JP2014224239A - Sliding machine - Google Patents
Sliding machine Download PDFInfo
- Publication number
- JP2014224239A JP2014224239A JP2014082034A JP2014082034A JP2014224239A JP 2014224239 A JP2014224239 A JP 2014224239A JP 2014082034 A JP2014082034 A JP 2014082034A JP 2014082034 A JP2014082034 A JP 2014082034A JP 2014224239 A JP2014224239 A JP 2014224239A
- Authority
- JP
- Japan
- Prior art keywords
- sliding
- oil
- dlc
- lubricating oil
- friction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Lubricants (AREA)
- Physical Vapour Deposition (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
【課題】DLC膜で被覆された摺動部材と潤滑油の新たな組み合わせにより、著しく低い摩擦係数を実現できる摺動機械を提供する。【解決手段】本発明の摺動機械は、相対移動し得る対向した摺動面を有する一対の摺動部材と、対向する摺動面間に介在し得る潤滑油とを備える。それら摺動面の少なくとも一方は、膜全体を100原子%としたときに、合計で1〜30%となるB、Ti、VまたはMoの少なくとも一種以上からなる特定元素(ドープ元素)と、0〜25%のHと、残部がCおよび不純物とからなる非晶質炭素膜で被覆された被覆面からなる。また潤滑油は、Moの三核体からなる化学構造を有する油溶性モリブデン化合物を、潤滑油全体に対するMo含有質量で25〜800ppm含む。【選択図】図5A sliding machine capable of realizing a remarkably low coefficient of friction is provided by a new combination of a sliding member coated with a DLC film and a lubricating oil. A sliding machine of the present invention includes a pair of sliding members having opposed sliding surfaces that can move relative to each other, and a lubricating oil that can be interposed between the opposed sliding surfaces. At least one of the sliding surfaces has a specific element (doping element) composed of at least one of B, Ti, V, or Mo that is 1 to 30% in total when the entire film is 100 atomic%, and 0 It consists of a coated surface covered with an amorphous carbon film composed of ˜25% H and the balance of C and impurities. Further, the lubricating oil contains 25 to 800 ppm of an oil-soluble molybdenum compound having a chemical structure composed of a trinuclear body of Mo in terms of the Mo-containing mass with respect to the entire lubricating oil. [Selection] Figure 5
Description
本発明は、特定元素(M)を含む非晶質炭素膜(DLC−M膜)と特定の化学構造を有する油溶性モリブデン化合物を含有した潤滑油とにより、摺動面間に作用する摩擦係数や摺動抵抗等を顕著に低減できる摺動機械に関する。 The present invention relates to a friction coefficient acting between sliding surfaces by an amorphous carbon film (DLC-M film) containing a specific element (M) and a lubricating oil containing an oil-soluble molybdenum compound having a specific chemical structure. The present invention relates to a sliding machine capable of significantly reducing sliding resistance and the like.
多くの機械は摺接しつつ相対移動する摺動部材を備える。このような摺動部材を有する機械(本明細書では「摺動機械」という。)では、その摺動部分に作用する抵抗力(摺動抵抗)を小さくすることにより、性能が向上すると共に稼動に必要なエネルギーが低減される。このような摺動抵抗の低減は、通常、摺動面間に作用する摩擦係数の低減により達成される。 Many machines are provided with sliding members that move relative to each other while sliding. In a machine having such a sliding member (referred to as “sliding machine” in this specification), performance is improved and operation is reduced by reducing a resistance force (sliding resistance) acting on the sliding portion. The energy required for is reduced. Such reduction in sliding resistance is usually achieved by reducing the coefficient of friction acting between the sliding surfaces.
摺動面間に作用する摩擦係数は、摺動面の表面状態と摺動面間の潤滑状態により異なる。このため摩擦係数の低減を図る場合、摺動面の表面改質と摺動面間へ供給する潤滑剤(潤滑油)の改良が検討される。摺動面の表面改質には種々あるが、低摩擦化を図れ耐摩耗性にも優れる非晶質炭素膜(いわゆるダイヤモンドライクカーボン(DLC)膜)が摺動面に形成されることが多い。また、潤滑剤も摺動機械の種類、使用環境等に応じて種々改良されるが、通常は摩擦低減効果のある添加剤の配合により対応されることが多い。 The friction coefficient acting between the sliding surfaces varies depending on the surface state of the sliding surface and the lubrication state between the sliding surfaces. Therefore, when reducing the friction coefficient, improvement of the surface modification of the sliding surface and improvement of the lubricant (lubricating oil) supplied between the sliding surfaces are considered. There are various types of surface modification of the sliding surface, but an amorphous carbon film (so-called diamond-like carbon (DLC) film) having low friction and excellent wear resistance is often formed on the sliding surface. . In addition, the lubricant is variously improved according to the type of sliding machine, the usage environment, etc., but is usually dealt with by adding an additive having a friction reducing effect.
ところが、摩擦低減効果があるとされるDLC膜も、乾式下と湿式下では特性が異なる。しかも湿式下におけるDLC膜の摺動特性は、介在する潤滑油の種類によっても異なり得る。そこで、特定のDLC膜と特定の潤滑油を最適に組み合わせることが、摩擦係数の低減を図る上で重要となる。これに関連する提案が、例えば下記の特許文献でされている。 However, the characteristics of the DLC film, which is considered to have a friction reducing effect, also differ between the dry type and the wet type. Moreover, the sliding characteristics of the DLC film under wet conditions may vary depending on the type of lubricating oil interposed. Therefore, it is important to optimally combine a specific DLC film and a specific lubricating oil in order to reduce the friction coefficient. Proposals related to this are made, for example, in the following patent documents.
特許文献1は、MoまたはTiを含むDLC膜と、モリブデンジチオカーバメイト(MoDTC)を500ppm含む潤滑油とを組み合わせることを提案している。また特許文献2は、金属元素等を含まない一般的なDLC膜と、MoDTC(硫黄含有モリブデン錯体)をMo含有割合で9.9質量%含む潤滑油とを組み合わせることを提案している。これらの特許文献で用いられているMoDTCは、周知なエンジン油の添加剤であり、Moの二核体からなる。 Patent Document 1 proposes a combination of a DLC film containing Mo or Ti and a lubricating oil containing 500 ppm of molybdenum dithiocarbamate (MoDTC). Patent Document 2 proposes to combine a general DLC film not containing a metal element or the like with a lubricating oil containing 9.9% by mass of MoDTC (sulfur-containing molybdenum complex) in a Mo content ratio. MoDTC used in these patent documents is a well-known additive for engine oil, and consists of a binuclear body of Mo.
特許文献3は、金属元素等を含まない一般的なDLC膜とベースオイルに三核モリブデンジチオカルバメートをMo量で550ppm添加した潤滑油とを組み合わせることを提案している。もっとも特許文献3は、その組み合わせにより摩擦係数が低減される旨を記載しているに留まり、そのメカニズム等について一切明らかにしていない。また、その組み合わせにより得られる摩擦係数は高々0.1程度であり、未だ摩擦係数の低減が不十分である。 Patent Document 3 proposes a combination of a general DLC film not containing a metal element or the like and a lubricating oil in which trinuclear molybdenum dithiocarbamate is added to the base oil in an amount of 550 ppm by Mo amount. However, Patent Document 3 only describes that the friction coefficient is reduced by the combination, and does not clarify any mechanism or the like. Further, the friction coefficient obtained by the combination is about 0.1 at most, and the reduction of the friction coefficient is still insufficient.
このようにDLC膜と潤滑油の好適な組み合わせについて従来からいくつかの提案がなされているが、摩擦係数を顕著に低減させ得るDLC膜と潤滑油の組み合わせには未だ提案されていなかった。また、DLC膜と潤滑油の組み合わせによって摩擦係数が変化するメカニズム等についても明確にはされていなかった。 As described above, some proposals have been made regarding a suitable combination of a DLC film and a lubricating oil, but a combination of a DLC film and a lubricating oil that can significantly reduce the friction coefficient has not been proposed yet. Further, the mechanism by which the friction coefficient changes depending on the combination of the DLC film and the lubricating oil has not been clarified.
本発明はこのような事情に鑑みて為されたものであり、DLC膜と潤滑油の新たな組み合わせにより、従来よりも摺動面間における摩擦係数を遥かに低減できる摺動機械を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a sliding machine that can reduce the coefficient of friction between sliding surfaces far more than before by a new combination of a DLC film and a lubricating oil. With the goal.
本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、特定元素(M)を含む非晶質炭素膜(DLC−M膜)と、特定の化学構造を有する油溶性モリブデン化合物を含有した潤滑油との新たな組み合わせにより、摺動面間の摩擦係数を著しく低減できることを発見した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive studies to solve this problem and repeated trial and error, the present inventor has obtained an amorphous carbon film (DLC-M film) containing a specific element (M) and an oil-soluble molybdenum having a specific chemical structure. It has been discovered that a new combination with a lubricant containing a compound can significantly reduce the coefficient of friction between sliding surfaces. By developing this result, the present invention described below has been completed.
《摺動機械》
(1)本発明の摺動機械は、相対移動し得る対向した摺動面を有する一対の摺動部材と、該対向する摺動面間に介在し得る潤滑油と、を備えた摺動機械であって、前記摺動面の少なくとも一方は、膜全体を100原子%(単に「%」という。)としたときに、合計で1〜30%となるボロン(B)、チタン(Ti)、バナジウム(V)またはモリブデン(Mo)の少なくとも一種以上からなる特定元素と、0〜25%の水素(H)と、残部が炭素(C)および不純物とからなる非晶質炭素膜で被覆された被覆面からなり、前記潤滑油は、モリブデン(Mo)の三核体からなる化学構造を有する油溶性モリブデン化合物を、該潤滑油全体に対するMoの質量割合で25〜800ppm含むことを特徴とする。
《Sliding machine》
(1) A sliding machine according to the present invention includes a pair of sliding members having opposed sliding surfaces that can move relative to each other and a lubricating oil that can be interposed between the opposed sliding surfaces. Then, at least one of the sliding surfaces has a total of 1 to 30% of boron (B), titanium (Ti), when the entire film is 100 atomic% (simply referred to as “%”), Covered with an amorphous carbon film composed of a specific element composed of at least one of vanadium (V) or molybdenum (Mo), 0 to 25% of hydrogen (H), and the balance of carbon (C) and impurities. The lubricating oil comprises a coated surface, and contains an oil-soluble molybdenum compound having a chemical structure composed of molybdenum (Mo) trinuclear in a mass ratio of 25 to 800 ppm of Mo with respect to the entire lubricating oil.
(2)本発明の場合、B、Ti、VまたはMoの一種以上からなる特定元素および/またはHを含む非晶質炭素膜(適宜単に「DLC膜」という。)により被覆された摺動面は、特定の化学構造を有する油溶性モリブデン化合物を含む潤滑油の存在下で、摺動面間の摩擦係数が著しく低減される。具体的にいうと、本発明の場合、その摩擦係数が0.04以下、0.03以下さらには0.02程度になる超低摩擦も起こり得る。この結果、本発明の摺動機械は、摺動抵抗や摩擦損失の大幅な低減が可能となり、運動性能や省エネルギー化等の顕著な向上を図ることが可能となる。なお、このような低摩擦特性を発揮する本発明の摺動機械は、境界潤滑条件から混合潤滑条件に至る厳しい条件下で稼動する駆動系機械(例えばエンジン、変速機)等に好適である。 (2) In the case of the present invention, a sliding surface covered with an amorphous carbon film (referred to simply as “DLC film” as appropriate) containing a specific element consisting of one or more of B, Ti, V or Mo and / or H. In the presence of a lubricating oil containing an oil-soluble molybdenum compound having a specific chemical structure, the coefficient of friction between sliding surfaces is significantly reduced. Specifically, in the case of the present invention, ultra-low friction with a friction coefficient of 0.04 or less, 0.03 or less, or about 0.02 may occur. As a result, the sliding machine according to the present invention can significantly reduce sliding resistance and friction loss, and can achieve remarkable improvements such as motion performance and energy saving. The sliding machine of the present invention that exhibits such a low friction characteristic is suitable for a drive system machine (for example, an engine or a transmission) that operates under severe conditions from boundary lubrication conditions to mixed lubrication conditions.
なお、本発明に係るDLC膜は、必ずしもHを含む必要はなく、特定元素を含む限り、Hを実質的に含まないHフリー(H含有量が0〜25%さらには0.1〜24%)でもよいし、H含有量が0〜5%、0.5〜4%さらには1〜3%の低HDLC膜でもよい。このようなDLC膜は、上述した低摩擦特性と併せて、非常に優れた耐摩耗性も発揮し得る。逆に、本発明に係るDLC膜が適量のHを含む場合、低摩擦特性のさらなる向上を図れる。この場合のH含有量は5〜25%であると好適である。 The DLC film according to the present invention does not necessarily contain H. As long as the DLC film contains a specific element, the DLC film does not substantially contain H (H content is 0 to 25%, further 0.1 to 24%). Or a low HDLC film having an H content of 0 to 5%, 0.5 to 4%, or even 1 to 3%. Such a DLC film can also exhibit very excellent wear resistance in combination with the low friction characteristics described above. On the contrary, when the DLC film according to the present invention contains an appropriate amount of H, the low friction characteristics can be further improved. In this case, the H content is preferably 5 to 25%.
(3)本発明に係る特定のDLC膜と潤滑油の組み合わせが非常に優れた摩擦低減効果を発現するメカニズムは必ずしも定かではないが、本発明者が鋭意研究したところ、現状では次のように考えられる。 (3) Although the mechanism by which the combination of the specific DLC film and the lubricating oil according to the present invention exhibits a very excellent friction reducing effect is not necessarily clear, the present inventors have intensively studied, and the present situation is as follows: Conceivable.
