック結晶バイオセンサー11は、上記原理に基づき、抗体34および抗原36の組合せの種類を変えることにより、検出対象の物質であるタンパク質などの各種生体物質または低分子量物質の種類を変えることができる。
Based on the above principle, the
フォトニック結晶バイオセンサー11では、反射面29に固定された抗体34に抗原36が捕捉されることにより、反射面29の状態が変化し、反射光LRに変化が生じる。フォトニック結晶バイオセンサー11は、光学的な物理量を出力する。この物理量は、金属膜被覆フォトニック結晶21の反射面29における表面状態の変化に相関し、反射面29に固定された抗体34に抗原36が捕捉されて形成される複合体37の量と相関する。光学的な物理量は、例えば、反射光LRの強度が極値となる波長のシフト量、光の反射率の変化量、光の反射率が極値となる波長のシフト量、反射光LRの強度、反射光LRの強度の極値の変化量などである。第1の実施形態では、反射光LRの強度または光の反射率が極値となる波長のシフト量を用いる。
In the
光学的な物理量を出力させるには、例えば以下のようにして行う。金属膜被覆フォトニック結晶21の反射面29に対して垂直に光を入射し、反射光LRを検出する。金属膜被覆フォトニック結晶21の反射面29の垂線に対して角度をつけて光を入射し、反射光LRを検出することもできる。反射光LRを検出することにより、図1に示す標的物質検出装置10をコンパクトにすることができる。垂直に入射され、垂直に反射された光を検出する場合には、二股の光ファイバーを用いて光を入射し、反射光LRを検出することが好ましい。この構造については後述する。
In order to output an optical physical quantity, for example, it is performed as follows. Light is incident perpendicularly to the
(フォトニック結晶バイオセンサーの作製方法)
次に、図1に示すフォトニック結晶バイオセンサー11の作製の一例について説明する。図14、図15及び図16は、フォトニック結晶バイオセンサー11の説明図である。図14に示すように、金属膜被覆フォトニック結晶21を下部プレート23に設置した後、図15に示すように、上部プレート22を下部プレート23の上に設置して、金属膜被覆フォトニック結晶21を、下部プレート23と上部プレート22とにより挟むことにより、フォトニック結晶バイオセンサー11が作製される。開口部24の下部プレート23側における端部は、フォトニック結晶25の反射面29により閉塞される。このような構造により、上部プレート22は、開口部24側の内壁と反射面29とで囲まれて形成される、一定容積の液滴保持部38を有する。開口部24側の内壁とは、上部プレート22と開口部24との境界面である、上部プレート22の内壁をいう。
(Production method of photonic crystal biosensor)
Next, an example of production of the
図16は、液滴保持部38に所定の溶液を滴下した状態を示す。この場合、液滴保持部38が液滴保持機能を発揮するため、開口部24から溶液が流出するのを抑制する。また、溶液の量としては、液滴保持部38に広がる程度の量があれば、標的物質の十分な検出・測定が可能となる。
FIG. 16 shows a state in which a predetermined solution is dropped on the
開口部24の形状は、円柱形に限らず、開口部24の内部に液滴を保持することができれば、他の形状としてもよい。また、開口部24を円柱状とした場合、その直径などは、抗体34及び抗原36の組合せの種類、必要な測定精度または反射光の検出器の光学系に合わせて様々な直径とすることができる。開口部24の直径は、上述した抗体34に抗原36を吸着させる際の操作、取扱いの利便性などを考慮し、0.5mm〜10mmであることが好ましく、より好ましくは、2mm〜6mmである。
The shape of the
上部プレート22および下部プレート23の材質などは、特に限定されない。ただし、上部プレート22および下部プレート23の表面の清浄度などを考慮すると、ステンレス鋼、ポリシクロオレフィン系樹脂、シリカなどを用いて形成されることが好ましい。
The material of the
次に、フォトニック結晶バイオセンサー11の別の形態について説明する。上部プレート22は、疎水性の材料で形成してもよい。特に、唾液などのいわゆる親水性の溶液の検出・測定を行う場合に、上部プレート22が疎水性の材料で形成されていれば、液滴保持部38に的確に溶液を集めることができる。また、脂質などのいわゆる親油性の溶液の検出・測定を行う場合、上部プレート22が疎水性の材料で形成されていれば、液滴保持部38に的確に溶液を集めることができる。
Next, another form of the
さらに、上部プレート22は、撥水性若しくは撥油性または撥水撥油性のある材料で形成してもよい。また、疎水性、親水性、撥水性、撥油性を発揮する表面処理またはコーティングを上部プレート22に施してもよい。このようにすることで、液滴保持部38に的確に溶液を集めることができる。
Further, the
