JP2015131898A - Fluorescent material and light-emitting device - Google Patents
Fluorescent material and light-emitting device Download PDFInfo
- Publication number
- JP2015131898A JP2015131898A JP2014003646A JP2014003646A JP2015131898A JP 2015131898 A JP2015131898 A JP 2015131898A JP 2014003646 A JP2014003646 A JP 2014003646A JP 2014003646 A JP2014003646 A JP 2014003646A JP 2015131898 A JP2015131898 A JP 2015131898A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- light
- emitting device
- comparative example
- quantum efficiency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title abstract description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 93
- 239000000126 substance Substances 0.000 claims description 4
- 230000006866 deterioration Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 49
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 230000004907 flux Effects 0.000 description 13
- 230000014759 maintenance of location Effects 0.000 description 11
- 238000009877 rendering Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229910016066 BaSi Inorganic materials 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920000995 Spectralon Polymers 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical group [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
本願発明は、LED(Light Emitting Diode)又はLD(Laser Diode)用の蛍光体、及び、この蛍光体を用いた発光装置に関する。 The present invention relates to a phosphor for LED (Light Emitting Diode) or LD (Laser Diode), and a light emitting device using the phosphor.
特許文献1には、一般式BaSi2O2N2:Euを素材とした青緑色蛍光体が開示されている。特許文献2には、青色又は紫外光を青緑色光に変換させるBaSi2O2N2:Euを用いることで演色性の高い白色光を生成する照明装置が開示されている。 Patent Document 1 discloses a blue-green phosphor using the general formula BaSi 2 O 2 N 2 : Eu as a material. Patent Document 2 discloses an illumination device that generates white light with high color rendering properties by using BaSi 2 O 2 N 2 : Eu that converts blue or ultraviolet light into blue-green light.
特許文献1の蛍光体であるBaSi2O2N2:Euは、発光装置に用いられて高出力又は長時間発光すると当該蛍光体の輝度が低下し、発光装置での発光の色度変化が生じるという課題があった。
特許文献2の照明装置で蛍光体におけるBaSi2O2N2:Euの割合を増やすと、BaSi2O2N2:Eu自体の発光色である青緑色の発光が増加する分、発光装置全体での白色光を得るために長波長の光、特に赤色が必要となると共に、この長波長の光を発光する蛍光体、例えば赤色発光蛍光体を新たに加えることによって青緑色の発光が吸収され、結果的に照明装置での輝度が低下するという課題があった。
BaSi 2 O 2 N 2 : Eu, which is a phosphor of Patent Document 1, is used in a light emitting device and emits light at a high output or for a long time, the luminance of the phosphor decreases, and the chromaticity change of light emission in the light emitting device changes. There was a problem that occurred.
BaSi in the phosphor in the illumination device of Patent Document 2 2 O 2 N 2: Increasing the proportion of Eu, BaSi 2 O 2 N 2 : amount that Eu blue green light is a light emitting color of itself increases, the entire light-emitting device In order to obtain white light at a long wavelength, long-wavelength light, particularly red, is required, and by adding a phosphor that emits this long-wavelength light, such as a red-emitting phosphor, blue-green light emission is absorbed. As a result, there is a problem that the luminance of the lighting device is lowered.
本発明は、高出力又は長時間発光しても輝度低下が少ない蛍光体及びこの蛍光体を用いた発光装置を提供することを目的とする。 An object of this invention is to provide the fluorescent substance with little brightness fall, even if it light-emits high output or long time, and the light-emitting device using this fluorescent substance.
本発明者らは、上記課題を解決すべく鋭意検討した結果、一般式における組成を限定することにより、上記課題を解決する蛍光体を見出し、本発明に至ったものである。
本発明は、一般式BaaSibOcNd:Eueで示され、aは0.90以上1.15以下、bは2.00以上2.40以下、cは1.80以上2.70以下、dは1.85以上2.15以下、eは0.01以上0.03以下の蛍光体である。
Baはバリウムであり、モル比でaが0.90以上1.15以下の範囲から外れると蛍光特性の低下が見られる。
Siはシリコンでありモル比でbが2.00以上2.40以下の範囲から外れると蛍光特性の低下が見られる。
Oは酸素であり、モル比でcが1.80以上2.70以下の範囲であり、1.90以上2.10以下が好ましい。
Nは窒素であり、モル比でdが1.85以上2.15以下の範囲から外れると蛍光特性が低下し、好ましくは2.10以上2.15以下である。
Euはユーロピウムであり、モル比でeが0.01以上0.03以下での範囲であることが必要である。このeの値があまりに小さいと蛍光特性が低下しあまりに大きいと150℃以上の高温時の蛍光特性が常温時の蛍光特性と比較して顕著に低下する傾向にある。
As a result of intensive studies to solve the above problems, the present inventors have found a phosphor that solves the above problems by limiting the composition in the general formula, and have achieved the present invention.
