JP2015186817A - Gas shield arc welding wire - Google Patents
Gas shield arc welding wire Download PDFInfo
- Publication number
- JP2015186817A JP2015186817A JP2014064947A JP2014064947A JP2015186817A JP 2015186817 A JP2015186817 A JP 2015186817A JP 2014064947 A JP2014064947 A JP 2014064947A JP 2014064947 A JP2014064947 A JP 2014064947A JP 2015186817 A JP2015186817 A JP 2015186817A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- welding
- room temperature
- arc welding
- welding wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Nonmetallic Welding Materials (AREA)
Abstract
Description
本発明は、ガスシールドアーク溶接用ワイヤに関し、ワイヤ送給性が良好で、かつ、拡散性水素量が少ない溶接金属が得られるガスシールドアーク溶接用ワイヤに関する。 The present invention relates to a gas shielded arc welding wire, and more particularly to a gas shielded arc welding wire that can provide a weld metal having good wire feedability and a small amount of diffusible hydrogen.
ガスシールドアーク溶接用ワイヤは、ソリッドワイヤおよびフラックス入りワイヤがあり、全姿勢溶接が可能で、信頼性の高い溶接継手部が得られる。したがって、造船、建築、橋梁を主体とする大型構造物や自動車等の輸送機器の薄板鋼構造物製造に広く用いられている。 The gas shielded arc welding wire includes a solid wire and a flux-cored wire, and can be welded in all positions to obtain a highly reliable welded joint. Therefore, it is widely used in the manufacture of sheet steel structures for transportation equipment such as large structures mainly composed of shipbuilding, construction and bridges, and automobiles.
ガスシールドアーク溶接用ワイヤを用いたアーク溶接作業は、ワイヤ供給装置の送給ローラにより、コンジットケーブル内部に内包された螺旋状に形成されたコンジットチューブとそれにつながる溶接トーチのチップから連続的に溶接用ワイヤを送り出しながらシールドガスの雰囲気でアーク溶解する方法で使用される。 Arc welding work using gas shielded arc welding wire is continuously welded from the conduit tube formed in a spiral inside the conduit cable and the tip of the welding torch connected to it by the feed roller of the wire feeder. It is used by the method of arc melting in the atmosphere of shielding gas while feeding the wire.
また、コンジットケーブルは溶接作業を容易にするために6m以上の長尺でかつ軟質の物が用いられ、ワイヤ供給装置から溶接部までの距離の調整や狭隘部の溶接をするために上下あるいは左右に曲げられたり、ループ状に巻きつけて長さを調整して使用されることが多い。このような状況で使用された場合、溶接用ワイヤは螺旋状のコンジットチューブ内の表面と接触摩擦部が増えて送給抵抗が増し送給抵抗が大きくなり、溶接用ワイヤを円滑に送給することが困難となる。 In addition, the conduit cable is made of a long and soft material of 6 m or longer in order to facilitate the welding work, and is adjusted up and down or left and right to adjust the distance from the wire supply device to the welded part and to weld the narrow part. It is often used after being bent into a loop or wound in a loop to adjust its length. When used in such a situation, the welding wire increases the surface resistance in the spiral conduit tube and the contact friction part, increases the feeding resistance and increases the feeding resistance, and smoothly feeds the welding wire. It becomes difficult.