フォトニック結晶バイオセンサー11は、フォトニック結晶バイオセンサー11の下部に、図1に示す光検出部12に対してフォトニック結晶バイオセンサー11の位置を定めて、フォトニック結晶バイオセンサー11を固定するための固定材(標的物質捕捉部固定手段、フォトニック結晶バイオセンサー固定手段)を装着することが好ましい。固定材としては、マグネットシート、両面テープ、接着剤などが使用できる。また、フォトニック結晶バイオセンサー11を固定するために、固定材ではなく、固定機構として真空チャックまたは静電チャックを用いてもよい。フォトニック結晶バイオセンサー11を固定しておくことにより、検出・測定時の振動などによる測定位置のずれを減少することが可能となる。その結果、より正確な検出・測定ができる。
The
図17、図18は、フォトニック結晶バイオセンサー固定手段を説明する図である。図17は、マグネットシート39の取付け前の状態を示し、図18は、マグネットシート39の取付け後の状態を示す。フォトニック結晶バイオセンサー11は、フォトニック結晶バイオセンサー11の下部側にマグネットシート39が取り付けられている。マグネットシート39は、フォトニック結晶バイオセンサー固定手段として機能する。
17 and 18 are diagrams for explaining the photonic crystal biosensor fixing means. FIG. 17 shows a state before the
フォトニック結晶バイオセンサー11は、熱ナノインプリントなどにより均一に作製されている。標的物質検出装置10がより正確に反射光の検出ができるようにするため、フォトニック結晶バイオセンサー11に照射される光の入射部位、反射部位を正確に位置決めすることが好ましい。
The
すなわち、フォトニック結晶バイオセンサー11と後で説明する測定プローブとの測定時の位置関係は、抗原抗体反応の前後で同一であることが好ましく、同一の部分を測定することが好ましい。したがって、測定プローブとフォトニック結晶バイオセンサー11の反射面29との距離は、抗原抗体反応の前後で同一であることが好ましく、50μm〜500μmに固定することが好ましい。フォトニック結晶バイオセンサー11は、上部プレート22を含むことで、上部プレート22がスペーサとして機能し、測定プローブとフォトニック結晶バイオセンサー11の反射面29との距離を一定にすることができる。
That is, the positional relationship at the time of measurement between the
また、フォトニック結晶バイオセンサー11に、反射面29における特定の位置を表示する、位置決め用のマーカーによってマークを付けるようにしてもよい。マーカーは、フォトリソグラフィー、スパッタリング、蒸着、これらを利用したリフトオフプロセス、インクなどによる印刷またはインプリントによるパターン形成などによって付けることができる。マーカーは、その位置を読み取ることができればフォトニック結晶バイオセンサー11の表面(反射面29側)または裏面(反射面29の反対側)のどちらに付けてもよい。また、フォトニック結晶25の測定部分を外してフォトニック結晶25自体にマーカーを付けてもよい。さらに、マーカーを上部プレート22、下部プレート23に付けてもよい。
Further, the
次に、フォトニック結晶バイオセンサー11の更に別の形態について説明する。図19は、フォトニック結晶バイオセンサー11の別の形態を説明する図である。図19に示すように、フォトニック結晶バイオセンサー11は、開口部24を塞ぐ部材を含む。開口部24を塞ぐ部材は、孔付カバー41とシート42とを含む。孔付カバー41は、開口部43を有する板状部材であり、孔付カバー41は、フォトニック結晶バイオセンサー11の表面(反射面29側)に設けられる。シート42は、孔付カバー41のフォトニック結晶バイオセンサー11とは反対側(光の入射側)に設けられる。シート42は、被覆部材として機能する。フォトニック結晶バイオセンサー11は、孔付カバー41とシート42とにより開口部24、43が塞がれる。
Next, still another form of the
孔付カバー41の開口部43側の内壁と、開口部24側の内壁と、フォトニック結晶25の反射面29とで囲まれた空間が、一定容積の液滴保持部44となる。開口部43側の内壁とは、孔付カバー41と開口部43との境界面である、孔付カバー41の内壁をいう。開口部43は、液滴保持部44に標的物質が配置された後、シート42により覆われる。これにより、液滴保持部44はシート42により塞がれる。
A space surrounded by the inner wall on the
フォトニック結晶バイオセンサー11は、孔付カバー41及びシート42を備えることで、フォトニック結晶バイオセンサー11の開口部24に滴下された溶液の蒸発を抑制することができる。このため、抗原抗体反応時の蒸発などによる溶液の濃度が変化するのを抑制することができる。また、フォトニック結晶バイオセンサー11は、孔付カバー41及びシート42を備えることで、外部から溶液へ異物が混入することを防止することができる。
The
さらに、液滴保持部44に溶液を充填することにより、溶液を充填した状態で反射光の測定をより正確に行うことも可能である。この場合、シート42は透明な材料であることが好ましく、より好ましくは、反射光の強度の極値における波長の光の吸収が少ないものが好ましい。例えば、シート42の材料は、可視光線領域から紫外線領域の反射光で測定する場合は石英(シリカ)などが好ましい。
Further, by filling the
(光検出部12)
