[go: up one dir, main page]

JP2015191985A - Dye-sensitized solar cell and method for producing dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell and method for producing dye-sensitized solar cell Download PDF

Info

Publication number
JP2015191985A
JP2015191985A JP2014067315A JP2014067315A JP2015191985A JP 2015191985 A JP2015191985 A JP 2015191985A JP 2014067315 A JP2014067315 A JP 2014067315A JP 2014067315 A JP2014067315 A JP 2014067315A JP 2015191985 A JP2015191985 A JP 2015191985A
Authority
JP
Japan
Prior art keywords
film
dye
oxide semiconductor
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014067315A
Other languages
Japanese (ja)
Inventor
剛 杉生
Takeshi Sugio
剛 杉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanadevia Corp
Original Assignee
Hitachi Zosen Corp
Hitachi Shipbuilding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Hitachi Shipbuilding and Engineering Co Ltd filed Critical Hitachi Zosen Corp
Priority to JP2014067315A priority Critical patent/JP2015191985A/en
Publication of JP2015191985A publication Critical patent/JP2015191985A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】電極が熱可塑性樹脂製であっても電池特性を向上させ得る色素増感太陽電池および色素増感太陽電池の製造方法を提供する。【解決手段】熱可塑性樹脂製の透明電極1と、基板21を有する対向電極2と、これら両電極間1,2に配置される電解質3と、両電極間1,2で且つ透明電極1側に配置される光触媒膜4とを具備する色素増感太陽電池であって、上記光触媒膜4が、複数層の酸化物半導体層からなる酸化物半導体膜に光増感色素を吸着させたものであり、上記酸化物半導体層が、透明電極に配置される前に、金属酸化物微粒子の溶液が浸透した多孔質膜を焼結したものであり、上記酸化物半導体膜が、透明電極に配置される前に、積層された酸化物半導体層を焼結してなるものである。【選択図】図1Disclosed is a dye-sensitized solar cell that can improve battery characteristics even when an electrode is made of a thermoplastic resin, and a method of manufacturing the dye-sensitized solar cell. A transparent electrode 1 made of a thermoplastic resin, a counter electrode 2 having a substrate 21, an electrolyte 3 disposed between the two electrodes 1, 2 between the two electrodes, and the transparent electrode 1 side. The photocatalyst film 4 is a dye-sensitized solar cell comprising a photocatalyst film 4 and a photosensitizer dye adsorbed on an oxide semiconductor film comprising a plurality of oxide semiconductor layers. Yes, the oxide semiconductor layer is formed by sintering a porous film infiltrated with a solution of metal oxide fine particles before being disposed on the transparent electrode, and the oxide semiconductor film is disposed on the transparent electrode. Before stacking, the stacked oxide semiconductor layers are sintered. [Selection] Figure 1

Description

本発明は、色素増感太陽電池および色素増感太陽電池の製造方法に関するものである。   The present invention relates to a dye-sensitized solar cell and a method for producing a dye-sensitized solar cell.

一般に、色素増感太陽電池は、その素子として、ガラス板などの透明基板上に透明導電膜が形成されてなる透明電極と、対向電極と、これら両電極間に配置される電解質と、上記両電極間で且つ上記透明電極の表面に配置される光触媒膜とから構成されている。また、上記光触媒膜としては、酸化チタン(TiO)などからなる酸化物半導体膜を形成した後、ルテニウムなどの光増感色素を吸着させたものが知られている。 In general, a dye-sensitized solar cell includes, as its elements, a transparent electrode in which a transparent conductive film is formed on a transparent substrate such as a glass plate, a counter electrode, an electrolyte disposed between these electrodes, It is comprised from the photocatalyst film | membrane arrange | positioned on the surface of the said transparent electrode between electrodes. As the photocatalyst film, a film in which an oxide semiconductor film made of titanium oxide (TiO 2 ) or the like is formed and then a photosensitizing dye such as ruthenium is adsorbed is known.

上記酸化物半導体膜は微粒子(金属酸化物)の集合体であるから、これに光増感色素を吸着させた上記光触媒膜も、フレキシブルなものである。この特性を活かすために、上記両電極の基板にフレキシブルな素材、例えばプラスチック(熱可塑性樹脂の一例)を採用することで、色素増感太陽電池全体としてフレキシブルになるという利点が生ずる。   Since the oxide semiconductor film is an aggregate of fine particles (metal oxide), the photocatalyst film in which the photosensitizing dye is adsorbed is also flexible. In order to make use of this characteristic, by adopting a flexible material such as plastic (an example of a thermoplastic resin) for the substrates of both electrodes, there is an advantage that the entire dye-sensitized solar cell becomes flexible.

色素増感太陽電池は、上記のような利点を有する反面、電池性能が低いという欠点も有する。電池性能を向上させるには、酸化物半導体膜に吸着させる光増感色素を増加させる必要がある。このためには、光触媒膜の多孔質化および厚膜化が有効である。   The dye-sensitized solar cell has the above-described advantages, but also has a defect that the battery performance is low. In order to improve battery performance, it is necessary to increase the photosensitizing dye adsorbed on the oxide semiconductor film. For this purpose, it is effective to make the photocatalyst film porous and thick.

従来の技術として、金属酸化物微粒子の溶液に浸漬させた多孔質膜(例えば不織布)を焼結することで酸化物半導体膜とし、この酸化物半導体膜に光増感色素を吸着させた光触媒膜が提案されている(例えば、特許文献1参照)。この光触媒膜は、その多孔質膜(不織布)により多孔質化しているので、吸着させる光増感色素が増加する。   As a conventional technique, a porous film (for example, non-woven fabric) immersed in a solution of metal oxide fine particles is sintered to form an oxide semiconductor film, and a photocatalytic film in which a photosensitizing dye is adsorbed on the oxide semiconductor film Has been proposed (see, for example, Patent Document 1). Since this photocatalyst film is made porous by the porous film (nonwoven fabric), the photosensitizing dye to be adsorbed increases.