また、溶接継手部に欠陥が発生した場合、溶接構造物に多大な悪影響を与えるため、溶接継手部の欠陥を防止することが重要である。溶接継手部に発生する欠陥として、溶接金属の低温割れがあり、低温割れの主原因としては、溶接金属に進入した拡散性水素が原因となる。拡散性水素の発生源としては、溶接用ワイヤ鋼材中の水素基、溶接用フラックス入りワイヤのフラックス中の水素基および溶接用ワイヤを円滑に送給するために塗布した潤滑油中の水素基がある。そのため、特に溶接用ワイヤの潤滑油を少なくすることが望ましいが、潤滑油の塗布量が少ない場合は、ワイヤ送給性が不良となって融合不良等の低温
割れ以外の欠陥が発生する場合がある。
In addition, when a defect occurs in the welded joint, it has a great adverse effect on the welded structure, so it is important to prevent the welded joint from being defective. As a defect generated in the weld joint, there is a cold crack of the weld metal, and the main cause of the cold crack is diffusible hydrogen that has entered the weld metal. Sources of diffusible hydrogen include hydrogen groups in welding wire steel, hydrogen groups in the flux of welding flux-cored wires, and hydrogen groups in lubricating oil applied to smoothly feed the welding wire. is there. Therefore, it is particularly desirable to reduce the lubricating oil of the welding wire. However, if the amount of lubricating oil applied is small, the wire feedability may be poor and defects other than cold cracking such as poor fusion may occur. is there.
従って、ワイヤ送給性が良好で、かつ拡散性水素量が少ない溶接金属が得られる溶接用ワイヤが求められている。そのため、例えば特開平5−23731号公報(特許文献1)に、ポリ四弗化エチレン、二硫化モリブデン、グラファイト、マイカ、セリサイトおよびタルクを適量含む固体潤滑剤で乾式伸線し、ワイヤ表面に前記潤滑剤を適量有するフラックス入りワイヤが開示されている。特許文献1に記載のフラックス入りワイヤは、ワイヤ送給性は優れるが、潤滑剤中に水素基を含む鉱物を有しているので、溶接金属の拡散性水素量が高くなり、特に高張力鋼の溶接を行った場合、低温割れが発生する場合がある。 Accordingly, there is a need for a welding wire that provides a weld metal that has good wire feedability and a small amount of diffusible hydrogen. Therefore, for example, in Japanese Patent Application Laid-Open No. 5-23731 (Patent Document 1), dry drawing is performed with a solid lubricant containing an appropriate amount of polytetrafluoroethylene, molybdenum disulfide, graphite, mica, sericite, and talc. A flux-cored wire having an appropriate amount of the lubricant is disclosed. The flux-cored wire described in Patent Document 1 is excellent in wire feedability, but has a mineral containing a hydrogen group in the lubricant, so that the amount of diffusible hydrogen in the weld metal is increased, particularly in high-tensile steel. When welding is performed, cold cracking may occur.
また、特開平6−277877号公報(特許文献2)には、パ−フルオロポリエ−テルをワイヤ表面に1〜500ppm塗布したワイヤの開示がある。特許文献2に記載の溶接用ワイヤを用いて溶接した場合、溶接時の屈曲が少ない場合は、ワイヤ送給性に優れ、アークも安定するが、粉末溶接時の屈曲が多い場合は、溶接用ワイヤとコンジットチューブとの摩擦で溶接用ワイヤ表面がコンジットチューブに削られ、溶接用ワイヤの送給抵抗が大きくなり、ワイヤ送給性が悪くなってアークが不安定になり、融合不良等の欠陥が発生しやすくなる。
Japanese Patent Laid-Open No. 6-277877 (Patent Document 2) discloses a wire in which 1 to 500 ppm of perfluoropolyether is applied to the wire surface. When welding is performed using the welding wire described in
さらに、特開2001−150186号公報(特許文献3)には、溶接用フラックス入りワイヤのフラックスに有機化合物を付着させ、拡散性水素を低減させるフラックス入りワイヤが開示されている。特許文献3に記載の溶接用フラックス入りワイヤは、フラックス中に有機化合物を含むので溶接金属の拡散性水素量が高くなり、特に高張力鋼の溶接を行った場合、低温割れが発生する場合がある。また、ワイヤ送給性も劣るという問題もある。 Furthermore, Japanese Patent Laid-Open No. 2001-150186 (Patent Document 3) discloses a flux-cored wire in which an organic compound is attached to the flux of a welding flux-cored wire to reduce diffusible hydrogen. Since the flux-cored wire for welding described in Patent Document 3 contains an organic compound in the flux, the amount of diffusible hydrogen in the weld metal is high, and particularly when high-tensile steel is welded, cold cracking may occur. is there. There is also a problem that the wire feedability is inferior.
