[go: up one dir, main page]

JP2015108761A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2015108761A
JP2015108761A JP2013252103A JP2013252103A JP2015108761A JP 2015108761 A JP2015108761 A JP 2015108761A JP 2013252103 A JP2013252103 A JP 2013252103A JP 2013252103 A JP2013252103 A JP 2013252103A JP 2015108761 A JP2015108761 A JP 2015108761A
Authority
JP
Japan
Prior art keywords
developer
plate
spiral
transport direction
conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013252103A
Other languages
Japanese (ja)
Inventor
裕哉 加藤
Hiroya Kato
裕哉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2013252103A priority Critical patent/JP2015108761A/en
Publication of JP2015108761A publication Critical patent/JP2015108761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress permeability fluctuations caused by the density variation of a developer, even when an external factor occurs.SOLUTION: An image forming apparatus 1 includes a stirring and conveying member 23 and a toner concentration detection sensor 28. The stirring and conveying member 23 includes a shaft member 24, a spiral member 25 extending in a spiral direction around the shaft member 24 and conveying the developer in an axial direction A, a first plate-like member 26 extending in the axial direction A and connecting the spiral member 25 on the upstream side in the conveyance direction G of the developer and the spiral member 25 on the downstream side in the conveyance direction G, and a second plate-like member 27 extending from the spiral member 25 on the upstream side in the conveyance direction G to the downstream side in the conveyance direction G along the axial direction A and forming a space L between the second plate-like member 27 and the spiral member on the downstream side. In the spiral member 25, a part facing the detection surface 29 of the toner concentration detection sensor 28 is notched. The first plate-like member 26 and the second plate-like member 27 are arranged so as to face the detection surface 29.

Description

本発明は、画像形成装置に関する。   The present invention relates to an image forming apparatus.

従来、画像形成装置における現像器内を循環する二成分現像剤のトナー濃度は、トナー及びキャリアを含む二成分現像剤の透磁率を検出することによって算出される。この透磁率の検出結果は、トナー濃度だけでなく、現像剤の嵩密度(現像剤に含まれる空気の量)変動又は流動性変化によっても、変動を生じる。例えば、温度及び湿度等の環境変動の発生時又はプロセススピードの切り換え時には、現像剤の嵩密度変動又は流動性変化等が生じるため、透磁率の検出結果が変動してしまう。   Conventionally, the toner concentration of the two-component developer circulating in the developing device in the image forming apparatus is calculated by detecting the magnetic permeability of the two-component developer including toner and carrier. This magnetic permeability detection result fluctuates not only due to the toner concentration but also due to fluctuations in the bulk density of the developer (the amount of air contained in the developer) or fluidity changes. For example, when an environmental change such as temperature and humidity occurs or when the process speed is switched, a change in the bulk density of the developer or a change in fluidity occurs, so that the detection result of the magnetic permeability changes.

この場合において、トナー濃度検知センサの検知領域における現像剤の状態を安定化させることにより、トナー濃度変動を抑制する技術が知られている。例えば特許文献1に記載の技術では、現像剤を撹拌搬送する撹拌搬送部材のトナー濃度検知センサの検知領域に臨む部分を含む一領域には撹拌羽根のみが設けられ、当該一領域を除く他の領域には拡散羽根及び撹拌羽根が設けられている。また、特許文献2に記載の技術では、トナー濃度検知センサの検知範囲内に撹拌搬送部材を設けないこととしている。   In this case, a technique is known in which the toner density fluctuation is suppressed by stabilizing the state of the developer in the detection region of the toner density detection sensor. For example, in the technique described in Patent Document 1, only one agitation blade is provided in one area including a portion facing the detection area of the toner concentration detection sensor of the agitating and conveying member that agitates and conveys the developer. A diffusion blade and a stirring blade are provided in the region. In the technique described in Patent Document 2, the stirring and conveying member is not provided within the detection range of the toner concentration detection sensor.

特開2006−91704号公報JP 2006-91704 A 特開2009−8780号公報JP 2009-8780 A

しかしながら、上記特許文献1及び2に記載の技術では、外的要因(プロセススピードの切り換え、環境変動など)発生時における現像剤の状態変化に対し効果が十分ではない。例えば、上記特許文献1に記載の技術では、トナー濃度検知センサに臨む部分が撹拌羽根のみで構成されているので、プロセススピードの切り換え又は環境変動が生じると、撹拌羽根の両サイドから現像剤がこぼれることにより、当該撹拌羽根に保持される現像剤量が大きく異なってしまう。また、撹拌羽根の1回転中で、トナー濃度検知センサが望む部分における現像剤の粗密の分布も変化してしまう。したがって、外的要因発生時には、現像剤の状態変動を抑制することができず、現像剤の密度変化による透磁率変動が生じてしまう。   However, the techniques described in Patent Documents 1 and 2 are not sufficiently effective in changing the state of the developer when an external factor (switching of process speed, environmental fluctuation, etc.) occurs. For example, in the technique described in Patent Document 1, since the portion facing the toner concentration detection sensor is configured only by the stirring blade, when the process speed is changed or the environment changes, the developer is discharged from both sides of the stirring blade. By spilling, the amount of the developer held by the stirring blade is greatly different. Further, during one rotation of the stirring blade, the density distribution of the developer at the portion desired by the toner density detection sensor also changes. Therefore, when an external factor occurs, the state fluctuation of the developer cannot be suppressed, and the magnetic permeability fluctuation due to the density change of the developer occurs.

上記特許文献2に記載の技術では、トナー濃度検知センサの検知範囲に撹拌搬送部材が設けられていないため、高温高湿環境時に現像剤の流動性が悪化し、センサ検知面に現像剤が付着する結果、検出結果自体に誤差を生じてしまう。したがって、上記特許文献1及び2に記載の技術は、外的要因発生時における現像剤の密度変化による透磁率変動の抑制という点で改善の余地がある。   In the technique disclosed in Patent Document 2, since the agitating and conveying member is not provided in the detection range of the toner concentration detection sensor, the fluidity of the developer deteriorates in a high temperature and high humidity environment, and the developer adheres to the sensor detection surface. As a result, an error occurs in the detection result itself. Therefore, the techniques described in Patent Documents 1 and 2 have room for improvement in terms of suppressing magnetic permeability fluctuations due to changes in developer density when external factors occur.

そこで、本発明は、外的要因発生時においても、現像剤の密度変化による透磁率変動を抑制することができる画像形成装置を提供することを課題とする。   SUMMARY An advantage of some aspects of the invention is that it provides an image forming apparatus capable of suppressing fluctuations in magnetic permeability due to changes in developer density even when external factors occur.

上記課題を解決するため、本発明に係る画像形成装置は、撹拌搬送部材と、トナー濃度検知センサと、を備える。撹拌搬送部材は、非磁性トナー及び磁性キャリアを含む二成分の現像剤を撹拌しつつ搬送する。トナー濃度検知センサは、現像剤のトナー濃度を検出するために、撹拌搬送部材で搬送されている現像剤に含まれる非磁性トナーと磁性キャリアとの混合比率に応じた透磁率を検知する。撹拌搬送部材は、軸部材と、螺旋状部材と、第1板状部材と、第2板状部材と、を有する。螺旋状部材は、軸部材の周りの螺旋方向に延びて現像剤を軸部材の軸線方向に搬送する。第1板状部材は、軸部材の軸線方向に延在して現像剤の搬送方向の上流側の螺旋状部材と現像剤の搬送方向の下流側の螺旋状部材とを繋ぐ。第2板状部材は、現像剤の搬送方向の上流側の螺旋状部材から軸部材の軸線方向に沿って現像剤の搬送方向の下流側に延在し、現像剤の搬送方向の下流側の螺旋状部材との間に空間が形成される。螺旋状部材は、トナー濃度検知センサの検知面と対向する部分が切り欠かれており、第1板状部材及び第2板状部材は、トナー濃度検知センサの検知面と対向するように配置されている。   In order to solve the above problems, an image forming apparatus according to the present invention includes a stirring and conveying member and a toner concentration detection sensor. The agitating and conveying member conveys the two-component developer containing the nonmagnetic toner and the magnetic carrier while stirring. The toner concentration detection sensor detects the magnetic permeability according to the mixing ratio of the non-magnetic toner and the magnetic carrier contained in the developer conveyed by the stirring and conveying member in order to detect the toner concentration of the developer. The stirring and conveying member includes a shaft member, a spiral member, a first plate member, and a second plate member. The spiral member extends in a spiral direction around the shaft member and conveys the developer in the axial direction of the shaft member. The first plate-like member extends in the axial direction of the shaft member, and connects the upstream spiral member in the developer transport direction and the downstream spiral member in the developer transport direction. The second plate-like member extends from the spiral member on the upstream side in the developer transport direction to the downstream side in the developer transport direction along the axial direction of the shaft member, and on the downstream side in the developer transport direction. A space is formed between the spiral member. A portion of the spiral member facing the detection surface of the toner concentration detection sensor is cut away, and the first plate member and the second plate member are arranged to face the detection surface of the toner concentration detection sensor. ing.