特許5021914号公報Japanese Patent No. 5021914

ところで、上記特許文献1に記載の色素増感太陽電池は、上記特許文献1の段落[0083]に記載されているように、その製造工程において、透明電極(特許文献1では透明導電層)に多孔質膜(特許文献1では金属酸化物不織布)を配置した上で熱処理がされ、これにより酸化物半導体膜(特許文献1では多孔質金属酸化物膜)が形成される。   By the way, the dye-sensitized solar cell described in Patent Document 1 is applied to a transparent electrode (transparent conductive layer in Patent Document 1) in the manufacturing process as described in paragraph [0083] of Patent Document 1. A porous film (a metal oxide nonwoven fabric in Patent Document 1) is disposed and then heat-treated, whereby an oxide semiconductor film (a porous metal oxide film in Patent Document 1) is formed.

このため、上記特許文献1に記載の色素増感太陽電池は、透明電極がプラスチック(熱可塑性樹脂)製なので熱に弱く、上記製造工程における熱処理の温度を低くしなければならない。上記熱処理の温度が低ければ、金属酸化物同士(特に層間)の結合が弱くなるので、光触媒膜を厚膜化する手段として、酸化物半導体膜を多層にすることができない。一方で、光触媒膜を厚膜化する手段として、厚い多孔質膜を使用することにより、酸化物半導体膜自身を厚くすることが考えられる。しかしながら、厚い多孔質膜を使用すれば、多孔質膜の内部まで金属酸化物微粒子の溶液が乾燥しにくくなるので、光触媒膜の多孔質化が妨げられる。これらの結果から明らかなように、上記光触媒膜は、多くの光増感色素が吸着されたものではない。したがって、上記光触媒膜を具備する色素増感太陽電池、つまり上記特許文献1に記載の色素増感太陽電池は、その電池性能が十分でない。   For this reason, the dye-sensitized solar cell described in Patent Document 1 is weak against heat because the transparent electrode is made of plastic (thermoplastic resin), and the temperature of the heat treatment in the manufacturing process must be lowered. If the temperature of the heat treatment is low, the bond between metal oxides (particularly between layers) becomes weak, so that the oxide semiconductor film cannot be multilayered as a means for thickening the photocatalytic film. On the other hand, as a means for increasing the thickness of the photocatalytic film, it is conceivable to increase the thickness of the oxide semiconductor film itself by using a thick porous film. However, if a thick porous film is used, the metal oxide fine particle solution is difficult to dry up to the inside of the porous film, so that the photocatalytic film is prevented from being made porous. As is clear from these results, the photocatalyst film does not adsorb many photosensitizing dyes. Therefore, the dye-sensitized solar cell provided with the photocatalyst film, that is, the dye-sensitized solar cell described in Patent Document 1 has insufficient battery performance.

そこで、本発明は、電極が熱可塑性樹脂製であっても電池特性を向上させ得る色素増感太陽電池および色素増感太陽電池の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the dye-sensitized solar cell which can improve a battery characteristic even if an electrode is a product made from a thermoplastic resin, and a dye-sensitized solar cell.

上記課題を解決するため、請求項1に係る本発明の色素増感太陽電池は、熱可塑性樹脂製の透明電極と、基板を有する対向電極と、これら両電極間に配置される電解質と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池であって、
上記光触媒膜が、複数層の酸化物半導体層からなる酸化物半導体膜に光増感色素を吸着させたものであり、
上記酸化物半導体層が、透明電極に配置される前に、金属酸化物微粒子の溶液が浸透した多孔質膜を焼結したものであり、
上記酸化物半導体膜が、透明電極に配置される前に、積層された酸化物半導体層を焼結してなるものである。
In order to solve the above problems, a dye-sensitized solar cell of the present invention according to claim 1 includes a transparent electrode made of a thermoplastic resin, a counter electrode having a substrate, an electrolyte disposed between these electrodes, A dye-sensitized solar cell comprising a photocatalytic film disposed between the electrodes and on the transparent electrode side,
The photocatalytic film is obtained by adsorbing a photosensitizing dye to an oxide semiconductor film composed of a plurality of oxide semiconductor layers,
Before the oxide semiconductor layer is disposed on the transparent electrode, the porous film into which the solution of metal oxide fine particles has permeated is sintered.
Before the oxide semiconductor film is disposed on the transparent electrode, the stacked oxide semiconductor layers are sintered.

また、請求項2に係る本発明の色素増感太陽電池は、請求項1に記載の光触媒膜が、対向電極に近い側の多孔質膜ほど、含有する金属酸化物微粒子の粒径が大きいものである。
さらに、請求項3に係る本発明の色素増感太陽電池は、請求項1または2に記載の色素増感太陽電池における光触媒膜が、導電性材料を含有するものである。
Further, in the dye-sensitized solar cell of the present invention according to claim 2, the photocatalytic film according to claim 1 has a larger particle size of the metal oxide fine particles contained in the porous film closer to the counter electrode It is.
Furthermore, in the dye-sensitized solar cell of the present invention according to claim 3, the photocatalyst film in the dye-sensitized solar cell according to claim 1 or 2 contains a conductive material.

また、請求項4に係る本発明の色素増感太陽電池の製造方法は、熱可塑性樹脂製の透明電極と、基板を有する対向電極と、これら両電極間に配置される電解質と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池の製造方法であって、
金属酸化物微粒子の溶液を多孔質膜に浸透させて、当該多孔質膜を焼結することで、酸化物半導体層を形成する工程と、
上記酸化物半導体層を積層して、当該積層された酸化物半導体層を焼結することで、酸化物半導体膜を形成する工程と、
上記酸化物半導体膜を透明電極に配置するとともに、酸化物半導体膜に光増感色素を吸着させて光触媒膜を形成する工程と、
上記光触媒膜が形成された透明電極に、電解質および対向電極を配置する工程と、
を備えるものである。
The method for producing a dye-sensitized solar cell of the present invention according to claim 4 includes a transparent electrode made of a thermoplastic resin, a counter electrode having a substrate, an electrolyte disposed between these electrodes, and a gap between both electrodes. And a method for producing a dye-sensitized solar cell comprising a photocatalytic film disposed on the transparent electrode side,
A process of forming an oxide semiconductor layer by infiltrating a solution of metal oxide fine particles into the porous film and sintering the porous film;
Stacking the oxide semiconductor layer and sintering the stacked oxide semiconductor layer to form an oxide semiconductor film; and
A step of disposing the oxide semiconductor film on the transparent electrode and adsorbing a photosensitizing dye to the oxide semiconductor film to form a photocatalytic film;
A step of disposing an electrolyte and a counter electrode on the transparent electrode on which the photocatalytic film is formed;
Is provided.