The present invention is represented by the general formula Ba a Si b O c N d : Eu e , a is 0.90 or more and 1.15 or less, b is 2.00 or more and 2.40 or less, and c is 1.80 or more and 2 .70 or less, d is 1.85 or more and 2.15 or less, and e is 0.01 or more and 0.03 or less.
Ba is barium, and when the molar ratio a is out of the range of 0.90 or more and 1.15 or less, the fluorescence characteristics are deteriorated.
Si is silicon, and when the molar ratio b is out of the range of 2.00 or more and 2.40 or less, the fluorescence characteristics are deteriorated.
O is oxygen, and the molar ratio c is in the range of 1.80 to 2.70, and preferably 1.90 to 2.10.
N is nitrogen, and if d is out of the range of 1.85 to 2.15, the fluorescence characteristics deteriorate, and preferably 2.10 to 2.15.
Eu is europium, and it is necessary that e is in the range of 0.01 to 0.03 in terms of molar ratio. If the value of e is too small, the fluorescence characteristics deteriorate, and if it is too large, the fluorescence characteristics at a high temperature of 150 ° C. or higher tend to be significantly reduced as compared with the fluorescence characteristics at room temperature.
本発明は、前述の蛍光体と、発光素子を有する発光装置である。
当該発光装置は、前述の蛍光体が、蛍光体全体の20質量%以下であるのが好ましい。
The present invention is a light emitting device having the above-described phosphor and a light emitting element.
In the light-emitting device, the phosphor described above is preferably 20% by mass or less of the entire phosphor.
本発明の蛍光体は、一般式BaSiON:Euで示される蛍光体であっても、高出力又は長時間発光しても輝度低下が少ないという効果を有する。本発明に係る発光装置は、高出力又は長時間使用されても輝度の低下が少ないという効果を有する。 Even if the phosphor of the present invention is a phosphor represented by the general formula BaSiON: Eu, it has an effect that there is little decrease in luminance even when light is emitted at a high output or for a long time. The light-emitting device according to the present invention has an effect that a decrease in luminance is small even when used at a high output or for a long time.
本発明の蛍光体は、一般式BaSiON:Euで示される蛍光体の組成比を限定することによって、高出力又は長時間発光しても輝度の低下が少ない蛍光体である。 The phosphor of the present invention is a phosphor with little decrease in luminance even when light is emitted at high output or for a long time by limiting the composition ratio of the phosphor represented by the general formula BaSiON: Eu.
本発明に係る発光装置は、当該蛍光体と、発光光源とを備える発光装置である。この蛍光体は、他の発光色の蛍光体と混在させた蛍光体群とすることもできる。他の発光色は、一般式BaSiON:Euで示される蛍光体の発光色である青緑色以外の発光色であり、具体的には、赤色、青色、黄色、緑色、橙色がある。発光光源としては、紫外LED、青色LED、蛍光体ランプの単体又はこれらの組み合わせがある。蛍光体の発光色を組み合わせることにより、発光装置からの発光色を白色、昼白色、橙色等の他の色とすることができる。発光装置としては、照明装置、液晶テレビやモニタのバックライト装置、画像表示装置、プロジェクター及び信号装置がある。 The light emitting device according to the present invention is a light emitting device including the phosphor and a light emitting light source. This phosphor can be a phosphor group mixed with phosphors of other emission colors. Other emission colors are emission colors other than blue-green, which is the emission color of the phosphor represented by the general formula BaSiON: Eu, and specifically include red, blue, yellow, green, and orange. As the light emission source, there are a single unit of ultraviolet LED, blue LED, and phosphor lamp, or a combination thereof. By combining the emission colors of the phosphors, the emission color from the light emitting device can be changed to other colors such as white, day white, and orange. Examples of the light emitting device include a lighting device, a backlight device for a liquid crystal television and a monitor, an image display device, a projector, and a signal device.
本発明に係る蛍光体は、原料を配合する配合工程、配合工程後の原料を焼成する焼成工程、焼成工程後の焼結体を粉砕する粉砕工程によって製造するのが好ましい。他に酸処理工程、アニール工程を追加することが好ましい。製造された蛍光体に対して、酸処理工程で表面に残存した不純物を除去することができ、アニール工程で蛍光体の表面層をより緻密化することができる。 The phosphor according to the present invention is preferably produced by a blending step for blending raw materials, a firing step for firing the raw materials after the blending step, and a pulverizing step for grinding the sintered body after the firing step. In addition, it is preferable to add an acid treatment step and an annealing step. Impurities remaining on the surface in the acid treatment step can be removed from the manufactured phosphor, and the surface layer of the phosphor can be further densified in the annealing step.