本発明に係るDLC膜の場合、特定元素(B、Ti、VまたはMoの一種以上)が存在する部分において、潤滑油中に含まれるMoの三核体からなる油溶性モリブデン化合物(単に「Mo三核体化合物」という。)の吸着反応が促進される。その結果、Mo三核体化合物と競争吸着関係にある他の添加剤またはその構成元素は、摺動面(DLC膜)上における吸着反応が抑制される。 In the case of the DLC film according to the present invention, in a portion where a specific element (one or more of B, Ti, V or Mo) is present, an oil-soluble molybdenum compound composed of a trinuclear body of Mo contained in lubricating oil (simply referred to as “Mo”). Adsorption reaction of “trinuclear compound”) is promoted. As a result, the adsorption reaction on the sliding surface (DLC film) of other additives having a competitive adsorption relationship with the Mo trinuclear compound or its constituent elements is suppressed.
例えば、Mo三核体化合物が存在しないと、潤滑油に添加されることが多い過塩基性Caスルホネート等の添加剤は、摺動面に吸着して厚さ(高さ)が10nmを超える反応化合物を偏在的に生成し、その摺動面上に微細な凸部(突起)を形成し得る。このような微細な凸部は境界潤滑下(または混合潤滑下)において摩擦係数を増大させる原因となる。しかし、本発明の摺動機械では、上述したように、特定元素を含むDLC膜とMo三核体化合物を含む潤滑油が相乗的に作用する結果、他の添加剤が摺動面に吸着反応することが阻害され、摺動面の表面粗さが大きくなる事態が回避される。こうして本発明に係る摺動面は、少なくとも摺動機械が試運転等されて、DLC膜と潤滑油が十分に接触した後であれば、他の添加剤の吸着反応等による微細凸部の形成も殆ど無い超平滑面(例えば表面粗さ(最大高さ)が5nm以下さらには2nm以下)となり得る。そして、このような平滑な摺動面が潤滑油からなる油膜を介在させつつ相対移動することにより、摺動面同士の微細な直接接触が回避され、摺動面間の摩擦係数が著しく低下したと考えられる。 For example, when there is no Mo trinuclear compound, additives such as overbased Ca sulfonate, which are often added to lubricating oil, are adsorbed on the sliding surface and have a thickness (height) exceeding 10 nm. The compound can be generated unevenly and fine convex portions (projections) can be formed on the sliding surface. Such fine convex portions cause a friction coefficient to increase under boundary lubrication (or mixed lubrication). However, in the sliding machine of the present invention, as described above, the DLC film containing the specific element and the lubricating oil containing the Mo trinuclear compound act synergistically, and as a result, other additives are adsorbed on the sliding surface. This prevents the situation where the surface roughness of the sliding surface increases. In this way, the sliding surface according to the present invention can form fine convex portions by adsorption reaction of other additives, etc. at least after the sliding machine has been trial run and the DLC film and the lubricating oil are in sufficient contact. It can be an extremely smooth surface (for example, the surface roughness (maximum height) is 5 nm or less, further 2 nm or less). And, such a smooth sliding surface moves relative to each other with an oil film made of lubricating oil, so that the fine direct contact between the sliding surfaces is avoided, and the friction coefficient between the sliding surfaces is remarkably reduced. it is conceivable that.
さらに本発明に係るDLC膜は、通常、摺動部材の基材(例えば鋼材)よりも硬く、かつ摺動相手側の摺動面へも移着しにくい特性がある。このため本発明に係る摺動面は、上述した平滑状態が摺動機械の稼動中も安定的に維持され、低摩擦化が安定的に図られると共に高耐摩耗性も発揮されると考えられる。 Furthermore, the DLC film according to the present invention is usually harder than the base material (for example, steel) of the sliding member and has a characteristic that it is difficult to transfer to the sliding surface on the sliding counterpart side. For this reason, the sliding surface according to the present invention is considered to maintain the above-described smooth state stably even during the operation of the sliding machine, to stably achieve low friction and to exhibit high wear resistance. .
なお、本発明に係るMo三核体化合物は摺動面に吸着反応することにより、Mo3S7、Mo3S8 、Mo2S6などの化学構造を有する硫化モリブデン化合物をその摺動面上に形成し得る。これら硫化モリブデン化合物は、二硫化モリブデン(MoS2)と類似した構造を有するため、二硫化モリブデンと同様に、層状構造に基づく低剪断特性も摺動面間で発揮されると推察される。この結果、摺動面同士の直接接触が回避され、境界摩擦係数も低減され得る。このような点も、マクロ的な摩擦係数の低減に寄与していると考えられる。 The Mo trinuclear compound according to the present invention adsorbs and reacts with the sliding surface, thereby converting the molybdenum sulfide compound having a chemical structure such as Mo 3 S 7 , Mo 3 S 8 , Mo 2 S 6 into the sliding surface. Can be formed on top. Since these molybdenum sulfide compounds have a structure similar to molybdenum disulfide (MoS 2 ), it is presumed that the low shear characteristics based on the layered structure are exhibited between the sliding surfaces as well as molybdenum disulfide. As a result, direct contact between the sliding surfaces can be avoided, and the boundary friction coefficient can be reduced. Such a point is also considered to contribute to the reduction of the macro coefficient of friction.
(4)本発明に係るMo三核体は、例えば、Mo3S7またはMo3S8からなり、特にMo3S7からなると好適である。本発明に係るMo三核体化合物は、そのような三核体からなる骨格(分子構造)を備える限り、末端に結合している官能基や分子量等は問わない。参考までに、Mo3S7からなる硫化モリブデン化合物の一例を図19に示した。図19中のRはヒドロカルビル基である。 (4) The Mo trinuclear body according to the present invention is made of, for example, Mo 3 S 7 or Mo 3 S 8 , and particularly preferably Mo 3 S 7 . As long as the Mo trinuclear compound according to the present invention has a skeleton (molecular structure) composed of such a trinuclear body, there is no limitation on the functional group, molecular weight, or the like bonded to the terminal. For reference, an example of a molybdenum sulfide compound made of Mo 3 S 7 is shown in FIG. R in FIG. 19 is a hydrocarbyl group.
《その他》
(1)本発明でいう「摺動機械」は、摺動部材と潤滑油を備えれば足り、機械としての完成体に限らず、その一部を構成する機械要素の組み合わせ等でもよい。このため本発明の摺動機械は、摺動構造、摺動システム等と換言することもできる。
<Others>
(1) The “sliding machine” referred to in the present invention is sufficient if it includes a sliding member and lubricating oil, and is not limited to a finished machine as a machine, but may be a combination of machine elements constituting a part thereof. For this reason, the sliding machine of the present invention can be restated as a sliding structure, a sliding system, or the like.
本発明に係るDLC膜による被覆面は、相対移動する対向した摺動部材の少なくとも一方の摺動面に形成されていればよい。勿論、対向する両摺動面ともDLC膜による被覆面となっているとより好ましい。 The coated surface of the DLC film according to the present invention may be formed on at least one sliding surface of the opposed sliding members that move relative to each other. Of course, it is more preferable that both facing sliding surfaces are covered with a DLC film.
(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.
上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の摺動機械全体としてのみならず、それを構成する摺動部材や潤滑油にも適宜該当し、また方法的な構成要素であっても物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in this specification are applicable not only to the entire sliding machine of the present invention, but also to the sliding members and lubricating oil constituting it as appropriate, and even if it is a structural component, it is a configuration related to an object. Can also be an element. Which embodiment is the best depends on the target, required performance, and the like.
《潤滑油》
本発明に係る潤滑油は、Mo三核体化合物を含むものであれば、基油の種類や他の添加剤の有無等を問わない。通常、エンジン油等の潤滑油には、S、P、Zn、Ca、Mg、Na、BaまたはCu等を含む種々の添加剤が含まれる。このような潤滑油中でも、本発明に係るMo三核体化合物は、DLC膜で被覆された摺動面(被覆面)上に優先的に作用し、他の添加元素によって被覆面の表面粗さを劣化させる化合物が吸着反応等により生成されることを抑止する。なお、本発明に係る潤滑油は、Mo三核体化合物以外のMo系化合物(例えばMoDTC、二硫化モリブデン等)を含んでもよい。
"Lubricant"
As long as the lubricating oil according to the present invention contains a Mo trinuclear compound, the type of base oil, the presence or absence of other additives, etc. may be used. Usually, lubricating oils such as engine oils contain various additives including S, P, Zn, Ca, Mg, Na, Ba or Cu. Among such lubricating oils, the Mo trinuclear compound according to the present invention preferentially acts on the sliding surface (coated surface) coated with the DLC film, and the surface roughness of the coated surface by other additive elements. The generation of a compound that degrades is caused by an adsorption reaction or the like. The lubricating oil according to the present invention may contain a Mo-based compound other than the Mo trinuclear compound (for example, MoDTC, molybdenum disulfide, etc.).
Mo三核体化合物が過少であると、上記のような効果が発揮され難くなるが、Mo三核体化合物が過多でも問題はない。但し、Moはレアメタルの一種であるから、その使用量は少ないほど好ましい。そこで本発明に係るMo三核体化合物は、潤滑油全体に対するMoの質量割合で5〜800ppm、10〜500ppm、25〜300ppm、40〜220ppmさらには80〜170ppmであると好ましい。なお、潤滑油全体に対するMoの質量割合をppmで表すときはppmMoと表記する。ちなみに、Mo三核体化合物以外のMo系化合物等が潤滑油中に含まれる場合、潤滑油中に含まれるMoの総量(総質量割合)は当然に上記範囲と異なるが、潤滑油全体に対するMo総量の上限値は400ppmMoさらには350ppmMoであると好ましい。 If the amount of the Mo trinuclear compound is too small, the above-described effects are hardly exhibited, but there is no problem if the amount of the Mo trinuclear compound is excessive. However, since Mo is a kind of rare metal, the amount used is preferably as small as possible. Therefore, the Mo trinuclear compound according to the present invention is preferably 5 to 800 ppm, 10 to 500 ppm, 25 to 300 ppm, 40 to 220 ppm, or even 80 to 170 ppm in terms of the mass ratio of Mo to the entire lubricating oil. In addition, when the mass ratio of Mo with respect to the whole lubricating oil is expressed in ppm, it is expressed as ppmMo. Incidentally, when Mo-based compounds other than the Mo trinuclear compound are included in the lubricating oil, the total amount (total mass ratio) of Mo contained in the lubricating oil is naturally different from the above range, but Mo with respect to the entire lubricating oil The upper limit of the total amount is preferably 400 ppmMo, more preferably 350 ppmMo.
《摺動部材の摺動面》
本発明に係る摺動部材は、潤滑油を介在させつつ相対移動する摺動面を有するものであれば、その種類、形態、摺動形態等を問わない。本発明の場合、相対移動する対向した一対の摺動面のうち、少なくとも一方に特定元素を含むDLC膜が被覆されていれば、上述した潤滑油との組み合わせにより、摺動面間の摩擦係数が顕著に低下し得る。特に、DLC膜と潤滑油の組成をマッチングさせることにより、本発明の摺動機械は、摺動面間の摩擦係数が0.03以下さらには0.02近傍となるような超低摩擦特性を発揮し得る。
<Sliding surface of sliding member>
The sliding member according to the present invention may be of any type, form, sliding form, etc. as long as it has a sliding surface that moves relative to the lubricating oil. In the case of the present invention, if a DLC film containing a specific element is coated on at least one of a pair of opposed sliding surfaces that move relative to each other, the friction coefficient between the sliding surfaces is obtained by the combination with the lubricating oil described above. Can be significantly reduced. In particular, by matching the composition of the DLC film and the lubricating oil, the sliding machine of the present invention has an ultra-low friction characteristic such that the friction coefficient between the sliding surfaces is 0.03 or less, or even near 0.02. Can demonstrate.
このように顕著な低摩擦特性が発揮される理由として、Mo三核体化合物を含む潤滑油が存在する状況で、特定のDLC膜で被覆された摺動面(被覆面)が対向する摺動面と摺接することにより、その被覆面の表面形状(表面粗さ)が非常に平滑な状態になることが挙げられる。この被覆面の平滑度合は、DLC膜や潤滑油の種類、摺動条件等により変化し得るが、例えば、1μm×1μmの方形状の測定領域について原子間力顕微鏡を用いて摺動方向に対して垂直方向へ走査して測定した際の表面粗さが最大高さ(Rmax)で、8nm以下、5nm以下さらには2nm以下ともなり得る。さらに本発明に係る被覆面は、その測定領域を10μm×10μmに拡張しても、Rmaxが上記の範囲内ともなり得る。 The reason why such a remarkable low friction characteristic is exhibited is that the sliding surface (coated surface) covered with a specific DLC film faces in the presence of lubricating oil containing Mo trinuclear compound. It is mentioned that the surface shape (surface roughness) of the coated surface becomes very smooth by sliding contact with the surface. The degree of smoothness of the coated surface may vary depending on the type of DLC film and lubricant, sliding conditions, etc. For example, a 1 μm × 1 μm square measurement area can be measured against the sliding direction using an atomic force microscope. The surface roughness when measured by scanning in the vertical direction can be 8 nm or less, 5 nm or less, or 2 nm or less as the maximum height (Rmax). Furthermore, even if the measurement area of the coated surface according to the present invention is expanded to 10 μm × 10 μm, Rmax can be within the above range.