次に、図1に示す光検出部12について説明する。図1に示す光検出部12は、光源51と、測定プローブ52と、光検出装置53と、第1光ファイバー54と、第2光ファイバー55と、コリメートレンズ56とを含む。光源51と測定プローブ52とは、第1光ファイバー54により光学的に接続されている。測定プローブ52と光検出装置53とは、第2光ファイバー55により光学的に接続されている。必要に応じて、光源51及び光検出装置53などに接続され、光源51の制御及び光検出装置53からの信号を処理する制御装置を設けてもよい。
(Photodetection unit 12)
Next, the
図20は、光検出部12がフォトニック結晶バイオセンサー11に光を照射する例を示す図である。図1に示す第1光ファイバー54は、図1に示す光源51からの光を測定プローブ52に導き、測定プローブ52からフォトニック結晶バイオセンサー11が有する金属膜被覆フォトニック結晶21の反射面29へ照射する。コリメートレンズ56は、第1光ファイバー54から出射し、測定プローブ52から照射された光を平行光にしてから、フォトニック結晶25の反射面29へ入射光LIとして照射する。第2光ファイバー55は、金属膜被覆フォトニック結晶21の反射面29で反射した光を反射光LRとして受光し、図1に示す光検出装置53へ導く。コリメートレンズ56の種類は特に限定されないが、例えば、ナノストラクチャーを持つ反射防止フィルムを用いることができる。光検出装置53は、例えば、フォトトランジスタまたはCCD(Charge Coupled Device)などの受光素子を備えた、光を検出するための装置である。
FIG. 20 is a diagram illustrating an example in which the
図21は、図1に示す光検出部12が有する測定プローブ52の構造を示す図である。測定プローブ52は、第1光ファイバー54と第2光ファイバー55とが接合される。そして、測定プローブ52は、第1光ファイバー54の光の出射面61と、第2光ファイバー55の反射光LRの入射面62とが同一の面(入出射面)63上に配置される。このように、測定プローブ52は、第1光ファイバー54と第2光ファイバー55とが、第1光ファイバー54の出射側(出射面61側)と第2光ファイバー55の入射側(入射面62側)とで一体となっている。そして、測定プローブ52は、第1光ファイバー54と第2光ファイバー55とを用いて光を入射し、反射光LRを検出する。
FIG. 21 is a diagram illustrating a structure of the
測定プローブ52は、このような構造としているため、フォトニック結晶25の反射面29に照射する入射光LIと、反射面29からの反射光LRとをほぼ同一の位置から出射し、入射させることができる。測定プローブ52を上述したような構造にするとともに、コリメートレンズ56を用いて測定プローブ52からの光を平行光にすることで、光検出部12は、反射面29に平行光の入射光LIを垂直に入射することができる。それとともに、反射面29から垂直に反射した反射光LRを受光することができる。このようにすることで、測定プローブ52は、反射光強度の低下を最小限に抑えることができるとともに、主として反射光LRの0次光成分を検出することができる。これにより、処理部13は、金属膜被覆フォトニック結晶21の反射面29の正確な情報を得ることができるため、標的物質の検出精度及び濃度の計測精度が向上する。なお、反射光LRを検出する手法は、上述したような測定プローブ52に限定されない。例えば、コリメートレンズ56と反射面29との間にハーフミラーを配置し、ハーフミラーによって反射光LRを分離して第2光ファイバー55から光検出装置53に導いてもよい。
Since the
次に、光検出部12の評価条件を説明する。図22は、第1の実施形態に係る標的物質検出装置10の光検出部12の評価条件を示す図である。図22に示すように、光検出部12は、測定プローブ52の入出射面63と金属膜被覆フォトニック結晶21の反射面29との間にコリメートレンズ56を配置する。コリメートレンズ56と反射面29との距離(計測距離)をh、コリメートレンズ56から出射した平行光の反射面29における直径をd1、フォトニック結晶25の反射面29が露出する開口部24の直径をd2とする。本評価では、hを15mmまたは40mmとし、d1を3.5mm、d2を5mmとした。反射面29に照射される光の光軸ZL及び反射面29で反射された反射光の光軸ZLは、いずれも反射面29に対して直交している。測定プローブ52の直径は200μmである。照射する光は白色光を用いた。反射率は、標準物質(アルミニウム板)の反射光強度に対する比率である。
Next, the evaluation conditions of the
(処理部13)
次に、図1に示す処理部13について説明する。処理部13は、光検出部12が検出した反射光の極値の波長を求める。処理部13は、それとともに、求めた極値の波長のシフト(波長シフト量)に基づいて、少なくとも標的物質(例えば、図12、図13などに示す抗原36)の有無を検出する。処理部13は、例えば、マイクロコンピュータである。波長シフト量と金属膜被覆フォトニック結晶21の反射面29に捕捉された標的物質の濃度とは相関がある。このため、処理部13は、波長シフト量から反射面29に捕捉された標的物質の濃度を求めることができる。
(Processing unit 13)
Next, the
(標的物質を検出する方法)
次に、図1に示す標的物質検出装置10を用いて標的物質を検出する方法(標的物質検出方法)を説明する。この例においては、金属膜被覆フォトニック結晶21の反射面29にコルチゾール抗体を吸着させて、唾液中のコルチゾールを検出対象の標的物質として、検出・測定する場合を説明する。フォトニック結晶25としては、熱ナノインプリントにより所定の微細構造を表面に形成したシクロオレフィン系ポリマーのシートを所定の大きさに切断したものを用いている。