本発明の実施例を、表1を参照しつつ、比較例と対比して詳細に説明する。表1は、実施例及び比較例の蛍光体の組成比とその外部量子効率、150℃蛍光強度保持率を示したものである。 Examples of the present invention will be described in detail in comparison with comparative examples with reference to Table 1. Table 1 shows the composition ratios of the phosphors of Examples and Comparative Examples, their external quantum efficiency, and 150 ° C. fluorescence intensity retention rate.
表1の外部量子効率は、照射されたフォトン数に対する外部発生フォトン数の比であり、具体的には、分光光度計(大塚電子株式会社製MCPD−7000)により測定し、以下の手順で算出したものである。外部量子効率が大きいほど輝度の高い蛍光体であるといえ、実施例として合格の外部量子効率は55%以上である。
測定対象の蛍光体を凹型セルの表面が平滑になる様に充填し、積分球を取り付け、当該積分球に、発光光源としてのXeランプから455nmの波長に分光した単色光を、光ファイバーを用いて導入した。この単色光を励起源として、測定対象の蛍光体に照射し、蛍光スペクトル測定を行った。蛍光体を搭載した場所に、反射率が99%の標準反射板としてのLabsphere社製スペクトラロンをセットし、波長455nmの励起光のスペクトルを測定した。この測定時の環境温度は23℃とした。
その際、450〜465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465〜800nmの範囲で算出した。
外部量子効率は、次の計算式によって、求めた。
外部量子効率=(Qem/Qex)×100
The external quantum efficiency in Table 1 is the ratio of the number of externally generated photons to the number of irradiated photons. Specifically, the external quantum efficiency is measured with a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.) and calculated according to the following procedure. It is a thing. It can be said that the higher the external quantum efficiency is, the higher the brightness of the phosphor, and as an example, the passed external quantum efficiency is 55% or more.
Fill the phosphor to be measured so that the surface of the concave cell is smooth, attach an integrating sphere, and use an optical fiber to connect the integrating sphere with monochromatic light separated from a Xe lamp as a light source at a wavelength of 455 nm. Introduced. Using this monochromatic light as an excitation source, the phosphor to be measured was irradiated to measure the fluorescence spectrum. Spectralon manufactured by Labsphere as a standard reflector having a reflectance of 99% was set in a place where the phosphor was mounted, and the spectrum of excitation light having a wavelength of 455 nm was measured. The environmental temperature during this measurement was 23 ° C.
At that time, the excitation light photon number (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm.
The number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated from the obtained spectrum data. The number of excitation reflected light photons was calculated in the same wavelength range as the number of excitation light photons, and the number of fluorescent photons was calculated in the range of 465 to 800 nm.
The external quantum efficiency was obtained by the following calculation formula.
External quantum efficiency = (Qem / Qex) × 100
表1の150℃強度保持率は、この外部量子効率の測定を行った後、凹型セルを測定対象の蛍光体ごと150℃に加熱した後に測定して得た外部量子効率との関係において、次の計算式によって求めたものである。実施例として合格値は80%以上である。
150℃強度保持率(%)=(150℃での外部量子効率/23℃での外部量子効率)×100
The 150 ° C. strength retention shown in Table 1 is the following relationship with the external quantum efficiency obtained by measuring the external quantum efficiency and then measuring the concave cell after heating it to 150 ° C. together with the phosphor to be measured. It is obtained by the following formula. As an example, the pass value is 80% or more.
150 ° C. strength retention (%) = (external quantum efficiency at 150 ° C./external quantum efficiency at 23 ° C.) × 100
蛍光体のBa、Si、Euにおける組成分析は、ICP発光分析装置(株式会社島津製作所ICPE−9000)を使用した。ICPで測定するために試料10mgをPtルツボに入れ、融剤(Na2CO3:K2CO3:H3BO3=12:8:10)2gと混合し、電気炉で融解(500℃→900℃×15min)した。その後、塩酸:純水=1:1の溶液20mlで加温溶出後、容積100mlのポリメスフラスコへ移し、HNO3を1ml加え定容する。その後、ICPで測定した。
蛍光体のO、Nにおける組成分析は、酸素・窒素分析装置(株式会社堀場製作所EMGA−920)を使用した。
An ICP emission analyzer (ICPE-9000, Shimadzu Corporation) was used for composition analysis of phosphors Ba, Si, and Eu. In order to measure by ICP, 10 mg of a sample is put in a Pt crucible, mixed with 2 g of a flux (Na 2 CO 3 : K 2 CO 3 : H 3 BO 3 = 12: 8: 10), and melted in an electric furnace (500 ° C. → 900 ° C. × 15 min). Thereafter, the mixture is heated and eluted with 20 ml of a hydrochloric acid: pure water = 1: 1 solution, then transferred to a 100 ml polymes flask, and 1 ml of HNO 3 is added to make a constant volume. Then, it measured by ICP.