このような顕著な平滑面が形成される理由として、上述したように、潤滑油中に含まれるMo三核体化合物が、被覆面上の表面粗さを劣化させる化合物の生成を阻害することが挙げられる。このような化合物を生成する添加元素として、例えば、エンジン油の清浄剤等に多く含まれるCaがあることが本発明者の研究によりわかった。そこで、このCaとMo三核体を構成する代表的な化学構造をもつMo3S7とが被覆面上に存在する割合(存在比率)を調査したところ、摺動面間の摩擦係数と相関があることも明らかとなった。具体的にいうと、本発明に係る被覆面が、Bi+を1次イオンとする飛行時間型2次イオン質量分析法(TOF−SIMS)を用いて最表面を解析した際に、負イオンスペクトルに関して測定される質量数517.4付近に現れる98Mo3S7 −に帰属されるピークのカウント数(A)と、正イオンスペクトルに関して測定される質量数40.0付近に現れる40Ca+に帰属されるピークのカウント数(B)との比であるカウント数比(A/B)が0.006以上さらには0.01以上であるときに、優れた低摩擦特性が発揮され得ることがわかった。従って、本発明に係る摺動面が特定のDLC膜で被覆されていることを前提に、本発明に係る潤滑油はCaの含有量が少なく、Mo三核体化合物(特にMo3S7からなるMo化合物)が多いほど、摺動面間の低摩擦係数化を図り易いといえる。但し、両者の比率が一定の範囲内であれば十分であるから、被覆面の表面粗さを劣化させ得る添加元素の含有量が少ないなら、それに応じてMo三核体化合物を低減することも可能である。 The reason why such a noticeable smooth surface is formed is that, as described above, the Mo trinuclear compound contained in the lubricating oil inhibits the generation of a compound that deteriorates the surface roughness on the coated surface. Can be mentioned. As an additive element for generating such a compound, for example, it has been found by research of the present inventor that there is Ca contained in a large amount in an engine oil detergent or the like. Therefore, when the ratio (existence ratio) of Ca 3 and Mo 3 S 7 having a typical chemical structure constituting the Mo trinuclear body on the coated surface was investigated, it was correlated with the friction coefficient between the sliding surfaces. It became clear that there was. Specifically, when the coated surface according to the present invention analyzes the outermost surface using time-of-flight secondary ion mass spectrometry (TOF-SIMS) using Bi + as a primary ion, a negative ion spectrum is obtained. The count number (A) of the peak attributed to 98 Mo 3 S 7 − appearing near the mass number 517.4 measured with respect to 40 Ca + appearing near the mass number 40.0 measured regarding the positive ion spectrum. When the count number ratio (A / B), which is the ratio with the count number (B) of the attributed peak, is 0.006 or more, further 0.01 or more, excellent low friction characteristics can be exhibited. all right. Therefore, on the premise that the sliding surface according to the present invention is coated with a specific DLC film, the lubricating oil according to the present invention has a low Ca content, and the Mo trinuclear compound (especially from Mo 3 S 7). It can be said that the more the Mo compound), the easier it is to reduce the coefficient of friction between the sliding surfaces. However, since it is sufficient if the ratio between the two is within a certain range, if the content of additive elements that can degrade the surface roughness of the coated surface is small, the Mo trinuclear compound can be reduced accordingly. Is possible.
《DLC膜》
(1)組成
本発明に係るDLC膜は、少なくとも一方の摺動面に形成され、所定の特定元素(M)がドープされたものである。具体的にいうと、本発明に係るDLC膜は、膜全体を100原子%としたときに、合計で1〜30%さらには5〜25%となるB、Ti、VまたはMoの少なくとも一種以上からなる特定元素(M)を含む。Mが過少ではMo三核体化合物との相互作用が十分に機能せず、Mが過多では良好なDLC膜の形成が困難となる。なお、Mは、B、Ti、VまたはMoの一種でも複数種でもよいが、MがBまたはVであるとき、特に優れた低摩擦特性が発揮され得る。
<< DLC film >>
(1) Composition The DLC film according to the present invention is formed on at least one sliding surface and doped with a predetermined specific element (M). Specifically, the DLC film according to the present invention has at least one or more of B, Ti, V, or Mo, which is 1 to 30% or 5 to 25% in total when the entire film is 100 atomic%. The specific element (M) consisting of When M is too small, the interaction with the Mo trinuclear compound does not function sufficiently, and when M is excessive, it is difficult to form a good DLC film. Note that M may be one or more of B, Ti, V, or Mo, but when M is B or V, particularly excellent low friction characteristics can be exhibited.
また、本発明に係るDLC膜がHを含むときに低摩擦特性が発揮され易いこともわかっている。Hは、膜全体を100原子%としたときに0〜25%、5〜25%、10〜22%、さらには15〜20%であると好ましい。Hを実質的に含まないHフリ−DLC膜またはHの含有量が少ない低HDLC膜は、低摩擦性と耐摩耗性の両特定を高次元で発揮する。DLC膜中のH量が増加するにつれて、低摩擦特性のさらなる向上が図られる。但し、Hが過多になると、DLC膜が過度に軟質となってその耐摩耗性が低下し得る。 It has also been found that when the DLC film according to the present invention contains H, low friction characteristics are easily exhibited. H is preferably 0 to 25%, 5 to 25%, 10 to 22%, and more preferably 15 to 20% when the entire film is 100 atomic%. An H-free DLC film substantially free of H or a low HDLC film with a low H content exhibits both low friction and wear resistance at a high level. As the amount of H in the DLC film increases, the low friction characteristics are further improved. However, if H is excessive, the DLC film becomes excessively soft and its wear resistance can be reduced.
上述した元素以外に、本発明に係るDLC膜は、その摺動特性等を改善する改質元素や不可避不純物を含み得る。このような元素として、O、Al、Mn、Si、Cr、W、Ni等がある。これら元素の含有量は問わないが、8原子%未満さらには4原子%未満であると好ましい。なお、DLC膜の組成は、その厚さ方向に関して、均質的でも、多少変化していても、さらには傾斜的でもよい。 In addition to the elements described above, the DLC film according to the present invention may contain a modifying element or an unavoidable impurity that improves its sliding characteristics. Examples of such elements include O, Al, Mn, Si, Cr, W, and Ni. The content of these elements is not limited, but it is preferably less than 8 atomic% or even less than 4 atomic%. Note that the composition of the DLC film may be homogeneous, slightly changed, or even inclined in the thickness direction.
(2)構造・特性
本発明に係るDLC膜は、従来のDLC膜と同様にアモルファス構造からなるが、それのみならず、炭化物を実質的に含まず、無配向性組織からなると、より好ましい。
(2) Structure / Characteristic The DLC film according to the present invention has an amorphous structure in the same manner as the conventional DLC film, but it is more preferable that the DLC film is substantially free of carbides and has a non-oriented structure.
DLC膜が形成される基材(または摺動部材の基材)は問わないが、DLC膜は基材よりも硬質であり、基材よりも弾性率が小さいと好ましい。これにより本発明に係る被覆面の耐摩耗性、靱性または耐衝撃性等の向上を図り得る。例えば、本発明に係るDLC膜は、硬さが10〜30GPaさらには14〜25GPaであると好ましい。硬さが過小では耐摩耗性が低下し、硬さが過大ではDLC膜の割れ等を生じ易くなる。またDLC膜の弾性率も同様な観点から、例えば100〜200GPa、110〜190GPa、120〜180GPaさらには130〜170GPaであると好ましい。 Although the base material (or the base material of the sliding member) on which the DLC film is formed is not limited, it is preferable that the DLC film is harder than the base material and has a smaller elastic modulus than the base material. Thereby, the wear resistance, toughness or impact resistance of the coated surface according to the present invention can be improved. For example, the DLC film according to the present invention preferably has a hardness of 10 to 30 GPa, more preferably 14 to 25 GPa. If the hardness is too low, the wear resistance is lowered, and if the hardness is too high, the DLC film is liable to crack. Further, from the same viewpoint, the elastic modulus of the DLC film is preferably, for example, 100 to 200 GPa, 110 to 190 GPa, 120 to 180 GPa, or 130 to 170 GPa.
(3)成膜方法
DLC膜の成膜方法は問わないが、例えばスパッタリング法、特にアンバランスドマグネトロンスパッタリング(UBMS)法によると、緻密なDLC膜が効率的に形成されて好ましい。
(3) Film formation method The film formation method of the DLC film is not limited. For example, a sputtering method, particularly an unbalanced magnetron sputtering (UBMS) method, is preferable because a dense DLC film can be efficiently formed.
DLC膜の成膜前に、チャンバー内を10−5Pa以下まで真空排気するか、チャンバー内に水素ガスを導入して、成膜前のチャンバー内に残存する酸素および水分を除去すると好ましい。水素ガスの導入量は、DLC膜中のH量に応じて調整するとよい。 Before forming the DLC film, it is preferable to evacuate the chamber to 10 −5 Pa or less, or introduce hydrogen gas into the chamber to remove oxygen and moisture remaining in the chamber before film formation. The amount of hydrogen gas introduced may be adjusted according to the amount of H in the DLC film.
スパッタガスは、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、窒素(N2)ガスなどの希ガスの一種以上を用いることができる。H含有ガスとしては、メタン(CH4)、アセチレン(C2H2)、ベンゼン(C6H6)などの炭化水素系ガスの一種以上を用いることができる。 As the sputtering gas, for example, one or more of rare gases such as argon (Ar) gas, helium (He) gas, and nitrogen (N 2 ) gas can be used. As the H-containing gas, one or more hydrocarbon-based gases such as methane (CH 4 ), acetylene (C 2 H 2 ), and benzene (C 6 H 6 ) can be used.
ガスの流量は、例えば、希ガス:200〜500sccm、炭化水素ガス:10〜25sccmとするとよい。これらに加えて、H2ガス:1〜25sccmを導入して、膜中のOや不純物の混入を低減させてもよい。なお、単位:sccmは、大気圧(1013hPa)の室温における流量である。 The gas flow rate may be, for example, noble gas: 200 to 500 sccm and hydrocarbon gas: 10 to 25 sccm. In addition to these, H 2 gas: 1 to 25 sccm may be introduced to reduce mixing of O and impurities in the film. The unit: sccm is a flow rate at room temperature of atmospheric pressure (1013 hPa).
DLC膜の成膜温度は150〜300℃であると、炭化物の生成を抑制できて好ましい。なお、成膜温度は、成膜中の基材の表面温度であり、熱電対または放熱温度計により測定され得る。 The film forming temperature of the DLC film is preferably 150 to 300 ° C., since it can suppress the formation of carbides. The film formation temperature is the surface temperature of the base material during film formation, and can be measured by a thermocouple or a heat radiation thermometer.
この他、ガス圧は0.5〜1.5Pa、ターゲットに印可する電力は1kW〜3kW、基材(摺動面)近傍の磁場の強度は6〜10mTとしてスパッタリングを行うと好ましい。さらには基材へ100〜500Vの負のバイアス電圧を印加してもよい。 In addition, it is preferable to perform sputtering with a gas pressure of 0.5 to 1.5 Pa, a power applied to the target of 1 kW to 3 kW, and a magnetic field strength in the vicinity of the base material (sliding surface) of 6 to 10 mT. Further, a negative bias voltage of 100 to 500 V may be applied to the substrate.
スパッタリング法の他、アークイオンプレーティング(AIP)法によりDLC膜を成膜してもよい。AIP法は、真空中でアーク放電を生じさせ、各ターゲットから蒸発させたCおよびB等を、反応容器内の処理ガスと反応させて、基材の表面にDLC膜を形成する方法である。 In addition to the sputtering method, a DLC film may be formed by an arc ion plating (AIP) method. The AIP method is a method of forming a DLC film on the surface of a substrate by causing arc discharge in a vacuum and reacting C and B evaporated from each target with a processing gas in a reaction vessel.
《用途》
本発明の摺動機械は、その具体的な形態や用途を問わず、多種多様な機械や装置等へ幅広く適用できる。特に本発明の摺動機械は、摺動面間の摩擦係数が非常に小さくなる超低摩擦特性を発現するため、摺動抵抗の低減や摺動による機械損失の低減が厳しく要求される機械等に好適である。例えば、自動車等に搭載されるエンジンや変速機等の駆動系ユニット、それらの一部を構成する摺動体などに本発明の摺動機械は好適である。ここでいう摺動体は、軸と軸受、ピストンとライナー、噛合する歯車、ポンプ等である。また、このような摺動体を構成する摺動部材は、例えば、動弁系を構成するカム、バルブリフタ、フォロワ、シム、バルブ、バルブガイド等、その他、ピストン、ピストンリング、ピストンピン、クランクシャフト、歯車、ロータ、ロータハウジング等である。
<Application>
The sliding machine of the present invention can be widely applied to a wide variety of machines and devices regardless of its specific form and application. In particular, the sliding machine of the present invention expresses an ultra-low friction characteristic in which the friction coefficient between sliding surfaces becomes very small. It is suitable for. For example, the sliding machine of the present invention is suitable for driving system units such as engines and transmissions mounted on automobiles and the like, and sliding bodies constituting a part of them. The sliding body here is a shaft and a bearing, a piston and a liner, meshing gears, a pump, and the like. The sliding members constituting such a sliding body include, for example, a cam, a valve lifter, a follower, a shim, a valve, a valve guide, etc. that constitute a valve system, a piston, a piston ring, a piston pin, a crankshaft, Gears, rotors, rotor housings and the like.
実施例を挙げて本発明をより具体的に説明する。
[実施例1]
《摺動部材》
摺動部材となる供試材として、次のようなブロックオンリング摩擦試験用評価材とエンジン動弁系摩擦試験用評価材を用意した。
The present invention will be described more specifically with reference to examples.
[Example 1]
《Sliding member》
As test materials to be the sliding members, the following evaluation materials for block-on-ring friction test and evaluation materials for engine valve system friction test were prepared.