本発明に係る画像形成装置によれば、螺旋状部材は、トナー濃度検知センサの検知面と対向する部分が切り欠かれており、第1板状部材及び第2板状部材は、トナー濃度検知センサの検知面と対向するように配置されているので、トナー濃度検知センサの検知面に対向する領域では、螺旋状部材によって軸部材の軸線方向に沿った方向に現像剤が搬送されることなく、撹拌搬送部材の回転方向へ現像剤が搬送される。第1板状部材は、軸部材の軸線方向に延在して現像剤の搬送方向の上流側の螺旋状部材と現像剤の搬送方向の下流側の螺旋状部材とを繋いでいるので、当該第1板状部材によって現像剤が抱え込まれ、回転方向へ撹拌される。第2板状部材は、現像剤の搬送方向の上流側の螺旋状部材から軸部材の軸線方向に沿って現像剤の搬送方向の下流側に延在し、現像剤の搬送方向の下流側の螺旋状部材との間に空間が形成されているので、当該第2板状部材によって現像剤が抱え込まれ、回転方向へ撹拌されると共に、現像剤が空間を介して第2板状部材から第1板状部材へと回り込む。これにより、外的要因発生時においても、トナー濃度検知センサの検知面に対向する部分における現像剤の流れを安定化することができる。以上より、外的要因発生時においても、現像剤の密度変化による透磁率変動を抑制することが可能となる。ここで、外的要因の一つであるプロセススピードの切り換えは、例えば画像形成装置の使い過ぎによる熱の高まり、紙の種類又はオフィス環境の違い等により実施される。   According to the image forming apparatus of the present invention, the spiral member is cut away at a portion facing the detection surface of the toner concentration detection sensor, and the first plate member and the second plate member are configured to detect the toner concentration. Since the sensor is disposed so as to face the detection surface of the sensor, the developer is not conveyed in the direction along the axial direction of the shaft member by the spiral member in the region facing the detection surface of the toner concentration detection sensor. The developer is transported in the rotation direction of the stirring transport member. The first plate-like member extends in the axial direction of the shaft member and connects the upstream spiral member in the developer transport direction and the downstream spiral member in the developer transport direction. The developer is held by the first plate-like member and stirred in the rotation direction. The second plate-like member extends from the spiral member on the upstream side in the developer transport direction to the downstream side in the developer transport direction along the axial direction of the shaft member, and on the downstream side in the developer transport direction. Since a space is formed between the spiral member and the developer, the developer is held by the second plate member and stirred in the rotation direction, and the developer is removed from the second plate member through the space. One plate wraps around. Thereby, even when an external factor is generated, the flow of the developer in the portion facing the detection surface of the toner density detection sensor can be stabilized. As described above, even when an external factor is generated, it is possible to suppress fluctuations in magnetic permeability due to changes in developer density. Here, switching of the process speed, which is one of external factors, is performed due to, for example, an increase in heat caused by excessive use of the image forming apparatus, a difference in paper type or office environment, and the like.

また、第1板状部材は、螺旋状部材の1ピッチ間において、軸部材の軸線方向に延在して現像剤の搬送方向の上流側の螺旋状部材と現像剤の搬送方向の下流側の螺旋状部材とを繋ぎ、第2板状部材は、螺旋状部材の2ピッチ間において、現像剤の搬送方向の上流側の螺旋状部材から軸部材の軸線方向に沿って現像剤の搬送方向の下流側に延在し、現像剤の搬送方向の下流側の螺旋状部材との間に空間が形成されていることが望ましい。これにより、第1板状部材及び第2板状部材による現像剤の搬送を、より好適に行うことができる。   Further, the first plate-like member extends in the axial direction of the shaft member between one pitch of the spiral member, and is located on the upstream side in the developer transport direction and on the downstream side in the developer transport direction. The second plate-shaped member is connected to the spiral member between two pitches of the spiral member in the developer transport direction along the axial direction of the shaft member from the upstream spiral member in the developer transport direction. It is desirable that a space is formed between the first spiral member and the second spiral member extending downstream and downstream in the developer transport direction. Thereby, conveyance of the developer by the 1st plate-like member and the 2nd plate-like member can be performed more suitably.

また、第1板状部材は、軸部材の軸線方向に沿った方向で、第1板状部材の中心位置と検知面の中心位置とが重なるように配置されていることが望ましい。第1板状部材がこのように配置されていると、トナー濃度検知センサによる検出結果の精度を向上することができる。   Further, it is desirable that the first plate-like member is arranged so that the center position of the first plate-like member and the center position of the detection surface overlap in the direction along the axial direction of the shaft member. When the first plate-like member is arranged in this way, the accuracy of the detection result by the toner concentration detection sensor can be improved.

また、現像剤の搬送方向の下流側における第2板状部材の先端は、軸部材側である基端側よりも、軸部材の反対側である外周側の方が、現像剤の搬送方向の下流側へ延びていることが望ましい。第2板状部材の先端がこのような形状であると、第2板状部材から第1板状部材への現像剤の回り込みを好適に行うことができ、現像剤の密度変化による透磁率変動をより抑制することができる。   Further, the distal end of the second plate-like member on the downstream side in the developer transport direction is closer to the outer peripheral side on the opposite side of the shaft member in the developer transport direction than the base end side on the shaft member side. It is desirable to extend downstream. When the tip of the second plate-like member has such a shape, the developer can be suitably circulated from the second plate-like member to the first plate-like member, and the magnetic permeability variation due to the density change of the developer. Can be further suppressed.

本発明によれば、外的要因発生時においても、現像剤の密度変化による透磁率変動を抑制することができる。   According to the present invention, even when an external factor is generated, it is possible to suppress the magnetic permeability fluctuation due to the density change of the developer.

本発明の一実施形態に係る画像形成装置の概略構成図である。1 is a schematic configuration diagram of an image forming apparatus according to an embodiment of the present invention. 図1の現像ユニットを示す鉛直方向の断面図である。FIG. 2 is a vertical sectional view showing the developing unit of FIG. 1. 図1の現像ユニットのトナー濃度検知センサ周辺における撹拌搬送部材の構成を示す側面図である。FIG. 2 is a side view illustrating a configuration of a stirring and conveying member around a toner concentration detection sensor of the developing unit in FIG. 1. 図3のトナー濃度検知センサ周辺における撹拌搬送部材の構成を詳細に示す側面図である。FIG. 4 is a side view showing in detail a configuration of a stirring and conveying member in the vicinity of the toner concentration detection sensor of FIG. 3. 図3のトナー濃度検知センサ周辺における撹拌搬送部材の構成を詳細に示す側面図である。FIG. 4 is a side view showing in detail a configuration of a stirring and conveying member in the vicinity of the toner concentration detection sensor of FIG. 3. 第2板状部材の先端の形状によるプロセススピード変動時の感度変動率を示すグラフである。It is a graph which shows the sensitivity fluctuation rate at the time of the process speed fluctuation | variation by the shape of the front-end | tip of a 2nd plate-shaped member. 比較例1の画像形成装置における撹拌搬送部材の構成を示す側面図である。6 is a side view illustrating a configuration of a stirring and conveying member in the image forming apparatus of Comparative Example 1. FIG. 実施例1において、条件ごとに測定されたトナー濃度検知センサの出力波形を示すグラフである。6 is a graph illustrating an output waveform of a toner concentration detection sensor measured for each condition in Example 1. 実施例1において、一定のセンサ出力でトナー濃度をコントロールするために必要なコントロール電圧を示すグラフである。6 is a graph showing a control voltage necessary for controlling toner density with a constant sensor output in Example 1. 比較例1において、条件ごとに測定されたトナー濃度検知センサの出力波形を示すグラフである。6 is a graph showing an output waveform of a toner concentration detection sensor measured for each condition in Comparative Example 1. 比較例1において、一定のセンサ出力でトナー濃度をコントロールするために必要なコントロール電圧を示すグラフである。6 is a graph showing a control voltage necessary for controlling toner density with a constant sensor output in Comparative Example 1;

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

まず、本実施形態に係る画像形成装置の概略構成について、図1を用いて説明する。図1に示すように、本実施形態に係る画像形成装置1は、例えば、マゼンタ、イエロー、シアン、及びブラックの各色を用いてカラー画像を形成可能な装置である。画像形成装置1は、用紙Pを搬送する記録媒体搬送ユニット10と、静電潜像を現像する現像ユニット(現像装置)20と、トナー像を用紙Pに二次転写する転写ユニット30と、周面に画像が形成される静電潜像担持体である感光体ドラム40と、トナー像を用紙Pに定着させる定着ユニット50と、を含んで構成される。   First, a schematic configuration of the image forming apparatus according to the present embodiment will be described with reference to FIG. As shown in FIG. 1, the image forming apparatus 1 according to the present embodiment is an apparatus capable of forming a color image using, for example, magenta, yellow, cyan, and black. The image forming apparatus 1 includes a recording medium conveyance unit 10 that conveys a sheet P, a developing unit (developing apparatus) 20 that develops an electrostatic latent image, a transfer unit 30 that secondarily transfers a toner image onto the sheet P, and a peripheral unit. A photosensitive drum 40 that is an electrostatic latent image carrier on which an image is formed on the surface, and a fixing unit 50 that fixes the toner image onto the paper P are configured.