上記色素増感太陽電池および色素増感太陽電池の製造方法によると、電極が熱可塑性樹脂製であっても電池特性を向上させることができる。   According to the said dye-sensitized solar cell and the manufacturing method of a dye-sensitized solar cell, even if an electrode is a product made from a thermoplastic resin, a battery characteristic can be improved.

本発明の実施の形態に係る色素増感太陽電池(素子)の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the dye-sensitized solar cell (element) which concerns on embodiment of this invention. 同色素増感太陽電池(モジュール)の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the same dye-sensitized solar cell (module).

以下、本発明の実施の形態に係る色素増感太陽電池およびその製造方法について図面に基づき説明する。なお、本実施の形態に係る色素増感太陽電池は、図1に示すように、その素子を指す。   Hereinafter, a dye-sensitized solar cell and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings. In addition, the dye-sensitized solar cell which concerns on this Embodiment points out the element, as shown in FIG.

この色素増感太陽電池は、図1に示すように、負極としての熱可塑性樹脂製の透明電極1と、正極としての対向電極2と、これら両電極1,2間に配置される電解質3と、両電極1,2間で且つ透明電極1側に配置される光触媒膜4と、両電極1,2間で上記電解質3の周囲に配置される封止部5とが具備されている。   As shown in FIG. 1, the dye-sensitized solar cell includes a transparent electrode 1 made of a thermoplastic resin as a negative electrode, a counter electrode 2 as a positive electrode, and an electrolyte 3 disposed between the two electrodes 1 and 2. A photocatalyst film 4 disposed between the electrodes 1 and 2 and on the transparent electrode 1 side, and a sealing portion 5 disposed around the electrolyte 3 between the electrodes 1 and 2 are provided.

本発明の要旨となる上記光触媒膜4は、2層(複数層であればよい)の光触媒層(具体的には第1光触媒層41および第2光触媒層42)からなる。上記光触媒膜4は、2層(光触媒層41,42と同数層)の酸化物半導体層からなる酸化物半導体膜に光増感色素を吸着させたものである。上記酸化物半導体層は、透明電極1に配置される前に、金属酸化物微粒子の溶液が浸透した多孔質膜を焼結したものである。上記酸化物半導体膜は、透明電極1に配置される前に、積層された酸化物半導体層を焼結してなるものである。すなわち、これらの焼結は、他の構成部材(光触媒膜4以外の構成部材であり、例えば熱可塑性樹脂製の透明電極1)を巻き込んで行われない。このため、当該焼結の温度は、上記他の構成部材の耐熱温度に制限されない。したがって、上記焼結の温度を高くすることにより、酸化物半導体膜における酸化物半導体層間の結合が強くなるので、光触媒膜4は厚膜化された一枚の膜となる。   The photocatalyst film 4 which is the gist of the present invention is composed of two photocatalyst layers (specifically, a first photocatalyst layer 41 and a second photocatalyst layer 42). The photocatalyst film 4 is obtained by adsorbing a photosensitizing dye on an oxide semiconductor film composed of two oxide semiconductor layers (the same number as the photocatalyst layers 41 and 42). The oxide semiconductor layer is obtained by sintering a porous film infiltrated with a solution of metal oxide fine particles before being placed on the transparent electrode 1. The oxide semiconductor film is formed by sintering the stacked oxide semiconductor layers before being disposed on the transparent electrode 1. That is, the sintering is not performed by involving other constituent members (component members other than the photocatalyst film 4, for example, the transparent electrode 1 made of thermoplastic resin). For this reason, the temperature of the said sintering is not restrict | limited to the heat-resistant temperature of said other structural member. Therefore, since the bonding between the oxide semiconductor layers in the oxide semiconductor film is strengthened by increasing the sintering temperature, the photocatalyst film 4 becomes a single thick film.

また、光触媒膜4は、対向電極2に近い側の光触媒層42ほど、含有する金属酸化物微粒子の粒径が大きく、言い換えれば、透明電極1に近い側の光触媒層41ほど、含有する金属酸化物微粒子の粒径が小さくなる。このため、このような光触媒層41,42からなる光触媒膜4は、光閉じ込め効果を有する。   The photocatalytic film 4 has a larger particle size of the metal oxide fine particles contained in the photocatalyst layer 42 closer to the counter electrode 2, in other words, the metal oxide contained in the photocatalyst layer 41 closer to the transparent electrode 1. The particle size of the product fine particles is reduced. For this reason, the photocatalyst film 4 composed of such photocatalyst layers 41 and 42 has a light confinement effect.

さらに、光触媒膜4は、導電性材料を含有するものである。このため、光触媒膜4は、導電性を有するので、その電気抵抗を低減する。
上記多孔質膜としては、ガラスペーパ(一例として厚さ30μm、秤量4.0〜12.0g/m)、紙、不織布など、耐電解液性を有する多孔質の膜が使用される。また、上記導電性材料としては、カーボン材料、金属材料などが使用される。このカーボン材料の例には、カーボンナノチューブ、カーボンナノコイル、カーボンブラックなどが挙げられる。なお、上記導電性材料は、その粒径が多孔質膜の厚さ以下のもの、好ましくは多孔質膜の厚さの半分以下(この場合だと15μm以下)のものである。
Further, the photocatalytic film 4 contains a conductive material. For this reason, since the photocatalyst film 4 has conductivity, its electric resistance is reduced.
As the porous membrane, a porous membrane having an electrolytic solution resistance such as glass paper (thickness 30 μm, weighing 4.0 to 12.0 g / m 2 ), paper, non-woven fabric, etc. is used. In addition, as the conductive material, a carbon material, a metal material, or the like is used. Examples of the carbon material include carbon nanotubes, carbon nanocoils, and carbon black. The conductive material has a particle size equal to or less than the thickness of the porous film, preferably less than half the thickness of the porous film (in this case, 15 μm or less).

上記透明電極1は、透明基板11およびこの透明基板11の表面に形成(配置)された透明導電膜12から構成されている。また対向電極2は、透明基板21およびこの透明基板21の表面に形成(配置)された透明導電膜22から構成されている。なお、この透明導電膜22は、触媒性を有する材料を形成したものである。   The transparent electrode 1 includes a transparent substrate 11 and a transparent conductive film 12 formed (arranged) on the surface of the transparent substrate 11. The counter electrode 2 includes a transparent substrate 21 and a transparent conductive film 22 formed (arranged) on the surface of the transparent substrate 21. In addition, this transparent conductive film 22 forms the material which has catalytic property.