〈ブロックオンリング摩擦試験用評価材〉
(1)基材
基材として、焼入れ処理を施したブロック状(6.3mm×15.7mm×10.1mm)の鋼材(JIS SUS440C)を用意した。その鋼材の鏡面仕上げ面(表面粗さRzjis0.1μm/摺動面)に、表1に示す各種のDLC膜を後述のようにして成膜した。またDLC膜を被膜しない比較評価材として、浸炭処理しただけの鋼材(JIS SCM420)も用意した。その浸炭面(硬さHV800)も同様な表面粗さの鏡面仕上げ面とした。こうしてブロックオンリング摩擦試験用の各ブロック試験片を用意した。なお、摺動面にDLC膜を設けた試験片は、そのDLC膜の呼称(表1参照)を用いて表し、摺動面にDLC膜を設けなかった試験片は単に「鋼材」として表す。これは後述のエンジン動弁系摩擦試験でも同様である。
<Evaluation material for block-on-ring friction test>
(1) Base Material A block-shaped (6.3 mm × 15.7 mm × 10.1 mm) steel material (JIS SUS440C) subjected to quenching treatment was prepared as a base material. Various DLC films shown in Table 1 were formed on the mirror-finished surface (surface roughness Rzjis 0.1 μm / sliding surface) of the steel as described below. In addition, as a comparative evaluation material not coated with a DLC film, a steel material (JIS SCM420) just carburized was also prepared. The carburized surface (hardness HV800) was also a mirror-finished surface having the same surface roughness. In this way, each block test piece for the block-on-ring friction test was prepared. In addition, the test piece which provided the DLC film | membrane on the sliding surface is represented using the name (refer Table 1) of the DLC film, and the test piece which did not provide the DLC film | membrane on a sliding surface is only represented as "steel material." The same applies to the engine valve friction test described later.
(2)DLC膜の成膜
上記のDLC膜の成膜は、アンバランスドマグネトロンスパッタリング装置(株式会社神戸製鋼所製UBMS504)を用いて行った。具体的には次の通りである。先ず、DLC膜を形成する前に、予め鏡面仕上げした基材表面に中間層を形成した。上記のスパッタリング装置内を1×10−5Paまで排気して、基材表面に対向配置した純クロムターゲットをArガスでスパッタした。こうして基材表面にCr膜を形成した。これに続けて、CH4ガスを装置内へ導入し、Cr膜の表面にCr−C系膜を形成した。こうして合計の厚さが約0.8μm程度の中間層を形成した。なお本実施例を通じて、基材表面とターゲット表面との距離は100〜800mmに調整した。なお、膜厚はCMS社製Calotestにより特定した(以下同様)。
(2) Formation of DLC film The above DLC film was formed using an unbalanced magnetron sputtering apparatus (UBMS504 manufactured by Kobe Steel, Ltd.). Specifically, it is as follows. First, before forming the DLC film, an intermediate layer was formed on the surface of the substrate that had been mirror-finished in advance. The inside of the sputtering apparatus was evacuated to 1 × 10 −5 Pa, and a pure chromium target arranged to face the substrate surface was sputtered with Ar gas. Thus, a Cr film was formed on the substrate surface. Subsequently, CH 4 gas was introduced into the apparatus to form a Cr—C film on the surface of the Cr film. Thus, an intermediate layer having a total thickness of about 0.8 μm was formed. Throughout this example, the distance between the substrate surface and the target surface was adjusted to 100 to 800 mm. In addition, the film thickness was specified by Caltest made by CMS (hereinafter the same).
次に、その基材表面に対向配置したドープ元素(特定元素)源である各種のドープターゲットおよびグラファイトターゲットをArガスでスパッタリングした。これに続けて、200sccmのArガス、10sccmのCH4ガス(炭化水素系ガス)および1sccmのH2ガスを装置内へ導入した。このときの装置内のガス圧は0.7Paであった。こうして中間層上に各種DLC膜を成膜した評価材を得た。なお、各DLC膜の厚さは約1.5μmであった。また、ドープ元素がBであるときのドープターゲットにはB4Cを用いた。またドープ元素がTi、VおよびMoであるときは、それぞれの純金属をドープターゲットとした。ドープ元素がなくHが多いDLC膜(D7)は、ドープターゲットをCに変更し、CH4ガスを導入して成膜した。またHフリーのDLC膜(D6)は、特開2004−115826号公報に記載されているアークイオンプレーティング法により形成した。 Next, various dope targets and graphite targets, which are dope element (specific element) sources arranged opposite to the substrate surface, were sputtered with Ar gas. Subsequently, 200 sccm of Ar gas, 10 sccm of CH 4 gas (hydrocarbon gas) and 1 sccm of H 2 gas were introduced into the apparatus. At this time, the gas pressure in the apparatus was 0.7 Pa. Thus, evaluation materials in which various DLC films were formed on the intermediate layer were obtained. The thickness of each DLC film was about 1.5 μm. Further, B 4 C was used as a doping target when the doping element was B. When the doping elements were Ti, V, and Mo, each pure metal was used as a doping target. The DLC film (D7) having no doping element and containing a large amount of H was formed by changing the doping target to C and introducing CH 4 gas. The H-free DLC film (D6) was formed by the arc ion plating method described in Japanese Patent Application Laid-Open No. 2004-115826.
(3)膜組成
表1に示した各DLC膜の膜組成は次のように測定した。膜中のドープ元素は、電子プローブ微小部分析法(EPMA)、X線光電子分光法(XPS)、オージェ電子分光法(AES)またはラザフォード後方散乱法(RBS)により定量した。Hは、弾性反跳粒子検出法(ERDA)により定量した。ERDAは、2MeVのヘリウムイオンビームを膜表面に照射して、その膜からはじき出される水素を半導体検出器により検出して水素濃度を測定する方法である。こうして得られた各DLC膜の組成を表1に併せて示した。
(3) Film composition The film composition of each DLC film shown in Table 1 was measured as follows. The doping element in the film was quantified by electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), or Rutherford backscattering method (RBS). H was quantified by elastic recoil detection method (ERDA). ERDA is a method of measuring the hydrogen concentration by irradiating the surface of a film with a 2 MeV helium ion beam, detecting hydrogen ejected from the film with a semiconductor detector. The composition of each DLC film thus obtained is also shown in Table 1.
(4)膜構造
透過型電子顕微鏡(TEM)を用いて、各DLC膜の厚さ方向の断面中央部へ電子線を照射して電子線回折像を得た。各電子線回折像から、ハローパターンが観察されており、各DLC膜はアモルファス構造であることがわかった。
(4) Film structure Using a transmission electron microscope (TEM), the electron beam was irradiated to the cross-sectional center part of the thickness direction of each DLC film, and the electron-diffraction image was obtained. From each electron beam diffraction image, a halo pattern was observed, and each DLC film was found to have an amorphous structure.
(5)表面硬さおよび表面粗さ
各DLC膜の表面硬さは、ナノインデンター試験機(株式会社東陽テクニカ製MTS)による測定値から求めた。こうして得られたDLC膜の表面硬さを表1に併せて示した。なお、本明細書でいう表面粗さは、後述するSPMを用いる場合など特に断らない限り、白色干渉法非接触表面形状測定機(Zygo社製NewView5022)により測定した。
(5) Surface Hardness and Surface Roughness The surface hardness of each DLC film was determined from the measured values with a nanoindenter testing machine (MTS manufactured by Toyo Corporation). The surface hardness of the DLC film thus obtained is also shown in Table 1. In addition, unless otherwise indicated, such as when using SPM mentioned later, the surface roughness said by this specification was measured with the white interferometry non-contact surface shape measuring machine (NewView5022 by Zygo).
〈エンジン動弁系摩擦試験用評価材〉
エンジン動弁系摩擦試験用評価材として、内燃機関(ガソリンエンジン)のカムに接するシムを用意した。各シムは、上述したブロックオンリング摩擦試験用のブロック試験片と同様に、鏡面仕上げ後の基材(JIS SUS440C)表面へ、表1に示すHフリ−DLCおよび6B−DLCを被覆したものである。また、比較のため、DLC膜を成膜していない浸炭鋼材からなるシム(市販の補修部品)も用意した。
<Evaluation materials for engine valve friction test>
A shim that contacts the cam of an internal combustion engine (gasoline engine) was prepared as an evaluation material for an engine valve system friction test. Each shim is the same as the block test piece for the block-on-ring friction test described above, but the mirror-finished substrate (JIS SUS440C) surface is coated with H-free-DLC and 6B-DLC shown in Table 1. is there. For comparison, a shim (commercially available repair part) made of carburized steel without a DLC film was also prepared.
《潤滑油》
(1)ブロックオンリング摩擦試験およびエンジン動弁系摩擦試験において、上述した摺動部材(試験片)と組み合わせて使用する潤滑油として、表2に示す各種のエンジン油を調製した。具体的には次の通りである。先ず、粘度グレード0W−20でILSAC GF−5規格に相当する3種の開発油を用意した。それぞれGF−5開発油A、GF−5開発油B、GF−5開発油Cと呼称する。
"Lubricant"
(1) In the block on-ring friction test and the engine valve system friction test, various engine oils shown in Table 2 were prepared as lubricating oils used in combination with the above-described sliding member (test piece). Specifically, it is as follows. First, three types of developed oil corresponding to the ILSAC GF-5 standard with a viscosity grade of 0W-20 were prepared. These are referred to as GF-5 developed oil A, GF-5 developed oil B, and GF-5 developed oil C, respectively.
次にGF−5開発油Aをベースにして、オイル添加剤として、Infineum社の公開資料「Molybdenum Additive Technology for Engine Oil Applications」にて“Trinuclear”と記されたMo三核体化合物(適宜、単に「Mo三核体」という。)を、オイル全体に対するMo含有量で150ppmMo相当になるように追加配合したオイルも調製した。これをGF−5開発油A改と呼称する。 Next, based on GF-5 developed oil A, Mo trinuclear compound described as “Trinuclear” in the published material “Molybdenum Additive Technology for Engine Oil Applications” of Infineum (as appropriate, simply as an oil additive) An oil was also prepared in which “Mo trinuclear body” was additionally blended so that the Mo content in the oil was equivalent to 150 ppm Mo. This is called GF-5 development oil A reform.
なお、GF−5開発油AおよびGF−5開発油BはMo三核体化合物を含有していないが、GF−5開発油CはMo三核体化合物を80ppmMo含有している。また、これらのオイル(表2に示す潤滑油L0、L110〜130)はいずれも、モリブデンジチオカーバメート(MoDTC)を含んでいない。 GF-5 development oil A and GF-5 development oil B do not contain Mo trinuclear compound, but GF-5 development oil C contains 80 ppm Mo of Mo trinuclear compound. Moreover, none of these oils (lubricating oils L0 and L110 to 130 shown in Table 2) contain molybdenum dithiocarbamate (MoDTC).
(2)さらに成分を単純化したモデルエンジン油として、SKコーポレーション社製の水素化分解鉱油YUBASE8(100℃での動粘度8mm2/s)に、Lubrizol社製の2級ZnDTP、過塩基性Caスルホネートおよびアルケニルコハク酸イミドの3種類のみを配合した試作A系オイルを調製した。 (2) As a model engine oil with further simplified components, hydrocracked mineral oil YUBASE8 (dynamic viscosity 8 mm 2 / s at 100 ° C.) manufactured by SK Corporation, secondary ZnDTP manufactured by Lubrizol, overbased Ca Prototype A oils containing only three types of sulfonate and alkenyl succinimide were prepared.
また、この試作A系オイルに、異なる種類の摩擦調整剤(以下「FM」という。)をそれぞれ1種類のみ添加した5種類のFM配合油も調製した。配合した各FMと配合量は、グリセロールモノオレート(花王株式会社製レオドールMo−50、これを「GMo」という。):1.0質量%、オレイルアミン(ライオン株式会社製アーミンOD、これを「アミン系FM」という。):1.0質量%、脂肪酸アミド(花王株式会社製脂肪酸アマイドO−N、以後、これを「アミド系FM」という。):1.0質量%、モリブデン酸アミン(株式会社ADEKA製サクラルーブ700、これを「Moアミン」という。):0.34質量%(150ppmMo相当)またはMo三核体化合物:0.36質量%(200ppmMo)のいずれかである。これらFM配合油を順に、適宜、試作A系オイル改1〜試作A系オイル改5と呼称する。 In addition, five types of FM blended oils were prepared in which only one type of each of different types of friction modifiers (hereinafter referred to as “FM”) was added to the prototype A-based oil. Each FM and the amount blended were glycerol monooleate (Reodol Mo-50 manufactured by Kao Corporation, which is referred to as “GMo”): 1.0% by mass, oleylamine (Armin OD manufactured by Lion Corporation, this “amine” 1.0 mass%, fatty acid amide (Fatty Acid Amide O-N manufactured by Kao Corporation, hereinafter referred to as “amide FM”): 1.0 mass%, molybdate amine (stock) Sakuralube 700 manufactured by ADEKA, which is referred to as “Mo amine”): either 0.34 mass% (equivalent to 150 ppm Mo) or Mo trinuclear compound: 0.36 mass% (200 ppm Mo). These FM blended oils will be referred to as “Prototype A oil reform 1 to Prototype A oil reform 5” as appropriate.
なお、試作A系オイルでは、粘度指数向上剤を配合していない。前述したように試作A系オイルの基油は100℃での動粘度が8mm2/sであり、これは粘度グレード0−20Wのエンジン油と同レベルだからである。 Note that the viscosity index improver is not blended in the prototype A-based oil. As described above, the base oil of the prototype A-based oil has a kinematic viscosity at 100 ° C. of 8 mm 2 / s because it is the same level as the engine oil of viscosity grade 0-20W.
(3)さらに、前述した基油となる鉱油YUBASE8へ、API規格SNグレードのガソリンエンジン油用添加剤パッケージ(Lubrizol社製PV1020)を8.0質量%配合した試作B系オイルも調製した。 (3) Further, a prototype B-series oil was prepared by blending 8.0 mass% of the API standard SN grade gasoline engine oil additive package (PV1020 manufactured by Lubrizol) into the mineral oil YUBASE8 serving as the base oil described above.