記録媒体搬送ユニット10は、最終的に画像が形成される記録媒体としての用紙Pを収容すると共に、用紙Pを記録媒体搬送路上に搬送する。用紙Pは、カセットに積層して収容される。記録媒体搬送ユニット10は、用紙Pに転写されるトナー像が二次転写領域Rに到達するタイミングで、用紙Pを二次転写領域Rに到達させる。   The recording medium conveyance unit 10 accommodates a sheet P as a recording medium on which an image is finally formed, and conveys the sheet P onto the recording medium conveyance path. The sheets P are stacked and stored in a cassette. The recording medium transport unit 10 causes the paper P to reach the secondary transfer region R at the timing when the toner image transferred to the paper P reaches the secondary transfer region R.

現像ユニット20は、色ごとに4個設けられている。現像ユニット20は、それぞれの現像ユニット20に対向して設けられたトナータンク5から供給されたトナーによって感光体ドラム40に形成された静電潜像を現像し、トナー像を生成する。各トナータンク5内には、それぞれ、マゼンタ、イエロー、シアン及びブラックのトナーが充填されている。なお、現像ユニット20の構成の詳細は、後述する。   Four developing units 20 are provided for each color. The developing unit 20 develops the electrostatic latent image formed on the photosensitive drum 40 with the toner supplied from the toner tank 5 provided to face each developing unit 20, and generates a toner image. Each toner tank 5 is filled with magenta, yellow, cyan and black toners, respectively. Details of the configuration of the developing unit 20 will be described later.

転写ユニット30は、現像ユニット20により形成されたトナー像を用紙Pに二次転写する二次転写領域Rに搬送する。転写ユニット30は、転写ベルト31と、転写ベルト31を懸架する懸架ローラ31a、31b、31c及び31dと、感光体ドラム40と共に転写ベルト31を挟持する一次転写ローラ32と、懸架ローラ31dと共に転写ベルト31を挟持する二次転写ローラ33と、を備えている。   The transfer unit 30 conveys the toner image formed by the developing unit 20 to the secondary transfer region R where the toner image is secondarily transferred to the paper P. The transfer unit 30 includes a transfer belt 31, suspension rollers 31a, 31b, 31c, and 31d that suspend the transfer belt 31, a primary transfer roller 32 that sandwiches the transfer belt 31 together with the photosensitive drum 40, and a transfer belt together with the suspension roller 31d. And a secondary transfer roller 33 that sandwiches 31.

転写ベルト31は、懸架ローラ31a、31b、31c及び31dにより循環移動される無端状のベルトである。一次転写ローラ32は、転写ベルト31の内周側から感光体ドラム40を押圧するように設けられる。二次転写ローラ33は、転写ベルト31の外周側から懸架ローラ31dを押圧するように設けられる。   The transfer belt 31 is an endless belt that is circulated and moved by suspension rollers 31a, 31b, 31c, and 31d. The primary transfer roller 32 is provided so as to press the photosensitive drum 40 from the inner peripheral side of the transfer belt 31. The secondary transfer roller 33 is provided so as to press the suspension roller 31 d from the outer peripheral side of the transfer belt 31.

感光体ドラム40は、色ごとに4個設けられている。各感光体ドラム40は、転写ベルト31の移動方向に沿って設けられている。また、感光体ドラム40の周上には、現像ユニット20と、帯電ローラ41と、露光ユニット42と、クリーニングユニット43と、が設けられている。   Four photosensitive drums 40 are provided for each color. Each photoconductor drum 40 is provided along the moving direction of the transfer belt 31. A developing unit 20, a charging roller 41, an exposure unit 42, and a cleaning unit 43 are provided on the periphery of the photosensitive drum 40.

帯電ローラ41は、感光体ドラム40の表面を所定の電位に均一に帯電させる。露光ユニット42は、帯電ローラ41により帯電した感光体ドラム40の表面を、用紙Pに形成する画像に応じて露光する。これにより、感光体ドラム40の表面のうち露光ユニット42により露光された部分の電位が変化し、静電潜像が形成される。   The charging roller 41 uniformly charges the surface of the photosensitive drum 40 to a predetermined potential. The exposure unit 42 exposes the surface of the photosensitive drum 40 charged by the charging roller 41 according to the image formed on the paper P. As a result, the potential of the portion exposed by the exposure unit 42 on the surface of the photosensitive drum 40 changes, and an electrostatic latent image is formed.

クリーニングユニット43は、感光体ドラム40上に形成されたトナー像が転写ベルト31に一次転写された後に感光体ドラム40上に残存するトナーを回収する。クリーニングユニット43によって得られた廃トナーは、スクリュー等によって廃トナー回収装置に移送される。   The cleaning unit 43 collects the toner remaining on the photosensitive drum 40 after the toner image formed on the photosensitive drum 40 is primarily transferred to the transfer belt 31. Waste toner obtained by the cleaning unit 43 is transferred to a waste toner collecting device by a screw or the like.

次に、現像ユニット20の構成について、図2及び図3を参照してより詳細に説明する。図2は、図1の現像ユニット20のトナー濃度検知センサ周辺における撹拌搬送部材の構成を示す鉛直方向の断面図である。図2及び図3に示すように、現像ユニット20は、現像ローラ21と、搬送部材22と、撹拌搬送部材23と、トナー濃度検知センサ28と、を有している。なお、図3以降の図においては感光体ドラム40の図示を省略している。   Next, the configuration of the developing unit 20 will be described in more detail with reference to FIGS. FIG. 2 is a vertical sectional view showing the configuration of the agitating and conveying member around the toner concentration detection sensor of the developing unit 20 of FIG. As shown in FIGS. 2 and 3, the developing unit 20 includes a developing roller 21, a conveying member 22, a stirring and conveying member 23, and a toner concentration detection sensor 28. 3 and the subsequent drawings, the illustration of the photosensitive drum 40 is omitted.

現像ユニット20に用いられる現像剤は、例えば非磁性トナー及び磁性キャリアを含む二成分の現像剤である。現像ローラ21は、トナーとキャリアとを所望の混合比になるように調整し、更に混合撹拌してトナーを均一に分散させ最適な帯電量を付与した現像剤を担持する。現像ローラ21は、回転して現像剤を感光体ドラム40と対向する領域まで搬送する。これにより、現像ローラ21に担持された現像剤のうちの非磁性トナーは、感光体ドラム40の周面上に形成された静電潜像に移動し、静電潜像が現像される。   The developer used in the developing unit 20 is a two-component developer including, for example, a nonmagnetic toner and a magnetic carrier. The developing roller 21 adjusts the toner and the carrier so as to have a desired mixing ratio, and further carries the developer with an optimum charge amount by mixing and stirring to uniformly disperse the toner. The developing roller 21 rotates and conveys the developer to a region facing the photosensitive drum 40. As a result, the nonmagnetic toner in the developer carried on the developing roller 21 moves to the electrostatic latent image formed on the peripheral surface of the photosensitive drum 40, and the electrostatic latent image is developed.

搬送部材22は、現像ユニット20内に回転可能に配置され、回転動作により、現像ローラ21の回転軸と略平行な搬送方向Hに現像剤を搬送する。また、搬送部材22は、搬送部材22と順方向に回転する現像ローラ21の周面上に所定量の現像剤を担持させる。搬送部材22は、軸部材22aと、軸部材22aの周面上に形成された螺旋部材22bとを有している。螺旋部材22bは、螺旋羽根形状であり、搬送方向Hで見て時計回りに回転することで、現像剤を搬送方向Hの上流側から下流側に向けて搬送する。   The conveying member 22 is rotatably arranged in the developing unit 20 and conveys the developer in a conveying direction H substantially parallel to the rotation axis of the developing roller 21 by a rotating operation. The conveying member 22 carries a predetermined amount of developer on the circumferential surface of the developing roller 21 that rotates in the forward direction with the conveying member 22. The conveying member 22 includes a shaft member 22a and a spiral member 22b formed on the peripheral surface of the shaft member 22a. The spiral member 22b has a spiral blade shape, and rotates the developer clockwise when viewed in the transport direction H, thereby transporting the developer from the upstream side to the downstream side in the transport direction H.

撹拌搬送部材23は、現像ユニット20内であって搬送部材22よりも現像ローラ21から離れた位置に、搬送部材22とその長手方向の略全長に亘り対向するように回転可能な状態で配置されている。なお、搬送部材22と撹拌搬送部材23とは現像ユニット20のハウジングにより分離された空間に配置されており、これらの空間は、現像剤の搬送方向Hの上流側において連通されている。撹拌搬送部材23は、軸部材24と、軸部材24の周面上に形成された螺旋状部材25、第1板状部材26、及び第2板状部材27と、を有する。撹拌搬送部材23は、回転動作により、現像剤を撹拌すると共に、軸部材24の軸線方向Aと略平行な搬送方向Gに現像剤を搬送する。なお、搬送方向Gは、搬送方向Hと対向する向きである。   The agitating / conveying member 23 is disposed in the developing unit 20 at a position farther from the developing roller 21 than the conveying member 22 so as to be able to rotate so as to face the conveying member 22 over substantially the entire length thereof. ing. The conveying member 22 and the agitating / conveying member 23 are disposed in a space separated by the housing of the developing unit 20, and these spaces communicate with each other on the upstream side in the developer conveying direction H. The stirring and conveying member 23 includes a shaft member 24, and a spiral member 25, a first plate member 26, and a second plate member 27 formed on the peripheral surface of the shaft member 24. The agitating and conveying member 23 agitates the developer by a rotating operation and conveys the developer in a conveying direction G substantially parallel to the axial direction A of the shaft member 24. The transport direction G is a direction facing the transport direction H.