本発明は、ワイヤ送給性が良好で、かつ、拡散性水素量が少ない溶接金属が得られるガスシールドアーク溶接用ワイヤを提供することを目的とする。 An object of this invention is to provide the wire for gas shielded arc welding from which the weld metal with favorable wire feeding property and few diffusible hydrogen amounts is obtained.
本発明の要旨は、ガスシールドアーク溶接用ワイヤにおいて、ワイヤ表面にワイヤ10kg当たり、粉末状のポリテトラフルオロエチレンを0.002〜0.30g、常温で液体のクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの1種または2種以上を0.2〜1.3g有することを特徴とするガスシールドアーク溶接用ワイヤにある。 The gist of the present invention is that, in a gas shielded arc welding wire, 0.002 to 0.30 g of powdered polytetrafluoroethylene per 10 kg of wire on the wire surface, chlorofluorocarbon, perfluoro It exists in the wire for gas shielded arc welding characterized by having 0.2-1.3g of 1 type, or 2 or more types of a polyether and fluoroester.
本発明のガスシールドアーク溶接用ワイヤによれば、軟質で長尺のコンジットケーブルを使用して長時間溶接する場合においても、ワイヤ送給性が良好で、かつ拡散性水素量が少ない溶接金属を得ることが可能で、溶接欠陥のない高品質の溶接継手を提供できる。 According to the gas shielded arc welding wire of the present invention, even when welding for a long time using a soft and long conduit cable, a weld metal having a good wire feeding property and a small amount of diffusible hydrogen is used. It is possible to provide a high-quality welded joint that can be obtained and has no weld defects.
本発明者らは、前記課題を解決するためにガスシールドアーク溶接用ワイヤのワイヤ表
面に塗布する送給潤滑剤について種々検討した。その結果、ワイヤ表面に常温で粉末状のポリテトラフルオロエチレンと常温で液体であるクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルを1種または2種以上を適量塗布することによって、軟質で長尺のコンジットケーブルを使用して長時間溶接する場合においてもワイヤ送給性が良好で、かつ、拡散性水素量が少ない溶接金属が得られることを見出した。
In order to solve the above-mentioned problems, the present inventors have made various studies on a feed lubricant applied to the wire surface of a wire for gas shielded arc welding. As a result, by applying an appropriate amount of one or more kinds of polytetrafluoroethylene powdered at room temperature and chlorofluorocarbon, perfluoropolyether and fluoroester that are liquid at room temperature to the wire surface, It has been found that a weld metal having good wire feedability and a small amount of diffusible hydrogen can be obtained even when welding is performed for a long time using a soft and long conduit cable.
ワイヤ表面に塗布する潤滑剤は、ワイヤ10kg当たり、常温で粉末状のポリテトラフ
ルオロエチレンを0.002〜0.30g、常温で液体であるクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの1種または2種以上を0.2〜1.3g(以下、g/10kgWという。)とする。
The lubricant applied to the wire surface is 0.002 to 0.30 g of powdered polytetrafluoroethylene at room temperature per 10 kg of wire, chlorofluorocarbon, perfluoropolyether and fluoro, which are liquid at room temperature. One type or two or more types of ester is 0.2 to 1.3 g (hereinafter referred to as g / 10 kgW).
常温で粉末状のポリテトラフルオロエチレンは、コンジットチューブ内で溶接用ワイヤの送給抵抗を抑制してワイヤ送給性を良好にする。ポリテトラフルオロエチレンが0.002g/10kgW未満であると、コンジットチューブ内で溶接用ワイヤの送給抵抗が大きくなりワイヤ送給性が不良で、アークが不安定となる。一方、ポリテトラフルオロエチレンが0.30g/10kgWを超えると、送給ローラでワイヤがスリップし、アークが不安定になってスパッタ発生量が多くなる。従って、常温で粉末状のポリテトラフルオロエチレンは0.002〜0.30g/10kgWとする。 Polytetrafluoroethylene powdered at normal temperature suppresses the feeding resistance of the welding wire in the conduit tube and improves the wire feeding property. When polytetrafluoroethylene is less than 0.002 g / 10 kgW, the feeding resistance of the welding wire in the conduit tube increases, the wire feeding performance is poor, and the arc becomes unstable. On the other hand, when polytetrafluoroethylene exceeds 0.30 g / 10 kgW, the wire slips with the feeding roller, the arc becomes unstable, and the amount of spatter generated increases. Therefore, the polytetrafluoroethylene powdered at room temperature is 0.002 to 0.30 g / 10 kgW.
