[go: up one dir, main page]

JP2015225066A - Method for removing radioactive contaminant in radioactive contaminated water - Google Patents

Method for removing radioactive contaminant in radioactive contaminated water Download PDF

Info

Publication number
JP2015225066A
JP2015225066A JP2014112266A JP2014112266A JP2015225066A JP 2015225066 A JP2015225066 A JP 2015225066A JP 2014112266 A JP2014112266 A JP 2014112266A JP 2014112266 A JP2014112266 A JP 2014112266A JP 2015225066 A JP2015225066 A JP 2015225066A
Authority
JP
Japan
Prior art keywords
radioactive
seawater
contaminated water
filter
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014112266A
Other languages
Japanese (ja)
Other versions
JP6385141B2 (en
Inventor
豊治 穗積
Toyoharu Hozumi
豊治 穗積
好文 沢田
Yoshifumi Sawada
好文 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AEL KK
Original Assignee
AEL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AEL KK filed Critical AEL KK
Priority to JP2014112266A priority Critical patent/JP6385141B2/en
Publication of JP2015225066A publication Critical patent/JP2015225066A/en
Application granted granted Critical
Publication of JP6385141B2 publication Critical patent/JP6385141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently, inexpensively removing a radioactive contaminant, especially radioactive Sr in radioactive contaminated water.SOLUTION: The method for removing a radioactive contaminant from radioactive contaminated water comprises the steps of: adding silicate and/or borate to radioactive contaminated water including at least radioactive Sr to mix them; separating and collecting a radioactive Sr silicate and/or borate solid from the radioactive contaminated water after mixing by a centrifuge; and separating and collecting a fine radioactive Sr silicate and/or borate not separated and collected by the centrifuge, through a Max filter.

Description

本発明は、放射能汚染水中の放射性汚染物質の除去方法に関するものである。   The present invention relates to a method for removing radioactive contaminants in radioactively contaminated water.

放射能汚染水としては、核燃料棒から発生する放射性微粒子を含有する水や、核燃料から発生する熱を冷却するために使用する地下水、更には汚染冷却水が流入して発生する汚染海水等がある。これらの放射能汚染水は放射性汚染物質と共に多くの浮遊物質(SS)を含有する。後述する表1に示すように、多くの金属元素の酸化物、ケイ酸塩及びホウ酸塩は水に不溶又は難溶であり沈殿物又はSSとなる。これらの金属元素の放射性浮遊物は通常、膜濾過により除去できるが、粒子が微細で放射能を有するため膜が劣化しやすい。
放射性Srはイオン化して水に溶解しており、イオン交換樹脂や逆浸透膜(RO膜)などを用いて除去するか、炭酸塩に変換し不溶物として膜濾過するか、又は、凝集沈殿剤を多量に使用して回収する。しかし、膜濾過では多量に共存するSSの為に膜が直ぐに劣化する。膜の交換は時間的・経済的に大きな負担であり、かつ二次廃棄物も多く発生する。活性炭を用いる方法もあるが、活性炭自体も、その細孔にSS等が沈着すると吸着能力が著しく低下するため交換しなければならない。また、通水による活性炭同士の衝突で微細な活性炭が発生し、これを除去するため別の濾過装置が必要となる。
このように、従来技術では、放射性汚染物質を除去するために、活性炭、膜濾過、イオン交換樹脂等の多段階の除去設備を用いなければならないのが現状である。
また、関連技術に関する最近の公開公報(特許文献1〜5など)をみても、本発明に類似する技術は開示されていない。
更に、固体に付着した放射性元素については、サンプリング及び分析法が確立しているが、多量の水中に存在している放射性元素の分析法は未だ確立されていない。
なお、本発明で用いる濾過装置「Maxフィルター」は、株式会社モノベエンジニアリングの特許(特許文献6〜7参照)に係る装置であり、既に実用されている。
Examples of radioactively contaminated water include water containing radioactive particles generated from nuclear fuel rods, groundwater used to cool the heat generated from nuclear fuel, and contaminated seawater generated when contaminated cooling water flows in. . These radioactive polluted waters contain many suspended solids (SS) along with radioactive pollutants. As shown in Table 1 to be described later, many metal element oxides, silicates, and borates are insoluble or hardly soluble in water and become precipitates or SS. Radioactive suspended substances of these metal elements can usually be removed by membrane filtration, but the membrane is likely to deteriorate because the particles are fine and have radioactivity.
Radioactive Sr is ionized and dissolved in water, and is removed using an ion exchange resin or reverse osmosis membrane (RO membrane), converted to carbonate and filtered as an insoluble matter, or a coagulating precipitation agent Use a large amount to recover. However, in membrane filtration, the membrane quickly deteriorates due to SS coexisting in large quantities. Membrane exchange is a heavy burden in terms of time and money, and a lot of secondary waste is generated. There is a method using activated carbon, but the activated carbon itself must be replaced because the adsorption capacity is significantly reduced when SS or the like is deposited in the pores. Also, fine activated carbon is generated by collision between activated carbons caused by water flow, and another filtration device is required to remove the activated carbon.
As described above, in the prior art, in order to remove radioactive pollutants, it is necessary to use a multi-stage removal facility such as activated carbon, membrane filtration, or ion exchange resin.
Moreover, even if recent publications (such as Patent Documents 1 to 5) related to related technologies are viewed, a technology similar to the present invention is not disclosed.
Furthermore, sampling and analysis methods have been established for radioactive elements attached to solids, but analysis methods for radioactive elements present in a large amount of water have not yet been established.
The filtration device “Max filter” used in the present invention is a device according to a patent (see Patent Documents 6 to 7) of Monobe Engineering Co., Ltd. and has already been put into practical use.

特開2014−029269号公報JP 2014-029269 A 特開2014−016179号公報JP 2014-016179 A 特開2014−217686号公報JP, 2014-217686, A 特開2013−094694号公報JP 2013-094694 A 特開2013−076628号公報JP 2013-0776628 A 特許第3394490号公報Japanese Patent No. 3394490 特許第4774223号公報Japanese Patent No. 4774223

本発明は、放射能汚染水中の放射性汚染物質、特に放射性Srを効率的かつ安価に除去する方法の提供を目的とする。   An object of the present invention is to provide a method for efficiently and inexpensively removing radioactive pollutants, particularly radioactive Sr, in radioactive polluted water.