An oxygen / nitrogen analyzer (Horiba, Ltd. EMGA-920) was used for composition analysis of phosphors at O and N.
実施例1の蛍光体は、一般式BaaSibOcNd:Eueで表される蛍光体であり、表1に示すように、具体的には、Ba0.90Si2.10O1.95N2.10:Eu0.03である。 The phosphor of Example 1 is a phosphor represented by the general formula Ba a Si b O c N d : Eu e. As shown in Table 1, specifically, Ba 0.90 Si 2.10. O 1.95 N 2.10 : Eu 0.03 .
実施例1の本発明の蛍光体を測定した結果、その外部量子効率が61.2%であり、その150℃強度保持率が83.1%であり、いずれも良好な結果を得た。 As a result of measuring the phosphor of the present invention in Example 1, the external quantum efficiency was 61.2%, and the 150 ° C. intensity retention was 83.1%.
実施例2の蛍光体は、表1に示すように、Ba1.00Si2.10O2.05N2.10:Eu0.03であり、実施例1に比べ、Baと酸素を多くしたものである。実施例2の蛍光体は、外部量子効率及び150℃強度保持率において合格値を示した。
実施例2乃至6、及び、比較例1乃至8は、表1には示さなかったが、実施例1の蛍光体の原料の配合比を変化させたものである。
As shown in Table 1, the phosphor of Example 2 is Ba 1.00 Si 2.10 O 2.05 N 2.10 : Eu 0.03 , and has more Ba and oxygen than Example 1. It is a thing. The phosphor of Example 2 showed acceptable values in external quantum efficiency and 150 ° C. intensity retention.
Examples 2 to 6 and Comparative Examples 1 to 8 were not shown in Table 1, but were obtained by changing the mixing ratio of the phosphor raw material of Example 1.
実施例3の蛍光体は、実施例2に比べ、表1に示すように、主にSiを多くしたものである。実施例3の蛍光体は、外部量子効率及び150℃強度保持率において合格値を示した。 As shown in Table 1, the phosphor of Example 3 mainly has a larger amount of Si than that of Example 2. The phosphor of Example 3 showed acceptable values in external quantum efficiency and 150 ° C. intensity retention.
実施例4の蛍光体は、実施例2に比べ、表1に示すように、主に窒素を減らしたものである。実施例4の蛍光体は、外部量子効率及び150℃強度保持率において合格値を示した。 As shown in Table 1, the phosphor of Example 4 is obtained by reducing mainly nitrogen as compared with Example 2. The phosphor of Example 4 showed acceptable values in external quantum efficiency and 150 ° C. intensity retention.
実施例5の蛍光体は、実施例2に比べ、表1に示すように、主にEuを減らしたものである。実施例5の蛍光体は、外部量子効率及び150℃強度保持率において合格値を示した。 As shown in Table 1, the phosphor of Example 5 is obtained by reducing Eu mainly as compared with Example 2. The phosphor of Example 5 showed acceptable values in external quantum efficiency and 150 ° C. intensity retention.
実施例6の蛍光体は、実施例4に比べ、表1に示すように、主にBa、Siを多くし、Oを減らしたものである。実施例6の蛍光体は、外部量子効率及び150℃強度保持率において合格値を示した。 As shown in Table 1, the phosphor of Example 6 is one in which mainly Ba and Si are increased and O is reduced as shown in Table 1. The phosphor of Example 6 showed acceptable values in external quantum efficiency and 150 ° C. intensity retention.
<比較例1>
比較例1の蛍光体は、実施例1に比べ、表1に示すように、主にBaを減らしたものである。比較例1の蛍光体は、外部量子効率が合格値の55%に達しなかった。表1には記載しなかったが、比較例1以外にBaが0.90未満になるように製造した蛍光体も、外部量子効率が合格値の55%に達しなかった。
<Comparative Example 1>
As shown in Table 1, the phosphor of Comparative Example 1 mainly has Ba reduced as compared with Example 1. In the phosphor of Comparative Example 1, the external quantum efficiency did not reach 55% of the acceptable value. Although not shown in Table 1, phosphors manufactured so that Ba was less than 0.90 other than Comparative Example 1 also had an external quantum efficiency of 55% of the acceptable value.