(Method of detecting target substance)
Next, a method for detecting a target substance (target substance detection method) using the target
図23は、第1の実施形態に係る標的物質検出方法の一例を示すフローチャートである。まず、ステップS11では、光検出部12は、フォトニック結晶25の反射面29に光を照射したときの反射面29からの反射光LRを検出し、処理部13は、反射光LRを計測する(ステップS11)。処理部13は、例えば、反射光LRの反射光強度のスペクトルを計測する。反射面29に照射する光(入射光LI)の波長は、例えば300nm以上2000nm以下である。
FIG. 23 is a flowchart illustrating an example of the target substance detection method according to the first embodiment. First, in step S11, the
次に、ステップS12では、コルチゾール抗体溶液(コルチゾール抗体濃度1μg/ml〜50μg/ml)を金属膜被覆フォトニック結晶21の反射面29に滴下する。そして、所定の時間または必要であれば、フォトニック結晶バイオセンサー11を所定の温度で所定の時間静置し、コルチゾール抗体を金属膜被覆フォトニック結晶21の反射面29に吸着させる。
Next, in step S <b> 12, a cortisol antibody solution (cortisol antibody concentration of 1 μg / ml to 50 μg / ml) is dropped onto the
次に、ステップS13では、リン酸緩衝液(PBS:Phosphate buffered saline)を金属膜被覆フォトニック結晶21の反射面29に滴下する。その後、遠心力などにより除去するリンス処理を複数回行う。
Next, in step S <b> 13, a phosphate buffer solution (PBS: Phosphate buffered saline) is dropped onto the
次に、ステップS14では、ブロッキング剤35としてスキムミルクをフォトニック結晶25の反射面29に滴下し、フォトニック結晶バイオセンサー11を所定の時間または必要であれば所定の温度で所定の時間静置し、スキムミルクを金属膜被覆フォトニック結晶21の反射面29におけるコルチゾール抗体の非吸着部に吸着させる。
Next, in step S14, skim milk is dropped as the blocking
その後、ステップS15では、リンス処理(ステップS13)と同様に、リン酸緩衝液によりリンス処理を複数回行う。上述した操作により、金属膜被覆フォトニック結晶21の反射面29に所定の処理がなされ、フォトニック結晶バイオセンサー11が形成される。
Thereafter, in step S15, the rinsing process is performed a plurality of times with a phosphate buffer solution, similarly to the rinsing process (step S13). By the above-described operation, the
次に、ステップS16では、まず、コルチゾールを含む溶液としての唾液の準備をする。唾液のサンプリング及び不純物の除去などの前処理は、例えば、市販の唾液採取キットを用いて行う。唾液の準備は、フォトニック結晶バイオセンサー11に唾液を滴下する前であればいつ行ってもよい。例えば、フォトニック結晶バイオセンサー11を形成する前に行ってもよく、フォトニック結晶バイオセンサー11を形成するのと並行して行ってもよく、反射光強度を計測した後に行ってもよい。サンプリング及び前処理の終了した唾液10μL〜50μLをフォトニック結晶バイオセンサー11に滴下する。
Next, in step S16, first, saliva is prepared as a solution containing cortisol. Pretreatment such as saliva sampling and impurity removal is performed using, for example, a commercially available saliva collection kit. The preparation of saliva may be performed at any time before the saliva is dripped onto the
次に、ステップS17では、フォトニック結晶バイオセンサー11を、所定の時間、また必要であれば所定の温度で所定の時間、静置して抗原抗体反応を行う。
Next, in step S17, the
その後、ステップS18では、リンス処理(ステップS15)と同様に、リン酸緩衝液によりリンス処理を複数回行う。 Thereafter, in step S18, the rinsing process is performed a plurality of times with a phosphate buffer solution, similarly to the rinsing process (step S15).