上記課題は、次の<1>〜<2>の発明によって解決される。
<1> 少なくとも次の(1)〜(3)の工程からなることを特徴とする放射性汚染物質を含有する放射能汚染水から放射性Srを除去する方法。
(1)少なくとも放射性Srを含む放射能汚染水に、ケイ酸塩及び/又はホウ酸塩を加えて混合する工程
(2)前記混合後の放射能汚染水から、遠心分離機により放射性Srのケイ酸塩及び/又はホウ酸塩の固形物を分離回収する工程
(3)遠心分離機で分離回収できなかった微細な放射性Srのケイ酸塩及び/又はホウ酸塩を、Maxフィルターにより分離回収する工程
<2> 前記(1)の工程で混合するケイ酸塩及び/又はホウ酸塩が、ホウケイ酸複合塩であることを特徴とする<1>記載の放射性汚染物質を含有する放射能汚染水から放射性Srを除去する方法。
The above problems are solved by the following <1> to <2> inventions.
<1> A method for removing radioactive Sr from radioactively contaminated water containing radioactive pollutants, comprising at least the following steps (1) to (3).
(1) Step of adding and mixing silicate and / or borate to radioactively contaminated water containing at least radioactive Sr (2) From the radioactively contaminated water after mixing, radioactive Sr silica Step of separating and collecting solid salt of acid salt and / or borate (3) Separating and collecting fine radioactive Sr silicate and / or borate that could not be separated and collected by a centrifuge with a Max filter Step <2> The radioactively contaminated water containing the radioactive pollutant according to <1>, wherein the silicate and / or borate mixed in the step (1) is a borosilicate composite salt Of removing radioactive Sr from the surface.

本発明によれば、放射能汚染水中の放射性汚染物質、特に放射性Srを効率的かつ安価に除去する方法を提供できる。また使用する薬品類は固形物の生成に用いる無機金属塩のみであり、SS等の除去のために一般的に使用されている凝集剤等を用いないので、二次廃棄物が少なくて済む。   According to the present invention, it is possible to provide a method for efficiently and inexpensively removing radioactive contaminants in radioactively contaminated water, particularly radioactive Sr. Further, the chemicals used are only inorganic metal salts used for the production of solids, and since a flocculant generally used for removal of SS and the like is not used, secondary waste can be reduced.

本発明の除去方法を実施するためのシステムの一例を示す概略図。Schematic which shows an example of the system for enforcing the removal method of this invention. ND処理した海水から回収した不溶性沈殿物の溶融減容化を示す写真。(A)久之浜の海水をNDで処理し回収した不溶性沈殿物の写真。(B)加熱により溶融ガラス化した不溶性沈殿物の写真。The photograph which shows the melt | dissolution volume reduction of the insoluble deposit collect | recovered from the seawater which carried out ND process. (A) Photograph of an insoluble precipitate obtained by treating seawater of Kunohama with ND. (B) Photograph of insoluble precipitate melted and vitrified by heating. 久之浜の海水にNDを添加している状態の写真。A picture of ND being added to the sea of Kunohama. ND添加後、白濁沈殿物が徐々に沈降する様子を示す写真。The photograph which shows a mode that a cloudy precipitate settles gradually after ND addition. ND添加後の久之浜の海水を遠心分離機に掛ける前後の写真。(A)はND添加により白濁沈殿物が生成した遠心分離機に掛ける前の状態を示し、(B)は遠心分離機に掛けた後の沈殿と上澄に分離した状態を示す。Photographs before and after the ND addition of Kunohama seawater on a centrifuge. (A) shows a state before being applied to a centrifuge in which a cloudy precipitate is generated by addition of ND, and (B) shows a state separated from the precipitate after being centrifuged and the supernatant. Maxフィルターに、濾過材の珪藻土粉末の水懸濁液を用いて珪藻土を装着した状態の写真。The photograph of the state which attached diatomaceous earth to the Max filter using the water suspension of the diatomaceous earth powder of a filter medium. 図4のND添加後の久之浜の海水を図6に示すMaxフィルターで濾過している様子を示す写真。The photograph which shows a mode that the seawater of Kunohama after ND addition of FIG. 4 is filtered with the Max filter shown in FIG. 参考例1で用いた簡易Maxフィルター装置の写真。A photograph of the simple Max filter device used in Reference Example 1. 実証試験に用いたMaxフィルターシステムの小型実用機の写真。Photo of a small practical machine of Max filter system used in the demonstration test. 参考例2の、原水、処理水、及び脱水処理した固形部の写真。A photograph of raw water, treated water, and a solid part subjected to dehydration treatment in Reference Example 2.

以下、上記本発明について詳しく説明する。
放射性Srは放射能汚染水中でイオンとして拡散しており、濃度も低いため、そのまま除去することは難しい。そこで不溶性又は難溶性固形物に変えて除去することを検討した結果、放射性Srを含有する放射能汚染水に、ケイ酸塩及び/又はホウ酸塩を加えて混合すると、放射性Srが、不溶性又は難溶性固形物であるケイ酸Sr及び/又はホウ酸Sr(下記表1参照)となり、固化分離できることを見出した。ケイ酸塩及びホウ酸塩としては、通常、アルカリ金属塩を用いる。
特にホウケイ酸複合塩(ND)は、常温で低濃度でも不溶性沈殿物を形成するので好ましい。「ND」はケイ酸塩とホウ酸塩を混合し加熱溶融して作製される複合塩を意味し、ケイ酸塩とホウ酸塩の単なる混合物とは異なる。ケイ酸塩とホウ酸塩の配合割合は種々変更可能であるが、一例として実施例で用いたNa塩の場合を示すと、SiO:NaO:B=24.3〜26.8:11.5〜13.1:0.7(質量比)となる。数値範囲に幅があるのは、原料の結晶構造にオルト、メタなどの種類があって一つに特定できないためである。
Hereinafter, the present invention will be described in detail.
The radioactive Sr is diffused as ions in the radioactively contaminated water and has a low concentration, so it is difficult to remove it as it is. Then, as a result of considering changing to an insoluble or hardly soluble solid substance and removing it, radioactive sr contained in radioactively contaminated water containing radioactive Sr and mixed with silicate and / or borate was insoluble or It turned out that it became silicic acid Sr and / or boric acid Sr (refer to the following Table 1) which are hardly soluble solids, and could be solidified and separated. As the silicate and borate, alkali metal salts are usually used.
In particular, borosilicate complex salt (ND) is preferable because it forms an insoluble precipitate even at a low concentration at room temperature. “ND” means a composite salt prepared by mixing silicate and borate and melting by heating, and is different from a mere mixture of silicate and borate. The mixing ratio of silicate and borate can be variously changed. As an example, the case of the Na salt used in the examples shows SiO 2 : Na 2 O: B 2 O 3 = 24.3 to 26. .8: 11.5 to 13.1: 0.7 (mass ratio). The reason why the numerical range is wide is that the crystal structure of the raw material has various types such as ortho and meta, and cannot be specified as one.