上記各透明基板11,21としては、合成樹脂板、ガラス板などが適宜使用されるものの、軽量化、低価格化および安全性(破損しにくい)の点で、熱可塑性樹脂からなるフィルムが好ましい。上記熱可塑性樹脂の例には、ポリエチレン・ナフタレート(PEN)、ポリエチレン・テレフタレート(PET)などのポリエステル樹脂、ポリカーボネート樹脂、およびポリオレフィンなどの樹脂が挙げられる。   As each of the transparent substrates 11 and 21, a synthetic resin plate, a glass plate, or the like is appropriately used, but a film made of a thermoplastic resin is preferable in terms of weight reduction, price reduction, and safety (hard to break). . Examples of the thermoplastic resin include polyester resins such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), polycarbonate resins, and resins such as polyolefins.

また、透明導電膜12,22としては、特に限定されるものではないが、スズ添加酸化インジウム(ITO)、酸化スズ(SnO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)などの導電性金属酸化物を含む薄膜が使用されるものの、フッ素添加酸化スズ(FTO)を含む薄膜が好ましい。なぜなら、フッ素添加酸化スズ(FTO)は、材料としての強度が高いので、エージングの際の印加電圧を高くすることができ、その結果、製造される色素増感太陽電池の光触媒膜4において、光増感色素と酸化物半導体膜との吸着を強固にできるからである。 Further, the transparent conductive films 12 and 22 are not particularly limited, but include tin-added indium oxide (ITO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO), and the like. Although a thin film containing a conductive metal oxide is used, a thin film containing fluorine-added tin oxide (FTO) is preferable. This is because fluorine-added tin oxide (FTO) has high strength as a material, so that the applied voltage at the time of aging can be increased. As a result, in the photocatalyst film 4 of the dye-sensitized solar cell to be manufactured, This is because the adsorption between the sensitizing dye and the oxide semiconductor film can be strengthened.

ところで、上記対向電極2は、上述のように、透明基板21および触媒性を有する材料を形成した透明導電膜22から構成されるものに限定されず、触媒性を有するものであればよい。この対向電極2としては、アルミニウム、銅、スズなどの金属シートやメッシュ状電極上に、触媒性を有する白金やカーボンなどの材料を形成したものであってもよい。この触媒性を有する材料を形成する方法の例には、スパッタリングや、上記対向電極2を白金ナノコロイド溶液に浸漬することなどが挙げられる。また、上記対向電極2は、透明基板21における電解質3側の面に導電性接着剤層を形成し、別途生成された垂直配向型のカーボンナノチューブ群を、上記導電性接着剤層に転写させたものであってもよい。   By the way, the counter electrode 2 is not limited to the transparent substrate 21 and the transparent conductive film 22 formed with a material having catalytic properties, as described above. As the counter electrode 2, a material such as platinum or carbon having catalytic properties may be formed on a metal sheet such as aluminum, copper or tin or a mesh electrode. Examples of the method for forming the material having catalytic properties include sputtering and immersing the counter electrode 2 in a platinum nanocolloid solution. Further, the counter electrode 2 has a conductive adhesive layer formed on the surface of the transparent substrate 21 on the electrolyte 3 side, and a separately generated vertically aligned carbon nanotube group was transferred to the conductive adhesive layer. It may be a thing.

上記電解質3の電解液としては、液体状電解液またはゲル状電解液が使用される。液体状電解液の例には、ヨウ素系電解液が挙げられ、これは、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分を、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解したものである。また、ゲル状電解液の例には、ジメチルプロピルイミダゾリウムヨウ化物(DMPImI)、金属ヨウ化物(ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム)、テトラアルキルアンモニウムヨーダイドなどの4級アンモニウム化合物のヨウ素塩などのヨウ化物とヨウ素を組み合わせたもの、金属臭化物(臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム)、テトラアルキルアンモニウムブロマイドなどの4級アンモニウム化合物の臭素塩などの臭化物と臭素とを組み合わせたものなどが挙げられる。   As the electrolyte solution of the electrolyte 3, a liquid electrolyte solution or a gel electrolyte solution is used. Examples of liquid electrolytes include iodine-based electrolytes, which are electrolyte components such as iodine, iodide ions, and tertiary butyl pyridine dissolved in organic solvents such as ethylene carbonate and methoxyacetonitrile. is there. Examples of the gel electrolyte include dimethylpropylimidazolium iodide (DMPImI), metal iodide (lithium iodide, sodium iodide, potassium iodide, cesium iodide, calcium iodide), tetraalkylammonium iodide. Combinations of iodide and iodine such as iodine salts of quaternary ammonium compounds such as id, metal bromides (lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide), tetraalkylammonium bromide, etc. And combinations of bromides such as bromine salts of quaternary ammonium compounds with bromine.

ところで、上記光触媒膜4は、上述のように、複数層の光触媒層41,42からなるとともに、複数層(光触媒層41,42と同数層)の酸化物半導体層からなる酸化物半導体膜に光増感色素を吸着させたものである。このため、光触媒層41,42は、酸化物半導体層に光増感色素を吸着させたものとなる。酸化物半導体層の形成に際しては、金属酸化物微粒子の溶液(酸化物半導体を含むペースト)を多孔質膜に浸透させて、当該多孔質膜を焼結する。また、酸化物半導体膜の形成に際しては、形成された複数の酸化物半導体層を積層して、積層された酸化物半導体層を焼結する。酸化物半導体膜に光増感色素を吸着させる方法の例には、光増感色素を有機溶媒に溶解させてなる色素溶液の中に、上記酸化物半導体膜が配置された透明電極1を所定時間(10分〜24時間程度)浸漬することが挙げられる。   By the way, as described above, the photocatalyst film 4 is composed of a plurality of photocatalyst layers 41 and 42, and light is applied to an oxide semiconductor film composed of a plurality of layers (the same number of layers as the photocatalyst layers 41 and 42). A sensitizing dye is adsorbed. For this reason, the photocatalyst layers 41 and 42 are obtained by adsorbing the photosensitizing dye to the oxide semiconductor layer. In forming the oxide semiconductor layer, a solution of metal oxide fine particles (a paste containing an oxide semiconductor) is infiltrated into the porous film, and the porous film is sintered. In forming the oxide semiconductor film, the plurality of formed oxide semiconductor layers are stacked, and the stacked oxide semiconductor layers are sintered. As an example of a method for adsorbing a photosensitizing dye to an oxide semiconductor film, a transparent electrode 1 in which the oxide semiconductor film is disposed in a dye solution obtained by dissolving a photosensitizing dye in an organic solvent is predetermined. Examples include soaking for a time (about 10 minutes to 24 hours).