次に、ステップS19では、標的物質検出装置10を用いて、金属膜被覆フォトニック結晶21の反射面29に光を照射する。このときに照射する光は、ステップS11で反射面29に照射した光と同一である。そして、標的物質検出装置10は、反射面29からの反射光LR、例えば、反射光強度のスペクトルを計測する。
Next, in step S <b> 19, the target
フォトニック結晶バイオセンサー11の反射光強度の極値における波長は、反射面29または反射面29の近傍での抗原抗体反応などにより影響を受けて変化する。このため、反応前後の反射光強度の極値における波長の差、すなわち波長シフト量から、唾液中のコルチゾールを検出できる。また、波長シフト量から唾液中のコルチゾールの濃度を求めることができる。
The wavelength at the extreme value of the reflected light intensity of the
ステップS20では、処理部13は、ステップS19で計測した反射光強度(または反射率)の極値(極小値)における波長のシフト(波長シフト量)を求める。波長シフト量は、例えば、反射面29に標的物質が捕捉された後における波長λ2と、反射面29に標的物質が捕捉されていないときにおける反射光強度(または反射率)の極値(最小値)に対応する波長λ1との差分λ2−λ1である。
In step S20, the
ステップS21で、処理部13は、例えば、所定量以上の波長シフト量がある場合、唾液中にコルチゾールが存在すると判定する。また、処理部13は、波長シフト量に基づき、例えば、波長シフト量とコルチゾールの濃度との関係式を用いてコルチゾールの濃度を決定する。このとき、前記関係式は予め求めておき、処理部13の記憶部に保存しておく。
In step S <b> 21, the
上述した例では、標的物質が捕捉されていない状態の反射面29における反射光強度の極値の波長を用いて波長シフト量を求めたが、これに限定されるものではない。例えば、リンス処理(ステップS13またはステップS15)が終わった後における反射面29からの反射光強度の極値の波長を用いて波長シフト量を求めてもよい。また、ステップS11、ステップS19において、極値が複数ある場合には、着目する極値を適宜選定する。そして、選定された極値について、波長λ1及び波長λ2を求める。
In the example described above, the wavelength shift amount is obtained using the extreme wavelength of the reflected light intensity on the
なお、第1の実施形態では、金属膜被覆フォトニック結晶21は、反射面29に抗体34を固定しているが、これに限定されるものではなく、金属膜被覆フォトニック結晶21は、反射面29に抗体34を固定しないで用いてもよい。
In the first embodiment, the metal film-covered
[第2の実施形態]
第2の実施形態に係る標的物質捕捉装置を備えた標的物質検出装置について説明する。第2の実施形態に係る標的物質捕捉装置は、金属膜被覆フォトニック結晶21の反射面29に固定するものを抗原(標的物質)36とし、この抗原36に抗体34を吸着させることに変更したこと以外は第1の実施形態と同様であるため、重複した説明は省略する。
[Second Embodiment]
A target substance detection apparatus provided with a target substance capturing apparatus according to a second embodiment will be described. In the target substance capturing apparatus according to the second embodiment, the substance (target substance) 36 that is fixed to the reflecting
図24〜図28は、フォトニック結晶バイオセンサーの原理を説明する図である。抗体34と、抗原36との特異的反応として、第2の実施形態では、抗原36としてコルチゾールと、抗体34として抗コルチゾール抗体とを用いて説明する。
24 to 28 are diagrams illustrating the principle of the photonic crystal biosensor. In the second embodiment, the specific reaction between the
まず、図24に示すように、フォトニック結晶バイオセンサー11は、金属膜被覆フォトニック結晶21の反射面29に抗原36を固定する手段として、抗体34を反射面29に固定する手段と同様に行うことができる。抗原36を反射面29に固定する手段としては、例えば、共有結合、化学吸着、物理吸着などの、化学的結合、物理的結合方法が挙げられる。これらの手段は、抗原36の性質に応じて適宜選択することができる。
First, as shown in FIG. 24, the
金属膜被覆フォトニック結晶21に固定される抗原36の量は、一定量である。これにより、金属膜被覆フォトニック結晶21に固定される抗原36に抗体34が吸着して複合体65(図26、図27参照)が形成された場合に、形成された複合体65の量と相関する物理量を、フォトニック結晶バイオセンサー11が出力できる。固定される抗原36の一定量は、適宜変更してもよく、例えば、試料Sに含まれる抗原36の量の範囲によって最適な量に設定することができる。
The amount of the
その後、図25に示すように、ブロッキング剤35を反射面29の抗原36の付着していない箇所に固定させる。
Thereafter, as shown in FIG. 25, the blocking
次に、フォトニック結晶25の反射面29に、例えば300nm以上900nm以下の光(入射光)LIを平行光で、かつ光軸が反射面29と直交するように照射する。このときの反射光LRの強度または反射率が極値(この例では極小値)となる波長をλ1とする。
Next, the
次に、図26に示すように、抗原36と抗体34との複合体65と、抗体34とを含む混合物Mを準備する。混合物Mは、抗原36を含む試料Sと既知量の抗体34を含む溶液とを混合することで得られる。複合体65は、抗原36を含む試料Sと既知量の抗体34を含む溶液とを混合することで、抗体34と抗原36とが反応して得られる。抗体34は、抗体34の既知量を試料Sに含まれる抗原36の結合する部位の量よりも多くすることにより、混合物M中に抗原36と反応せずに残ったものである。混合物Mを、金属膜被覆フォトニック結晶21の反射面29に接触させる。これにより、図27に示すように、反射面29に固定された抗原36と抗体34とで複合体65を反射面29に形成させる。その後、図28に示すように、金属膜被覆フォトニック結晶21の反射面29に、例えば300nm以上2000nm以下の光(入射光)LIを平行光で、かつ光軸が反射面29と直交するように照射する。このときの、反射光LRの反射光強度または反射率が極値(この例では極小値)となる波長をλ2とする。