なお、常温で粉末状のポリテトラフルオロエチレンは、コンジットチューブとの接触により長時間溶接しているとコンジットチューブ内に少量蓄積されるが、この蓄積されたポリテトラフルオロエチレンは溶接用ワイヤの送給抵抗を小さくする働きをする。また、ポリテトラフルオロエチレンの粒径は10μm以下であることが溶接用ワイヤの送給抵抗を低減してワイヤ送給性を良好にするので好ましい。 A small amount of powdered polytetrafluoroethylene at room temperature accumulates in the conduit tube when it is welded for a long time by contact with the conduit tube, but this accumulated polytetrafluoroethylene is sent to the welding wire. It works to reduce the feeding resistance. Moreover, it is preferable that the particle diameter of polytetrafluoroethylene is 10 μm or less because the feeding resistance of the welding wire is reduced and the wire feeding property is improved.
常温で液体であるクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロ
エステルの1種または2種以上は、ワイヤ表面に皮膜を形成してワイヤ送給性を向上すると共に、ワイヤ表面にポリテトラフルオロエチレンを付着させて、さらにワイヤ送給性を向上させる。また、クロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルは、水素基を含まないので溶接金属中の拡散性水素量を増加させることがない。ワイヤ表面の常温で液体であるクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの1種または2種以上が0.2g/10kgW未満であると、コンジットチューブ内で溶接用ワイヤの送給抵抗が大きく、ワイヤ送給性が不良となりアークがやや不安定となる。
One or more of chlorofluorocarbons, perfluoropolyethers, and fluoroesters that are liquid at room temperature form a film on the wire surface to improve wire feedability, and Tetrafluoroethylene is adhered to further improve the wire feedability. Further, since chlorofluorocarbon, perfluoropolyether and fluoroester do not contain hydrogen groups, the amount of diffusible hydrogen in the weld metal is not increased. If one or more of chlorofluorocarbon, perfluoropolyether and fluoroester, which are liquid at room temperature on the wire surface, is less than 0.2 g / 10 kgW, the welding wire is fed in the conduit tube. The feed resistance is large, the wire feedability is poor, and the arc is somewhat unstable.
一方、ワイヤ表面のクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの1種または2種以上が1.3g/10kgWを超えると、送給ローラでワイヤがスリップするとともにクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルは、絶縁抵抗が高く、溶接チップでの通電性が悪くなりア−クが不安定となる。従って、ワイヤ表面の常温で液体であるクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの1種または2種以上は0.2〜1.3g/10kgWとする。なお、クロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルは、溶接用ワイヤ表面への塗布を容易とするため、粘度は40℃で10〜200mm2 /Sが望ましい。 On the other hand, if one or more of chlorofluorocarbon, perfluoropolyether and fluoroester on the surface of the wire exceeds 1.3 g / 10 kgW, the wire slips with the feed roller and the chlorofluorocarbon Bons, perfluoropolyethers and fluoroesters have high insulation resistance, poor electrical conductivity at the welding tip, and arc becomes unstable. Accordingly, one or more of chlorofluorocarbon, perfluoropolyether and fluoroester which are liquid at room temperature on the wire surface is 0.2 to 1.3 g / 10 kgW. In addition, the viscosity of chlorofluorocarbon, perfluoropolyether and fluoroester is preferably 10 to 200 mm 2 / S at 40 ° C. in order to facilitate application to the surface of the welding wire.