また、この試作B系オイルに、前述したMo三核体化合物を0.05〜0.36質量%(25〜200ppmMo相当)または前述したInfineum社製MoDTCを0.10〜0.61質量%(50〜300ppmMo相当)をそれぞれ配合した9種のFM配合油を調製した。これらFM配合油を順に、適宜、試作B系オイル改1〜試作B系オイル改9と呼称する。なお、試作B系オイルも、試作A系オイルと同様に、粘度指数向上剤は配合していない。また試作A系オイルおよび試作B系オイルは、表2に示すように代表的なエンジン油添加剤の元素成分であるS、Zn、P、N、Caの各量がGF−5開発油A〜Cと概ね同レベルになるよう調整した。 Moreover, 0.05 to 0.36 mass% (equivalent to 25 to 200 ppm Mo) of the Mo trinuclear compound described above or 0.10 to 0.61 mass% of the MoDTC manufactured by Infineum Co. Nine types of FM blended oils each containing 50 to 300 ppm Mo) were prepared. These FM blended oils are referred to as Prototype B oil reform 1 to Prototype B oil reform 9 as appropriate. The trial B oil does not contain a viscosity index improver, similar to the trial A oil. In addition, as shown in Table 2, the prototype A oil and the prototype B oil have amounts of S, Zn, P, N, and Ca, which are elemental components of typical engine oil additives, as shown in Table 2. The level was adjusted to approximately the same level as C.
(4)比較のため、市販のエンジン油(トヨタ自動車株式会社製、モーターオイルSL 5W−30)も用意した。これを「GF−3市販油」と呼称する。 (4) For comparison, a commercially available engine oil (manufactured by Toyota Motor Corporation, Motor Oil SL 5W-30) was also prepared. This is referred to as “GF-3 commercial oil”.
《ブロックオンリング摩擦試験》
図1に示すブロックオンリング摩擦試験にて、各摺動部材と各エンジン油とを組み合わせたときの摩擦係数(適宜「μ」と略記する。)を測定した。本試験は、摺動面幅6.3mmのブロック試験片側を評価材に用いて、相手となる外径φ35mm、幅8.8mmのリング試験片には浸炭鋼材(AISI4620)から成るFALEX社製S−10標準試験片(硬さHV800、表面粗さ1.7〜2.0μmRzjis)を用いた。試験荷重:133N、すべり速度:0.3m/s、油温:80℃(一定)として、30分間の摩擦試験を行い、試験終了直前の1分間におけるμ平均値を本試験における摩擦係数とした。
《Block-on-ring friction test》
In the block-on-ring friction test shown in FIG. 1, the friction coefficient (abbreviated as “μ” as appropriate) when each sliding member and each engine oil were combined was measured. In this test, the block test piece side with a sliding surface width of 6.3 mm was used as an evaluation material, and a ring test piece with an outer diameter of φ35 mm and a width of 8.8 mm as a counterpart was made of carburized steel (AISI 4620). A −10 standard test piece (hardness HV800, surface roughness 1.7 to 2.0 μm Rzjis) was used. The test load was 133 N, the sliding speed was 0.3 m / s, the oil temperature was 80 ° C. (constant), a 30-minute friction test was performed, and the μ-average value for 1 minute immediately before the end of the test was used as the friction coefficient in this test. .
《エンジン動弁系摩擦試験》
実機(トヨタ自動車株式会社製直列4気筒ガソリンエンジン5A−FE)の直打式エンジン動弁系を構成するカムと円盤形状のフォロワ(単に「シム」という。)を部分的に再現したカム/シム間摩擦試験機を用いて、カム軸一回転中における摩擦力を測定した。この摩擦力から換算されるμ平均値を本試験における摩擦係数とした。この摩擦係数により各摺動部材(本試験では摺動面にDLC膜を被覆したシム)と各エンジン油とを組み合わせたときの摩擦低減効果を検討した。
<Engine valve friction test>
Cam / sim that partially reproduces the cam and disc-shaped follower (simply called “Shim”) that make up the direct-acting engine valve system of an actual machine (Toyota Motor Corporation in-line 4-cylinder gasoline engine 5A-FE) The friction force during one rotation of the camshaft was measured using an inter-friction tester. The μ average value converted from this frictional force was used as the friction coefficient in this test. Based on this friction coefficient, the friction reduction effect when each sliding member (in this test, a shim having a sliding surface coated with a DLC film) and each engine oil was examined.
なお、摩擦力の検出は、図2に示すように、シムを保持するシムホルダとバルブリフタの間に設けた板ばねのひずみ量をひずみゲージで検出することにより行った。本試験で用いた試験機の詳細は、日本トライボロジー学会のトライボロジー会議予稿集 東京 20011-5のP.419〜P.420“直打式動弁系の摩擦損失低減”に記載されている。 The frictional force was detected by detecting the strain amount of the leaf spring provided between the shim holder that holds the shim and the valve lifter with a strain gauge, as shown in FIG. Details of the testing machine used in this test are described in Tribology Conference Proceedings of the Japanese Society of Tribology, Tokyo 20011-5, P.419-P.420 “Friction Loss Reduction of Direct Stroke Valve System”.
《摩擦特性の評価》
(1)従来のエンジン油との組み合わせ
従来のエンジン油(潤滑油L0〜L130)と各種DLC膜とを組み合わせて得られたブロックオンリング摩擦試験に係る摩擦係数を図3に示した。
<Evaluation of friction characteristics>
(1) Combination with Conventional Engine Oil FIG. 3 shows a friction coefficient related to a block-on-ring friction test obtained by combining conventional engine oil (lubricating oils L0 to L130) and various DLC films.
GF−3市販油を用いた場合、6Ti−DLCおよび6B−DLCは鋼材に比べて低摩擦特性が得られている。しかし、現在のエンジン油規格であるGF−5を満たすGF−5開発油AおよびGF−5開発油Bを用いた場合、6Ti−DLCおよび6B−DLCの摩擦係数は、 GF−3市販油に比べて増大している。この場合、DLC膜は鋼材に対して摩擦低減効果を殆ど発揮していないことがわかる。 When GF-3 commercial oil is used, 6Ti-DLC and 6B-DLC have low friction characteristics compared to steel. However, when GF-5 developed oil A and GF-5 developed oil B satisfying the current engine oil standard GF-5 are used, the friction coefficient of 6Ti-DLC and 6B-DLC is the same as that of GF-3 commercial oil. It is increasing compared to this. In this case, it can be seen that the DLC film hardly exerts a friction reducing effect on the steel material.
つまり、GF−5開発油AおよびGF−5開発油BのようにMoDTCを含有していないエンジン油の場合、6Ti−DLCや6B−DLCのようなDLC膜で摺動面が被覆されていても、低μ化が図れないことがわかる。なお、エンジン油規格の改訂に伴って、GF−3規格油は廃止されてきており、現行のGF−5規格油に沿って低摩擦特性を確保する必要がある。この結果から、所望する低μ特性を得るために適したDLC膜とエンジン油(潤滑油)の組み合わせを明確にすることに大きな意義がある。 In other words, in the case of engine oils that do not contain MoDTC, such as GF-5 developed oil A and GF-5 developed oil B, the sliding surface is covered with a DLC film such as 6Ti-DLC or 6B-DLC. However, it can be seen that a reduction in μ cannot be achieved. In addition, with the revision of the engine oil standard, the GF-3 standard oil has been abolished, and it is necessary to ensure low friction characteristics along the current GF-5 standard oil. From this result, it is of great significance to clarify the combination of DLC film and engine oil (lubricating oil) suitable for obtaining the desired low μ characteristics.
(2)6B−DLCに適した有効なエンジン油(添加剤)の特定
ブロックオンリング摩擦試験を用いて、各種FMを配合した試作A系オイルと6B−DLCとを組み合わせたときの摩擦係数を図4に示した。図4から明らかなように、Mo三核体化合物を配合することにより、摩擦係数が0.02程度となり、非常に優れた低摩擦特性(超低μ特性)が得られることが明らかとなった。一方、Mo三核体化合物を配合した場合以外は、FMを配合しない場合と大差なく、低摩擦特性が得られないことがわかる。
(2) Identification of effective engine oil (additive) suitable for 6B-DLC Using a block-on-ring friction test, the friction coefficient when combining a trial oil A with various FM and 6B-DLC This is shown in FIG. As is clear from FIG. 4, it was clarified that by adding the Mo trinuclear compound, the friction coefficient becomes about 0.02, and a very excellent low friction characteristic (ultra-low μ characteristic) can be obtained. . On the other hand, it can be seen that the low friction characteristics cannot be obtained except when the Mo trinuclear compound is blended, which is not much different from the case where the FM is not blended.
Mo含有量を同一(150ppmMo)として、Mo三核体化合物またはMoDTCを配合した試作B系オイルと6B−DLCとを組み合わせたときの摩擦係数を比較した結果を図5に示した。API規格SNグレード用の添加剤パッケージを配合した試作B系オイルでも、Mo三核体化合物を配合すると超低μ特性が得られた。一方、MoDTCを配合した場合は、非配合の場合と大差なく、摩擦係数の低減は殆ど無かった。 FIG. 5 shows the result of comparing the friction coefficient when combining the trial B-series oil blended with Mo trinuclear compound or MoDTC and 6B-DLC with the same Mo content (150 ppm Mo). Even in the trial production B oil blended with the API standard SN grade additive package, when the Mo trinuclear compound was blended, ultra-low μ characteristics were obtained. On the other hand, when MoDTC was blended, there was almost no reduction in the coefficient of friction with no significant difference from the case of non-blending.
(3)6B−DLCに適したMo三核体化合物の配合量
6B−DLCと、Mo三核体化合物またはMoDTCの配合量を変えた試作B系オイルを用いて、ブロックオンリング摩擦試験に係る摩擦係数を測定した結果を図6に示した。
(3) Mixing amount of Mo trinuclear compound suitable for 6B-DLC Using block B-ring friction test with 6B-DLC and prototype B-type oil in which the mixing amount of Mo trinuclear compound or MoDTC is changed The result of measuring the friction coefficient is shown in FIG.
Mo三核体化合物の場合、僅か50ppmMoの配合量で摩擦係数が0.03程度まで低下し、Mo三核体化合物が増加しても超低μ状態が維持されることがわかる。一方、MoDTCは、その配合量と共に摩擦係数が低下し、0.03程度まで摩擦係数を低下させるには300ppmMo程度必要であることがわかる。従って、Mo三核体化合物を用いれば、MoDTCの1/5〜1/6程度の配合量で、MoDTCと同等以上の超低μ特性を得ることができる。この結果から、Mo三核体化合物を用いることにより、レアメタルの一種であるMoの使用量低減やエンジン油の低コスト化等を図ることができる。 In the case of the Mo trinuclear compound, the friction coefficient decreases to about 0.03 with a blending amount of only 50 ppm Mo, and it can be seen that the ultra-low μ state is maintained even if the Mo trinuclear compound increases. On the other hand, it can be seen that the coefficient of friction of MoDTC decreases with the blending amount, and about 300 ppm Mo is necessary to reduce the coefficient of friction to about 0.03. Therefore, if the Mo trinuclear compound is used, an ultra-low μ characteristic equivalent to or higher than that of MoDTC can be obtained with a blending amount of about 1/5 to 1/6 of MoDTC. From this result, by using the Mo trinuclear compound, it is possible to reduce the amount of Mo used as a kind of rare metal and to reduce the cost of engine oil.
(4)Mo三核体化合物の配合油に適したDLC膜の特定
Mo三核体化合物を配合したB系試作オイル改5を用いて、摺動部材を6B−DLC、Hフリ−DLCおよび鋼材としたときのブロックオンリング摩擦試験に係る摩擦係数を図7に示した。Hフリ−DLCの摩擦係数は0.06程度であり、鋼材の摩擦係数(0.08程度)よりは僅かに小さいが、6B−DLCの摩擦係数(0.02程度)と比較すると未だかなり大きい。従って、Mo三核体化合物を配合しても、全てのDLC膜で超低μ特性が得られる訳ではなく、少なくとも図7より、Hを含有しないDLC膜では超低μ特性が得られないことがわかる。
(4) Identification of DLC film suitable for blended oil of Mo trinuclear compound Using B-system trial oil modified 5 blended with Mo trinuclear compound, sliding member is 6B-DLC, H-free-DLC and steel FIG. 7 shows the coefficient of friction related to the block-on-ring friction test. The friction coefficient of H-free-DLC is about 0.06, which is slightly smaller than the friction coefficient of steel (about 0.08), but still much larger than that of 6B-DLC (about 0.02). . Therefore, even when the Mo trinuclear compound is added, not all DLC films can obtain ultra-low μ characteristics, and at least from FIG. 7, DLC films not containing H cannot obtain ultra-low μ characteristics. I understand.
Mo三核体化合物を含有したGF−5開発油Cと各種のDLC膜で被覆した摺動部材とを組み合わせたときのブロックオンリング摩擦試験に係るμ特性を図8にまとめて示した。比較のために、Mo三核体化合物を含有していないGF−5開発油Aと各摺動部材とを組合せたときのμ特性も併せて示した。 The μ characteristics related to the block-on-ring friction test when the GF-5 developed oil C containing the Mo trinuclear compound and the sliding member coated with various DLC films are combined are shown in FIG. For comparison, μ characteristics when GF-5 developed oil A not containing a Mo trinuclear compound and each sliding member are combined are also shown.