また、上記酸化物半導体としては、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などの光触媒物質の微粒子(金属酸化物微粒子)が使用される。これら微粒子の粒径は、特に限定されるものではないが、5〜100μm程度であることが好ましい。また、光増感色素としては、ビピリジン構造若しくはターピリジン構造を含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、またはエオシン、ローダミン、メロシアニン、クマリンなどの有機色素などが使用される。特に、汎用性(電池性能や耐久性)の観点からはルテニウム錯体を使用することが好ましく、デザイン性の観点からは有機色素を使用することが好ましい。また、光増感色素を溶解させる有機溶媒としては、エタノールなどのアルコール、アセトニトリルなどが使用される。なお、上記酸化物半導体として酸化チタン(TiO)が使用された場合、酸化チタンの結合を強化することを目的として、チタン(IV)イソプロポキシド(TTIP)をプロパノールに溶解して得られた溶液(光触媒前駆体溶液である)を、上記色素溶液に混合してもよい。 As the oxide semiconductor, fine particles of a photocatalytic substance such as titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), and the like. (Metal oxide fine particles) are used. The particle size of these fine particles is not particularly limited, but is preferably about 5 to 100 μm. Examples of photosensitizing dyes include ruthenium complexes and iron complexes having ligands containing a bipyridine structure or a terpyridine structure, porphyrin-based or phthalocyanine-based metal complexes, or organic dyes such as eosin, rhodamine, merocyanine, and coumarin. used. In particular, a ruthenium complex is preferably used from the viewpoint of versatility (battery performance and durability), and an organic dye is preferably used from the viewpoint of design. As an organic solvent for dissolving the photosensitizing dye, alcohol such as ethanol, acetonitrile, or the like is used. When titanium oxide (TiO 2 ) was used as the oxide semiconductor, it was obtained by dissolving titanium (IV) isopropoxide (TTIP) in propanol for the purpose of strengthening the bond of titanium oxide. A solution (which is a photocatalyst precursor solution) may be mixed with the dye solution.

また、上記封止部5としては、特に限定されるものではないが、アクリル系樹脂封止剤、フッ素系樹脂封止剤、シリコーン系樹脂封止剤、エポキシ系樹脂封止剤、オレフィン系樹脂封止剤、シラン変性樹脂含有封止剤、ホットメルト系封止剤、光硬化性樹脂封止剤などが使用される。   Further, the sealing part 5 is not particularly limited, but an acrylic resin sealant, a fluorine resin sealant, a silicone resin sealant, an epoxy resin sealant, and an olefin resin. Sealants, silane-modified resin-containing sealants, hot-melt sealants, photocurable resin sealants, and the like are used.

次に、上記色素増感太陽電池の製造方法について説明する。
[透明電極1および光触媒膜4]
チタン(IV)イソプロポキシド(TTIP)および導電性材料を、アルコール等の溶媒に混合し、TTIP溶液(酸化チタンの濃度が0.01〜1%程度、導電性材料の濃度が0.1〜数%程度)を生成する。次いで、多孔質膜をTTIP溶液に浸漬することにより、多孔質膜に導電性材料および微量の酸化チタン微粒子を含有させる。
Next, the manufacturing method of the said dye-sensitized solar cell is demonstrated.
[Transparent electrode 1 and photocatalyst film 4]
Titanium (IV) isopropoxide (TTIP) and a conductive material are mixed in a solvent such as alcohol, and a TTIP solution (the concentration of titanium oxide is about 0.01 to 1% and the concentration of the conductive material is 0.1 to 0.1%). A few percent). Next, the porous film is immersed in a TTIP solution, so that the porous film contains a conductive material and a small amount of titanium oxide fine particles.

一方で、金属酸化物(酸化物半導体)微粒子を、有機溶媒および水に混合して攪拌し、ペースト状の酸化物溶液(金属酸化物微粒子の溶液ともいう)を生成する。なお、この有機溶媒には、アルコール、アセトン、ヘキサンなどが使用される。次いで、上記多孔質膜を酸化物溶液に浸漬することにより、酸化物溶液が多孔質膜に浸透する。こうして酸化物溶液が浸透した多孔質膜を150℃以上で焼結することにより、酸化物半導体層を形成する。これら複数の酸化物半導体層を積層して500℃以上(通常は450〜550℃であるが550℃を以上でもよい)で焼結することにより、複数層の酸化物半導体層からなる酸化物半導体膜(光増感色素を吸着させることで光触媒膜4となる)を形成する。   On the other hand, metal oxide (oxide semiconductor) fine particles are mixed with an organic solvent and water and stirred to produce a paste-like oxide solution (also referred to as a solution of metal oxide fine particles). In addition, alcohol, acetone, hexane, etc. are used for this organic solvent. Next, the oxide solution penetrates into the porous membrane by immersing the porous membrane in the oxide solution. The oxide semiconductor layer is formed by sintering the porous film infiltrated with the oxide solution at 150 ° C. or higher. These oxide semiconductor layers are stacked and sintered at 500 ° C. or higher (usually 450 to 550 ° C., but may be 550 ° C. or higher), thereby forming an oxide semiconductor composed of a plurality of oxide semiconductor layers. A film (becomes the photocatalyst film 4 by adsorbing the photosensitizing dye) is formed.