本発明のガスシールドアーク溶接用ワイヤの製造方法は、フラックス入りワイヤ素線や
ソリッドワイヤ素線を、製品径まで仕上げ伸線して、常温で粉末状のポリテトラフルオロエチレンを、常温で液体であるクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの1種または2種以上に分散させた潤滑剤をワイヤ表面に塗布してスプール巻きまたはペールパック入りワイヤとする。
The method for producing a wire for gas shielded arc welding according to the present invention comprises finishing and drawing a flux-cored wire or a solid wire to the product diameter, and adding powdered polytetrafluoroethylene at room temperature to a liquid at room temperature. Lubricants dispersed in one or more of certain chlorofluorocarbons, perfluoropolyethers and fluoroesters are applied to the wire surface to form spooled or pail-packed wires.
なお、ガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮の合わせ目を溶接
して得られる鋼製外皮に合わせ目が無いワイヤと、鋼製外皮の合わせ目の溶接を行わないままの鋼製外皮に継目を有するワイヤとに大別できるが、本発明においては、何れの断面形状のワイヤを用いることができる。
In addition, the flux-cored wire for gas shielded arc welding is made of a steel that has no seam in the steel outer shell obtained by welding the seam of the steel outer shell and a steel that is not welded in the seam of the steel outer shell Although it can be roughly classified into a wire having a seam in the outer skin, any cross-sectional shape wire can be used in the present invention.
以下、本発明の効果を実施例により具体的に説明する。
表1に示すワイヤ径1.2mmのガスシールドアーク溶接用ワイヤ(JIS Z3313 T591T1−1CA−N2M1−U、フラックス充填率13%の鋼製外皮に継目に無いガスシールドアーク溶接用フラックス入りワイヤおよびJIS Z3312 G59JA1UC3M1Tのガスシールドアーク溶接用ソリッドワイヤ)に、常温で粉末状であるポリテトラフルオロエチレンと常温で液体であるクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの1種または2種以上の塗布量を種々変えて試作してスプール巻きワイヤとした。なお、粉末状のポリテトラフルオロエチレンの平均粒径は3μmのものを用いた。また、クロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの粘度は、40℃で20〜60mm2 /Sのものを用いた。
Hereinafter, the effect of the present invention will be described in detail with reference to examples.
Gas shielded arc welding wire with a wire diameter of 1.2 mm shown in Table 1 (JIS Z3313 T591T1-1CA-N2M1-U, flux-cored wire for gas shielded arc welding that is seamless on a steel outer shell with a flux filling rate of 13%, and JIS Z3312 G59JA1UC3M1T (solid wire for gas shielded arc welding), one or two kinds of powdered polytetrafluoroethylene at room temperature and chlorofluorocarbon, perfluoropolyether and fluoroester liquid at room temperature The above-described coating amount was changed in various ways to make a spool winding wire. The powdery polytetrafluoroethylene having an average particle diameter of 3 μm was used. The viscosity of chlorofluorocarbon, perfluoropolyether and fluoroester was 20-60 mm 2 / S at 40 ° C.