<比較例2>
比較例2の蛍光体は、実施例1に比べ、表1に示すように、Baを多くしたものである。比較例2の蛍光体は、外部量子効率が合格値の55%に達しなかった。表1には記載しなかったが、比較例1以外にBaが1.10を超えるように製造した蛍光体も、外部量子効率が合格値の55%に達しなかった。
<Comparative Example 2>
As shown in Table 1, the phosphor of Comparative Example 2 has a larger amount of Ba than that of Example 1. In the phosphor of Comparative Example 2, the external quantum efficiency did not reach 55% of the acceptable value. Although not described in Table 1, the phosphor manufactured so that Ba exceeded 1.10 other than Comparative Example 1 also had an external quantum efficiency of 55% of the acceptable value.
<比較例3>
比較例3の蛍光体は、実施例2に比べ、表1に示すように、Siを減らしたものである。比較例3の蛍光体は、外部量子効率が合格値の55%に達しなかった。表1には記載しなかったが、比較例3以外にSiが2.00未満になるように製造した蛍光体も、外部量子効率が合格値の55%に達しなかった。
<Comparative Example 3>
As shown in Table 1, the phosphor of Comparative Example 3 has a reduced amount of Si as compared to Example 2. In the phosphor of Comparative Example 3, the external quantum efficiency did not reach 55% of the acceptable value. Although not shown in Table 1, the phosphor manufactured so that Si was less than 2.00 other than Comparative Example 3 also had an external quantum efficiency of 55% of the acceptable value.
<比較例4>
比較例4の蛍光体は、実施例2に比べ、表1に示すように、Siを増やしたものである。比較例4の蛍光体は、外部量子効率が合格値の55%に達しなかった。表1には記載しなかったが、比較例4以外にSiが2.30を超えるように製造した蛍光体も、外部量子効率が合格値の55%に達しなかった。
<Comparative Example 4>
As shown in Table 1, the phosphor of Comparative Example 4 is obtained by increasing Si as compared to Example 2. In the phosphor of Comparative Example 4, the external quantum efficiency did not reach 55% of the acceptable value. Although not described in Table 1, in addition to Comparative Example 4, the phosphor manufactured so that Si exceeded 2.30 also had an external quantum efficiency of 55% of the acceptable value.
<比較例5>
比較例5の蛍光体は、実施例2に比べ、表1に示すように、窒素を減らしたものである。比較例5の蛍光体は、外部量子効率が合格値の55%に達しなかった。表1には記載しなかったが、比較例5以外に窒素が1.85未満になるように製造した蛍光体も、外部量子効率が合格値の55%に達しなかった。
<Comparative Example 5>
As shown in Table 1, the phosphor of Comparative Example 5 is obtained by reducing nitrogen as compared with Example 2. In the phosphor of Comparative Example 5, the external quantum efficiency did not reach 55% of the acceptable value. Although not shown in Table 1, the phosphor manufactured so that nitrogen other than Comparative Example 5 was less than 1.85 also had an external quantum efficiency of 55% of the acceptable value.
<比較例6>
比較例6の蛍光体は、実施例2に比べ、表1に示すように、窒素を増やしたものである。比較例6の蛍光体は、外部量子効率が合格値の55%に達しなかった。表1には記載しなかったが、比較例6以外に窒素が2.15を超えるように製造した蛍光体も、外部量子効率が合格値の55%に達しなかった。
<Comparative Example 6>
The phosphor of Comparative Example 6 is obtained by increasing nitrogen as shown in Table 1 in comparison with Example 2. In the phosphor of Comparative Example 6, the external quantum efficiency did not reach 55% of the acceptable value. Although not described in Table 1, the phosphor manufactured so that nitrogen exceeded 2.15 other than Comparative Example 6 also had an external quantum efficiency of 55% of the acceptable value.
<比較例7>
比較例7の蛍光体は、実施例2に比べ、表1に示すように、Euを減らしたものである。比較例7の蛍光体は、外部量子効率が合格値の55%に達しなかった。表1には記載しなかったが、比較例7以外にEuが0.01未満になるように製造した蛍光体も、外部量子効率が合格値の55%に達しなかった。
<Comparative Example 7>
As shown in Table 1, the phosphor of Comparative Example 7 has a reduced Eu as compared to Example 2. In the phosphor of Comparative Example 7, the external quantum efficiency did not reach 55% of the acceptable value. Although not described in Table 1, the phosphor manufactured so that Eu was less than 0.01 other than Comparative Example 7 also had an external quantum efficiency of 55% of the acceptable value.