こうして形成された酸化物半導体膜を透明電極1の透明導電膜12側に配置する。なお、酸化物半導体膜を透明電極1に配置する直前に、透明電極1の透明導電膜12側に上記TTIP溶液をスプレー塗布するとともに、酸化物半導体膜を透明電極1に配置した後に、透明電極1をその耐熱温度以下で焼結する。ここで、金属酸化物微粒子の溶液(酸化物半導体を含むペースト)を希釈した希釈液を、上記TTIP溶液に加えてもよい。この希釈液は、焼結されることにより、その溶媒が上記酸化物半導体膜を通過して揮発し、透明電極1と上記酸化物半導体膜をより強固に結合する。   The oxide semiconductor film thus formed is arranged on the transparent conductive film 12 side of the transparent electrode 1. In addition, immediately before disposing the oxide semiconductor film on the transparent electrode 1, the TTIP solution is spray-coated on the transparent conductive film 12 side of the transparent electrode 1, and after disposing the oxide semiconductor film on the transparent electrode 1, the transparent electrode 1 is sintered below its heat-resistant temperature. Here, a diluted solution obtained by diluting a solution of metal oxide fine particles (a paste containing an oxide semiconductor) may be added to the TTIP solution. When the diluted solution is sintered, the solvent passes through the oxide semiconductor film and volatilizes, thereby bonding the transparent electrode 1 and the oxide semiconductor film more firmly.

次に、上述した色素溶液の中に透明電極1を浸漬する方法などにより、酸化物半導体膜に光増感色素を吸着させることで、負極である光触媒膜4が得られる。ここで、色素溶液における光増感色素の含有量は、特に限定されるものではないが、0.2×10−3〜1.0×10−3[mol/L]であることが好ましく、0.3×10−3〜0.6×10−3[mol/L]であることが一層好ましい。なぜなら、上記含有量が0.2×10−3[mol/L]未満の場合、酸化物半導体膜に十分な量の光増感色素を吸着させることができず、その結果、製造される色素増感太陽電池の電池特性が低下するからである。また、上記含有量が1.0×10−3[mol/L]を超える場合、色素溶液中に光増感色素が溶解し切れず残ったり、酸化物半導体膜に光増感色素の吸着ムラが生じたりする問題がある。この場合、酸化物半導体膜に吸着された光増感色素が過多となることにより、光増感色素同士が結合するので、光増感色素から酸化物半導体膜への電子の流れが阻害され、その結果、製造される色素増感太陽電池の電池特性が低下するからである。 Next, the photocatalytic film 4 which is a negative electrode is obtained by adsorbing the photosensitizing dye to the oxide semiconductor film by the method of immersing the transparent electrode 1 in the dye solution described above. Here, the content of the photosensitizing dye in the dye solution is not particularly limited, but is preferably 0.2 × 10 −3 to 1.0 × 10 −3 [mol / L], More preferably, it is 0.3 × 10 −3 to 0.6 × 10 −3 [mol / L]. Because, when the content is less than 0.2 × 10 −3 [mol / L], a sufficient amount of the photosensitizing dye cannot be adsorbed to the oxide semiconductor film, and as a result, the produced dye It is because the battery characteristic of a sensitized solar cell falls. Further, when the content exceeds 1.0 × 10 −3 [mol / L], the photosensitizing dye does not completely dissolve in the dye solution, or the photosensitizing dye is adsorbed unevenly on the oxide semiconductor film. There is a problem that occurs. In this case, the photosensitizing dye adsorbed on the oxide semiconductor film becomes excessive, so that the photosensitizing dyes are bonded to each other, so that the flow of electrons from the photosensitizing dye to the oxide semiconductor film is inhibited, As a result, the battery characteristics of the produced dye-sensitized solar cell are deteriorated.

[電解質3、対向電極2および封止部5]
その後、透明電極1(負極)と対向電極2(正極)とを対向させて配置し、両電極1,2の間に電解質3を配置する。電解質3を配置する具体的な方法は、電解質3が液体状電解液かゲル状電解液かによって異なる。
[Electrolyte 3, counter electrode 2 and sealing part 5]
Thereafter, the transparent electrode 1 (negative electrode) and the counter electrode 2 (positive electrode) are arranged to face each other, and the electrolyte 3 is arranged between the electrodes 1 and 2. The specific method of arranging the electrolyte 3 differs depending on whether the electrolyte 3 is a liquid electrolyte solution or a gel electrolyte solution.

電解質3が液体状電解液の場合、予め透明電極1および/または対向電極2に孔を形成しておき、透明電極1と対向電極2とを対向させて配置する。その後、光触媒膜4の外周側に対面して、封止部5を配置する(つまり封止する)。次に、上記孔から電解質3を注入して、封止部5の内側に電解質3を充填することで、電解質3を形成する。   When the electrolyte 3 is a liquid electrolyte, holes are formed in the transparent electrode 1 and / or the counter electrode 2 in advance, and the transparent electrode 1 and the counter electrode 2 are arranged to face each other. Then, the sealing part 5 is arrange | positioned facing the outer peripheral side of the photocatalyst film | membrane 4 (that is, it seals). Next, the electrolyte 3 is injected from the hole, and the electrolyte 3 is filled inside the sealing portion 5, thereby forming the electrolyte 3.

電解質3がゲル状電解液の場合、光触媒膜4に電解質3を重ねた上で、透明電極1と対向電極2とを対向させて配置する。その後、光触媒膜4の外周側に対面して、封止部5を配置する(つまり封止する)。なお、上述した封止する方法の例には、加熱接着が挙げられる。この加熱接着は、金型が用いられた接着であってもよく、プラズマ、波長が600nm以上の可視光、赤外線、マイクロ波などのエネルギービームを照射する方法によって行われるものであってもよい。ここで、金型が用いられた接着とは、金型を用いて、塗布された封止部5用の材料(封止剤)をプレスするとともに加熱して硬化させることで、封止部5とするものである。また、エネルギービームを照射する方法とは、塗布された封止剤にエネルギービームを照射して当該封止剤を硬化させることで、封止部5とするものである。   When the electrolyte 3 is a gel electrolyte, the transparent electrode 1 and the counter electrode 2 are arranged to face each other after the electrolyte 3 is stacked on the photocatalyst film 4. Then, the sealing part 5 is arrange | positioned facing the outer peripheral side of the photocatalyst film | membrane 4 (that is, it seals). In addition, heat bonding is mentioned as an example of the sealing method mentioned above. This heat bonding may be bonding using a mold, or may be performed by a method of irradiating plasma, an energy beam such as visible light having a wavelength of 600 nm or more, infrared light, or microwave. Here, the adhesion using the mold means that the applied material (sealing agent) for the sealing portion 5 is pressed and heated to be cured by using the die, thereby sealing the portion 5. It is what. Moreover, the method of irradiating the energy beam is to form the sealing portion 5 by irradiating the applied sealant with the energy beam and curing the sealant.