螺旋状部材25は、撹拌搬送部材23の軸部材24の周りの螺旋方向に延び、軸部材24の軸線方向Aに現像剤を搬送する。螺旋状部材25は、螺旋羽根形状であり、搬送方向Gに現像剤を搬送する第1搬送部25aと、搬送方向Gと逆方向に現像剤を搬送する第2搬送部25bとを含む。第1搬送部25aは、搬送方向Gで見て反時計回りに回転することで、現像剤を搬送方向Gの上流側から下流側に向けて搬送する。第2搬送部25bは、搬送方向Gの下流側となる軸部材24の端部24bにおいて形成されており、搬送方向Gと逆方向に現像剤を搬送する。これにより、端部24bにおいて現像剤が詰まることなく押し上げられ、撹拌搬送部材23から搬送部材22へと現像剤が搬送される。   The spiral member 25 extends in the spiral direction around the shaft member 24 of the agitation transport member 23, and transports the developer in the axial direction A of the shaft member 24. The spiral member 25 has a spiral blade shape, and includes a first transport unit 25 a that transports the developer in the transport direction G, and a second transport unit 25 b that transports the developer in the direction opposite to the transport direction G. The first transport unit 25 a rotates counterclockwise when viewed in the transport direction G, and transports the developer from the upstream side to the downstream side in the transport direction G. The second transport unit 25 b is formed at the end 24 b of the shaft member 24 on the downstream side in the transport direction G, and transports the developer in the direction opposite to the transport direction G. As a result, the developer is pushed up at the end 24 b without clogging, and the developer is transported from the agitation transport member 23 to the transport member 22.

第1板状部材26は、撹拌搬送部材23の回転方向Bに搬送力を有する。第1板状部材26は、略矩形状の撹拌パドルであり、軸部材24に立設されている。第1板状部材26は、螺旋状部材25の1ピッチ間S1において、軸部材24の軸線方向Aに沿って延在している。第1板状部材26の長手方向の長さ(軸部材24の軸線方向Aの長さ)は、螺旋状部材25の1ピッチ間S1の長さに略等しい。第1板状部材26は、1ピッチ間S1において、現像剤の搬送方向Gの上流側の螺旋状部材25と、現像剤の搬送方向Gの下流側の螺旋状部材25とを繋いでいる。第1板状部材26の短手方向の長さ(軸部材24から立ち上がる長さ)は、螺旋状部材25が軸部材24から立ち上がる長さに略等しい。第1板状部材26は、現像剤を実質的に軸線方向Aに搬送することなく、現像剤を抱え込んで回転方向Bへ撹拌する。   The first plate member 26 has a conveyance force in the rotation direction B of the agitation conveyance member 23. The first plate member 26 is a substantially rectangular stirring paddle, and is erected on the shaft member 24. The first plate-like member 26 extends along the axial direction A of the shaft member 24 in one pitch S <b> 1 of the spiral member 25. The length in the longitudinal direction of the first plate-like member 26 (the length in the axial direction A of the shaft member 24) is substantially equal to the length of one pitch S1 of the spiral member 25. The first plate-like member 26 connects the spiral member 25 on the upstream side in the developer transport direction G and the spiral member 25 on the downstream side in the developer transport direction G in one pitch S1. The length of the first plate member 26 in the short direction (the length rising from the shaft member 24) is substantially equal to the length of the spiral member 25 rising from the shaft member 24. The first plate-like member 26 holds the developer and stirs it in the rotation direction B without substantially conveying the developer in the axial direction A.

第2板状部材27は、撹拌搬送部材23の回転方向Bに搬送力を有する。第2板状部材27は、略矩形状の撹拌パドルであり、軸部材24に立設されている。第2板状部材27は、例えば螺旋状部材25の2ピッチ間S2において、軸部材24の軸線方向Aに沿って延在している。第2板状部材27の長手方向の長さ(軸部材24の軸線方向Aの長さ)は、螺旋状部材25の2ピッチ間S2の長さよりも短い。第2板状部材27は、2ピッチ間S2において、現像剤の搬送方向Gの上流側の螺旋状部材25から現像剤の搬送方向Gの下流側に延在し、当該下流側の螺旋状部材25との間に空間Lが形成されている。第2板状部材27の短手方向の長さ(軸部材24から立ち上がる長さ)は、螺旋状部材25が軸部材24から立ち上がる長さに略等しい。したがって、第2板状部材27の短手方向の長さは、第1板状部材26の短手方向の長さと略等しい。第2板状部材27は、現像剤を実質的に軸線方向Aに搬送することなく、現像剤を抱え込んで回転方向Bへ撹拌すると共に、矢印Fで示すような方向で空間Lを介して第2板状部材27から第1板状部材26へと現像剤を流れ込ませる(図5参照)。   The second plate-shaped member 27 has a conveying force in the rotation direction B of the stirring and conveying member 23. The second plate member 27 is a substantially rectangular stirring paddle, and is erected on the shaft member 24. The second plate-like member 27 extends along the axial direction A of the shaft member 24 in, for example, S2 between two pitches of the spiral member 25. The length of the second plate member 27 in the longitudinal direction (the length of the shaft member 24 in the axial direction A) is shorter than the length of the two pitches S2 of the spiral member 25. The second plate-shaped member 27 extends from the upstream spiral member 25 in the developer transport direction G to the downstream side in the developer transport direction G in the two pitches S2, and the downstream spiral member A space L is formed between the two. The length of the second plate member 27 in the short direction (the length rising from the shaft member 24) is substantially equal to the length of the spiral member 25 rising from the shaft member 24. Therefore, the length of the second plate member 27 in the short direction is substantially equal to the length of the first plate member 26 in the short direction. The second plate-shaped member 27 holds the developer in the rotational direction B without substantially conveying the developer in the axial direction A, and stirs it in the rotation direction B. The developer is caused to flow from the two plate-like members 27 to the first plate-like member 26 (see FIG. 5).

トナー濃度検知センサ28は、現像剤のトナー濃度を検出するために、撹拌搬送部材23で搬送されている現像剤のトナー濃度を検知する。トナー濃度検知センサ28は、現像剤に含まれる非磁性トナーと磁性キャリアとの混合比率に応じた透磁率を検知する。トナー濃度検知センサ28は、撹拌搬送部材23で搬送されている現像剤に面する検知面29を有している。第1板状部材26及び第2板状部材27は、検知面29を掻き上げる方向(回転方向B)で回転する。トナー濃度検知センサ28は、検知面29と第1板状部材26及び第2板状部材27とが対向するように、例えば水平面に対して略45°の角度で配置されている。   The toner concentration detection sensor 28 detects the toner concentration of the developer conveyed by the agitating and conveying member 23 in order to detect the toner concentration of the developer. The toner concentration detection sensor 28 detects the magnetic permeability according to the mixing ratio of the nonmagnetic toner and the magnetic carrier contained in the developer. The toner concentration detection sensor 28 has a detection surface 29 that faces the developer conveyed by the agitation conveyance member 23. The first plate-like member 26 and the second plate-like member 27 rotate in a direction (rotation direction B) for scooping up the detection surface 29. The toner concentration detection sensor 28 is disposed, for example, at an angle of approximately 45 ° with respect to the horizontal plane so that the detection surface 29 faces the first plate-like member 26 and the second plate-like member 27.

トナー濃度の検出結果は、トナー濃度検知センサ28からの出力電圧によって確認される。この出力電圧は、トナー濃度が一定であっても、撹拌搬送部材23の回転に伴い周期的な波形形状を有する。これは、撹拌搬送部材23により、現像剤には周期的な粗密状態ができるためである。現像剤が多くて透磁率が高いときは現像剤が密状態であり、トナー濃度検知センサ28による出力は高くなる。現像剤が少なくて透磁率が低いときは現像剤が粗状態であり、トナー濃度検知センサ28による出力は低くなる。   The toner density detection result is confirmed by the output voltage from the toner density detection sensor 28. This output voltage has a periodic waveform shape as the stirring and conveying member 23 rotates even if the toner concentration is constant. This is because the developer is periodically and densely formed by the agitating and conveying member 23. When the developer is large and the magnetic permeability is high, the developer is in a dense state, and the output from the toner concentration detection sensor 28 is high. When the developer is low and the magnetic permeability is low, the developer is in a rough state, and the output from the toner concentration detection sensor 28 is low.

次に、図4及び図5を参照して、トナー濃度検知センサ28周辺における撹拌搬送部材23の構成の詳細を説明する。図4及び図5は、図3のトナー濃度検知センサ28周辺における撹拌搬送部材23の構成を詳細に示す側面図である。図4及び図5に示すように、螺旋状部材25は、トナー濃度検知センサ28の検知面29と対向する部分が切り欠かれている。例えば、螺旋状部材25は、第1板状部材26によって繋がれる1ピッチ間S1分が切り欠かれている。即ち、トナー濃度検知センサ28の検知面29に対向する領域には、螺旋状部材25などの軸部材24の軸線方向Aに搬送力を有する部材が配置されていない。   Next, with reference to FIGS. 4 and 5, the details of the configuration of the agitation transport member 23 around the toner concentration detection sensor 28 will be described. 4 and 5 are side views showing in detail the configuration of the stirring and conveying member 23 around the toner concentration detection sensor 28 of FIG. As shown in FIGS. 4 and 5, the spiral member 25 is cut out at a portion facing the detection surface 29 of the toner concentration detection sensor 28. For example, the spiral member 25 is cut out by S1 for one pitch connected by the first plate member 26. That is, no member having a conveying force in the axial direction A of the shaft member 24 such as the spiral member 25 is disposed in a region facing the detection surface 29 of the toner concentration detection sensor 28.