Next, as shown in FIG. 26, a mixture M including a complex 65 of the
光の反射率が極値となる波長の波長シフト量は、λ2−λ1である。金属膜被覆フォトニック結晶21の反射面29における表面状態の変化に応じて、波長シフト量は変化する。この波長シフト量に基づいて、抗原36の検出及び定量を行う。フォトニック結晶バイオセンサー11は、光学的な物理量を出力する。この物理量は、反射面29における表面状態の変化に相関し、反射面29に固定された抗原36と抗体34とで形成される複合体65の量と相関する。
The wavelength shift amount of the wavelength at which the light reflectance is an extreme value is λ2−λ1. The amount of wavelength shift changes according to the change in the surface state of the
第2の実施形態は、金属膜被覆フォトニック結晶21に抗原36であるコルチゾールを固定させて、抗体34である抗コルチゾール抗体を反応させている。上記第1の実施形態のように、金属膜被覆フォトニック結晶21の反射面29に抗体34を固定させた後、抗体34に抗原36を反応させる場合と比較して、第2の実施形態のように、金属膜被覆フォトニック結晶21の反射面29にコルチゾールを固定させた後、コルチゾールに抗コルチゾール抗体を反応させる場合の方が、金属膜被覆フォトニック結晶21の表面状態の変化が大きくなり、フォトニック結晶バイオセンサー11の感度が向上する。
In the second embodiment, cortisol that is the
次に、抗原36の濃度の測定方法を説明する。試料Sに含まれる抗原36の結合する部位の量をX、混合物M中の抗体34の既知量をCとする。このとき、XとCとの関係は、XをCよりも少なくする(X<C)。混合物M中において、抗原36と抗体34とが抗原抗体反応して、複合体65が形成される。XはCよりも少ない(X<C)ので、混合物M中の抗体34の量は、C−Xとなる。そして、混合物Mを、一定量の抗原36が固定された反射面29に接触させると、混合物M中の抗体34が反射面29の抗原36と抗原抗体反応して、複合体65が形成される。反射面29に固定されている抗原36の量は、混合物M中の抗体34の量C−X以上である。
Next, a method for measuring the concentration of the
混合物M中のすべての抗体34が反射面29の抗原36と抗原抗体反応すると、複合体65の量はC−Xになる。混合物Mを反射面29に接触させる前後において計測した波長λ1、λ2から求めた波長シフト量Δλは、反射面29に固定された複合体65の量に相当する。したがって、Δλ=k×(C−X)となる。kは、波長シフト量Δλを複合体65の量に変換するための定数である。反射面29に固定された複合体65の量と波長シフト量Δλとの関係は、予め求めておく。上記関係式から、抗原36の量Xは、C−Δλ/kで求めることができる。抗原36の濃度は、抗原36の量Xに基づいて求めることができる。
When all the
また、第2の実施形態では、フォトニック結晶バイオセンサー11は、例えば、複合体65と特異的に反応する二次抗体を、複合体結合物質として、金属膜被覆フォトニック結晶21の反射面29に固定された複合体65と反応させるようにしてもよい。二次抗体は第1複合体65よりも過剰な量を、金属膜被覆フォトニック結晶21の反射面29に接触させる。そして、全ての複合体65に二次抗体を付加させて第二複合体とする。このようにすることで、金属膜被覆フォトニック結晶21の表面状態の変化が更に大きくなる。この結果、フォトニック結晶バイオセンサー11の感度が更に上昇する。二次抗体は、そのまま使用することもできるし、他の物質を付加して使用してもよい。二次抗体が大きいほど金属膜被覆フォトニック結晶21の表面状態の変化が大きくなるため、二次抗体に他の物質を付加した後、複合体65と反応させることで、フォトニック結晶バイオセンサー11の感度が更に大きくなる。
In the second embodiment, the
反射面29に、第二複合体を形成させる場合は、第二複合体を形成させた後の反射面29に光を照射する。その結果得られる反射光強度または反射率が極値(この例では極小値)となる波長をλ2とする。極値が複数ある場合には、着目する極値を適宜選定する。選定された任意の極値について、波長λ1及び波長λ2を求める。フォトニック結晶バイオセンサー11は、光学的な物理量を出力する。この物理量は、反射面29における表面状態の変化に相関し、反射面29に固定された第2複合体の量と相関する。これにより、第2複合体を検出及び定量する。第2複合体の量は、複合体65の量と同一であるから、複合体65を定量することができる。
In the case of forming the second composite on the
10 標的物質検出装置
11 フォトニック結晶バイオセンサー(標的物質捕捉装置)
12 光検出部
13 処理部
21 金属膜被覆フォトニック結晶
22 上部プレート
23 下部プレート
24、43 開口部
25 フォトニック結晶
26 金属膜
27 表面
28A、28B 非平坦部
29 反射面
34 抗体(標的物質捕捉物質)
35 ブロッキング剤(保護物質)
36 抗原(標的物質)
37、65 複合体
38、44 液滴保持部
39 マグネットシート
41 孔付カバー
42 シート
51 光源
52 測定プローブ
53 光検出装置
54 第1光ファイバー
55 第2光ファイバー
56 コリメートレンズ
61 出射面
62 入射面
63 同一の面(入出射面)
M 混合物
U 単位配列
LI 入射光
LR 反射光
10 Target
DESCRIPTION OF
35 Blocking agent (protective substance)
36 Antigen (target substance)
37, 65
M mixture U unit array LI incident light LR reflected light
Claims (2)
2以上の自然数をMとし、Mとは異なる2以上の自然数をNとしたとき、
前記複数の非平坦部が並べられた配列は、前記非平坦部がM回対称である図形における頂点の位置に、前記非平坦部の中心を1つずつ重ねるように配置された単位配列を複数含み、複数の前記単位配列がN回対称である格子模様の交点の位置に、前記M回対称である図形の重心を1つずつ重ねるように配置され、