このように、上記実施の形態に係る色素増感太陽電池およびこの製造方法によると、光触媒膜4の多孔質化および厚膜化により、光触媒膜4に吸着される光増感色素が増加するので、電池性能を向上させることができる。   As described above, according to the dye-sensitized solar cell and the manufacturing method thereof according to the above embodiment, the photosensitizing dye adsorbed on the photocatalyst film 4 is increased by making the photocatalyst film 4 porous and thick. Battery performance can be improved.

また、光触媒膜4は、光閉じ込め効果を有するので、より電池性能を向上させることができる。
さらに、導電性材料を含有する光触媒膜4は、電気抵抗を低減するので、より一層電池性能を向上させることができる。
Moreover, since the photocatalyst film 4 has a light confinement effect, the battery performance can be further improved.
Furthermore, since the photocatalytic film 4 containing a conductive material reduces electric resistance, the battery performance can be further improved.

以下、上記実施の形態をより具体的に示した実施例に係る色素増感太陽電池と、比較例に係る色素増感太陽電池とについて説明する。なお、以下の実施例および比較例では、いずれも、次の条件を満たすものとした。
(1)透明電極1は、厚さ188μmのPEN−ITOフィルム(ペクセル・テクノロジーズ製)とした。
(2)多孔質膜は、ガラスペーパとした。また、酸化物溶液は、金属酸化物微粒子を酸化チタンナノ粒子(日本アエロジル製、P−25、平均粒径20nm)とし、溶媒をアルコール(プロパノールなど)とした。さらに、導電性材料は、単層のカーボンナノチューブとした。
(3)光増感色素は、ルテニウム金属錯体色素であるN719(Dyesol製)とした。これを、アセトニトリルとt−ブチルアルコールとを1:1で混合した溶液に濃度0.3m[mol/L]で溶解し、色素溶液として使用した。また、酸化物半導体膜の色素溶液への浸漬は、40℃雰囲気で90分間とした。
(4)透明電極1と対向電極2との間隔を40μmとした。
Hereinafter, a dye-sensitized solar cell according to an example that more specifically shows the above embodiment and a dye-sensitized solar cell according to a comparative example will be described. In the following examples and comparative examples, the following conditions were all satisfied.
(1) The transparent electrode 1 was a PEN-ITO film (manufactured by Pexel Technologies) having a thickness of 188 μm.
(2) The porous membrane was glass paper. Moreover, the oxide solution made the metal oxide fine particle into the titanium oxide nanoparticle (Nippon Aerosil make, P-25, average particle diameter of 20 nm), and made the solvent into alcohol (propanol etc.). Furthermore, the conductive material was a single-walled carbon nanotube.
(3) The photosensitizing dye was N719 (Dyesol) which is a ruthenium metal complex dye. This was dissolved at a concentration of 0.3 m [mol / L] in a solution in which acetonitrile and t-butyl alcohol were mixed at a ratio of 1: 1 and used as a dye solution. Further, the immersion of the oxide semiconductor film in the dye solution was performed in an atmosphere of 40 ° C. for 90 minutes.
(4) The distance between the transparent electrode 1 and the counter electrode 2 was 40 μm.

光触媒膜4は、3層の光触媒層からなるものとした。この3層のうち、2層にはそれぞれ厚さ10μmのガラスペーパを使用し、他の1層には厚さ5μmのガラスペーパを使用した。   The photocatalyst film 4 was composed of three photocatalyst layers. Of these three layers, glass paper having a thickness of 10 μm was used for each of the two layers, and glass paper having a thickness of 5 μm was used for the other layer.

本実施例に係る色素増感太陽電池によると、短絡電流が2.15mA/cm、開放電圧が4.56V、フィルファクタが0.54、変換効率が5.28%となった。
[比較例]
酸化チタン膜(酸化物半導体膜)は、多孔質膜を使用せずに、粒径50〜60μmの低温酸化チタンペースト(ペクセル・テクノロジーズ製、PECC−C01−06)を焼結することにより厚さ6〜7μmで形成した。
According to the dye-sensitized solar cell according to this example, the short-circuit current was 2.15 mA / cm 2 , the open-circuit voltage was 4.56 V, the fill factor was 0.54, and the conversion efficiency was 5.28%.
[Comparative example]
The titanium oxide film (oxide semiconductor film) is formed by sintering a low temperature titanium oxide paste (PECC-C01-06, manufactured by Pexel Technologies) having a particle size of 50 to 60 μm without using a porous film. The thickness was 6 to 7 μm.

本比較例に係る色素増感太陽電池によると、短絡電流が1.22mA/cm、開放電圧が4.53V、フィルファクタが0.58、変換効率が3.21%となった。
このように、上記実施例および比較例に係る色素増感太陽電池を対比すると明らかであるが、上記実施例に係る色素増感太陽電池によると、電池特性を向上させることができた。
According to the dye-sensitized solar cell according to this comparative example, the short-circuit current was 1.22 mA / cm 2 , the open-circuit voltage was 4.53 V, the fill factor was 0.58, and the conversion efficiency was 3.21%.
Thus, it is clear that the dye-sensitized solar cells according to the above examples and comparative examples are compared, but according to the dye-sensitized solar cell according to the above examples, the battery characteristics could be improved.

ところで、上記実施の形態および実施例では、色素増感太陽電池の素子について説明したが、図2に示すような色素増感太陽電池のモジュールであってもよい。この色素増感太陽電池(モジュール)は、図2に示すように、上記実施の形態および実施例1で説明した色素増感太陽電池の素子を直列に接続し、各素子で透明基板11,21を共通させたものである。また、上記色素増感太陽電池は、各素子の間に配置されたインターコネクタ7と、透明基板11の一端側および透明基板21の他端側にそれぞれ配置された集電体8とが具備されている。上記インターコネクタ7は、一方の素子における透明導電膜12と他方の素子における透明導電膜22とを接続して、隣接する素子を直列に接続するものである。   By the way, in the said embodiment and Example, although the element of the dye-sensitized solar cell was demonstrated, the module of a dye-sensitized solar cell as shown in FIG. 2 may be sufficient. As shown in FIG. 2, the dye-sensitized solar cell (module) has the elements of the dye-sensitized solar cell described in the above embodiment and Example 1 connected in series, and transparent elements 11 and 21 are connected to each element. Are common. The dye-sensitized solar cell includes an interconnector 7 disposed between the elements, and a current collector 8 disposed on one end side of the transparent substrate 11 and the other end side of the transparent substrate 21. ing. The interconnector 7 connects the transparent conductive film 12 in one element and the transparent conductive film 22 in the other element, and connects adjacent elements in series.