第1板状部材26と第2板状部材27とは、軸部材24の周方向に互いに略180°離れた位置で軸部材24に立設されている。第1板状部材26及び第2板状部材27は、トナー濃度検知センサ28の検知面29と対向するように配置されている。つまり、第1板状部材26及び第2板状部材27は、軸部材24の軸線方向Aにおいて、重なる位置に配置されている。また、第1板状部材26は、撹拌搬送部材23の軸部材24の軸線方向Aで、第1板状部材26の中心位置26cとトナー濃度検知センサ28の検知面29の中心位置29cとが重なるように配置されている。   The first plate member 26 and the second plate member 27 are erected on the shaft member 24 at positions that are separated from each other by approximately 180 ° in the circumferential direction of the shaft member 24. The first plate member 26 and the second plate member 27 are disposed so as to face the detection surface 29 of the toner concentration detection sensor 28. That is, the first plate-like member 26 and the second plate-like member 27 are arranged at overlapping positions in the axial direction A of the shaft member 24. Further, the first plate member 26 has a center position 26 c of the first plate member 26 and a center position 29 c of the detection surface 29 of the toner concentration detection sensor 28 in the axial direction A of the shaft member 24 of the stirring and conveying member 23. They are arranged so as to overlap.

現像剤の搬送方向Gの下流側における第2板状部材27の先端27dは、斜め形状である。第2板状部材27の先端27dは、軸部材24側である基端側27eよりも、軸部材24の反対側である外周側27fの方が、現像剤の搬送方向Gの下流側へ延びている。   The leading end 27d of the second plate-like member 27 on the downstream side in the developer transport direction G has an oblique shape. The distal end 27d of the second plate member 27 extends on the outer peripheral side 27f on the opposite side of the shaft member 24 to the downstream side in the developer conveying direction G, rather than on the base end side 27e on the shaft member 24 side. ing.

ここで、第2板状部材27の先端27dにおける形状が上記のようになっていることによる効果について、図6を用いて説明する。図6は、第2板状部材27の先端27dの形状によるプロセススピード変動時の感度変動率を示すグラフである。図6の横軸は、先端27dの形状を示している。例えば端面垂直とは、先端27dにおける現像剤の搬送方向Gの下流側への延びが基端側27eと外周側27fとで略同じ場合、つまり、軸部材24に対して垂直に延びている場合を示している。端面垂直よりも右側は、先端27dにおける現像剤の搬送方向Gの下流側への延びが基端側27eよりも外周側27fの方が長い場合、つまり、軸部材24に対して現像剤の搬送方向Gの下流側に傾斜している場合を示している。端面垂直よりも左側は、先端27dにおける現像剤の搬送方向Gの下流側への延びが外周側27fよりも基端側27eの方が長い場合、つまり、軸部材24に対して現像剤の搬送方向Gの上流側に傾斜している場合を示している。図6の縦軸は、プロセススピード変動時の感度変動率を示している。プロセススピード変動時の感度変動率とは、プロセススピード条件が変化した場合における、トナー濃度検知センサ28により出力される電圧を一定でトナー濃度をコントロールするために必要なコントロール電圧の変動率である。   Here, the effect by having the shape in the front-end | tip 27d of the 2nd plate-shaped member 27 as mentioned above is demonstrated using FIG. FIG. 6 is a graph showing the sensitivity fluctuation rate when the process speed fluctuates depending on the shape of the tip 27d of the second plate member 27. The horizontal axis in FIG. 6 shows the shape of the tip 27d. For example, the term “perpendicular to the end face” refers to a case where the downstream side in the developer transport direction G at the front end 27d is substantially the same on the base end side 27e and the outer peripheral side 27f, that is, a case where it extends perpendicularly to the shaft member 24. Is shown. On the right side of the end surface perpendicular to the right end, when the distal end 27d extends to the downstream side in the developer conveying direction G on the outer peripheral side 27f longer than the base end side 27e, that is, the developer is conveyed relative to the shaft member 24. The case where it inclines in the downstream of the direction G is shown. On the left side of the end surface perpendicularly, when the distal end 27d extends to the downstream side in the developer conveying direction G on the base end side 27e longer than the outer peripheral side 27f, that is, the developer is conveyed with respect to the shaft member 24. The case where it inclines in the upstream of the direction G is shown. The vertical axis in FIG. 6 shows the sensitivity fluctuation rate when the process speed fluctuates. The sensitivity fluctuation rate at the time of process speed fluctuation is the fluctuation rate of the control voltage necessary for controlling the toner density with a constant voltage output from the toner density detection sensor 28 when the process speed condition changes.

図6に示すように、第2板状部材27の先端27dにおいて、現像剤の搬送方向Gの下流側への延びが基端側27eよりも外周側27fの方が長い場合には、プロセススピード変動時の感度変動率が低くなっている。即ち、第2板状部材27の先端27dがこのような形状になっていることにより、第2板状部材27の先端27dから、矢印Fで示すような方向で空間Lを介して第1板状部材26へと好適に現像剤を回り込ませることができる(図5参照)ため、プロセススピード変動による現像剤の密度変化による透磁率変動をより抑制することが可能となる。   As shown in FIG. 6, at the front end 27d of the second plate-like member 27, the process speed increases when the downstream side in the developer transport direction G is longer on the outer peripheral side 27f than on the base end side 27e. Sensitivity fluctuation rate at the time of fluctuation is low. That is, since the tip 27d of the second plate member 27 has such a shape, the first plate 27d from the tip 27d of the second plate member 27 through the space L in the direction indicated by the arrow F. Since the developer can be suitably wound around the member 26 (see FIG. 5), it is possible to further suppress the magnetic permeability variation due to the change in the developer density due to the process speed variation.

以上、本実施形態に係る画像形成装置1によれば、螺旋状部材25は、トナー濃度検知センサ28の検知面29と対向する部分が切り欠かれており、第1板状部材26及び第2板状部材27は、トナー濃度検知センサ28の検知面29と対向するように配置されているので、トナー濃度検知センサ28の検知面29に対向する領域では、螺旋状部材25によって軸部材24の軸線方向Aに沿った方向に現像剤が搬送されることなく、撹拌搬送部材23の回転方向Bへ現像剤が搬送される。第1板状部材26は、軸部材24の軸線方向Aに延在して現像剤の搬送方向Gの上流側の螺旋状部材25と現像剤の搬送方向Gの下流側の螺旋状部材25とを繋いでいるので、当該第1板状部材26によって現像剤が抱え込まれ、回転方向Bへ撹拌される。第2板状部材27は、現像剤の搬送方向Gの上流側の螺旋状部材25から軸部材24の軸線方向Aに沿って現像剤の搬送方向Gの下流側に延在し、現像剤の搬送方向Gの下流側の螺旋状部材25との間に空間Lが形成されているので、当該第2板状部材27によって現像剤が抱え込まれ、回転方向Bへ撹拌されると共に、現像剤が空間Lを介して第2板状部材27から第1板状部材26へと回り込む。これにより、外的要因発生時においても、トナー濃度検知センサ28の検知面29に対向する部分における現像剤の流れを安定化することができる。以上より、外的要因発生時においても、現像剤の密度変化による透磁率変動を抑制することが可能となる。   As described above, according to the image forming apparatus 1 according to the present embodiment, the spiral member 25 is notched at the portion facing the detection surface 29 of the toner density detection sensor 28, and the first plate-like member 26 and the second plate member 26. Since the plate-like member 27 is disposed so as to face the detection surface 29 of the toner concentration detection sensor 28, the spiral member 25 causes the shaft member 24 in the region facing the detection surface 29 of the toner concentration detection sensor 28. The developer is transported in the rotational direction B of the agitation transport member 23 without being transported in the direction along the axial direction A. The first plate-like member 26 extends in the axial direction A of the shaft member 24 and has an upstream spiral member 25 in the developer transport direction G and a downstream spiral member 25 in the developer transport direction G. Therefore, the developer is held by the first plate member 26 and stirred in the rotation direction B. The second plate-like member 27 extends from the spiral member 25 on the upstream side in the developer conveying direction G along the axial direction A of the shaft member 24 to the downstream side in the developer conveying direction G. Since the space L is formed with the spiral member 25 on the downstream side in the transport direction G, the developer is held by the second plate-like member 27 and stirred in the rotation direction B. The second plate-shaped member 27 goes around the first plate-shaped member 26 through the space L. As a result, even when an external factor occurs, the developer flow in the portion facing the detection surface 29 of the toner concentration detection sensor 28 can be stabilized. As described above, even when an external factor is generated, it is possible to suppress fluctuations in magnetic permeability due to changes in developer density.