<比較例8>
比較例8の蛍光体は、実施例2に比べ、表1に示すように、Euを増やしたものである。比較例8の蛍光体は、150℃強度保持率が合格値の80%に達しなかった。表1には記載しなかったが、比較例8以外にEuが0.03を超えるように製造した蛍光体も、150℃強度保持率が合格値の80%に達しなかった。
<Comparative Example 8>
As shown in Table 1, the phosphor of Comparative Example 8 is obtained by increasing Eu as compared with Example 2. In the phosphor of Comparative Example 8, the 150 ° C. intensity retention did not reach 80% of the acceptable value. Although not shown in Table 1, phosphors manufactured so that Eu exceeded 0.03 other than Comparative Example 8 also did not reach 80% of the acceptable value at 150 ° C. intensity retention.
本発明に係る発光装置の実施例について、表2を参照しつつ、比較例と対比して説明する。表2は、発光装置の構成の一つである蛍光体の配合と、発光装置の評価結果である。
評価は、演色性指数Raと、光束の相対比である。
演色性指数Raは、JIS Z 8726−1990に基づいて測定したものであり、具体的には、分光光度計(大塚電子株式会社製MCPD−7000)により測定した。80以上が合格値である。
光束の相対比は、後述する比較例10の発光装置の光束を100%とした場合の値であり、85%以上が合格値である。
Examples of light emitting devices according to the present invention will be described in comparison with comparative examples with reference to Table 2. Table 2 shows the composition of the phosphor, which is one of the structures of the light emitting device, and the evaluation results of the light emitting device.
The evaluation is the color rendering index Ra and the relative ratio of the luminous flux.
The color rendering index Ra was measured based on JIS Z 8726-1990, and specifically, was measured with a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). 80 or more is an acceptable value.
The relative ratio of the luminous flux is a value when the luminous flux of the light emitting device of Comparative Example 10, which will be described later, is 100%, and 85% or more is an acceptable value.
実施例7に係る発光装置は、蛍光体と、発光素子を有する発光装置であり、蛍光体は、表2に示すように、実施例5の蛍光体17.9質量%、GR−MW540H(電気化学工業株式会社製緑色発光蛍光体)64.1質量%、RE―650W(電気化学工業株式会社製赤色発光蛍光体)17.9質量%を混在させたものである。発光素子は、発光波長460nmの青色LED素子であり、発光装置は照明装置として用いるものであり、発光色を白としたものである。 The light-emitting device according to Example 7 is a light-emitting device having a phosphor and a light-emitting element. As shown in Table 2, the phosphor is 17.9% by mass of the phosphor of Example 5, GR-MW540H (electrical This is a mixture of 64.1% by mass of green light emitting phosphor manufactured by Chemical Industry Co., Ltd. and 17.9% by mass of RE-650W (red light emitting phosphor manufactured by Denki Kagaku Kogyo Co., Ltd.). The light-emitting element is a blue LED element having an emission wavelength of 460 nm, and the light-emitting device is used as an illumination device, and the emission color is white.
表2における演色性指数Raと光束の相対比は、具体的には、次の方法で測定した。演色性指数Ra81は合格値であり、光束の相対比87%は合格値であった。 Specifically, the relative ratio between the color rendering index Ra and the luminous flux in Table 2 was measured by the following method. The color rendering index Ra81 was a pass value, and the relative ratio of luminous flux of 87% was a pass value.
<表面実装型LEDの作製>
蛍光体の配合物10g、水100g、及び、エポキシシランカップリング剤(信越シリコーン株式会社製KBE402)1.0gを容器に入れ、12時間撹拌した後、3時間放置した。放置後の材料をろ過した後、乾燥させた。乾燥後の材料をエポキシ樹脂(サンユレック株式会社製NLD−SL−2101)に混練し、発光波長460nmの青色発光LED素子の上にポッティングした。ポッティング後、青色発光LED素子ごと全体を真空脱気し、110℃でエポキシ樹脂を加熱硬化し、表面実装型LEDを作製した。色温度は5000K付近になるように調整した。
<Production of surface mount type LED>
10 g of the phosphor blend, 100 g of water, and 1.0 g of an epoxy silane coupling agent (KBE402 manufactured by Shin-Etsu Silicone Co., Ltd.) were placed in a container, stirred for 12 hours, and then allowed to stand for 3 hours. The material after standing was filtered and dried. The dried material was kneaded into an epoxy resin (NLD-SL-2101 manufactured by Sanyu Rec Co., Ltd.) and potted on a blue light emitting LED element having an emission wavelength of 460 nm. After potting, the entire blue light emitting LED element was vacuum degassed and the epoxy resin was heated and cured at 110 ° C. to produce a surface-mounted LED. The color temperature was adjusted to be around 5000K.