1 透明電極
2 対向電極
3 電解質
4 光触媒膜
5 封止部
41 第1光触媒層
42 第2光触媒層
DESCRIPTION OF SYMBOLS 1 Transparent electrode 2 Counter electrode 3 Electrolyte 4 Photocatalyst film 5 Sealing part 41 1st photocatalyst layer 42 2nd photocatalyst layer

Claims (4)

熱可塑性樹脂製の透明電極と、基板を有する対向電極と、これら両電極間に配置される電解質と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池であって、
上記光触媒膜が、複数層の酸化物半導体層からなる酸化物半導体膜に光増感色素を吸着させたものであり、
上記酸化物半導体層が、透明電極に配置される前に、金属酸化物微粒子の溶液が浸透した多孔質膜を焼結したものであり、
上記酸化物半導体膜が、透明電極に配置される前に、積層された酸化物半導体層を焼結してなるものであることを特徴とする色素増感太陽電池。
Dye-sensitized solar cell comprising a transparent electrode made of thermoplastic resin, a counter electrode having a substrate, an electrolyte disposed between both electrodes, and a photocatalyst film disposed between both electrodes and on the transparent electrode side Because
The photocatalytic film is obtained by adsorbing a photosensitizing dye to an oxide semiconductor film composed of a plurality of oxide semiconductor layers,
Before the oxide semiconductor layer is disposed on the transparent electrode, the porous film into which the solution of metal oxide fine particles has permeated is sintered.
A dye-sensitized solar cell, wherein the oxide semiconductor film is formed by sintering a stacked oxide semiconductor layer before being disposed on the transparent electrode.
光触媒膜が、対向電極に近い側の多孔質膜ほど、含有する金属酸化物微粒子の粒径が大きいことを特徴とする請求項1に記載の色素増感太陽電池。   2. The dye-sensitized solar cell according to claim 1, wherein the photocatalytic film has a larger particle size of the metal oxide fine particles as the porous film is closer to the counter electrode. 光触媒膜が、導電性材料を含有するものであることを特徴とする請求項1または2に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1 or 2, wherein the photocatalyst film contains a conductive material. 熱可塑性樹脂製の透明電極と、基板を有する対向電極と、これら両電極間に配置される電解質と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池の製造方法であって、
金属酸化物微粒子の溶液を多孔質膜に浸透させて、当該多孔質膜を焼結することで、酸化物半導体層を形成する工程と、
上記酸化物半導体層を積層して、当該積層された酸化物半導体層を焼結することで、酸化物半導体膜を形成する工程と、
上記酸化物半導体膜を透明電極に配置するとともに、酸化物半導体膜に光増感色素を吸着させて光触媒膜を形成する工程と、
上記光触媒膜が形成された透明電極に、電解質および対向電極を配置する工程と、
を備えることを特徴とする色素増感太陽電池の製造方法。
Dye-sensitized solar cell comprising a transparent electrode made of thermoplastic resin, a counter electrode having a substrate, an electrolyte disposed between both electrodes, and a photocatalyst film disposed between both electrodes and on the transparent electrode side A manufacturing method of
A process of forming an oxide semiconductor layer by infiltrating a solution of metal oxide fine particles into the porous film and sintering the porous film;
Stacking the oxide semiconductor layer and sintering the stacked oxide semiconductor layer to form an oxide semiconductor film; and
A step of disposing the oxide semiconductor film on the transparent electrode and adsorbing a photosensitizing dye to the oxide semiconductor film to form a photocatalytic film;
A step of disposing an electrolyte and a counter electrode on the transparent electrode on which the photocatalytic film is formed;
A method for producing a dye-sensitized solar cell, comprising:
JP2014067315A 2014-03-28 2014-03-28 Dye-sensitized solar cell and method for producing dye-sensitized solar cell Pending JP2015191985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067315A JP2015191985A (en) 2014-03-28 2014-03-28 Dye-sensitized solar cell and method for producing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067315A JP2015191985A (en) 2014-03-28 2014-03-28 Dye-sensitized solar cell and method for producing dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2015191985A true JP2015191985A (en) 2015-11-02

Family

ID=54426263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067315A Pending JP2015191985A (en) 2014-03-28 2014-03-28 Dye-sensitized solar cell and method for producing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2015191985A (en)

Similar Documents

Publication Publication Date Title
CN101512828B (en) Dye-sensitized solar cell module and method for fabricating same
KR101172374B1 (en) Dye-sensitized solar cell based on perovskite sensitizer and manufacturing method thereof
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
WO2006093109A1 (en) Photoelectric converter and method for manufacturing same
JP5550540B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
KR20110129373A (en) Dye-sensitized solar cell and its manufacturing method
JP2013545227A (en) Dye-sensitive solar cell module with light scattering layer and method for producing the same
JP2015191986A (en) Dye-sensitized solar cell and method for producing the same
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
TW201606827A (en) Photoelectric conversion layer and photoelectric conversion element provided with same
WO2014013734A1 (en) Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
WO2014010393A1 (en) Dye-sensitized solar cell
JP2015191985A (en) Dye-sensitized solar cell and method for producing dye-sensitized solar cell
JP2011040288A (en) Method of manufacturing semiconductor film, the semiconductor film, and dye-sensitized solar cell
JP2015191984A (en) Dye-sensitized solar battery and manufacturing method thereof
JP5498265B2 (en) Extraction electrode for solar cell, solar cell and solar cell module
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element
JP2014056719A (en) Process of manufacturing porous metal oxide film
JP2012156070A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP4864716B2 (en) Dye-sensitized solar cell and method for producing the same
KR101187226B1 (en) Method for manufacturing dye sensitized solar cell and dye sensitized solar manufactured from the same
JP5303207B2 (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
JP2013004178A (en) Dye-sensitized solar battery, and method of manufacturing the same
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof
JP5485793B2 (en) Solar cell module connection electrode and solar cell module