第1板状部材26は、螺旋状部材25の1ピッチ間S1において、軸部材24の軸線方向Aに延在して現像剤の搬送方向Gの上流側の螺旋状部材25と現像剤の搬送方向Gの下流側の螺旋状部材25とを繋ぎ、第2板状部材27は、螺旋状部材25の2ピッチ間S2において、現像剤の搬送方向Gの上流側の螺旋状部材25から軸部材24の軸線方向Aに沿って現像剤の搬送方向Gの下流側に延在し、現像剤の搬送方向Gの下流側の螺旋状部材25との間に空間Lが形成されている。したがって、第1板状部材26及び第2板状部材27による現像剤の搬送を、より好適に行うことができる。   The first plate member 26 extends in the axial direction A of the shaft member 24 in one pitch S1 of the spiral member 25 and transports the developer with the spiral member 25 on the upstream side in the developer transport direction G. The second plate member 27 is connected to the spiral member 25 on the downstream side in the direction G, and the shaft member extends from the spiral member 25 on the upstream side in the developer conveying direction G in the interval S2 between the two pitches of the spiral member 25. A space L is formed between the spiral member 25 extending downstream in the developer transport direction G along the axial direction A of the developer 24. Therefore, the developer can be transported more suitably by the first plate member 26 and the second plate member 27.

第1板状部材26は、軸部材24の軸線方向Aに沿った方向で、第1板状部材26の中心位置26cと検知面29の中心位置29cとが重なるように配置されている。第1板状部材26がこのように配置されていることにより、トナー濃度検知センサ28による検出結果の精度が向上する。   The first plate member 26 is arranged so that the center position 26 c of the first plate member 26 and the center position 29 c of the detection surface 29 overlap in the direction along the axial direction A of the shaft member 24. By arranging the first plate-like member 26 in this way, the accuracy of the detection result by the toner concentration detection sensor 28 is improved.

また、現像剤の搬送方向Gの下流側における第2板状部材27の先端27dは、軸部材24側である基端側27eよりも、軸部材24の反対側である外周側27fの方が、現像剤の搬送方向Gの下流側へ延びている。第2板状部材27の先端27dがこのような形状であることにより、第2板状部材27から第1板状部材26への現像剤の回り込みを好適に行うことができ、現像剤の密度変化による透磁率変動をより抑制することができる。   Further, the distal end 27d of the second plate-like member 27 on the downstream side in the developer conveying direction G is on the outer peripheral side 27f on the opposite side of the shaft member 24 rather than on the base end side 27e on the shaft member 24 side. , And extends downstream in the developer transport direction G. Since the tip 27d of the second plate-like member 27 has such a shape, the developer can be suitably circulated from the second plate-like member 27 to the first plate-like member 26, and the density of the developer can be improved. It is possible to further suppress the permeability fluctuation due to the change.

なお、第1板状部材26の短手方向の長さと、第2板状部材27の短手方向の長さとは、略等しいので、第1板状部材26と第2板状部材27との間で保持される現像剤量のバランスを保つことができ、好適である。   The length of the first plate-like member 26 in the short direction and the length of the second plate-like member 27 in the short-side direction are substantially equal, so the first plate-like member 26 and the second plate-like member 27 The balance of the amount of developer held between them can be maintained, which is preferable.

[実施例]
以下、上記効果を説明すべく、本発明者が実施した実施例について説明する。なお、本発明は以下の実施例に限定されるものではない。
[Example]
Hereinafter, in order to explain the above effects, examples implemented by the present inventor will be described. In addition, this invention is not limited to a following example.

(実施例1)
実施例1では、上記実施形態に係る撹拌搬送部材23を有する現像ユニット20を用いた画像形成装置1を動作させる場合において、プロセスピード条件及び環境条件をそれぞれ変化させて、トナー濃度検知センサ28の出力波形を測定した。プロセススピード条件は、153mm/secを低プロセススピードとし、305mm/secを高プロセススピードとして変化させた。環境(温度及び湿度)条件は、10℃,10%を低温低湿とし、30℃,85%を高温高湿として変化させた。なお、トナー濃度検知センサ28は、コントロール電圧可変型である。
Example 1
In Example 1, when the image forming apparatus 1 using the developing unit 20 having the stirring and conveying member 23 according to the above-described embodiment is operated, the process speed condition and the environmental condition are changed to change the toner density detection sensor 28. The output waveform was measured. The process speed conditions were changed such that 153 mm / sec was a low process speed and 305 mm / sec was a high process speed. Environmental (temperature and humidity) conditions were changed to 10 ° C. and 10% as low temperature and low humidity, and 30 ° C. and 85% as high temperature and high humidity. The toner concentration detection sensor 28 is a variable control voltage type.

(比較例1)
図7は、比較例1の画像形成装置における撹拌搬送部材の構成を示す側面図である。比較例1では、図7に示すような撹拌搬送部材101を有する現像ユニット100を用いた画像形成装置を動作させる場合において、プロセスピード条件及び環境条件をそれぞれ変化させて、トナー濃度検知センサ28の出力波形を測定した。プロセススピード条件及び環境条件は、実施例1と同じくした。図7に示す撹拌搬送部材101は、軸部材102と、軸部材102の周面上に形成された螺旋状部材103及び板状部材104と、を有する。螺旋状部材103は、螺旋羽根形状であり、トナー濃度検知センサ28の検知領域に対向する位置においても切り欠かれることなく連続して配置されている。板状部材104は、略矩形状の撹拌パドルであり、螺旋状部材103のトナー濃度検知センサ28の検知領域に対向する位置に、1つだけ配置されている。
(Comparative Example 1)
FIG. 7 is a side view illustrating the configuration of the stirring and conveying member in the image forming apparatus of Comparative Example 1. In Comparative Example 1, when operating the image forming apparatus using the developing unit 100 having the agitating / conveying member 101 as shown in FIG. 7, the process speed condition and the environmental condition are changed to change the toner density detection sensor 28. The output waveform was measured. Process speed conditions and environmental conditions were the same as in Example 1. A stirring / conveying member 101 shown in FIG. 7 includes a shaft member 102, and a spiral member 103 and a plate-like member 104 formed on the peripheral surface of the shaft member 102. The spiral member 103 has a spiral blade shape, and is continuously arranged without being cut out even at a position facing the detection region of the toner concentration detection sensor 28. The plate-like member 104 is a substantially rectangular stirring paddle, and only one plate member 104 is arranged at a position facing the detection region of the toner concentration detection sensor 28 of the spiral member 103.

(結果)
実施例1での測定結果を図8及び図9に示す。図8は、実施例1において、条件ごとに測定されたトナー濃度検知センサ28の出力波形を示すグラフである。図8の横軸は時間を示し、図8の縦軸は電圧を示している。図8の(a)は低プロセススピード且つ低温低湿条件下、図8の(b)は低プロセススピード且つ高温高湿条件下、図8の(c)は高プロセススピード且つ低温低湿条件下、図8の(d)は高プロセススピード且つ高温高湿条件下の場合をそれぞれ示している。
(result)
The measurement results in Example 1 are shown in FIGS. FIG. 8 is a graph showing an output waveform of the toner concentration detection sensor 28 measured for each condition in the first embodiment. The horizontal axis in FIG. 8 indicates time, and the vertical axis in FIG. 8 indicates voltage. 8A is a low process speed and low temperature and low humidity condition, FIG. 8B is a low process speed and high temperature and high humidity condition, and FIG. 8C is a high process speed and low temperature and low humidity condition. 8 (d) shows the case of high process speed and high temperature and high humidity.

図8の(a)と図8の(c)とを比較すると、実施例1では、低プロセススピードである場合と高プロセススピードである場合とで、波形形状が略同じであり、波形の出力高さが殆ど変動しなかった。図8の(b)と図8の(d)とを比較しても、同様であった。即ち、プロセススピード条件が変動しても、現像剤の密度変化による透磁率変動を抑制することができた。   Comparing FIG. 8A and FIG. 8C, in the first embodiment, the waveform shape is substantially the same between the low process speed and the high process speed, and the waveform output The height hardly changed. Even when FIG. 8B and FIG. 8D were compared, the same result was obtained. That is, even if the process speed conditions fluctuated, it was possible to suppress magnetic permeability fluctuations due to changes in developer density.

図8の(a)と図8の(b)とを比較すると、低温低湿である場合と高温高湿である場合とで、波形形状が略同じであり、波形の出力高さが殆ど変動しなかった。図8の(c)と図8の(d)とを比較しても、同様であった。即ち、環境条件が変動しても、現像剤の密度変化による透磁率変動を抑制することができた。   Comparing (a) in FIG. 8 and (b) in FIG. 8, the waveform shape is substantially the same in the case of low temperature and low humidity and in the case of high temperature and high humidity, and the output height of the waveform almost fluctuates. There wasn't. Even when FIG. 8C and FIG. 8D were compared, the same result was obtained. In other words, even if the environmental conditions fluctuated, the magnetic permeability fluctuation due to the density change of the developer could be suppressed.

図9は、実施例1において、一定のセンサ出力でトナー濃度をコントロールするために必要なコントロール電圧を示すグラフである。図9の横軸はトナー濃度を示し、図9の縦軸はコントロール電圧を示している。図9の線aは、図8の(a)の場合に対応し、図9の線bは、図8の(b)の場合に対応し、図9の線cは、図8の(c)の場合に対応し、図9の線dは、図8の(d)の場合に対応している。   FIG. 9 is a graph showing a control voltage necessary for controlling the toner density with a constant sensor output in the first embodiment. The horizontal axis in FIG. 9 indicates the toner density, and the vertical axis in FIG. 9 indicates the control voltage. The line a in FIG. 9 corresponds to the case of FIG. 8A, the line b in FIG. 9 corresponds to the case in FIG. 8B, and the line c in FIG. 9), the line d in FIG. 9 corresponds to the case of (d) in FIG.