前記反射面で反射された反射光は、特定の波長で極値を示し、当該極値の数は複数あることを特徴とする標的物質捕捉装置。 A target substance capturing device including a reflective surface in which a plurality of non-flat portions are arranged, captures a target substance, and reflects irradiated light,
When a natural number of 2 or more is M and a natural number of 2 or more different from M is N,
The arrangement in which the plurality of non-flat portions are arranged includes a plurality of unit arrays arranged so that the centers of the non-flat portions are overlapped one by one at the positions of vertices in a figure in which the non-flat portions are M-fold symmetric. A plurality of unit arrays are arranged so as to overlap the center of gravity of the figure having M times symmetry one by one at the position of the intersection of the lattice pattern having N times symmetry,
The target substance capturing device, wherein the reflected light reflected by the reflecting surface exhibits an extreme value at a specific wavelength, and there are a plurality of extreme values.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013084205A JP2014206463A (en) | 2013-04-12 | 2013-04-12 | Target substance capture device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013084205A JP2014206463A (en) | 2013-04-12 | 2013-04-12 | Target substance capture device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2014206463A true JP2014206463A (en) | 2014-10-30 |
Family
ID=52120112
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013084205A Pending JP2014206463A (en) | 2013-04-12 | 2013-04-12 | Target substance capture device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2014206463A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003121350A (en) * | 2001-08-07 | 2003-04-23 | Mitsubishi Chemicals Corp | Surface plasmon resonance sensor chip, and sample analysis method and analyzer using the same |
| JP2008232719A (en) * | 2007-03-19 | 2008-10-02 | Canon Inc | Apparatus and method for target substance detection |
| WO2010023842A1 (en) * | 2008-08-29 | 2010-03-04 | 独立行政法人科学技術振興機構 | Two-dimensional photonic crystal laser |
| WO2010044274A1 (en) * | 2008-10-17 | 2010-04-22 | 国立大学法人東京工業大学 | Optical sensor, method for manufacturing same and detection method using optical sensor |
| JP2011232186A (en) * | 2010-04-28 | 2011-11-17 | Seiko Epson Corp | Optical device, analyzer and spectroscopy method |
| JP2012098272A (en) * | 2010-08-23 | 2012-05-24 | Nsk Ltd | Target concentration measuring device and target concentration measuring method |
-
2013
- 2013-04-12 JP JP2013084205A patent/JP2014206463A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003121350A (en) * | 2001-08-07 | 2003-04-23 | Mitsubishi Chemicals Corp | Surface plasmon resonance sensor chip, and sample analysis method and analyzer using the same |
| JP2008232719A (en) * | 2007-03-19 | 2008-10-02 | Canon Inc | Apparatus and method for target substance detection |
| WO2010023842A1 (en) * | 2008-08-29 | 2010-03-04 | 独立行政法人科学技術振興機構 | Two-dimensional photonic crystal laser |
| WO2010044274A1 (en) * | 2008-10-17 | 2010-04-22 | 国立大学法人東京工業大学 | Optical sensor, method for manufacturing same and detection method using optical sensor |