各試作ワイヤにつきワイヤ送給性、アークに安定性および溶接金属の拡散性水素量を調査した。ワイヤ送給性の評価は、図1に示す装置を用いて行った。図1において送給機1にセットされたスプール巻きワイヤ2は、送給ローラ3により引き出され、コンジットケーブル4に内包されたコンジットチューブを経てその先端のトーチ5から溶接チップ6まで送給される。そして溶接チップ6と鋼板7との間でビードオンプレート溶接を行う。コンジットケーブル4は6m長さで、送給抵抗を与えるために75mm径のループを2つ形成した屈曲8を設けた。送給機1には送給ローラの周速度Vr(設定ワイヤ速度)の検知器(図示せず)およびワイヤの実速度Vw検出器9を備えている。
The wire feedability, arc stability, and diffusible hydrogen content of the weld metal were investigated for each prototype wire. The wire feedability was evaluated using the apparatus shown in FIG. In FIG. 1, the
ワイヤ送給性評価指標のスリップ率SLは、SL=(Vr−Vw)/Vr×100で表される。また、送給ローラ部分に設けられたロードセル10によりワイヤ送給時にワイヤがコンジットチューブから受ける反力を送給抵抗Rとして検出した。溶接は試作ワイヤ毎に新しいコンジットチューブを用いて表2に示す溶接条件で120分溶接し、溶接開始後100分から溶接終了までの20分間スリップ率SLと送給抵抗Rを測定して平均値を求めた。スリップ率SLが10%以下で送給抵抗Rが6kgf以下の場合にワイヤ送給性良好と判定した。溶接金属の拡散性水素量の測定は、JIS Z3118の鋼溶接部の水素量測定方法に準じて実施した。溶接金属の拡散性水素量は、2.4mL/100g以下の場合に良好とした。それらの結果を表3にまとめて示す。
The slip ratio SL of the wire feedability evaluation index is represented by SL = (Vr−Vw) / Vr × 100. Further, the reaction force that the wire receives from the conduit tube during wire feeding by the
本発明例であるワイヤNo.1〜7は、ワイヤ表面の常温で粉末状潤滑剤のポリテトラフルオロエチレンと常温で液体の潤滑剤クロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの1種または2種以上の付着量が適正であるので、スリップ率SLおよび送給抵抗Rが低くワイヤ送給性が良好でアークが安定し、溶接金属の拡散性水素量も少なく極めて満足な結果であった。 In the present invention, the wire No. 1 to 7 are adhesions of one or more of polytetrafluoroethylene, which is a powdery lubricant at room temperature, and lubricants, chlorofluorocarbon, perfluoropolyether and fluoroester, which are liquid at room temperature. Since the amount was appropriate, the slip rate SL and the feed resistance R were low, the wire feedability was good, the arc was stable, the amount of diffusible hydrogen in the weld metal was small, and the results were extremely satisfactory.
比較例中ワイヤNo.8は、常温で粉末状潤滑剤のポリテトラフルオロエチレンの付着量が少ないので、送給抵抗Rが高くややアークが不安定であった。ワイヤNo.9は、常温で粉末状潤滑剤のポリテトラフルオロエチレンの付着量が多いので送給ロ−ラでの滑りが発生してスリップ率SLが高くなりアークが不安定で、スパッタ発生量も多かった。 In the comparative example, the wire No. In No. 8, since the adhesion amount of the powdery lubricant polytetrafluoroethylene was small at room temperature, the feeding resistance R was high and the arc was somewhat unstable. Wire No. No. 9 had a large amount of powdered polytetrafluoroethylene adhering at room temperature, causing slippage in the feed roller, increasing the slip ratio SL, making the arc unstable, and increasing the amount of spatter generated. .
ワイヤNo.10は、常温で液体の潤滑剤のクロロフルオロカ−ボンとフルオロエステルの合計の付着量が少ないので、送給抵抗Rが大きくワイヤ送給性が悪くなりアークがやや不安定となった。ワイヤNo.11は、常温で液体の潤滑剤のクロロフルオロカ−ボン、パ−フルオロポリエ−テルおよびフルオロエステルの合計の付着量が多いので、スリップ率SLが高く、溶接チップでの通電性が劣りアークが不安定になった。ワイヤNo.12は、水素基を含む合成エステルを使用したため、溶接金属の拡散性水素量が多くなった。 Wire No. In No. 10, since the total adhesion amount of chlorofluorocarbon and fluoroester, which are liquid lubricants at room temperature, is small, the feeding resistance R is large, the wire feeding property is deteriorated, and the arc is somewhat unstable. Wire No. No. 11 has a large amount of adhesion of chlorofluorocarbon, perfluoropolyether and fluoroester, which are liquid lubricants at room temperature, and therefore has a high slip ratio SL, poor electrical conductivity at the welding tip, and arcing. It became unstable. Wire No. No. 12 used a synthetic ester containing a hydrogen group, so that the amount of diffusible hydrogen in the weld metal increased.