図9に示すように、実施例1では、線a〜線dの傾きは、略一定であった。具体的には、プロセススピードの変動による傾きの変化の度合(線dの傾き値と線bの傾き値との変化率)は0.3%であった。また、環境条件の変動による傾きの変化の度合(線cの傾き値と線dの傾き値との変化率)は13%であった。即ち、トナー濃度に対するコントロール電圧の変化の度合が、プロセススピードの変動及び環境条件の変動によらず、略一定とみなせるものであり、外的要因によらず略同じコントロール電圧を用いることができることが確認された。   As shown in FIG. 9, in Example 1, the slopes of the lines a to d were substantially constant. Specifically, the degree of change in inclination due to process speed fluctuation (change rate between the inclination value of line d and the inclination value of line b) was 0.3%. In addition, the degree of change in inclination due to changes in environmental conditions (change rate between the inclination value of line c and the inclination value of line d) was 13%. That is, the degree of change in the control voltage with respect to the toner density can be regarded as substantially constant regardless of variations in process speed and environmental conditions, and substantially the same control voltage can be used regardless of external factors. confirmed.

これに対し、比較例1での測定結果を図10及び図11に示す。図10は、比較例1において、条件ごとに測定されたトナー濃度検知センサ28の出力波形を示すグラフである。図10の横軸は時間を示し、図10の縦軸は電圧を示している。図10の(a)は低プロセススピード且つ低温低湿条件下、図10の(b)は低プロセススピード且つ高温高湿条件下、図8の(c)は高プロセススピード且つ低温低湿条件下、図10の(d)は高プロセススピード且つ高温高湿条件下の場合をそれぞれ示している。   On the other hand, the measurement results in Comparative Example 1 are shown in FIGS. FIG. 10 is a graph showing the output waveform of the toner concentration detection sensor 28 measured for each condition in Comparative Example 1. The horizontal axis in FIG. 10 indicates time, and the vertical axis in FIG. 10 indicates voltage. 10A is a low process speed and low temperature and low humidity condition, FIG. 10B is a low process speed and high temperature and high humidity condition, and FIG. 8C is a high process speed and low temperature and low humidity condition. 10 (d) shows the case of high process speed and high temperature and high humidity.

図10の(a)と図10の(c)とを比較すると、比較例1では、低プロセススピードである場合と高プロセススピードである場合とで、波形形状及び波形の出力高さが大きく変動した。特に、低プロセススピードの場合には、最大ピークの後に出力値が大きく下がることはないのに対し、高プロセススピードの場合には、最大ピークの後に出力値が大きく下がり、最も小さい値をとった。これは、高プロセススピードの場合には、現像剤の搬送力が高いため、板状部材104における回転方向下流側の空隙が大きくなり、これにより回転方向における現像剤の粗密の差が大きくなることによる。また、図10の(b)と図10の(d)とを比較しても、同様であった。即ち、プロセススピード条件の変動によって、現像剤の密度変化による透磁率変動が大きくなった。   Comparing FIG. 10 (a) and FIG. 10 (c), in Comparative Example 1, the waveform shape and the waveform output height fluctuate greatly between the low process speed and the high process speed. did. In particular, at low process speeds, the output value does not drop significantly after the maximum peak, whereas at high process speeds, the output value drops significantly after the maximum peak and takes the smallest value. . This is because, at a high process speed, the developer conveying force is high, and therefore the gap on the downstream side in the rotational direction of the plate-like member 104 becomes large, thereby increasing the difference in density of the developer in the rotational direction. by. Moreover, it was the same even if FIG.10 (b) and FIG.10 (d) were compared. That is, the variation in magnetic permeability due to the change in the density of the developer increased due to the variation in the process speed condition.

図10の(a)と図8の(b)とを比較すると、低温低湿である場合と高温高湿である場合とで、波形形状及び出力高さが大きく変動した。図8の(c)と図8の(d)とを比較しても、同様であった。これは、環境条件の変動によって、トナー濃度検知センサの検知領域一帯において現像剤の流動性変化が生じることによる。即ち、環境条件の変動によって、現像剤の密度変化による透磁率変動が大きくなった。   Comparing FIG. 10 (a) and FIG. 8 (b), the waveform shape and output height fluctuated greatly between the case of low temperature and low humidity and the case of high temperature and high humidity. Even when FIG. 8C and FIG. 8D were compared, the same result was obtained. This is due to a change in the fluidity of the developer in the entire detection region of the toner density detection sensor due to a change in environmental conditions. That is, the variation in magnetic permeability due to the change in the density of the developer increased due to the variation in environmental conditions.

図11は、比較例1において、一定のセンサ出力でトナー濃度をコントロールするために必要なコントロール電圧を示すグラフである。図11の横軸はトナー濃度を示し、図11の縦軸はコントロール電圧を示している。図11の線aは、図10の(a)の場合に対応し、図11の線bは、図10の(b)の場合に対応し、図11の線cは、図10の(c)の場合に対応し、図11の線dは、図10の(d)の場合に対応している。   FIG. 11 is a graph showing a control voltage necessary for controlling the toner density with a constant sensor output in Comparative Example 1. The horizontal axis in FIG. 11 indicates the toner density, and the vertical axis in FIG. 11 indicates the control voltage. The line a in FIG. 11 corresponds to the case of FIG. 10A, the line b in FIG. 11 corresponds to the case in FIG. 10B, and the line c in FIG. The line d in FIG. 11 corresponds to the case of (d) in FIG.

図11に示すように、比較例1では、線a〜線dの傾きが、大きくばらついた。具体的には、プロセススピードの変動による傾きの変化の度合(線aの傾き値と線cの傾き値との変化率)は97%であった。また、環境条件の変動による傾きの変化の度合(線cの傾き値と線dの傾き値との変化率)は90%であった。即ち、トナー濃度に対するコントロール電圧の変化度合が、プロセススピードの変動及び環境条件の変動によって、大きく変動することが確認された。   As shown in FIG. 11, in Comparative Example 1, the slopes of the lines a to d varied greatly. Specifically, the degree of change in inclination due to process speed fluctuation (change rate between the inclination value of line a and the inclination value of line c) was 97%. In addition, the degree of change in slope due to changes in environmental conditions (the rate of change between the slope value of line c and the slope value of line d) was 90%. That is, it has been confirmed that the degree of change in the control voltage with respect to the toner density varies greatly due to variations in process speed and environmental conditions.

以上、実施例1及び比較例1により、本発明の上記実施形態に係る撹拌搬送部材23を有する現像ユニット20を用いた画像形成装置1では、プロセススピード及び環境の変動が生じても、現像剤の密度変化による透磁率変動を抑制することができることが確認された。即ち、画像形成装置1によれば、外的要因発生時においても、現像剤の密度変化による透磁率変動を抑制することができることが確認された。   As described above, according to Example 1 and Comparative Example 1, in the image forming apparatus 1 using the developing unit 20 having the stirring and conveying member 23 according to the above-described embodiment of the present invention, even if the process speed and the environment vary, the developer It was confirmed that fluctuations in magnetic permeability due to changes in the density can be suppressed. That is, according to the image forming apparatus 1, it was confirmed that the magnetic permeability fluctuation due to the density change of the developer can be suppressed even when an external factor is generated.

以上、本実施形態の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。   The preferred embodiments of the present embodiment have been described above. However, the present invention is not limited to the above-described embodiments. The present invention is not limited to the gist described in each claim and can be modified or applied to others. It may be what you did.

例えば、上記実施形態においては、第1板状部材26の短手方向の長さと、第2板状部材27の短手方向の長さとは、略等しいとしたが、これに限られず、互いに異なる長さであってもよい。また、第1板状部材26及び第2板状部材27の形状は略矩形状としたが、これに限られず、上記効果を奏する範囲で種々の形状を取り得る。   For example, in the above embodiment, the length in the short direction of the first plate member 26 and the length in the short direction of the second plate member 27 are substantially equal to each other, but are not limited thereto, and are different from each other. It may be a length. Moreover, although the shape of the 1st plate-shaped member 26 and the 2nd plate-shaped member 27 was made into the substantially rectangular shape, it is not restricted to this, A various shape can be taken in the range with the said effect.

第1板状部材26は、1つ配置されているとしたが、これに限られず、例えば複数配置されていてもよい。第2板状部材27についても、同様である。また、第1板状部材26と第2板状部材27とは、軸部材24の周方向に互いに略180°離れた位置で軸部材24に立設されているとしたが、これに限られず、例えば第1板状部材26と第2板状部材27とが軸部材24に立設されている位置は、軸部材24の周方向に互いに略180°以外の角度離れた位置であってもよい。   Although one first plate member 26 is disposed, the present invention is not limited to this, and a plurality of the first plate members 26 may be disposed, for example. The same applies to the second plate member 27. Moreover, although the 1st plate-shaped member 26 and the 2nd plate-shaped member 27 were standingly arranged in the shaft member 24 in the circumferential direction of the shaft member 24 in the position mutually separated substantially 180 degrees, it is not restricted to this. For example, the position where the first plate-like member 26 and the second plate-like member 27 are erected on the shaft member 24 may be a position separated from each other by an angle other than approximately 180 ° in the circumferential direction of the shaft member 24. Good.