Mo三核体化合物を含有したGF−5開発油Cを用いた場合、B、V、TiまたはMoのいずれかを含有したDLC膜で被覆された摺動部材と組み合わせることにより優れた低μ特性が得られることがわかる。なかでも特に、BまたはVをドープしたDLC膜と組み合わせたときの摩擦係数が低くなっている。一方、図7に示したHフリ−DLCと同様に、26H−DLCと組み合わせたときは、摩擦係数の低下が僅かであった。 When GF-5 development oil C containing Mo trinuclear compound is used, excellent low μ characteristics by combining with sliding member covered with DLC film containing B, V, Ti or Mo It can be seen that In particular, the friction coefficient when combined with a DLC film doped with B or V is low. On the other hand, like the H-free-DLC shown in FIG. 7, when combined with 26H-DLC, the friction coefficient decreased slightly.
また、Mo三核体化合物を含有していないGF−5開発油Aを用いた場合、いずれのDLC膜と組み合わせても摩擦係数の低減が観られず、特に6B−DLCと組み合わせたときは摩擦係数が殆ど低下しなかった。 In addition, when GF-5 developed oil A not containing Mo trinuclear compound is used, no reduction in the friction coefficient is observed when combined with any DLC film, and particularly when combined with 6B-DLC, friction is not observed. The coefficient hardly decreased.
従って、Mo三核体化合物を配合した潤滑油と、B、V、TiまたはMoの一種以上を含有したDLC膜で被覆された摺動部材とを組み合わせることにより、非常に優れた低摩擦特性が選択的に発現されることが明らかとなった。 Therefore, by combining the lubricating oil blended with the Mo trinuclear compound and the sliding member coated with the DLC film containing one or more of B, V, Ti, or Mo, extremely excellent low friction characteristics are obtained. It was revealed that it was selectively expressed.
(5)エンジン動弁系摩擦試験による摩擦低減効果
上述した結果を踏まえて、GF−5開発油A、GF−5開発油A改またはGF−5開発油Cと、6B−DLC、Hフリ−DLCおよび鋼材とを組み合わせたときのエンジン動弁系摩擦試験に係る摩擦係数を図9にまとめて示した。
(5) Friction reduction effect by engine valve system friction test Based on the above results, GF-5 developed oil A, GF-5 developed oil A modified or GF-5 developed oil C, 6B-DLC, H free The friction coefficient concerning the engine valve system friction test when combining DLC and steel is shown in FIG.
エンジン動弁系摩擦試験に係る摩擦係数も、前述したブロックオンリング試験に係る摩擦係数と同様な傾向を示した。つまり、Mo三核体化合物を含むエンジン油と特定のDLC膜(本試験では6B−DLC)で被覆された摺動部材とを組み合わせることにより、選択的に優れた低摩擦特性が得られることが、実機に近い本試験においても確認できた。 The friction coefficient related to the engine valve system friction test showed the same tendency as the friction coefficient related to the block on-ring test described above. In other words, by combining an engine oil containing a Mo trinuclear compound and a sliding member coated with a specific DLC film (6B-DLC in this test), excellent low friction characteristics can be obtained selectively. It was also confirmed in this test close to the actual machine.
《低摩擦特性の解析》
(1)摺動面の表面形状
6B−DLCとMo三核体化合物を配合したエンジン油との組合せによって低μ特性が発現される機構を解析するため、次のような分析を行った。ブロックオンリング摩擦試験を行ったブロック試験片の摺動面(脱脂後)のナノスケール表面形状を、走査型プローブ顕微鏡(株式会社島津製作所製、SPM−9500J3、以下単に「SPM」という。)を用いて原子間力顕微鏡(AFM)モードで測定した。SPMプローブには、先端の曲率半径が10nm以下のSi製プローブ(Nanosensors社製PPP−CONTR)を用いた。
《Analysis of low friction characteristics》
(1) Surface shape of sliding surface The following analysis was performed in order to analyze the mechanism in which the low μ characteristic is expressed by the combination of 6B-DLC and the engine oil blended with the Mo trinuclear compound. The nanoscale surface shape of the sliding surface (after degreasing) of the block test piece subjected to the block-on-ring friction test was measured with a scanning probe microscope (manufactured by Shimadzu Corporation, SPM-9500J3, hereinafter simply referred to as “SPM”). And measured in an atomic force microscope (AFM) mode. As the SPM probe, a Si probe (PP-CONTR manufactured by Nanosensors) having a tip radius of curvature of 10 nm or less was used.
FM非配合の試作B系オイルまたはMo三核体化合物を配合した試作B系オイルと6B−DLCまたはHフリ−DLCとを組み合わせたときにできるブロックオンリング摩擦試験後の摺動面を、1μm×1μmの領域で測定した結果を図10に示した。また、6B−DLCの試験前の摺動面(初期面)を同様に測定した結果も図10に併せて示した。 The sliding surface after the block-on-ring friction test that can be obtained by combining a trial B oil not containing FM or a trial B oil containing a Mo trinuclear compound with 6B-DLC or H-free-DLC is 1 μm. FIG. 10 shows the result of measurement in a region of × 1 μm. Moreover, the result of having similarly measured the sliding surface (initial surface) before the test of 6B-DLC is also shown in FIG.
先ず、6B−DLCの初期面には、高さ50nm程度の微細凹凸がある。次に、Mo三核体化合物を含まない試作B系オイルを用いた場合、6B−DLCの試験後の摺動面は表面粗さが最大高さで10nm以下となっており、その初期面に比べて平滑化している。さらに、Mo三核体化合物を含む試作B系オイルを用いた場合、その6B−DLCの試験後の摺動面の表面粗さが最大高さで2nm以下という超平滑面となることがわかった。なお、Mo三核体化合物を含む試作B系オイルを用いた場合でも、Hフリ−DLCの試験後の摺動面は平滑化されるものの、その表面粗さは最大高さで20nm程度もあった。 First, the initial surface of 6B-DLC has fine irregularities having a height of about 50 nm. Next, when trial B-type oil not containing Mo trinuclear compound is used, the sliding surface after the 6B-DLC test has a maximum surface roughness of 10 nm or less. Compared to smoothing. Furthermore, it was found that when a prototype B-based oil containing a Mo trinuclear compound was used, the surface roughness of the sliding surface after the 6B-DLC test was an ultra-smooth surface with a maximum height of 2 nm or less. . Even when a trial B-series oil containing a Mo trinuclear compound is used, the sliding surface after the H-free DLC test is smoothed, but the surface roughness is about 20 nm at the maximum height. It was.
FM非配合の試作B系オイルまたはMo三核体化合物を配合した試作B系オイルと6B−DLCとを組み合わせたときにできるブロックオンリング摩擦試験後の摺動面を、より広範囲な10μm×10μmの領域で測定した結果を図11に示した。この図11により、各試験後の6B−DLCの摺動面に形成されたミクロな凸部が明確に把握される。 The sliding surface after the block-on-ring friction test that can be obtained by combining the prototype B-based oil not blended with FM or the prototype B-series oil blended with the Mo trinuclear compound and 6B-DLC, is more extensive 10 μm × 10 μm The results of measurement in the region are shown in FIG. The micro convex part formed in the sliding surface of 6B-DLC after each test is clearly grasped by this FIG.
Mo三核体化合物を配合した試作B系オイルと6B−DLCを組み合わせたときにできる試験後の摺動面の超平滑面は、半導体部品に用いられるSiウエハと同レベルであり、通常の機械研磨加工等では得られ難いものである。こうした超平滑面が、Mo三核体化合物を配合した潤滑油と特定のDLC膜との組み合わせた摺動により形成されたことになる。このような超平滑面が摺動面に形成されるようになると、その摺動面上で油膜が安定的に存在し易くなり、対向する摺動面同士が直接接触することが抑止される。その結果、前述したような超低μ特性がマクロ的な現象として発現したと考えられる。 The ultra-smooth surface of the sliding surface after the test that can be obtained by combining the trial B-series oil blended with the Mo trinuclear compound and 6B-DLC is at the same level as the Si wafer used for semiconductor components, and is a normal machine. It is difficult to obtain by polishing or the like. Such an ultra-smooth surface is formed by sliding combining a lubricating oil blended with a Mo trinuclear compound and a specific DLC film. When such an ultra-smooth surface is formed on the sliding surface, the oil film tends to exist stably on the sliding surface, and direct contact between the opposing sliding surfaces is suppressed. As a result, it is considered that the ultra-low μ characteristic as described above was developed as a macro phenomenon.
(2)超平滑面の形成機構
上述した超平滑面が形成される機構を解析するため、Mo三核体化合物を配合していない試作B系オイルまたはMo三核体化合物を配合した試作B系オイルと6B−DLCとを組み合わせたときのブロックオンリング摩擦試験後の摺動面を、走査型電子顕微鏡(SEM)とオージェ電子分光法(AES)を用いて観察または分析した。Mo三核体化合物が非配合な場合について得られた結果を図12に、Mo三核体化合物を配当した場合について得られた結果を図13にそれぞれ示した。
(2) Formation mechanism of ultra-smooth surface In order to analyze the mechanism by which the above-described ultra-smooth surface is formed, a prototype B system oil that does not contain Mo trinuclear compound or a trial B system that contains Mo trinuclear compound The sliding surface after the block-on-ring friction test when oil and 6B-DLC were combined was observed or analyzed using a scanning electron microscope (SEM) and Auger electron spectroscopy (AES). The results obtained when the Mo trinuclear compound is not blended are shown in FIG. 12, and the results obtained when the Mo trinuclear compound is distributed are shown in FIG.
図12に示したSEM像から、Mo三核体化合物を非配合としたエンジン油を用いた場合、試験後の摺動面に直径がサブミクロン以下である斑点が多く存在することが観察された。これは、AES像に現れたCaが多く存在する部位の分布と概ね一致している。Caは、エンジン油中に金属清浄剤として配合される過塩基性Caスルホネートに由来する吸着物あるいは反応生成物であると考えられる。 From the SEM image shown in FIG. 12, it was observed that when the engine oil containing no Mo trinuclear compound was used, many spots having a diameter of submicron or less were present on the sliding surface after the test. . This almost coincides with the distribution of the site where a large amount of Ca appears in the AES image. Ca is considered to be an adsorbate or reaction product derived from an overbased Ca sulfonate compounded as a metal detergent in engine oil.
一方、図13に示したSEM像およびAES像から、Mo三核体化合物を配合したエンジン油を用いた場合、試験後の摺動面には上記のような斑点やCaの偏在部が殆ど観られなかった。図11に示した結果と、図12および図13に示した結果を総合的に考慮すると、Mo三核体化合物を配合しないエンジン油を用いた場合、試験後の摺動面に形成される最大高さ20nm程度の凸部は、摺動面に吸着反応により生じたCa系化合物が原因であると考えられる。逆に、Mo三核体化合物を配合したエンジン油を用いた場合、試験後の摺動面が超平滑面となるのは、そのようなCa系化合物が摺動面に形成され難いためと考えられる。この理由として、過塩基性Caスルホネートと競争吸着の関係にあるMo三核体化合物が、摺動面を被覆するDLC膜上の特定部位(ドープ元素が存在する部分)に選択的に吸着し、過塩基性Caスルホネートが摺動面上で吸着反応することを阻害したためと推察される。ここでは6B−DLCについて説明したが、ドープ元素がB以外のTi、VまたはMoであるDLC膜についても、超低μ特性が生じていることから、6B−DLCの場合とどうような現象が生じていると考えられる。 On the other hand, from the SEM image and the AES image shown in FIG. 13, when engine oil containing Mo trinuclear compound was used, the above-mentioned spots and Ca unevenly distributed portions were hardly observed on the sliding surface after the test. I couldn't. When the results shown in FIG. 11 and the results shown in FIG. 12 and FIG. 13 are comprehensively taken into account, when engine oil not containing a Mo trinuclear compound is used, the maximum formed on the sliding surface after the test The convex portion having a height of about 20 nm is considered to be caused by a Ca-based compound generated by an adsorption reaction on the sliding surface. On the contrary, when engine oil containing Mo trinuclear compound is used, the sliding surface after the test becomes an ultra-smooth surface because it is difficult to form such a Ca compound on the sliding surface. It is done. The reason for this is that the Mo trinuclear compound, which is in a competitive adsorption relationship with the overbased Ca sulfonate, is selectively adsorbed on a specific part (part where the doping element is present) on the DLC film covering the sliding surface, This is presumably because the overbased Ca sulfonate inhibited the adsorption reaction on the sliding surface. Here, 6B-DLC has been described. However, since a very low μ characteristic is generated in a DLC film in which the doping element is Ti, V, or Mo other than B, what kind of phenomenon occurs in the case of 6B-DLC. It is thought that it has occurred.
(3)摺動面上の生成物
摺動面上における生成物に着目して低μ特性が発現する要因を解析するため、種々のエンジン油とDLC膜を組み合わせて行ったブロックオンリング試験後の摺動面(適宜、単に「摩擦面」という。)を、飛行時間型2次イオン質量分析法(TOF−SIMS)により測定した。Ion−Tof社製TOF−SIMS5装置を用いて、30keVのBi+ビームを1次イオンとして、摺動面の100μm×100μmの測定領域に対して高分解能スペクトル測定を行った。
(3) Products on the sliding surface After analyzing the block-on-ring test in which various engine oils and DLC membranes were combined in order to analyze the factors that cause the low-μ characteristics to occur, focusing on the products on the sliding surface. The sliding surface (as appropriate, simply referred to as “friction surface”) was measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Using a TOF-SIMS5 device manufactured by Ion-Tof, high resolution spectrum measurement was performed on a 100 μm × 100 μm measurement region on the sliding surface using a 30 keV Bi + beam as a primary ion.
この測定により、μ特性と摺動面上の生成物との関係に特徴が認められた代表的な二次イオン質量スペクトルを図14および図15に示した。各図中には、ブロックオンリング摩擦試験により得られたμ値も付記した。 FIG. 14 and FIG. 15 show typical secondary ion mass spectra in which characteristics are recognized in the relationship between the μ characteristic and the product on the sliding surface by this measurement. In each figure, μ values obtained by the block-on-ring friction test are also shown.