1 送給機
2 スプール巻きワイヤ
3 送給ローラ
4 コンジットケーブル
5 トーチ
6 溶接チップ
7 鋼板
8 コンジットケーブルの屈曲部
9 ワイヤの実速度検出器
10 ロードセル
特許出願人 日鐵住金溶接工業株式会社
代理人 弁理士 椎 名 彊 他1
DESCRIPTION OF SYMBOLS 1
Patent Applicant Nippon Steel & Sumikin Welding Industry Co., Ltd.
Attorney Attorney Shiina and others 1
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014064947A JP2015186817A (en) | 2014-03-27 | 2014-03-27 | Gas shield arc welding wire |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014064947A JP2015186817A (en) | 2014-03-27 | 2014-03-27 | Gas shield arc welding wire |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2015186817A true JP2015186817A (en) | 2015-10-29 |
Family
ID=54429398
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014064947A Pending JP2015186817A (en) | 2014-03-27 | 2014-03-27 | Gas shield arc welding wire |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2015186817A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2021109209A (en) * | 2020-01-10 | 2021-08-02 | 日本製鉄株式会社 | Flux-filled wire and welded joint manufacturing method |
| JP2021109208A (en) * | 2020-01-10 | 2021-08-02 | 日本製鉄株式会社 | Flux-filled wire and welded joint manufacturing method |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS516097B1 (en) * | 1965-08-28 | 1976-02-25 | ||
| JPH05329683A (en) * | 1991-12-03 | 1993-12-14 | Kobe Steel Ltd | Lubricant for wire feeding and drawing |
| JPH06114590A (en) * | 1992-09-30 | 1994-04-26 | Kobe Steel Ltd | Mig wire welding aluminum |
| JPH06277877A (en) * | 1993-03-30 | 1994-10-04 | Kobe Steel Ltd | Wire coated with perfluoropolyether |
| JPH08151548A (en) * | 1994-11-29 | 1996-06-11 | Nippon Uerudeingurotsuto Kk | Coating type lubricant for wire drawing and feeding of welding wire and manufacturing method thereof |
| JP2000117486A (en) * | 1998-10-09 | 2000-04-25 | Nippon Steel Weld Prod & Eng Co Ltd | Welding wire and method of manufacturing the same |
| JP2001252786A (en) * | 2000-03-06 | 2001-09-18 | Kobe Steel Ltd | Wire for welding |
| JP2003320481A (en) * | 2002-04-26 | 2003-11-11 | Kobe Steel Ltd | Method for applying lubricant to welding wire |
| JP2004034131A (en) * | 2002-07-05 | 2004-02-05 | Kobe Steel Ltd | Wire for welding |
| JP2010201455A (en) * | 2009-03-03 | 2010-09-16 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shielded arc welding |
| JP2010207847A (en) * | 2009-03-10 | 2010-09-24 | Nippon Steel & Sumikin Welding Co Ltd | Wire for gas shielded arc welding |
| WO2013168670A1 (en) * | 2012-05-08 | 2013-11-14 | 新日鐵住金株式会社 | Flux-containing wire for welding ultrahigh-tensile steel |
| JP2014014833A (en) * | 2012-07-09 | 2014-01-30 | Nippon Steel & Sumitomo Metal | Pulse gas shield arc welding method |
-
2014
- 2014-03-27 JP JP2014064947A patent/JP2015186817A/en active Pending
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS516097B1 (en) * | 1965-08-28 | 1976-02-25 | ||
| JPH05329683A (en) * | 1991-12-03 | 1993-12-14 | Kobe Steel Ltd | Lubricant for wire feeding and drawing |
| JPH06114590A (en) * | 1992-09-30 | 1994-04-26 | Kobe Steel Ltd | Mig wire welding aluminum |
| JPH06277877A (en) * | 1993-03-30 | 1994-10-04 | Kobe Steel Ltd | Wire coated with perfluoropolyether |
| JPH08151548A (en) * | 1994-11-29 | 1996-06-11 | Nippon Uerudeingurotsuto Kk | Coating type lubricant for wire drawing and feeding of welding wire and manufacturing method thereof |
| JP2000117486A (en) * | 1998-10-09 | 2000-04-25 | Nippon Steel Weld Prod & Eng Co Ltd | Welding wire and method of manufacturing the same |