| JP2011232186A (en) * | 2010-04-28 | 2011-11-17 | Seiko Epson Corp | Optical device, analyzer and spectroscopy method |
| JP2012098272A (en) * | 2010-08-23 | 2012-05-24 | Nsk Ltd | Target concentration measuring device and target concentration measuring method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5900615B2 (en) | Target substance capture device | |
| Estevez et al. | Integrated optical devices for lab‐on‐a‐chip biosensing applications | |
| KR100991563B1 (en) | Surface plasmon resonance sensor chip, manufacturing method thereof, surface plasmon resonance sensor system and method for detecting analyte using the same | |
| US7429492B2 (en) | Multiwell plates with integrated biosensors and membranes | |
| US20080158570A1 (en) | Double resonance interrogation of grating-coupled waveguides | |
| CN108344714B (en) | Biodetector based on interference effect of ordered porous nanostructured thin film and method for detecting biomolecules | |
| US11499917B2 (en) | Biomarker detection apparatus | |
| EP2208053A2 (en) | Microelectronic optical evanescent field sensor | |
| JP2014232098A (en) | Target substance capturing device and target substance detection apparatus | |
| JP2019516993A (en) | Biosensor and sample analysis method using the same | |
| US20250180550A1 (en) | Solid-phase carrier and kit for measuring an analyte | |
| ES2885226T3 (en) | Method for the direct measurement of molecular interactions by detecting reflected light from multilayer functionalized dielectric materials | |
| WO2013128614A1 (en) | Target-material detection device and target-material detection method | |
| JP2012098272A (en) | Target concentration measuring device and target concentration measuring method | |
| JP2015111063A (en) | Surface plasmon-field enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus | |
| JP2014160021A (en) | Target substance capturing device and target substance detection device including the same | |
| US20070248991A1 (en) | Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance | |
| JP2014206463A (en) | Target substance capture device | |
| WO2014178385A1 (en) | Target substance-capturing device and target substance detection device | |
| WO2013129665A1 (en) | Target-material-capturing device and target-material detection device provided with same | |
| JP2014215285A (en) | Target substance capture device, and method of manufacturing the same | |
| WO2014178384A1 (en) | Target substance detection device and detection method for target substance | |
| JP2015232525A (en) | Target substance capture device, production method of target substance capture device and detection device comprising target substance capture device | |
| JP4670015B2 (en) | Photodetection type molecular sensor and molecular detection method | |
| JP2002357542A (en) | Analytical element and method for analyzing a sample using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160115 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161117 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161122 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170523 |