図14は 40Ca+ に着目した摺動面の二次イオン質量スペクトルである。Mo三核体化合物を配合したエンジン油と6B−DLCを組み合わせた場合、40Ca+のスペクトル強度が小さく、Ca系化合物の生成が少ないことが認められる。そして、このような場合に摩擦係数が0.02程度になる超低μ特性が発現していた。逆に、それ以外の場合は、40Ca+のスペクトル強度が大きく、Ca系化合物の生成が多いことが認められる。この場合、摩擦係数も0.06〜0.08程度にまで増大していた。 FIG. 14 is a secondary ion mass spectrum of a sliding surface focusing on 40 Ca + . When the engine oil blended with the Mo trinuclear compound and 6B-DLC are combined, it is recognized that the spectrum intensity of 40 Ca + is small and the production of Ca-based compounds is small. In such a case, an ultra-low μ characteristic with a friction coefficient of about 0.02 was developed. On the other hand, in other cases, it is recognized that the spectrum intensity of 40 Ca + is large and the production of Ca-based compounds is large. In this case, the friction coefficient also increased to about 0.06 to 0.08.
図15は質量数300〜600の負イオンに着目した摺動面の二次イオン質量スペクトルである。Mo三核体化合物を配合したエンジン油では、いずれもMo2S6 −、Mo3S7 −、Mo3S8 −などの硫化モリブデン化合物の生成が認められる。このうち、摩擦係数が0.02程度となる超低μ特性を示す摺動面では、Mo3S7 −に関するスペクトルが相対的に強く認められた。このMo3S7 −は、Infineum社の公開資料「Molybdenum AddiTive TecHnology for Engine Oil ApplicaTions」を参照すればわかるように、Mo三核体化合物(Triumclear)の骨格を構成する化学構造に一致する(図19参照)。 FIG. 15 is a secondary ion mass spectrum of a sliding surface focusing on negative ions having a mass number of 300 to 600. In the engine oil blended with the Mo trinuclear compound, generation of molybdenum sulfide compounds such as Mo 2 S 6 − , Mo 3 S 7 − , and Mo 3 S 8 — is recognized. Among these, on the sliding surface showing the ultra-low μ characteristic where the friction coefficient is about 0.02, a spectrum related to Mo 3 S 7 − was relatively strongly recognized. This Mo 3 S 7 − coincides with the chemical structure constituting the skeleton of the Mo trinuclear compound (Triumclear), as can be seen by referring to the published material “Molybdenum AddiTive TecHnology for Engine Oil ApplicaTions” by Infineum (see FIG. 19).
(4)Ca系化合物およびMo3S7 −化合物の生成量とμの関係
上述したTOF−SIMSにより得られた二次イオン質量スペクトルに基づき、40Ca+とMo3S7 −のイオン強度に着目して、Ca系化合物およびMo3S7化合物の生成量とμの関係を図16〜図18に整理した。
Based on the amount and secondary ion mass spectrum obtained by the relationship above TOF-SIMS of μ compounds, 40 Ca + and Mo 3 S 7 - - (4 ) Ca compound and Mo 3 S 7 of the ionic strength Paying attention, the relationship between the amount of Ca-based compound and Mo 3 S 7 compound produced and μ is arranged in FIGS. 16 to 18.
図16に示すように、40Ca+のカウント数とμの間には明確な定量的関係を認め難い。また図17に示すように、Mo3S7 −のカウント数とμの間にも明確な定量的関係を認め難い。しかし、両者のカウント数比(Mo3S7 −/40Ca+)に着目すると、図18に示すように、μとの間に定量的な関係が明確に存在していることがわかる。すなわち、カウント数比が0.006以上さらには0.01以上となる領域で、摩擦係数が0.02程度になることが認められる。つまり、Mo三核体化合物が配合された潤滑油の存在下で、Ca系化合物の吸着量が少なくMo三核体化合物の吸着量が多くなるDLC膜を摺動面に形成することにより、摩擦係数を従来よりも遥かに低くできることがわかった。 As shown in FIG. 16, it is difficult to recognize a clear quantitative relationship between the count of 40 Ca + and μ. Moreover, as shown in FIG. 17, it is difficult to recognize a clear quantitative relationship between the count of Mo 3 S 7 − and μ. However, paying attention to the count number ratio (Mo 3 S 7 − / 40 Ca + ) of both, it can be seen that a quantitative relationship clearly exists between μ as shown in FIG. That is, it is recognized that the friction coefficient is about 0.02 in a region where the count number ratio is 0.006 or more, further 0.01 or more. In other words, in the presence of lubricating oil containing the Mo trinuclear compound, a DLC film with a small amount of adsorption of the Ca-based compound and a large amount of adsorption of the Mo trinuclear compound is formed on the sliding surface. It was found that the coefficient can be made much lower than before.
[実施例2]
(1)成膜
実施例1の場合と同様に、ブロック状の鋼材(JIS SUS440C)の表面にCr−C系膜からなる中間層を形成した後、その中間層上に、Bを含みHを実質的に含まないDLC膜(単に「HフリB−DLC」と呼称する。)を成膜した。HフリB−DLCの成膜は、B4Cとグラファイトをターゲットとしたスパッタリングにより行った。このスパッタリングは、基本的に実施例1の場合と同様にアンバランスドマグネトロンスパッタリング装置を用いて行ったが、H源となるCH4ガス(C源ともなる。)やH2ガス等の装置内の導入は行わなかった。
[Example 2]
(1) Film formation As in the case of Example 1, after forming an intermediate layer made of a Cr-C-based film on the surface of a block-shaped steel material (JIS SUS440C), H containing B is contained on the intermediate layer. A substantially free DLC film (hereinafter simply referred to as “H-free B-DLC”) was formed. The H-free B-DLC was formed by sputtering using B 4 C and graphite as targets. This sputtering was basically performed using an unbalanced magnetron sputtering apparatus in the same manner as in Example 1, but in the apparatus such as CH 4 gas (also serving as C source) or H 2 gas serving as an H source. Was not introduced.
こうして、膜組成(原子%)がC−11.8%B−1.6%H(適宜、「B:12%」と表す。)とC−19.8%B−1.0%H(適宜、「B:20%」と表す。)である各HフリB−DLCを摺動面に有する2種類のブロック試験片を用意した。なお、膜組成および膜構造は実施例1の場合と同様にして求めた。これらHフリB−DLCがHを僅かに含有しているのは、成膜炉内に残留水分や酸素が存在しているためである。 Thus, the film composition (atomic%) is C-11.8% B-1.6% H (appropriately expressed as “B: 12%”) and C-19.8% B-1.0% H ( 2 types of block test pieces having each H-free B-DLC on the sliding surface were prepared. The film composition and film structure were determined in the same manner as in Example 1. The reason why these H-free B-DLCs contain a slight amount of H is that residual moisture and oxygen exist in the film forming furnace.
(2)摩擦試験
これらブロック試験片(摺動部材)と表2に示す潤滑油L130(Mo三核体化合物を80ppmMo含有しているGF−5開発油C)とを用いて、実施例1の場合と同様にブロックオンリング摩擦試験を行い、各ブロック試験片の摩擦係数を求めた。また、試験後の各摺動面を前述した非接触表面形状測定機により測定して、各摺動面の摩耗深さと立体形状を求めた。なお、摩耗深さは、非接触表面形状測定機により得られた立体形状に基づき測定した、非摺動面から摺動面の最深部までの距離とした。こうして得られた各試験片の摩擦係数を図20に、各摩耗深さを図21に、各摺動面の立体形状を図22に示した。
(2) Friction test Using these block test pieces (sliding members) and the lubricating oil L130 (GF-5 developed oil C containing 80 ppm Mo of Mo trinuclear compound) shown in Table 2 of Example 1 A block-on-ring friction test was performed as in the case, and the friction coefficient of each block specimen was obtained. Further, each sliding surface after the test was measured with the above-described non-contact surface shape measuring instrument, and the wear depth and the three-dimensional shape of each sliding surface were obtained. The wear depth was defined as the distance from the non-sliding surface to the deepest portion of the sliding surface, measured based on the three-dimensional shape obtained with a non-contact surface shape measuring machine. The friction coefficient of each test piece thus obtained is shown in FIG. 20, each wear depth is shown in FIG. 21, and the three-dimensional shape of each sliding surface is shown in FIG.
なお、比較のため、実施例1で用いた鋼材(SCM420)からなる試験片、6B−DLC(表1のD1)で被覆された試験片およびHフリ−DLC(表1のD6)で被覆された試験片と同様な3種の比較試験片をそれぞれ新たに用意した。これら試験片も上記のブロックオンリング摩擦試験に供した。こうして得られたそれぞれの摩擦係数、摩耗深さおよび摺動面形状も、図20〜図22に併せて示した。 For comparison, a test piece made of the steel material (SCM420) used in Example 1, a test piece coated with 6B-DLC (D1 in Table 1), and H-free-DLC (D6 in Table 1) were used. Three kinds of comparative test pieces similar to the test pieces prepared were prepared. These test pieces were also subjected to the above-described block-on-ring friction test. The respective friction coefficients, wear depths, and sliding surface shapes thus obtained are also shown in FIGS.
(3)評価
図20からわかるように、HフリB−DLCの摩擦係数が0.035前後であり、Bを含有しないHフリ−DLCの摩擦係数(0.07)に対して約半減することが明らかとなった。しかも、HフリB−DLCの摩擦係数は、そのB含有量が変化してもあまり変化しないことから、HフリB−DLCは低摩擦特性を安定的に発現することも明らかとなった。
(3) Evaluation As can be seen from FIG. 20, the friction coefficient of H-free B-DLC is around 0.035, which is about half of the friction coefficient (0.07) of H-free DLC not containing B. Became clear. In addition, the friction coefficient of H-free B-DLC does not change much even when its B content changes, and it has also been clarified that H-free B-DLC exhibits low friction characteristics stably.
図21および図22からわかるように、HフリB−DLCの摩擦係数は、0.2〜0.3μmであり、H含有B−DLCBの摩耗深さ(0.6μm)に対して約1/3〜1/2となることが明らかとなった。そしてHフリB−DLCの摩耗深さも、そのB含有量が変化してもあまり変化せず、HフリB−DLCは高耐摩耗性を安定的に発現することも明らかとなった。これは、Hフリー化により膜硬さが上昇していることにより得られていると考えられる。 As can be seen from FIGS. 21 and 22, the friction coefficient of H-free B-DLC is 0.2 to 0.3 μm, which is approximately 1 / 0.1 with respect to the wear depth (0.6 μm) of H-containing B-DLCB. It became clear that it became 3-1 / 2. The wear depth of H-free B-DLC does not change much even when the B content changes, and it has also been clarified that H-free B-DLC stably exhibits high wear resistance. This is considered to be obtained by increasing the film hardness due to the H-free.
以上から、HフリB−DLCは、Mo三核体化合物を配合した潤滑油と組合わせて用いることにより、低摩擦性と耐摩耗性を高次元で両立できることがわかった。なお、HフリB−DLCが低摩擦特性以外に高耐摩耗性をも発現した理由は必ずしも定かではないが、現状では次のように考えられる。DLC膜は、通常、Cのsp2 混成軌道成分(単に「sp2成分」という。)とCのsp3 混成軌道成分(単に「sp3成分」という。)が混在した膜構造を有する。DLC膜の製法にも依るが、一般的には、sp3成分が増加するほど、DLC膜は硬質化し、その耐摩耗性は向上し得る。本発明に係るHフリB−DLCは、Bを含有しつつH量が低減したために、適度なsp2成分を維持しつつsp3成分が増加して、低摩擦特性と併せて高耐摩耗性を発現したと考えられる。 From the above, it was found that H-free B-DLC can achieve both low friction and wear resistance at a high level when used in combination with a lubricating oil containing a Mo trinuclear compound. The reason why H-free B-DLC also exhibits high wear resistance in addition to low friction characteristics is not necessarily clear, but at present, it is considered as follows. A DLC film usually has a film structure in which a C sp 2 hybrid orbital component (simply referred to as “sp 2 component”) and a C sp 3 hybrid orbital component (simply referred to as “sp 3 component”) are mixed. Although depending on the production method of the DLC film, in general, as the sp 3 component increases, the DLC film becomes harder and its wear resistance can be improved. Since the H-free B-DLC according to the present invention contains B and the amount of H is reduced, the sp 3 component is increased while maintaining an appropriate sp 2 component, and high wear resistance is combined with low friction characteristics. It is thought that was expressed.
[実施例3]
(1)成膜、摩擦試験および測定
実施例1および実施例2に示したB−DLCと組成が異なる新たなB−DLCを成膜したブロック試験片をさらに用意し、摩擦試験に供した。成膜条件および摩擦試験条件は実施例2の場合と同様である。こうして得られた新たなブロック試験片に係る摩擦係数を、実施例1および実施例2で製造したブロック試験片に係る摩擦係数と併せて表3に示した。また、表3に基づいて、DLC膜中のB含有量と摩擦係数の関係を図23に示した。
[Example 3]
(1) Film Formation, Friction Test and Measurement A block test piece on which a new B-DLC having a composition different from that of the B-DLC shown in Example 1 and Example 2 was further prepared and subjected to a friction test. The film forming conditions and the friction test conditions are the same as in Example 2. The friction coefficient concerning the new block test piece obtained in this way is shown in Table 3 together with the friction coefficient concerning the block test piece manufactured in Example 1 and Example 2. Further, based on Table 3, the relationship between the B content in the DLC film and the friction coefficient is shown in FIG.
また、各B−DLC膜について測定した硬さと弾性率を表4にまとめて示した。なお、弾性率は、硬さと同様に前述したナノインデンター試験機で測定した。 Table 4 shows the hardness and elastic modulus measured for each B-DLC film. In addition, the elasticity modulus was measured with the nano indenter test machine mentioned above similarly to hardness.