<表面実装型LEDでの測定>
作製した表面実装型LEDに10mAの電流を流して発生する光を測定し、演色性指数Ra、光束の相対比を測定した。
光束の相対比は、実施例6の発光装置の蛍光体の配合比のみを変更させた比較例9の蛍光体GR−MW540H(電気化学工業株式会社製緑色発光蛍光体)78.1質量%、RE―650W(電気化学工業株式会社製赤色発光蛍光体)21.9質量%)を構成した表面実装型LEDを作成の光束を100%とした場合の相対比である。
<Measurement with surface mount LED>
The light generated by applying a current of 10 mA to the manufactured surface-mounted LED was measured, and the color rendering index Ra and the relative ratio of the luminous flux were measured.
The relative ratio of the luminous flux was 78.1% by mass of phosphor GR-MW540H (green light-emitting phosphor manufactured by Denki Kagaku Kogyo Co., Ltd.) of Comparative Example 9 in which only the blending ratio of the phosphors of the light-emitting device of Example 6 was changed. It is a relative ratio when the luminous flux of producing a surface-mount type LED that constitutes RE-650W (red light-emitting phosphor manufactured by Denki Kagaku Kogyo Co., Ltd., 21.9% by mass) is 100%.
実施例8は、実施例7の蛍光体を、表2に示す配合比にしたものである。実施例8の発光装置は、演色性指数Ra、光束の相対比において合格値を示した。 In Example 8, the phosphor of Example 7 was made to have a blending ratio shown in Table 2. The light emitting device of Example 8 passed the color rendering index Ra and the relative ratio of the luminous flux.
実施例9は、実施例7の蛍光体を、表2に示す配合比にしたものである。実施例9の発光装置は、演色性指数Ra、光束の相対比において合格値を示した。実施例9に係る発光装置は、実施例2に係る蛍光体の配合比が8.6%と少ない値であったので、演色性指数Raが合格最低ラインの値であった。 In Example 9, the phosphor of Example 7 was made into the blending ratio shown in Table 2. The light emitting device of Example 9 showed a pass value in the color rendering index Ra and the relative ratio of the luminous flux. In the light emitting device according to Example 9, since the blending ratio of the phosphor according to Example 2 was a small value of 8.6%, the color rendering index Ra was a value of the lowest acceptable line.
<比較例9>
比較例9は、実施例8に比べ、実施例2の蛍光体を23.8%にしたものである。比較例9の発光装置は、光束の相対比が82%と合格値に達しなかった。比較例9に係る発光装置は、実施例2に係る蛍光体の配合比が23.8%と多い値であり、GR−MW540Hの配合比が少なくなったので、視感度が低下し、光束が合格値に達しなかった。
<Comparative Example 9>
In Comparative Example 9, compared to Example 8, the phosphor of Example 2 was made 23.8%. In the light emitting device of Comparative Example 9, the relative ratio of luminous flux was 82%, which did not reach the acceptable value. In the light-emitting device according to Comparative Example 9, the blending ratio of the phosphor according to Example 2 is a large value of 23.8%, and the blending ratio of GR-MW540H is decreased. The passing value was not reached.
<比較例10>
比較例10は、前述のように、評価における光束の相対比の基礎としたものであり、蛍光体を緑色発光蛍光体及び赤色発光蛍光体だけとし青緑色発光蛍光体を配合しなかったものである。比較例10は、演色性指数Raが75%と合格値に達しなかった。
<Comparative Example 10>
As described above, Comparative Example 10 is based on the relative ratio of the luminous flux in the evaluation, and the phosphor is only a green light-emitting phosphor and a red light-emitting phosphor, and no blue-green light-emitting phosphor is blended. is there. In Comparative Example 10, the color rendering index Ra was 75%, which did not reach the acceptable value.