また、海水にNDを混合すると、同時にMgやCaのケイ酸塩も生成するが、これらはケイ酸Srやホウ酸Srと不溶性共沈殿物を形成し、ケイ酸Srやホウ酸Srを沈殿濾別により除去する際の補助剤として機能する。
しかし、海水の混入が少ない放射能汚染水の場合には、該汚染水に周期律表の2族元素のイオンを加え、ND等を加えた際に、ケイ酸Sr及び/又はホウ酸Srと、周期律表の2族元素のケイ酸塩及び/又はホウ酸塩との不溶性共沈殿物を形成させ、且つ固形物の量を増やして放射性Srを沈殿濾別し易くすることが好ましい。
なお、炭酸Srも溶解度が低く難溶性であるが(下記表1参照)、海水中で炭酸Srを生成させることは他の塩類の存在もあって容易ではないため採用できない。
In addition, when ND is mixed with seawater, silicates of Mg and Ca are formed at the same time, but these form insoluble coprecipitates with silicic acid Sr and boric acid Sr, and precipitate silicic acid Sr and boric acid Sr. It functions as an auxiliary agent when removed separately.
However, in the case of radioactively contaminated water with little contamination of seawater, when adding ions of group 2 elements of the periodic table to the contaminated water and adding ND or the like, silicic acid Sr and / or boric acid Sr It is preferable to form an insoluble coprecipitate with the silicate and / or borate of the group 2 element of the periodic table and to increase the amount of solids so that radioactive Sr can be easily separated by precipitation.
Carbonic acid Sr has low solubility and is hardly soluble (see Table 1 below), but it is not easy to produce carbonic acid Sr in seawater due to the presence of other salts.

放射性Csは放射性Srと並ぶ代表的な放射性汚染物質であるが、微粒子に付着し易く放射能汚染水中でCsイオンの状態でいることはないので、放射性Csが付着した微粒子を除去すればよい。また、実際には、他の微粒子と一緒に放射能汚染水中を浮遊しているか、又は泥に混じって海底等に沈殿しているから、適当な濾過装置を用いれば除去することができる。しかし大量の放射能汚染水を処理する場合には、フイルター交換などの費用が少なくて済むように配慮する必要がある。この点、後述するMaxフィルターを用いれば、効率的かつ安価に放射性Csを分離除去することができる。   Although radioactive Cs is a typical radioactive pollutant along with radioactive Sr, it is easy to adhere to the fine particles and is not in the state of Cs ions in the radioactively contaminated water. Therefore, the fine particles to which the radioactive Cs is attached may be removed. In fact, it floats in the radioactive polluted water together with other fine particles, or is mixed with mud and settles on the seabed or the like, and can be removed by using an appropriate filtration device. However, when processing a large amount of radioactively contaminated water, it is necessary to consider that the cost for replacing the filter can be reduced. In this regard, if a Max filter described later is used, radioactive Cs can be separated and removed efficiently and inexpensively.

<金属酸化物、金属ケイ酸塩、金属ホウ酸塩の水に対する溶解度>
<Solubility of metal oxides, metal silicates, and metal borates in water>

本発明の除去方法を実施するためのシステムの一例について、図1に示す概略図を参照しつつ説明する。
この例は、放射性Cs分離回収用のMaxフィルター1、ND水溶液タンク、ND混合用インラインミキシング、遠心分離機、放射性Sr分離回収用のMaxフィルター2を備えている。実際には、これらの装置の他に、海水を汲み上げてMaxフィルター1に送るポンプ、Maxフィルター2から浄化後の海水を排出するポンプ、浄化後の海水をサンプリングして放射性汚染物質の濃度を測定する装置など、この種のシステムにおいて当然必要な周知の各種装置を有するが、ここでは省略する。
そして、以上の装置をパイプで接続し、ほぼ全自動で運転できるように設計することにより、放射性汚染物質を連続的に分離除去することができる。
なお、図1には放射性Csと放射性Srの両方を除去する場合を示したが、放射性Csが除去対象とならない場合には、Maxフィルター1を設ける必要はない。
また、図1には海水の例を示したが、他の放射能汚染水でも同様である。
An example of a system for carrying out the removal method of the present invention will be described with reference to the schematic diagram shown in FIG.
This example includes a Max filter 1 for separating and collecting radioactive Cs, an ND aqueous solution tank, an in-line mixing for ND mixing, a centrifuge, and a Max filter 2 for separating and collecting radioactive Sr. Actually, in addition to these devices, a pump that pumps seawater and sends it to the Max filter 1, a pump that discharges the purified seawater from the Max filter 2, and samples the purified seawater to measure the concentration of radioactive pollutants Although there are various well-known devices that are naturally necessary in this type of system, such as a device to be used, they are omitted here.
And by connecting the above apparatus with a pipe and designing it so that it can be operated almost fully automatically, radioactive pollutants can be continuously separated and removed.
Although FIG. 1 shows the case where both radioactive Cs and radioactive Sr are removed, when the radioactive Cs is not a removal target, it is not necessary to provide the Max filter 1.
Moreover, although the example of seawater was shown in FIG. 1, it is the same also with other radioactively contaminated water.

操作としては、汚染海水をMaxフィルター1へ送って放射性Csを除去し、次いで、インラインでNDと混合して生成させた放射性Srの固形物を遠心分離機で固液分離し、分離できなかった微細な固形物をMaxフィルター2で除去した後、海中に戻せばよい。放射性Srの固形物は比重が2.5以上と比較的大きく、海水の比重は1.03なので、通常は遠心分離機により除去できるが、操作を短時間で行う場合などに固液分離が不十分となることもあるため、Maxフィルター2による除去操作が必要である。また、放射性Srの固形物は遠心分離機から自動排出されるように設計する。
図1ではNDを用いたが、NDに代えてケイ酸塩やホウ酸塩を用いてもよい。いずれの場合も、使用する薬品類は無機金属塩のみであり、SS等の除去のために一般的に使用されている凝集剤等を用いないので、二次廃棄物の発生が少なくて済む。
As the operation, the contaminated seawater was sent to the Max filter 1 to remove radioactive Cs, and then the radioactive Sr solid produced by mixing with ND in-line was solid-liquid separated with a centrifuge and could not be separated. After removing the fine solids with the Max filter 2, it may be returned to the sea. The solid material of radioactive Sr has a relatively large specific gravity of 2.5 or more, and the specific gravity of seawater is 1.03. Therefore, it can usually be removed by a centrifuge, but solid-liquid separation is not possible when the operation is performed in a short time. Since it may be sufficient, the removal operation by the Max filter 2 is necessary. Also, the radioactive Sr solid is designed to be automatically discharged from the centrifuge.
Although ND is used in FIG. 1, silicate or borate may be used instead of ND. In either case, the chemicals to be used are only inorganic metal salts, and since a flocculant generally used for removing SS and the like is not used, the generation of secondary waste can be reduced.

Maxフィルターは、前記特許文献6に係る濾過装置で、国土交通省に登録されており(登録No.KT−06004、OS−12005−A)、千葉県の「ちばものつくり認定製品」にもなっている(認定番号第7号)。また、工事現場などの濁水処理、工場排水の処理、地下水の浄化などに利用され、濾液を河川に放流することが行われている。
Maxフィルターはスプリングフィルターとも呼ばれ、特殊形状のコイル状スプリングと微細な珪藻土等を濾過材として固定化したフィルターであり、これを用いたシステムにより、対象となる液体を連続的に吸引濾過して、0.1μm以上のSSを濾別することができる。0.1μm以上とは細菌や微生物を濾過除去できる大きさであり、濾液の濁度は0〜3NTUである。またフィルターを逆洗浄して濾別した固形物を回収するための遠心分離機が組み込まれており、濾過・回収の連続操作が可能である。
The Max filter is a filtration device according to Patent Document 6 and is registered with the Ministry of Land, Infrastructure, Transport and Tourism (Registration No. KT-06004, OS-12005-A), and is a “Chiba Monozukuri Certified Product” in Chiba Prefecture. (Certification number 7). It is also used for muddy water treatment at construction sites, factory wastewater treatment, groundwater purification, etc., and the filtrate is discharged into rivers.
The Max filter is also called a spring filter, which is a filter in which a specially shaped coil spring and fine diatomaceous earth are fixed as a filtering material. By using this system, the target liquid is continuously sucked and filtered. SS of 0.1 μm or more can be filtered out. 0.1 μm or more is a size that can remove bacteria and microorganisms by filtration, and the turbidity of the filtrate is 0 to 3 NTU. In addition, a centrifuge for collecting the solid matter filtered by backwashing the filter is incorporated, and continuous filtration and recovery operations are possible.

Maxフィルターはステンレスや樹脂で作られており、濾過する液体の性状に応じて選択できる。Maxフィルターのサイズは適宜変更可能であり、例えば長さ17.5cm、直径1.5cmの円筒形状のスプリングフィルターに5.0gの珪藻土等を装着して用いる。珪藻土等の粒度により濾過する物質のサイズも若干変えることが出来る。
濾過できる液体の流量は、液体の性状により変わるが、海水などの液体の場合、上記の小さなフィルター1本で5.5リットル/分の流量が得られる。そして、Maxフィルターの長さ及び本数を変えて濾過能力も増大することもでき、実際に毎時1〜150トンの濾過機が多く使われている。
更に、酸性液体、海水、塩濃度の高い液体などを濾過すると、ステンレス製品でも錆や腐食劣化が生じることがあるため、スプリングフィルターの材質としてプラスチックを使用してもよい。
The Max filter is made of stainless steel or resin and can be selected according to the properties of the liquid to be filtered. The size of the Max filter can be appropriately changed. For example, a cylindrical spring filter having a length of 17.5 cm and a diameter of 1.5 cm is used by attaching 5.0 g of diatomaceous earth or the like. The size of the substance to be filtered can be slightly changed depending on the particle size of diatomaceous earth.
The flow rate of the liquid that can be filtered varies depending on the properties of the liquid, but in the case of a liquid such as seawater, a flow rate of 5.5 liters / minute can be obtained with one small filter. And the filter capacity can also be increased by changing the length and number of Max filters, and in fact, a filter of 1 to 150 tons per hour is often used.
Furthermore, if acidic liquid, seawater, liquid with a high salt concentration, etc. are filtered, rust and corrosion deterioration may occur even in stainless steel products. Therefore, plastic may be used as the material of the spring filter.

濾過を続けると目詰まりにより濾過能力が低下するが、これは流速や圧力の変化で感知できる。著しく低下したら、逆洗浄による使用済み濾過材の剥離除去と、新たな濾過材の装着を自動的に行う。新たな濾過材はスプリングフィルターの表面に薄くコーティングするだけ(表面積82cmで5.0gの濾過材を使用)なので、二次廃棄物も著しく少なくて済み、かつ安価である。
濾過及び濾過材の回収は濾過時の圧力差により自動的に行うようにする。放射能汚染水に多くの汚泥が含まれていると、早期に濾過材の目詰まりが発生する可能性があるため、放射能汚染水の取り入れ口で予備濾過を行い、濾過材の交換期間をより長くすることが好ましい。逆洗浄で剥離除去した濾過材は、連続的に遠心分離機にかけて脱水・回収する。遠心分離機やポンプなどは年一度のメンテナンスを行う。メンテナンスの主な対象はモーターと潤滑油である。
If the filtration is continued, the filtration capacity is reduced due to clogging, which can be detected by changes in flow rate and pressure. If it drops significantly, the used filter medium is peeled off by reverse cleaning and a new filter medium is automatically attached. Since the new filter medium is only thinly coated on the surface of the spring filter (uses 5.0 g of filter medium with a surface area of 82 cm 2 ), secondary waste is significantly reduced and is inexpensive.
The filtration and the collection of the filter medium are automatically performed by the pressure difference during filtration. If a large amount of sludge is contained in the radioactively contaminated water, the filter medium may be clogged at an early stage. It is preferable to make it longer. The filter medium peeled and removed by back washing is continuously centrifuged and dewatered and collected. Centrifuges and pumps are maintained once a year. The main objects of maintenance are motors and lubricants.

インラインミキシングでは、濾液の流量に対応させて添加ND水溶液の流量調整をポンプで行う。この工程では年一度、ポンプと流量センサーのメンテナンスを行う。インラインミキシングで発生した沈殿物は固液分離用の遠心分離機に掛けられるが、遠心分離機は連続運転されるので年1度のメンテナンスを行う。
遠心分離機で回収しきれない微細な沈殿物はMaxフィルターで濾過回収する。
In the in-line mixing, the flow rate of the added ND aqueous solution is adjusted by a pump corresponding to the flow rate of the filtrate. In this process, maintenance of the pump and flow sensor is performed once a year. Precipitates generated by in-line mixing are applied to a centrifuge for solid-liquid separation, but the centrifuge is operated continuously, so maintenance is performed once a year.
Fine precipitates that cannot be collected by the centrifuge are collected by filtration using a Max filter.

二次廃棄物として発生する機材等は次のように処理する。
放射能汚染水の取り入れ口に設置する予備濾過材は、燃焼可能な素材のものを使用し、交換後は燃焼して減容化する。Maxフィルターに使用する濾過材は逆洗浄により回収し脱水されたものを更に凍結乾燥し、水分の無い状態で放射線遮蔽容器に入れて保管する。発生量は使用する濾過材量と同程度である。
ケイ酸塩及びホウ酸塩として回収される量的に多い主な化合物は、海水の場合、ケイ酸Mg及びケイ酸Caであり、その量は海水中に含まれる量より増加することはない。したがって、その量は海水1L当たり凡そ7gである。これらの塩類は遠心分離機で分離し脱水して回収容器内に連続的に収容する。回収した塩類は混合物のまま溶融ガラス化することができ、放射性Srが含まれていても飛散することの無い固形物として減容化して放射線遮蔽保管容器に収容することが出来る。この減容化は、例えば900℃、30分で行える。その変化を図2に示す。(A)は久之浜の海水をNDで処理し回収した不溶性沈殿物の写真であり、(B)は加熱により溶融ガラス化した不溶性沈殿物の写真である。
Equipment generated as secondary waste is treated as follows.
The pre-filter material to be installed at the intake of radioactive polluted water is made of combustible material and is burned to reduce the volume after replacement. The filter medium used for the Max filter is recovered by dehydration and dehydrated, freeze-dried, and stored in a radiation shielding container in the absence of moisture. The amount generated is about the same as the amount of filter media used.
In the case of seawater, the main compounds recovered in quantity as silicates and borates are Mg silicate and Ca silicate, and the amount does not increase from the amount contained in seawater. Therefore, the amount is about 7 g per liter of seawater. These salts are separated by a centrifuge, dehydrated, and continuously stored in a collection container. The recovered salts can be melted and vitrified as a mixture, and can be reduced in volume as a solid that does not scatter even if radioactive Sr is contained, and can be stored in a radiation shielding storage container. This volume reduction can be performed at 900 ° C. for 30 minutes, for example. The change is shown in FIG. (A) is a photograph of an insoluble precipitate obtained by treating and recovering Kunohama's seawater with ND, and (B) is a photograph of an insoluble precipitate that has been melted and vitrified by heating.

後述する実施例1〜4に示すように、放射性SrはNDと反応して不溶性又は難溶性のケイ酸Sr及び/又はホウ酸Srとなり、遠心分離機とMaxフィルターにより容易に除去することができる。目標値は30Bq/L以下の法令濃度限界値に設定する。
後述する参考例1、2に示すように、高濃度の放射性Csを含む汚染水でも、Maxフィルターにより検出限界以下まで分離除去することができる。目標値はCs134が60Bq/L以下、Cs137が90Bq/L以下の法令濃度限界値に設定する。
As shown in Examples 1 to 4 described later, radioactive Sr reacts with ND to become insoluble or hardly soluble silicic acid Sr and / or boric acid Sr, and can be easily removed by a centrifuge and a Max filter. . The target value is set to a legal concentration limit value of 30 Bq / L or less.
As shown in Reference Examples 1 and 2 described later, even contaminated water containing a high concentration of radioactive Cs can be separated and removed by the Max filter to below the detection limit. The target values are set to legal density limit values where Cs134 is 60 Bq / L or less and Cs137 is 90 Bq / L or less.

以下、実施例及び参考例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
なお、実施例で用いたNDは、水ガラス(ケイ酸Na水溶液)と硼砂(ホウ酸Na)を混合し、60℃〜80℃で加熱溶解して得た、下記の組成比(SiとNaとBの配合割合をSiO、NaO、Bに換算したときの質量比)の液状物である。
組成比:SiO:NaO:B=約25.5:約12.3:約0.7
EXAMPLES Hereinafter, although an Example and a reference example are shown and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples.
The ND used in the examples was prepared by mixing water glass (Na silicate aqueous solution) and borax (Na borate) and dissolving by heating at 60 ° C. to 80 ° C. (Si and Na And a blend ratio of B to SiO 2 , Na 2 O, and B 2 O 3 (mass ratio) in liquid form.
Composition ratio: SiO 2 : Na 2 O: B 2 O 3 = about 25.5: about 12.3: about 0.7

実施例1
福島県いわき市久之浜の海水にNDを混合し、Maxフィルターで濾過した時の状態を図3〜図7に示す。
図3は、久之浜の海水にNDを0.016容積%添加している状態の写真であり、添加と同時に白濁沈殿物が発生する。
図4は、ND添加後、白濁沈殿物が徐々に沈降する様子を示す写真である。
図5は、ND添加後の久之浜の海水を遠心分離機(アズワン社製:アズワンC−12B)に掛ける前後の状態を示す写真である。(A)はND添加により白濁沈殿物が生成した遠心分離機に掛ける前の状態を示し、(B)は遠心分離機に掛けた後の沈殿と上澄に分離した状態を示す。
図6は、Maxフィルターに濾過材の珪藻土粉末の水懸濁液を用いて珪藻土を装着した状態の写真である。濾液は白濁しておらず、その濁度は0.1NTUであった。
図7は、図5(B)の上澄を、図6のMaxフィルターで濾過している状態の写真であり、装置上部には濾過された海水が出てくるが、白濁はなく透明である。濾液の濁度は、1.5NTUであった。濾過前の液の濁度は1730NTUであった。

上記久之浜の海水と、これにNDを添加した海水のSr濃度を、誘導結合プラズマ発光分光分析装置(日立ハイテクサイエンス社製:SPS5100)を用いて、ICP−OES法により測定した。その測定結果及びSr除去率を表2に示す。
Example 1
The state when ND is mixed with seawater of Kunohama, Iwaki City, Fukushima Prefecture and filtered through a Max filter is shown in FIGS.
FIG. 3 is a photograph of a state where 0.016% by volume of ND is added to the seawater of Kunohama, and a cloudy precipitate is generated simultaneously with the addition.
FIG. 4 is a photograph showing how the cloudy precipitate gradually settles after addition of ND.
FIG. 5 is a photograph showing a state before and after the ND-added Kunohama seawater is applied to a centrifuge (manufactured by ASONE: ASONE C-12B). (A) shows a state before being applied to a centrifuge in which a cloudy precipitate is generated by addition of ND, and (B) shows a state separated from the precipitate after being centrifuged and the supernatant.
FIG. 6 is a photograph of a state in which diatomaceous earth is mounted on a Max filter using an aqueous suspension of diatomaceous earth powder as a filter medium. The filtrate was not cloudy and the turbidity was 0.1 NTU.
FIG. 7 is a photograph of the state in which the supernatant of FIG. 5 (B) is being filtered by the Max filter of FIG. 6, and the filtered seawater comes out at the top of the apparatus, but it is transparent without white turbidity. . The turbidity of the filtrate was 1.5 NTU. The turbidity of the liquid before filtration was 1730 NTU.

The Sr concentration of the seawater of Kunohama and seawater to which ND was added was measured by ICP-OES method using an inductively coupled plasma optical emission spectrometer (manufactured by Hitachi High-Tech Science Co., Ltd .: SPS5100). The measurement results and Sr removal rate are shown in Table 2.

実施例2
NDの添加量を0.16容積%に変えた点以外は、実施例1と同様の操作を行った後、濾液のSr濃度を測定した。その測定結果及びSr除去率を表2に示す。
Example 2
The Sr concentration of the filtrate was measured after the same operation as in Example 1 except that the amount of ND added was changed to 0.16% by volume. The measurement results and Sr removal rate are shown in Table 2.

実施例3〜4
実施例1及び2における久之浜の海水を、下記組成の人工海水に変えた点以外は同様の操作を行った後、Sr濃度を測定した。その測定結果及びSr除去率を表2に示す。
<人工海水の組成>
使用した人工海水は、下記の成分を50Lの水に溶解させたものである。
・NaCl :1425 g
・MgSO7HO: 341 g
・MgCl6HO: 258 g
・CaCl2HO: 73.5 g
・KCl : 36.25 g
・SrCl6HO: 1.2 g
・NaBr : 4.2 g
・HBO : 1.37 g
・NaF : 143.5 mg
・KI : 3.95mg
Examples 3-4
Sr concentration was measured after performing the same operation except that the seawater of Kunohama in Examples 1 and 2 was changed to artificial seawater having the following composition. The measurement results and Sr removal rate are shown in Table 2.
<Composition of artificial seawater>
The artificial seawater used is obtained by dissolving the following components in 50 L of water.
・ NaCl: 1425 g
MgSO 4 7H 2 O: 341 g
MgCl 2 6H 2 O: 258 g
・ CaCl 2 2H 2 O: 73.5 g
・ KCl: 36.25 g
SrCl 2 6H 2 O: 1.2 g
・ NaBr: 4.2 g
・ H 3 BO 3 : 1.37 g
-NaF: 143.5 mg
・ KI: 3.95mg

仮に海水中に放射性Srが1000Bq/Lという高濃度で存在するとした場合、その量が1/33以下になれば法令濃度限界値(30Bq/L以下)を満たすことになる。
一方、上記表2に示すSrの除去試験では、Sr除去率が、人工海水で98%以上、久之浜の海水で98.5%以上であり、Sr濃度は、人工海水で1/50以下、久之浜の海水で1/67以下である。したがって、原水の放射性Srが1000Bq/Lであったとしても、人工海水で20Bq/L以下、久之浜の海水で15Bq/L以下に出来ることになり、法令濃度限界を満たすことが出来る。
また、ND溶液を0.16容積%用いたときにSrが0.1ppmの検出限界以下となったが、これは、人工海水や海水中に多量に存在するMgやCaから生成した不溶性沈殿物が、Srの不溶性沈殿物を分離除去する際の補助剤となったためであると推測される。
If the radioactive Sr is present in seawater at a high concentration of 1000 Bq / L, the legal concentration limit value (30 Bq / L or less) will be satisfied if the amount is 1/33 or less.
On the other hand, in the Sr removal test shown in Table 2 above, the Sr removal rate is 98% or more for artificial seawater, 98.5% or more for seawater of Kunohama, and the Sr concentration is 1/50 or less for artificial seawater. It is 1/67 or less in the seawater of Kunohama. Therefore, even if the radioactive Sr of raw water is 1000 Bq / L, it can be reduced to 20 Bq / L or less with artificial seawater and 15 Bq / L or less with seawater at Kunohama, and the legal concentration limit can be satisfied.
In addition, when 0.16% by volume of the ND solution was used, Sr was less than the detection limit of 0.1 ppm. This is an insoluble precipitate generated from artificial seawater or Mg or Ca present in a large amount in seawater. This is presumably because it became an auxiliary agent for separating and removing the insoluble precipitate of Sr.

実施例5
前記実施例1〜2では海水にNDを混合した場合を示したが、ここでは、NDに代えてケイ酸Na、水ガラス、硼砂を混合した場合の試験例を示す。
試験に用いた材料は下記のとおりである。なお、Sr水溶液の濃度は一般の海水に含まれる濃度に合わせて0.09mMとした。また、海水には実施例1と同じ久之浜の海水を使用し、人工海水には実施例3と同じものを使用した。

・Sr水溶液(Sr2+として0.09mM)
・ND水溶液(SiOとして430mM)
・水ガラス水溶液(SiOとして553mM)
・ケイ酸Na水溶液(SiOとして254mM)
・硼砂水溶液(ホウ酸として105mM)

上記Sr水溶液、人工海水、海水をそれぞれ40mL用意し、ND水溶液、水ガラス水溶液、ケイ酸Na水溶液及び硼砂水溶液を0.4mL加えて混合撹拌した後、その濁度を測定した。硼砂水溶液以外の場合は発生する沈殿物の量が多いため、脱イオン水で100倍に希釈して測定した。
結果を表3に示す。表中の数値の単位は「NTU」である。
表3のように、Sr水溶液に対し何れも沈殿物が生成したが、ND水溶液が最も沈殿物が多く好ましいことが分かった。
Example 5
Although the case where ND was mixed with seawater was shown in the said Examples 1-2, it replaces with ND here and the test example at the time of mixing silicate Na, water glass, and borax is shown.
The materials used for the test are as follows. In addition, the density | concentration of Sr aqueous solution was 0.09 mM according to the density | concentration contained in general seawater. Moreover, the seawater of the same Kunohama as Example 1 was used for seawater, and the same thing as Example 3 was used for artificial seawater.

Sr aqueous solution (0.09 mM as Sr 2+ )
・ ND aqueous solution (430 mM as SiO 2 )
・ Water glass aqueous solution (553 mM as SiO 2 )
-Na silicate aqueous solution (254 mM as SiO 2 )
・ Boston aqueous solution (105 mM as boric acid)

40 mL of each of the above Sr aqueous solution, artificial seawater, and seawater were prepared, 0.4 mL of ND aqueous solution, water glass aqueous solution, Na silicate aqueous solution and borax aqueous solution were added and mixed and stirred, and then the turbidity was measured. In the case other than the borax aqueous solution, the amount of precipitates generated was large, so the measurement was performed after diluting 100 times with deionized water.
The results are shown in Table 3. The unit of numerical values in the table is “NTU”.
As shown in Table 3, precipitates were formed for all Sr aqueous solutions, but it was found that the ND aqueous solution had the most precipitates and was preferred.

実施例6
Sr水溶液の濃度を、参考例3の10倍の0.9mM、及び100倍の9mMに変えた点以外は、実施例5と同様にして濁度を測定した。硼砂水溶液以外の場合は発生する沈殿物の量が多いため、0.9mMの場合には脱イオン水で10倍に希釈し、9mMの場合には脱イオン水で100倍に希釈して測定した。
結果を表4に示す。表中の数値の単位は「NTU」である。
Example 6
Turbidity was measured in the same manner as in Example 5 except that the concentration of the Sr aqueous solution was changed to 0.9 mM that is 10 times that of Reference Example 3 and 9 mM that was 100 times that of Reference Example 3. In the case of other than the borax aqueous solution, the amount of precipitate generated is large, so in the case of 0.9 mM, it was diluted 10 times with deionized water, and in the case of 9 mM, it was diluted 100 times with deionized water. .
The results are shown in Table 4. The unit of numerical values in the table is “NTU”.

参考例1
<Maxフィルターを用いた放射性Cs除去試験>
福島県土地改良事業団体連合会・南東北復興総合研究所の協力を得て、図8に示す簡易Maxフィルター装置を用いた、農業用貯水池の放射性汚染源の除去試験を実施した。
貯水池の水からは、Cs134:3.5〜5.7Bq/L、Cs137:4.4〜7.9Bq/L、湖底の泥(乾泥)からは、Cs134:70000Bq/kg、Cs137:100000Bq/kgの放射能が検出された。
上記水と泥の混合物からなる試料をMaxフィルターに掛けた後、濾液の放射能を測定した。その結果、濾液からは放射性Csは検出されず、放射性Csを迅速に分離除去できることが明らかとなった。
Reference example 1
<Radioactive Cs removal test using Max filter>
With the cooperation of the Fukushima Prefecture Land Improvement Business Association and the Minami Tohoku Reconstruction Research Institute, we conducted a removal test of radioactive pollutants in agricultural reservoirs using the simple Max filter device shown in FIG.
From the water in the reservoir, Cs134: 3.5 to 5.7 Bq / L, Cs137: 4.4 to 7.9 Bq / L, and from the mud at the bottom of the lake (dry mud) kg of radioactivity was detected.
The sample made of the mixture of water and mud was applied to a Max filter, and then the radioactivity of the filtrate was measured. As a result, it was revealed that radioactive Cs was not detected from the filtrate, and radioactive Cs could be separated and removed quickly.

参考例2
参考例1の結果を踏まえて、図9に示すMaxフィルターシステムの小型実用機を作製し、福島県双葉郡浪江町の請戸川河口付近で、河川水及び河床汚泥の濾過実証試験を行なった。この実証試験の概要は次のとおりである。
・請戸川の鮭漁用川岸で水中ポンプを用いて汚泥と河川水を採取した。
・採取した原水を撹拌して汚泥を浮遊させ、Maxフィルターへ供給した。
・Maxフィルターは、予め濾過材の珪藻土をフィルターに装着しておき、80L/分の流速で濾過した。濾過器はフィルター部分の圧力や処理原水の流量等をセンサーで感知し、一定値を示せばフィルター部分の逆洗浄や新たな濾過材の設置を行うなど、自動運転されるようにプログラムした。
・濾過された河川水は処理水タンクに貯蔵した。
・逆洗浄された汚泥、SS及び濾過材は、遠心分離機で固液分離し脱水処理した。
・固液分離後の液体部は原水タンクに戻し再濾過した。
・脱水処理した固体部は、遠心分離機の下部に設置した容器に排出した。

上記原水、処理水、脱水処理した固形部の写真を図10に示す。図10の上の左が原水、上の右が処理水、下が脱水処理した固形部である。
また、これらの放射能の測定結果を表5に示す。
Maxフィルターの濾過能力は、スプリングフィルターの本数を増やして濾過水流量を増大させることにより容易に拡大できる。
したがって、処理水の性状を十分に考慮し、液体の粘性がそれ程高くなく、かつ多量の汚泥を含まないような汚染水の処理であれば、毎時500トン程度の処理量の実用機を作製することが可能であり、短期間で多量の汚染水を処理できると考えられる。
Reference example 2
Based on the results of Reference Example 1, a small practical machine of the Max filter system shown in FIG. 9 was produced, and a river water and riverbed sludge filtration demonstration test was conducted in the vicinity of the Estado River estuary in Namie Town, Futaba County, Fukushima Prefecture. The outline of this demonstration test is as follows.
・ Sludge and river water were collected by using a submersible pump at the bank of Kashido River.
-The collected raw water was stirred to make sludge float and supplied to the Max filter.
-For the Max filter, diatomaceous earth as a filtering material was previously attached to the filter, and filtered at a flow rate of 80 L / min. The filter was programmed to operate automatically, such as by sensing the pressure of the filter part and the flow rate of the treated raw water with a sensor, and if it showed a certain value, the filter part was backwashed or a new filter medium was installed.
・ The filtered river water was stored in the treated water tank.
-Backwashed sludge, SS and filter media were solid-liquid separated with a centrifuge and dehydrated.
-The liquid part after solid-liquid separation was returned to the raw water tank and filtered again.
-The dehydrated solid part was discharged into a container installed at the bottom of the centrifuge.

A photograph of the raw water, treated water, and dehydrated solid part is shown in FIG. In FIG. 10, the upper left is the raw water, the upper right is the treated water, and the lower is the dehydrated solid part.
In addition, Table 5 shows the measurement results of these radioactivity.
The filtration capacity of the Max filter can be easily expanded by increasing the number of spring filters and increasing the filtrate water flow rate.
Therefore, considering the properties of the treated water, a practical machine with a throughput of about 500 tons per hour is produced if the viscosity of the liquid is not so high and the treatment of contaminated water does not contain a large amount of sludge. It is possible that a large amount of contaminated water can be treated in a short period of time.

Claims (2)

少なくとも次の(1)〜(3)の工程からなることを特徴とする放射性汚染物質を含有する放射能汚染水から放射性Srを除去する方法。
(1)少なくとも放射性Srを含む放射能汚染水に、ケイ酸塩及び/又はホウ酸塩を加えて混合する工程
(2)前記混合後の放射能汚染水から、遠心分離機により放射性Srのケイ酸塩及び/又はホウ酸塩の固形物を分離回収する工程
(3)遠心分離機で分離回収できなかった微細な放射性Srのケイ酸塩及び/又はホウ酸塩を、Maxフィルターにより分離回収する工程
A method for removing radioactive Sr from radioactively contaminated water containing radioactive pollutants, characterized by comprising at least the following steps (1) to (3).
(1) Step of adding and mixing silicate and / or borate to radioactively contaminated water containing at least radioactive Sr (2) From the radioactively contaminated water after mixing, radioactive Sr silica Step of separating and collecting solid salt of acid salt and / or borate (3) Separating and collecting fine radioactive Sr silicate and / or borate that could not be separated and collected by a centrifuge with a Max filter Process
前記(1)の工程で混合するケイ酸塩及び/又はホウ酸塩が、ホウケイ酸複合塩であることを特徴とする請求項1記載の放射性汚染物質を含有する放射能汚染水から放射性Srを除去する方法。   The silicate and / or borate mixed in the step (1) is a borosilicate complex salt, wherein radioactive Sr is contained in radioactive contaminated water containing radioactive contaminants according to claim 1. How to remove.
JP2014112266A 2014-05-30 2014-05-30 Method for removing radioactive pollutants from radioactively contaminated water Active JP6385141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112266A JP6385141B2 (en) 2014-05-30 2014-05-30 Method for removing radioactive pollutants from radioactively contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112266A JP6385141B2 (en) 2014-05-30 2014-05-30 Method for removing radioactive pollutants from radioactively contaminated water

Publications (2)

Publication Number Publication Date
JP2015225066A true JP2015225066A (en) 2015-12-14
JP6385141B2 JP6385141B2 (en) 2018-09-05

Family

ID=54841895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112266A Active JP6385141B2 (en) 2014-05-30 2014-05-30 Method for removing radioactive pollutants from radioactively contaminated water

Country Status (1)

Country Link
JP (1) JP6385141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637811C1 (en) * 2017-01-24 2017-12-07 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method of processing liquid radioactive wastes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104300A (en) * 1984-10-25 1986-05-22 モ−ビル オイル コ−ポレ−ション Borosilicate zeolite for nuclear waste treatment
JP2012247405A (en) * 2011-05-02 2012-12-13 Astec Tokyo:Kk Manufacturing method of radioactive substance treatment agent, radioactive substance treatment agent, processing method and processing apparatus using radioactive substance treatment agent
WO2013031689A1 (en) * 2011-09-02 2013-03-07 東レ株式会社 Method and apparatus for purifying water containing radioactive substance and/or heavy metal
JP2014071025A (en) * 2012-09-28 2014-04-21 Toshiba Corp Solid-liquid separation method and solid-liquid separation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104300A (en) * 1984-10-25 1986-05-22 モ−ビル オイル コ−ポレ−ション Borosilicate zeolite for nuclear waste treatment
JP2012247405A (en) * 2011-05-02 2012-12-13 Astec Tokyo:Kk Manufacturing method of radioactive substance treatment agent, radioactive substance treatment agent, processing method and processing apparatus using radioactive substance treatment agent
WO2013031689A1 (en) * 2011-09-02 2013-03-07 東レ株式会社 Method and apparatus for purifying water containing radioactive substance and/or heavy metal
JP2014071025A (en) * 2012-09-28 2014-04-21 Toshiba Corp Solid-liquid separation method and solid-liquid separation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637811C1 (en) * 2017-01-24 2017-12-07 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method of processing liquid radioactive wastes

Also Published As

Publication number Publication date
JP6385141B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
US8889010B2 (en) Norm removal from frac water
CN102417253B (en) In-depth treatment zero-discharge recovery equipment for heavy metal waste water
CN105417831A (en) Sewage treatment system
CN105645625A (en) High-efficiency high-recovery-rate reverse osmosis dense water recycling treatment method and system
UA136062U (en) Method for processing liquid radioactive waste and for the recovery thereof
Bahuguna et al. Physical method of Wastewater treatment-A review
WO2013031689A1 (en) Method and apparatus for purifying water containing radioactive substance and/or heavy metal
Rahman et al. Application of membrane technology in the treatment of waste liquid containing radioactive materials
CN104867527B (en) A kind of method for Spent Radioactive water pretreatment
CN200995983Y (en) Efficient automatic water purifier
CN106448788A (en) Deep purifying system of water quality polluted by radioactive substances
Gayen et al. Synthesis of graphene oxide and its application for purification of river water
JP6385141B2 (en) Method for removing radioactive pollutants from radioactively contaminated water
JP6230243B2 (en) Method and apparatus for removing inorganic fine particles from contaminants containing inorganic fine particles
Kus et al. Performance of granular medium filtration and membrane filtration in treating stormwater for harvesting and reuse
JP2009189992A (en) Method for recovering and removing brominated flame retardant
AU2012306584B2 (en) Method for separating radioactive nuclides by means of ceramic filter membranes
CN104773889B (en) Method for treating waste drilling fluid of oil and gas field
KR101856995B1 (en) Method for recovering prussian blue and method for removing cesium from aqueous solution
CN106587442A (en) Multipurpose water treatment equipment
CN205999228U (en) Garbage percolation liquid treating system
US20180319689A1 (en) Purification of aqueous solutions from metal contamination with activated manganese dioxide
CN206437971U (en) A kind of environment-friendly high-efficiency pickling waste waters processing system
CN106467336A (en) Water purification installation and method for purifying water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180807

R150 Certificate of patent or registration of utility model

Ref document number: 6385141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250