| JP2001252786A (en) * | 2000-03-06 | 2001-09-18 | Kobe Steel Ltd | Wire for welding |
| JP2003320481A (en) * | 2002-04-26 | 2003-11-11 | Kobe Steel Ltd | Method for applying lubricant to welding wire |
| JP2004034131A (en) * | 2002-07-05 | 2004-02-05 | Kobe Steel Ltd | Wire for welding |
| JP2010201455A (en) * | 2009-03-03 | 2010-09-16 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shielded arc welding |
| JP2010207847A (en) * | 2009-03-10 | 2010-09-24 | Nippon Steel & Sumikin Welding Co Ltd | Wire for gas shielded arc welding |
| WO2013168670A1 (en) * | 2012-05-08 | 2013-11-14 | 新日鐵住金株式会社 | Flux-containing wire for welding ultrahigh-tensile steel |
| JP2014014833A (en) * | 2012-07-09 | 2014-01-30 | Nippon Steel & Sumitomo Metal | Pulse gas shield arc welding method |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2021109209A (en) * | 2020-01-10 | 2021-08-02 | 日本製鉄株式会社 | Flux-filled wire and welded joint manufacturing method |
| JP2021109208A (en) * | 2020-01-10 | 2021-08-02 | 日本製鉄株式会社 | Flux-filled wire and welded joint manufacturing method |
| JP7469597B2 (en) | 2020-01-10 | 2024-04-17 | 日本製鉄株式会社 | Flux-cored wire and method for manufacturing welded joint |
| JP7485895B2 (en) | 2020-01-10 | 2024-05-17 | 日本製鉄株式会社 | Flux-cored wire and method for manufacturing welded joint |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102210291B1 (en) | A tubular welding wire | |
| EP2552640B1 (en) | Feeding lubricant for cored welding electrode, cored welding electrode and gmaw process | |
| CA2943252C (en) | Systems and methods for welding zinc-coated workpieces | |
| JP2015186817A (en) | Gas shield arc welding wire | |
| KR102210287B1 (en) | Method of manufacturing a tubular welding wire | |
| JPH06277877A (en) | Wire coated with perfluoropolyether | |
| JP4440059B2 (en) | Copper plated wire for carbon dioxide shielded arc welding | |
| JP4020903B2 (en) | Copper plated wire for carbon dioxide shielded arc welding | |
| JP5068483B2 (en) | Copper plated wire for gas shielded arc welding | |
| JP2003305587A (en) | Gas shielded arc welding wire | |
| JPH08197278A (en) | Gas shielded arc welding wire | |
| JP2008194716A (en) | Copper plated solid wire for gas shielded arc welding | |
| JP2006102800A (en) | Solid wire without plating for Ar-CO2 mixed gas shielded arc welding | |
| JP5238273B2 (en) | Steel wire for gas shielded arc welding | |
| JP5172746B2 (en) | Flux-cored wire for gas shielded arc welding | |
| JP4429863B2 (en) | Flux-cored copper-plated wire for gas shielded arc welding | |
| JP2005205493A (en) | Flux-cored wire for gas shielded arc welding | |
| JP5290007B2 (en) | Gas shielded arc welding wire | |
| JP5706028B1 (en) | Welding wire lubricant, welding wire lubricant application method, and welding wire lubricant evaluation method | |
| JP4018097B2 (en) | Solid wire without plating for carbon dioxide shielded arc welding | |
| JPS6123078B2 (en) | ||
| JPS5985396A (en) | Flux cored wire for arc welding | |
| JP5160274B2 (en) | Gas shielded arc welding wire | |
| JP5064960B2 (en) | Unplated steel wire for gas shielded arc welding | |
| JP5822864B2 (en) | Lubricant coating device for welding wire |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160519 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170116 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170131 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170801 |