<比較例11>
比較例11は、実施例7の蛍光体の一種である実施例5の蛍光体を比較例7の蛍光体に変更したものである。比較例11の発光装置は、演色性指数Raが77%と合格値に達しなかった。
<Comparative Example 11>
In Comparative Example 11, the phosphor of Example 5 which is a kind of the phosphor of Example 7 is changed to the phosphor of Comparative Example 7. In the light emitting device of Comparative Example 11, the color rendering index Ra was 77%, which did not reach the acceptable value.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014003646A JP2015131898A (en) | 2014-01-10 | 2014-01-10 | Fluorescent material and light-emitting device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014003646A JP2015131898A (en) | 2014-01-10 | 2014-01-10 | Fluorescent material and light-emitting device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2015131898A true JP2015131898A (en) | 2015-07-23 |
Family
ID=53899383
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014003646A Pending JP2015131898A (en) | 2014-01-10 | 2014-01-10 | Fluorescent material and light-emitting device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2015131898A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019116615A (en) * | 2017-12-26 | 2019-07-18 | 日亜化学工業株式会社 | Oxynitride phosphor, light emitting device and method for producing oxynitride phosphor |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004030109A1 (en) * | 2002-09-24 | 2004-04-08 | Osram Opto Semiconductors Gmbh | Luminescent material, especially for led application |
| JP2004189996A (en) * | 2002-10-16 | 2004-07-08 | Nichia Chem Ind Ltd | Oxynitride phosphor and method for producing the same |
| JP2005340748A (en) * | 2003-09-18 | 2005-12-08 | Nichia Chem Ind Ltd | Light emitting device |
| WO2009016096A1 (en) * | 2007-07-30 | 2009-02-05 | Osram Gesellschaft mit beschränkter Haftung | Temperature-stable oxynitride phosphor and light source comprising a corresponding phosphor material |
| JP2011108672A (en) * | 2008-02-18 | 2011-06-02 | Koito Mfg Co Ltd | White light emitting apparatus and lighting fitting for vehicle using the same |
-
2014
- 2014-01-10 JP JP2014003646A patent/JP2015131898A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004030109A1 (en) * | 2002-09-24 | 2004-04-08 | Osram Opto Semiconductors Gmbh | Luminescent material, especially for led application |
| JP2004189996A (en) * | 2002-10-16 | 2004-07-08 | Nichia Chem Ind Ltd | Oxynitride phosphor and method for producing the same |
| JP2005340748A (en) * | 2003-09-18 | 2005-12-08 | Nichia Chem Ind Ltd | Light emitting device |
| WO2009016096A1 (en) * | 2007-07-30 | 2009-02-05 | Osram Gesellschaft mit beschränkter Haftung | Temperature-stable oxynitride phosphor and light source comprising a corresponding phosphor material |
| JP2011108672A (en) * | 2008-02-18 | 2011-06-02 | Koito Mfg Co Ltd | White light emitting apparatus and lighting fitting for vehicle using the same |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019116615A (en) * | 2017-12-26 | 2019-07-18 | 日亜化学工業株式会社 | Oxynitride phosphor, light emitting device and method for producing oxynitride phosphor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102732032B1 (en) | Phosphors, their production methods and luminescent devices | |
| CN103827259B (en) | Phosphor materials and related devices | |
| JP6670804B2 (en) | Light emitting device and image display device | |
| JP6223988B2 (en) | Phosphor, light emitting device and lighting device | |
| JP6997611B2 (en) | Method for producing β-type sialon phosphor | |
| JP2021172670A (en) | Fluorescent material and light emitting device using it | |
| JP2014221890A (en) | Phosphor, phosphor-containing composition, light-emitting device, image display device, and lighting device | |
| WO2017155111A1 (en) | Phosphor, light-emitting element, and light-emitting device | |
| JP6242383B2 (en) | Phosphor, light emitting device and lighting device | |
| JP2015131898A (en) | Fluorescent material and light-emitting device | |
| JP4948015B2 (en) | Aluminate blue phosphor and light emitting device using the same | |
| JP2013249466A (en) | Oxynitride-based phosphor and light-emitting device using the same | |
| JP6640753B2 (en) | Phosphor composition and lighting fixture comprising the same | |
| JP2015189789A (en) | Phosphor, phosphor-containing composition, light emitting device, image display device, and illumination device | |
| JP6357107B2 (en) | Phosphor, light emitting device and lighting device | |
| JP2012001716A (en) | Phosphor, method for manufacturing the same, and light-emitting device using the phosphor | |
| JP2013227527A (en) | Phosphor and light emitting device using the same | |
| JPWO2013118200A1 (en) | White light emitting device | |
| JP5697765B2 (en) | Phosphor and light emitting device | |
| TW201408757A (en) | Phosphor, illuminating device and illuminating device | |
| KR101476217B1 (en) | Phosphor emitting yellow light and light emitting device package using the same | |
| JP5916412B2 (en) | Phosphor and light emitting device | |
| JP2021172668A (en) | Phosphor and light emitting device including the same | |
| KR20180069293A (en) | Green luminescent phosphor containing lanthanum and manganese and having narrow full width at half maximum and the light emitting device including the same | |
| KR20180069303A (en) | Red luminescent phosphor containing lithium and aluminium and having narrow full width at half maximum and the light emitting device including the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151029 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151110 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160308 |