第1板状部材26は、1ピッチ間S1において螺旋状部材25を繋ぐものに限られず、1ピッチ間S1よりも広い範囲において螺旋状部材25を繋いでもよい。また、第2板状部材27は、2ピッチ間S2において空間Lを形成するものに限られず、2ピッチ間S2よりも広い範囲において空間Lが形成されてもよい。   The 1st plate-shaped member 26 is not restricted to what connects the helical member 25 in S1 between 1 pitch, You may connect the helical member 25 in the range wider than S1 between 1 pitch. Moreover, the 2nd plate-shaped member 27 is not restricted to what forms the space L in S2 between 2 pitches, The space L may be formed in the range wider than S2 between 2 pitches.

1…画像形成装置、23…撹拌搬送部材、24…軸部材、25…螺旋状部材、26…第1板状部材、26c…中心位置、27…第2板状部材、27d…先端、27e…基端側、27f…外周側、28…トナー濃度検知センサ、29…検知面、29c…中心位置、A…軸線方向、G…搬送方向、L…空間、S1…1ピッチ間、S2…2ピッチ間。


DESCRIPTION OF SYMBOLS 1 ... Image forming apparatus, 23 ... Agitation conveyance member, 24 ... Shaft member, 25 ... Spiral member, 26 ... First plate member, 26c ... Center position, 27 ... Second plate member, 27d ... Tip, 27e ... Base end side, 27f ... outer peripheral side, 28 ... toner density detection sensor, 29 ... detection surface, 29c ... center position, A ... axial direction, G ... conveying direction, L ... space, S1 ... 1 pitch, S2 ... 2 pitch while.


Claims (4)

非磁性トナー及び磁性キャリアを含む二成分の現像剤を撹拌しつつ搬送する撹拌搬送部材と、
前記現像剤のトナー濃度を検出するために、前記撹拌搬送部材で搬送されている前記現像剤に含まれる前記非磁性トナーと前記磁性キャリアとの混合比率に応じた透磁率を検知するトナー濃度検知センサと、
を備える画像形成装置であって、
前記撹拌搬送部材は、
軸部材と、
前記軸部材の周りの螺旋方向に延びて前記現像剤を前記軸部材の軸線方向に搬送する螺旋状部材と、
前記軸部材の軸線方向に延在して前記現像剤の搬送方向の上流側の前記螺旋状部材と前記現像剤の搬送方向の下流側の前記螺旋状部材とを繋ぐ第1板状部材と、
前記現像剤の搬送方向の上流側の前記螺旋状部材から前記軸部材の軸線方向に沿って前記現像剤の搬送方向の下流側に延在し、前記現像剤の搬送方向の下流側の前記螺旋状部材との間に空間が形成される第2板状部材と、
を有し、
前記螺旋状部材は、前記トナー濃度検知センサの検知面と対向する部分が切り欠かれており、
前記第1板状部材及び前記第2板状部材は、前記トナー濃度検知センサの検知面と対向するように配置されている、画像形成装置。
An agitating and conveying member for conveying the two-component developer containing the non-magnetic toner and the magnetic carrier while stirring;
In order to detect the toner concentration of the developer, a toner concentration detection that detects a magnetic permeability according to a mixing ratio of the non-magnetic toner and the magnetic carrier contained in the developer conveyed by the stirring and conveying member. A sensor,
An image forming apparatus comprising:
The stirring and conveying member is
A shaft member;
A spiral member extending in a spiral direction around the shaft member and transporting the developer in the axial direction of the shaft member;
A first plate member extending in the axial direction of the shaft member and connecting the spiral member on the upstream side in the transport direction of the developer and the spiral member on the downstream side in the transport direction of the developer;
The spiral member on the downstream side in the developer transport direction extends from the spiral member on the upstream side in the developer transport direction along the axial direction of the shaft member to the downstream side in the developer transport direction. A second plate member in which a space is formed between the member and
Have
The spiral member is cut away at a portion facing the detection surface of the toner concentration detection sensor,
The image forming apparatus, wherein the first plate-like member and the second plate-like member are arranged to face a detection surface of the toner concentration detection sensor.
前記第1板状部材は、前記螺旋状部材の1ピッチ間において、前記軸部材の軸線方向に延在して前記現像剤の搬送方向の上流側の前記螺旋状部材と前記現像剤の搬送方向の下流側の前記螺旋状部材とを繋ぎ、
前記第2板状部材は、前記螺旋状部材の2ピッチ間において、前記現像剤の搬送方向の上流側の前記螺旋状部材から前記軸部材の軸線方向に沿って前記現像剤の搬送方向の下流側に延在し、前記現像剤の搬送方向の下流側の前記螺旋状部材との間に空間が形成される、
請求項1に記載の画像形成装置。
The first plate-like member extends in the axial direction of the shaft member between one pitch of the helical member, and the transport direction of the spiral member and the developer on the upstream side in the transport direction of the developer Connecting the spiral member on the downstream side of
The second plate-like member is downstream in the developer transport direction along the axial direction of the shaft member from the spiral member upstream in the developer transport direction between two pitches of the spiral member. And a space is formed between the spiral member and the downstream side of the developer in the transport direction.
The image forming apparatus according to claim 1.
前記第1板状部材は、前記軸部材の軸線方向に沿った方向で、前記第1板状部材の中心位置と前記検知面の中心位置とが重なるように配置されている、
請求項1又は2に記載の画像形成装置。
The first plate-like member is arranged so that a center position of the first plate-like member and a center position of the detection surface overlap in a direction along the axial direction of the shaft member.
The image forming apparatus according to claim 1.
前記現像剤の搬送方向の下流側における前記第2板状部材の先端は、前記軸部材側である基端側よりも、前記軸部材の反対側である外周側の方が、前記現像剤の搬送方向の下流側へ延びている、
請求項1〜3の何れか一項に記載の画像形成装置。
The distal end of the second plate-like member on the downstream side in the developer transport direction is closer to the outer peripheral side, which is the opposite side of the shaft member, than to the base end side, which is the shaft member side. Extending downstream in the transport direction,
The image forming apparatus according to claim 1.
JP2013252103A 2013-12-05 2013-12-05 Image forming apparatus Pending JP2015108761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252103A JP2015108761A (en) 2013-12-05 2013-12-05 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252103A JP2015108761A (en) 2013-12-05 2013-12-05 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2015108761A true JP2015108761A (en) 2015-06-11

Family

ID=53439146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252103A Pending JP2015108761A (en) 2013-12-05 2013-12-05 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2015108761A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015758A (en) * 2017-07-03 2019-01-31 富士ゼロックス株式会社 Image forming apparatus and developing device
JP2020134621A (en) * 2019-02-15 2020-08-31 シャープ株式会社 Development apparatus and image formation device
CN116018562A (en) * 2020-09-10 2023-04-25 京瓷办公信息系统株式会社 Developing device and image forming device including the developing device
EP4567522A1 (en) * 2023-12-06 2025-06-11 KYOCERA Document Solutions Inc. Developing device and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015758A (en) * 2017-07-03 2019-01-31 富士ゼロックス株式会社 Image forming apparatus and developing device
JP2020134621A (en) * 2019-02-15 2020-08-31 シャープ株式会社 Development apparatus and image formation device
JP7229805B2 (en) 2019-02-15 2023-02-28 シャープ株式会社 Developing device and image forming device
CN116018562A (en) * 2020-09-10 2023-04-25 京瓷办公信息系统株式会社 Developing device and image forming device including the developing device
EP4567522A1 (en) * 2023-12-06 2025-06-11 KYOCERA Document Solutions Inc. Developing device and image forming apparatus

Similar Documents

Publication Publication Date Title
US8781371B2 (en) Stir-transport member, development device provided therewith, and image forming apparatus
JP5124316B2 (en) Developing device, process cartridge, and image forming apparatus
CN100533297C (en) Developing device and image forming device
JP6167365B2 (en) Developing device and image forming apparatus
US8588657B2 (en) Developing device and image forming apparatus
US8515317B2 (en) Developer conveyance device, developing device, and image forming device
JP2012150367A (en) Development device and image forming apparatus
JP2015108761A (en) Image forming apparatus
JP2014191038A (en) Powder conveyance device, developing device, and image forming apparatus
US9008553B2 (en) Developer conveying device, and developing device and image forming apparatus provided with same
US8488999B2 (en) Developing device and image forming apparatus having a developer conveying section with a spiral blade
US8744320B2 (en) Developing device and image forming apparatus
US8913925B2 (en) Developer conveying device including a plurality of planar portions and a developing device and image forming apparatus provided with same
US9075342B2 (en) Developer conveying device, and developing device and image forming apparatus provided with same
US20160147172A1 (en) Developing device, image forming apparatus, and method for controlling developing device
CN113703300B (en) Developing device and image forming apparatus including the same
JP7416274B2 (en) Developing device and image forming device equipped with the same
JP2017116778A (en) Image forming device
JP4956309B2 (en) Toner concentration measuring device, stirring device, developing device, process cartridge, image forming device, developing method, and image forming method
US9274456B2 (en) Developing device comprising a conveying member having a hollow spiral shape and image forming apparatus provided with the same
US9176429B2 (en) Developing device and image forming apparatus provided with same
JP2008170624A (en) Image forming apparatus
JP2017083593A (en) Developer supply device and image forming apparatus
JP5703411B2 (en) Developing device and image forming apparatus having the same
CN103425022A (en) Conveyance device