(2)評価
先ず、表3および図23から明らかなように、DLC膜中にB等が含有されていないときの摩擦係数は大きいが、DLC膜中に僅かでもBが含有されると、摩擦係数が急激に低下することがわかった。そして、DLC膜中のB含有量が変化しても、安定した低摩擦特性が発揮されることも明らかとなった。なお、表3および図23に示した各DLC膜では、B含有量の影響を評価するために、DLC膜中のH含有量をいずれも20原子%前後とした。
(2) Evaluation First, as is apparent from Table 3 and FIG. 23, the friction coefficient when B or the like is not contained in the DLC film is large. It was found that the coefficient decreased rapidly. And it became clear that even if the B content in the DLC film changes, a stable low friction characteristic is exhibited. In each DLC film shown in Table 3 and FIG. 23, in order to evaluate the influence of the B content, the H content in the DLC film was about 20 atomic%.
次に、表4から、DLC膜の硬さと弾性率は、DLC膜中のH含有量が増加するほど増加し、DLC膜中のB含有量にはあまり影響されないこともわかった。このことは、例えば、H含有量の変化が小さくてB含有量の変化が大きい試料31と試料32、またはH含有量の変化が大きくてB含有量の変化が小さい試料32と試料33を、それぞれ比較すれば明らかである。 Next, from Table 4, it was found that the hardness and elastic modulus of the DLC film increased as the H content in the DLC film increased and were not significantly affected by the B content in the DLC film. This is because, for example, Sample 31 and Sample 32 with a small change in H content and a large change in B content, or Sample 32 and Sample 33 with a large change in H content and a small change in B content, It is clear if each is compared.
Claims (6)
該対向する摺動面間に介在し得る潤滑油と、
を備えた摺動機械であって、
前記摺動面の少なくとも一方は、膜全体を100原子%(単に「%」という。)としたときに、合計で1〜30%となるボロン(B)、チタン(Ti)、バナジウム(V)またはモリブデン(Mo)の少なくとも一種以上からなる特定元素と、0〜25%の水素(H)と、残部が炭素(C)および不純物とからなる非晶質炭素膜で被覆された被覆面からなり、
前記潤滑油は、モリブデン(Mo)の三核体からなる化学構造を有する油溶性モリブデン化合物を、該潤滑油全体に対するMoの質量割合で25〜800ppm含むことを特徴とする摺動機械。 A pair of sliding members having opposing sliding surfaces that are capable of relative movement;
Lubricating oil that may be interposed between the opposing sliding surfaces;
A sliding machine comprising:
At least one of the sliding surfaces has a total of 1 to 30% of boron (B), titanium (Ti), vanadium (V) when the entire film is 100 atomic% (simply referred to as “%”). Or a coated surface coated with an amorphous carbon film composed of at least one specific element of molybdenum (Mo), 0 to 25% hydrogen (H), and the balance carbon (C) and impurities. ,
A sliding machine characterized in that the lubricating oil contains an oil-soluble molybdenum compound having a chemical structure composed of a trinuclear body of molybdenum (Mo) in a mass ratio of 25 to 800 ppm of Mo with respect to the entire lubricating oil.
該対向する摺動面間に介在し得る潤滑油と、
を備えた摺動機械であって、
前記摺動面の少なくとも一方は、膜全体を100%としたときに、合計で5〜30%となるB、Ti、VまたはMoの少なくとも一種以上からなる特定元素と、5〜25%のHと、残部がCおよび不純物とからなる非晶質炭素膜で被覆された被覆面からなり、
前記潤滑油は、Moの三核体からなる化学構造を有する油溶性モリブデン化合物を、該潤滑油全体に対するMoの質量割合で25〜300ppm含むことを特徴とする摺動機械。 A pair of sliding members having opposing sliding surfaces that are capable of relative movement;
Lubricating oil that may be interposed between the opposing sliding surfaces;
A sliding machine comprising:
At least one of the sliding surfaces has a total element of at least one of B, Ti, V, or Mo that is 5 to 30% when the entire film is 100%, and 5 to 25% of H. And the balance consists of a coated surface covered with an amorphous carbon film composed of C and impurities,
The lubricating oil contains an oil-soluble molybdenum compound having a chemical structure composed of a trinuclear body of Mo in an amount of 25 to 300 ppm in terms of the mass ratio of Mo to the entire lubricating oil.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014082034A JP6327915B2 (en) | 2013-04-25 | 2014-04-11 | Sliding machine |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013093116 | 2013-04-25 | ||
| JP2013093116 | 2013-04-25 | ||
| JP2014082034A JP6327915B2 (en) | 2013-04-25 | 2014-04-11 | Sliding machine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2014224239A true JP2014224239A (en) | 2014-12-04 |
| JP6327915B2 JP6327915B2 (en) | 2018-05-23 |
Family
ID=52123146
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014082034A Active JP6327915B2 (en) | 2013-04-25 | 2014-04-11 | Sliding machine |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6327915B2 (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2966152A1 (en) * | 2014-07-11 | 2016-01-13 | Toyota Jidosha Kabushiki Kaisha | Sliding machine |
| JP2016196689A (en) * | 2015-04-06 | 2016-11-24 | 株式会社豊田中央研究所 | Slide member and slide machine |
| JP2016196690A (en) * | 2015-04-06 | 2016-11-24 | 株式会社豊田中央研究所 | Sliding member and sliding machine |
| JP2017133574A (en) * | 2016-01-27 | 2017-08-03 | 株式会社豊田中央研究所 | Wet continuously variable transmission |
| JP2017196571A (en) * | 2016-04-27 | 2017-11-02 | サンノプコ株式会社 | Defoaming agent |
| JP6357606B1 (en) * | 2017-03-31 | 2018-07-11 | 株式会社リケン | Sliding member and piston ring |
| JP2018115629A (en) * | 2017-01-20 | 2018-07-26 | 株式会社デンソー | Fuel injection valve and manufacturing method thereof |
| WO2018143365A1 (en) | 2017-02-01 | 2018-08-09 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Lubricant composition |
| WO2018179708A1 (en) * | 2017-03-31 | 2018-10-04 | 株式会社リケン | Sliding member and piston ring |
| CN108884408A (en) * | 2016-04-08 | 2018-11-23 | 禾大国际股份公开有限公司 | The system through lubricating comprising the surface DLC |
| JP2019002468A (en) * | 2017-06-14 | 2019-01-10 | 株式会社豊田中央研究所 | Automatic transmission |
| EP3556832A1 (en) | 2018-04-20 | 2019-10-23 | Jtekt Corporation | Sliding member and sliding machine |
| US10619739B2 (en) * | 2015-07-31 | 2020-04-14 | Nippon Piston Ring Co., Ltd | Piston ring |
| US10883601B2 (en) | 2017-03-31 | 2021-01-05 | Kabushiki Kaisha Riken | Sliding member and piston ring |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998026030A1 (en) * | 1996-12-13 | 1998-06-18 | Exxon Research And Engineering Company | Lubricating oil compositions containing organic molybdenum complexes |
| JP2001316686A (en) * | 2000-04-28 | 2001-11-16 | Shojiro Miyake | Hard carbon film sliding member |
| JP2004137535A (en) * | 2002-10-16 | 2004-05-13 | Nissan Motor Co Ltd | Hard carbon coating sliding member |
| JP2004339486A (en) * | 2003-03-26 | 2004-12-02 | Infineum Internatl Ltd | Method of lubricating surface coated with diamond-like carbon |
| JP2008037860A (en) * | 2006-07-10 | 2008-02-21 | Adeka Corp | Phosphorus molybdenum compound and method for producing the same |
| JP2011032429A (en) * | 2009-08-05 | 2011-02-17 | Toyota Central R&D Labs Inc | Low-frictional sliding member |
| JP2012224888A (en) * | 2011-04-15 | 2012-11-15 | Toyota Central R&D Labs Inc | Sliding member |
-
2014
- 2014-04-11 JP JP2014082034A patent/JP6327915B2/en active Active
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998026030A1 (en) * | 1996-12-13 | 1998-06-18 | Exxon Research And Engineering Company | Lubricating oil compositions containing organic molybdenum complexes |
| JP2001515528A (en) * | 1996-12-13 | 2001-09-18 | エクソン・リサーチ・アンド・エンジニアリング・カンパニー | Lubricating oil composition containing organic molybdenum complex |
| JP2001316686A (en) * | 2000-04-28 | 2001-11-16 | Shojiro Miyake | Hard carbon film sliding member |
| JP2004137535A (en) * | 2002-10-16 | 2004-05-13 | Nissan Motor Co Ltd | Hard carbon coating sliding member |
| JP2004339486A (en) * | 2003-03-26 | 2004-12-02 | Infineum Internatl Ltd | Method of lubricating surface coated with diamond-like carbon |
| US20050119136A1 (en) * | 2003-03-26 | 2005-06-02 | Rebecca Castle | Method for lubricating diamond-like carbon coated surfaces |
| JP2008037860A (en) * | 2006-07-10 | 2008-02-21 | Adeka Corp | Phosphorus molybdenum compound and method for producing the same |
| EP2039698A1 (en) * | 2006-07-10 | 2009-03-25 | Adeka Corporation | Phosphorus molybdenum compound and method for producing the same |
| JP2011032429A (en) * | 2009-08-05 | 2011-02-17 | Toyota Central R&D Labs Inc | Low-frictional sliding member |
| JP2012224888A (en) * | 2011-04-15 | 2012-11-15 | Toyota Central R&D Labs Inc | Sliding member |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10030207B2 (en) | 2014-07-11 | 2018-07-24 | Toyota Jidosha Kabushiki Kaisha | Sliding machine |
| EP2966152A1 (en) * | 2014-07-11 | 2016-01-13 | Toyota Jidosha Kabushiki Kaisha | Sliding machine |
| JP2016196689A (en) * | 2015-04-06 | 2016-11-24 | 株式会社豊田中央研究所 | Slide member and slide machine |
| JP2016196690A (en) * | 2015-04-06 | 2016-11-24 | 株式会社豊田中央研究所 | Sliding member and sliding machine |
| US10619739B2 (en) * | 2015-07-31 | 2020-04-14 | Nippon Piston Ring Co., Ltd | Piston ring |
| JP2017133574A (en) * | 2016-01-27 | 2017-08-03 | 株式会社豊田中央研究所 | Wet continuously variable transmission |
| CN108884408A (en) * | 2016-04-08 | 2018-11-23 | 禾大国际股份公开有限公司 | The system through lubricating comprising the surface DLC |
| JP2017196571A (en) * | 2016-04-27 | 2017-11-02 | サンノプコ株式会社 | Defoaming agent |
| JP2018115629A (en) * | 2017-01-20 | 2018-07-26 | 株式会社デンソー | Fuel injection valve and manufacturing method thereof |
| WO2018143365A1 (en) | 2017-02-01 | 2018-08-09 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Lubricant composition |
| WO2018179708A1 (en) * | 2017-03-31 | 2018-10-04 | 株式会社リケン | Sliding member and piston ring |
| CN110462198A (en) * | 2017-03-31 | 2019-11-15 | 株式会社理研 | Sliding members and piston rings |
| JP6357606B1 (en) * | 2017-03-31 | 2018-07-11 | 株式会社リケン | Sliding member and piston ring |
| CN110462198B (en) * | 2017-03-31 | 2020-07-24 | 株式会社理研 | Sliding members and piston rings |
| US10823288B2 (en) | 2017-03-31 | 2020-11-03 | Kabushiki Kaisha Riken | Sliding member and piston ring |
| US10883601B2 (en) | 2017-03-31 | 2021-01-05 | Kabushiki Kaisha Riken | Sliding member and piston ring |
| JP2019002468A (en) * | 2017-06-14 | 2019-01-10 | 株式会社豊田中央研究所 | Automatic transmission |
| EP3556832A1 (en) | 2018-04-20 | 2019-10-23 | Jtekt Corporation | Sliding member and sliding machine |
| US10851776B2 (en) | 2018-04-20 | 2020-12-01 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Sliding member and sliding machine |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6327915B2 (en) | 2018-05-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6327915B2 (en) | Sliding machine | |
| JP5941503B2 (en) | Sliding machine | |
| JP5358521B2 (en) | Low friction sliding member | |
| US10287526B2 (en) | Method to produce catalytically active nanocomposite coatings | |
| JP2015193918A (en) | Slide member and slide machine | |
| CN105546314B (en) | Sliding system | |
| Yue et al. | Effects of tungsten doping contents on tribological behaviors of tungsten-doped diamond-like carbon coatings lubricated by MoDTC | |
| US10301568B2 (en) | Sliding system | |
| JP6343581B2 (en) | Sliding member and sliding machine | |
| JP6574801B2 (en) | Sliding system | |
| JP2013108156A (en) | Member for valve drive system of internal combustion engine and method of using the same | |
| JP6209552B2 (en) | Sliding member and sliding machine | |
| JP6556637B2 (en) | Wet continuously variable transmission | |
| US20190177637A1 (en) | Sliding system | |
| Lanigan | Tribochemical analysis of si-doped and non-doped diamond-like carbon for application within the internal combustion engine | |
| JP2019203496A (en) | Internal combustion engine for hybrid vehicle | |
| EP3556832A1 (en) | Sliding member and sliding machine | |
| GUAN et al. | Key Role of Overbased Detergents in Load-Induced Friction Reduction: Investigation of the Inhibitory Effect of Zddp | |
| Tanaka et al. | Friction and wear characteristics of molybdenum dithiocarbamate with alloy steels | |
| JP2019002468A (en) | Automatic transmission | |
| JP2015151611A (en) | Slide machine and slide member |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160921 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170816 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170912 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171107 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171205 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180228 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180228 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180319 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180410 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180417 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6327915 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |