[go: up one dir, main page]

JP2016058129A - Lithium ion battery and lithium ion battery separator - Google Patents

Lithium ion battery and lithium ion battery separator Download PDF

Info

Publication number
JP2016058129A
JP2016058129A JP2013017127A JP2013017127A JP2016058129A JP 2016058129 A JP2016058129 A JP 2016058129A JP 2013017127 A JP2013017127 A JP 2013017127A JP 2013017127 A JP2013017127 A JP 2013017127A JP 2016058129 A JP2016058129 A JP 2016058129A
Authority
JP
Japan
Prior art keywords
separator
lithium ion
lithium
ion battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013017127A
Other languages
Japanese (ja)
Inventor
樹 平岡
Tatsuki Hiraoka
樹 平岡
径 小林
Kei Kobayashi
径 小林
岡崎 禎之
Sadayuki Okazaki
禎之 岡崎
匡洋 白神
Masahiro Shiraga
匡洋 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013017127A priority Critical patent/JP2016058129A/en
Priority to PCT/JP2014/000393 priority patent/WO2014119274A1/en
Publication of JP2016058129A publication Critical patent/JP2016058129A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery suppressed in the formation of a hole in a separator after charge/discharge cycles and furthermore excellent in initial charge/discharge efficiency, rate characteristics and cycle characteristics, and a lithium ion battery separator used in a lithium ion battery.SOLUTION: In a separator 18 used in a lithium ion battery 10 of one embodiment of the present invention, a uniform lithium metal film is provided on one surface of a separator base material mainly composed of polyolefin. A porous heat resistant layer may be formed on the other surface of the separator base material, and the lithium metal film is arranged on a side facing a negative electrode.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオン電池及びこれに使用するためのリチウムイオン電池用セパレータに関する。   The present invention relates to a lithium ion battery and a lithium ion battery separator for use therein.

リチウムイオン電池の高エネルギー密度化、高出力化に向け、負極活物質として、黒鉛等の炭素質材料に替えてケイ素、ゲルマニウム、錫及び亜鉛などのリチウムと合金化する金属材料や、これらの金属の酸化物などを用いることが検討されている。   Metal materials that can be alloyed with lithium such as silicon, germanium, tin and zinc instead of carbonaceous materials such as graphite as negative electrode active materials, and these metals for higher energy density and higher output of lithium ion batteries The use of these oxides is being studied.

リチウムと合金化する金属材料やこれらの金属の酸化物からなる負極活物質は、例えばケイ素であればLi4.4Siの組成までリチウムを挿入できるため、LiCの組成までしかリチウムを挿入できない黒鉛系の炭素質材料よりも大きな理論容量を有する。なお、何れの負極活物質を用いた場合であっても、初回の充電時には正極活物質からのリチウムが負極活物質中に取り込まれるが、このリチウムの全てが放電時に取り出すことができるわけではなく、不特定量が負極活物質中に固定されてしまい、不可逆容量となる。リチウムと合金化する金属材料やこれらの金属の酸化物からなる負極活物質の不可逆容量は、炭素質材料の不可逆容量よりも大きいので、電池容量が所望値に達しないという課題がある。 For example, if the negative electrode active material made of a metal material alloyed with lithium or an oxide of these metals is silicon, lithium can be inserted up to the composition of Li 4.4 Si, so lithium can be inserted only up to the composition of LiC 6. Has a larger theoretical capacity than graphite-based carbonaceous materials. Even if any negative electrode active material is used, lithium from the positive electrode active material is taken into the negative electrode active material at the time of the first charge, but not all of this lithium can be taken out at the time of discharge. The unspecified amount is fixed in the negative electrode active material, resulting in an irreversible capacity. Since the irreversible capacity of the metal material alloyed with lithium and the negative electrode active material made of an oxide of these metals is larger than the irreversible capacity of the carbonaceous material, there is a problem that the battery capacity does not reach a desired value.

下記特許文献1には、ポリオレフィンを主材とするセパレータに平均粒子サイズ20μmの表面に安定化処理を行ったリチウム粉末を付着させたリチウムイオン電池用セパレータが開示されている。上記特許文献1に開示されているリチウムイオン電池用セパレータを用いれば、安定化処理されたリチウム粉末によって負極の不可逆容量にリチウムを補填することができるために電池容量が向上する。加えて、リチウムが負極合剤層中に混入されていないため、リチウムの失活が進行せず、電池群作製工程以前にリチウムが反応しない環境を設ける必要がなくなる。   Patent Document 1 below discloses a lithium ion battery separator in which a lithium powder having a surface treatment with an average particle size of 20 μm is attached to a separator mainly composed of polyolefin. When the lithium ion battery separator disclosed in Patent Document 1 is used, the lithium capacity can be supplemented to the irreversible capacity of the negative electrode by the stabilized lithium powder, so that the battery capacity is improved. In addition, since lithium is not mixed in the negative electrode mixture layer, the deactivation of lithium does not proceed, and it is not necessary to provide an environment in which lithium does not react before the battery group manufacturing process.

特開2008−84842号公報JP 2008-84842 A

上記特許文献1に開示されているリチウムイオン電池用セパレータにおいては、表面に安定化処理を行ったリチウム粉末を用いているため、リチウム粉末の粒子サイズは、ばらつきがあり、均一ではない。そのため、上記特許文献1に開示されているリチウムイオン電池用セパレータを用いてリチウムイオン電池を作製すると、充放電後にセパレータに、セパレータ自体が当初から有している微細な孔の径よりも大きな穴が開いてしまうことがある。このような穴は、正極と負極との間の内部短絡の原因となるため、可能な限り抑制することが望まれている。   The lithium ion battery separator disclosed in Patent Document 1 uses a lithium powder that has been subjected to stabilization treatment on the surface, and thus the particle size of the lithium powder varies and is not uniform. Therefore, when a lithium ion battery is manufactured using the lithium ion battery separator disclosed in Patent Document 1, a hole larger than the diameter of a fine hole that the separator itself originally has in the separator after charge and discharge. May open. Since such a hole causes an internal short circuit between the positive electrode and the negative electrode, it is desired to suppress as much as possible.

上記特許文献1に開示されているリチウムイオン電池用セパレータを用いて作製されたリチウムイオン電池は、安定化処理によってリチウム粉末の表面に形成された成分が初回の充電後にセパレータの表面に残留してしまうため、抵抗成分となって電池特性の悪化の原因となってしまう。   In the lithium ion battery manufactured using the lithium ion battery separator disclosed in Patent Document 1, the components formed on the surface of the lithium powder by the stabilization treatment remain on the surface of the separator after the first charge. Therefore, it becomes a resistance component and causes deterioration of battery characteristics.

本発明の一局面のリチウムイオン電池は、リチウムを可逆的に吸蔵・放出可能な正極活物質層を含む正極板と、リチウムを可逆的に吸蔵・放出可能な負極活物質層を含む負極板と、前記正極板及び前記負極板を隔離するセパレータと、非水溶媒及び電解質塩を含む非水電解液と、を備え、前記セパレータは、ポリオレフィンを主材としたセパレータ基材と、前記セパレータ基材の一方の面上であって、前記正極活物質層と前記負極活物質層の未対向部分に形成された均質なリチウム金属膜と、を備え、前記リチウム金属膜は、前記セパレータ基材の前記負極板側に設けられている。   A lithium ion battery according to one aspect of the present invention includes a positive electrode plate including a positive electrode active material layer capable of reversibly occluding and releasing lithium, and a negative electrode plate including a negative electrode active material layer capable of reversibly occluding and releasing lithium. A separator that separates the positive electrode plate and the negative electrode plate, and a non-aqueous electrolyte solution containing a non-aqueous solvent and an electrolyte salt, wherein the separator is a separator base material mainly composed of polyolefin, and the separator base material And a homogeneous lithium metal film formed on an unopposed portion of the positive electrode active material layer and the negative electrode active material layer, wherein the lithium metal film is formed on the separator base material. It is provided on the negative electrode plate side.

本発明の一局面のリチウムイオン電池で使用されているセパレータはセパレータ基材の一方の面上にリチウム金属膜が設けられており、このリチウム金属膜は、均質であり、余分な成分を有していない。本発明の一局面のリチウムイオン電池によれば、初回の充電時にリチウム金属膜からのリチウムが負極活物質中に取り込まれるが、セパレータ基材に穴が開くことや、内部抵抗が増加することが抑制され、初期充放電効率が高く、かつサイクル特性に優れたリチウムイオン電池を得ることができる。   The separator used in the lithium ion battery of one aspect of the present invention is provided with a lithium metal film on one surface of the separator base material, and this lithium metal film is homogeneous and has an extra component. Not. According to the lithium ion battery of one aspect of the present invention, lithium from the lithium metal film is taken into the negative electrode active material during the first charge, but a hole may be formed in the separator base material or internal resistance may increase. A lithium ion battery that is suppressed, has high initial charge / discharge efficiency, and excellent cycle characteristics can be obtained.

偏平形の電極体の斜視図である。It is a perspective view of a flat electrode body. 図2Aは本発明の一局面の偏平形リチウムイオン電池の正面模式図であり、図2Bは図2AのIIB−IIB線に沿った断面図である。2A is a schematic front view of a flat lithium ion battery according to one aspect of the present invention, and FIG. 2B is a cross-sectional view taken along line IIB-IIB in FIG. 2A. 図3A〜図3Dはそれぞれ実験例1〜4のセパレータの模式断面図である。3A to 3D are schematic cross-sectional views of the separators of Experimental Examples 1 to 4, respectively. 実験例4のセパレータ表面の走査型電子顕微鏡(SEM)写真である。6 is a scanning electron microscope (SEM) photograph of the separator surface of Experimental Example 4. 図5Aは図4のVA部分の拡大SEM写真であり、図5Bは図4のVB部分の拡大SEM写真である。5A is an enlarged SEM photograph of the VA portion of FIG. 4, and FIG. 5B is an enlarged SEM photograph of the VB portion of FIG.

以下、本発明の一局面のリチウムイオン電池及びこれに使用するためのリチウムイオン電池用セパレータを、各種実験例を用いて詳細に説明する。ただし、以下に示す実験例は、本発明の技術思想を具体化するためのリチウムイオン電池及びこれに使用するためのリチウムイオン電池用セパレータの一例を説明するために例示したものであり、本発明をこれらの実験例のいずれかに限定することを意図するものではない。本発明は、これらの実験例に示したものに対して、特許請求の範囲に示した技術思想を逸脱することなく、種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, a lithium ion battery according to one aspect of the present invention and a lithium ion battery separator for use in the lithium ion battery will be described in detail using various experimental examples. However, the following experimental examples are illustrated for explaining an example of a lithium ion battery for embodying the technical idea of the present invention and a separator for a lithium ion battery for use in the present invention. Is not intended to be limited to any of these experimental examples. The present invention can be equally applied to those in which various modifications are made to those shown in these experimental examples without departing from the technical idea shown in the claims.

[実験例1]
実験例1のリチウムイオン電池は、次のようにして作製した。
[Experimental Example 1]
The lithium ion battery of Experimental Example 1 was produced as follows.

(正極の作製)
リチウムコバルト複合酸化物(LiCoO)100質量部と、アセチレンブラック1.5質量部と、ポリフッ化ビニリデン1.5質量部と、適量のN−メチルピロリドン(NMP)ととともにミキサーで混合し、正極合剤スラリーを調製した。この正極合剤スラリーを厚さ15μmのAl箔からなる正極集電体シートの両面に塗布し、乾燥させ、圧延後に所定のラミネート材製の電池ケースに対応する大きさに裁断し、実験例1のリチウムイオン電池で使用する正極を得た。この正極の充電容量は3.6mAh/cmであった。
(Preparation of positive electrode)
Lithium cobalt composite oxide (LiCoO 2 ) 100 parts by mass, acetylene black 1.5 parts by mass, polyvinylidene fluoride 1.5 parts by mass, and an appropriate amount of N-methylpyrrolidone (NMP) are mixed in a mixer, and the positive electrode A mixture slurry was prepared. This positive electrode mixture slurry was applied to both sides of a positive electrode current collector sheet made of an Al foil having a thickness of 15 μm, dried, and after rolling, cut into a size corresponding to a battery case made of a predetermined laminate material. The positive electrode used with a lithium ion battery was obtained. The charge capacity of this positive electrode was 3.6 mAh / cm 2 .

(負極の作製)
平均粒径(D50)6μmのSiO粒子10質量部と、平均粒径(D50)25μmの黒鉛粒子90質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)1質量部と、結着剤としてのスチレンブタジエンラバー(SBR)1質量部とを、適量の水とともにミキサーで混合し、負極合剤スラリーを調製した。この負極合剤スラリーを厚さ10μmの銅箔からなる負極集電体シートの両面に塗布し、乾燥させ、圧延後に所定のラミネート材製の電池ケースに対応する大きさに裁断し、実験例1のリチウムイオン電池で使用する負極を得た。この負極の充電容量は5.0mAh/cmであった。
(Preparation of negative electrode)
And an average particle diameter (D 50) SiO particles 10 parts by mass of 6 [mu] m, and an average particle diameter (D 50) graphite particles 90 parts by weight of 25 [mu] m, and carboxymethyl cellulose (CMC) 1 part by weight of a thickening agent, a binder 1 part by mass of styrene butadiene rubber (SBR) was mixed with an appropriate amount of water with a mixer to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector sheet made of a copper foil having a thickness of 10 μm, dried, cut into a size corresponding to a battery case made of a predetermined laminate material after rolling, and Experimental Example 1 The negative electrode used with a lithium ion battery was obtained. The charge capacity of this negative electrode was 5.0 mAh / cm 2 .

(セパレータへの耐熱層形成)
厚さ20μmのポリエチレン製の微多孔膜を基材として用い、以下のようにして、この微多孔膜基材の一方の面に無機粒子よりなるセラミック層を形成し、他方の面に均質なリチウム金属膜を形成した。無機粒子としては、住友化学社製の平均粒径(D50)0.7μmのアルミナ粉末を用いた。このアルミナ粉末を100質重部に対して、結着剤としてのポリフッ化ビニリデン(PVdF)3質量部と、適量のNMPとを混合し、多孔質耐熱層の前駆体であるスラリーを調製した。このスラリーをドクターブレードを用いて微多孔膜基材の片面に塗布し、60℃に維持された乾燥機内で乾燥させ、微多孔膜基材上に厚さ4μmの多孔質耐熱層を形成した。
(Heat-resistant layer formation on the separator)
Using a microporous membrane made of polyethylene having a thickness of 20 μm as a base material, a ceramic layer made of inorganic particles is formed on one surface of the microporous membrane base material as follows, and homogeneous lithium is formed on the other surface. A metal film was formed. As the inorganic particles, alumina powder having an average particle diameter (D 50 ) of 0.7 μm manufactured by Sumitomo Chemical Co., Ltd. was used. 100 parts by weight of this alumina powder was mixed with 3 parts by weight of polyvinylidene fluoride (PVdF) as a binder and an appropriate amount of NMP to prepare a slurry which is a precursor of the porous heat-resistant layer. This slurry was applied to one side of a microporous membrane substrate using a doctor blade and dried in a drier maintained at 60 ° C. to form a porous heat-resistant layer having a thickness of 4 μm on the microporous membrane substrate.

(セパレータへのリチウム金属膜形成)
次いで、微多孔膜基材の多孔質耐熱層を形成した面とは逆側の面に、厚さが4.0μmとなるように真空蒸着法(抵抗加熱にてリチウム源を蒸発)にて均質なリチウム金属膜を設け、実験例1のリチウムイオン電池で使用するセパレータを得た。
(Lithium metal film formation on the separator)
Next, the surface of the microporous membrane substrate opposite to the surface on which the porous heat-resistant layer is formed is homogenized by vacuum evaporation (lithium source is evaporated by resistance heating) so that the thickness becomes 4.0 μm. A separator used for the lithium ion battery of Experimental Example 1 was obtained.

(リチウムイオン電池の作製)
実験例1のリチウムイオン電池10の具体的製造工程を図1及び図2を用いて説明する。上記のようにして作製された正極16の正極集電体の端部に正極タブ11を溶接し、同じく負極17の負極集電体の端部に負極タブ12を溶接した。次いで、正極16及び負極17を、2枚の上述のようにして作製されたセパレータ18を介して、正極16及び及び負極17が互いに絶縁された状態となるように、かつ、正極タブ11及び負極タブ12共に最外周側となるようにして、渦巻き状に巻回した。この際、リチウム金属膜が負極と対向するようにした。その後、巻回終端部に絶縁性の巻き止めテープを取り付け、プレスすることによって、図1に示したように、偏平状の巻回電極群13を得た。
(Production of lithium ion battery)
A specific manufacturing process of the lithium ion battery 10 of Experimental Example 1 will be described with reference to FIGS. The positive electrode tab 11 was welded to the end of the positive electrode current collector of the positive electrode 16 produced as described above, and the negative electrode tab 12 was also welded to the end of the negative electrode current collector of the negative electrode 17. Next, the positive electrode 16 and the negative electrode 17 are placed in a state where the positive electrode 16 and the negative electrode 17 are insulated from each other through the two separators 18 manufactured as described above, and the positive electrode tab 11 and the negative electrode 17 Both the tabs 12 were wound in a spiral shape so as to be on the outermost peripheral side. At this time, the lithium metal film was made to face the negative electrode. Thereafter, an insulating anti-winding tape was attached to the winding end portion and pressed to obtain a flat wound electrode group 13 as shown in FIG.

外装体14としては、図2A及び図2Bに示したように、アルミニウムラミネートフィルム材を上記のようにして作製された偏平状の巻回電極群13を収容し得るように、予め容器に成形したものを用いた。そして、偏平状の巻回電極群13及び上記のようにして調製された非水電解液を、25℃、1気圧の二酸化炭素雰囲気下で、外装体14内に挿入し、アルミニウムラミネート材の端部同士をヒートシールすることによって閉口部35を形成し、図2A及び図2Bに示される構造を有する実験例1に係る偏平形のリチウム二次電池10を作製した。   As the outer package 14, as shown in FIGS. 2A and 2B, an aluminum laminate film material was previously molded into a container so as to accommodate the flat wound electrode group 13 produced as described above. A thing was used. Then, the flat wound electrode group 13 and the non-aqueous electrolyte prepared as described above are inserted into the outer package 14 in a carbon dioxide atmosphere at 25 ° C. and 1 atm, and the end of the aluminum laminate material is inserted. The closed part 35 was formed by heat-sealing the parts, and the flat lithium secondary battery 10 according to Experimental Example 1 having the structure shown in FIGS. 2A and 2B was produced.

[実験例2]
実験例2のリチウムイオン電池としては、セパレータとして微多孔膜基材の一方の面に多孔質耐熱層のみが形成されているが、リチウム金属膜が形成されていないものを用いた以外は、実験例1の場合と同様の構成のものを作製した。
[Experiment 2]
The lithium ion battery of Experimental Example 2 is an experiment except that only a porous heat-resistant layer is formed on one surface of the microporous membrane substrate as a separator, but a lithium metal membrane is not formed. A device having the same configuration as in Example 1 was produced.

[実験例3]
実験例3のリチウムイオン電池としては、セパレータとして微多孔膜基材の一方の面に多孔質耐熱層が形成されており、この多孔質耐熱層上にリチウム金属膜を形成したものを用いた以外は、実験例1の場合と同様の構成のものを作製した。
[Experiment 3]
As the lithium ion battery of Experimental Example 3, a porous heat-resistant layer is formed on one surface of a microporous membrane substrate as a separator, and a lithium metal film formed on the porous heat-resistant layer is used. Were manufactured in the same configuration as in Experimental Example 1.

[実験例4]
実験例4のリチウムイオン電池としては、セパレータとして、微多孔膜基材の一方の面に多孔質耐熱層が形成されており、他方側の面にFMC社製の平均粒径20μmの安定化処理したリチウム金属粒子からなる膜を形成した以外は、実験例1の場合と同様の構成のものを作製した。なお、実験例4のリチウムイオン電池で用いたセパレータは、上記特許文献1に開示されているセパレータに相当する。
[Experimental Example 4]
In the lithium ion battery of Experimental Example 4, as a separator, a porous heat-resistant layer is formed on one surface of a microporous membrane substrate, and the other surface is stabilized with an average particle size of 20 μm manufactured by FMC. The thing of the structure similar to the case of the experiment example 1 was produced except having formed the film | membrane consisting of the lithium metal particle which did. The separator used in the lithium ion battery of Experimental Example 4 corresponds to the separator disclosed in Patent Document 1 above.

「電池特性の測定]
上述のようにして作製された実験例1〜4のそれぞれのリチウムイオン電池について、以下のようにして初期充放電効率、レート特性及び容量維持率を測定した。なお、以下の全ての測定は、25℃の環境下で行った。
“Measurement of battery characteristics”
About each lithium ion battery of Experimental Examples 1-4 produced as mentioned above, the initial stage charge / discharge efficiency, the rate characteristic, and the capacity maintenance rate were measured as follows. In addition, all the following measurements were performed in a 25 degreeC environment.

(初期充放電効率の測定)
実験例1〜4のそれぞれの組み立て直後のリチウムイオン電池について、0.5Itの定電流で電池電圧が4.3Vとなるまで充電し、電池電圧が4.3Vに達した後は、4.3Vの定電圧で充電電流が0.05Itとなるまで充電を行った。このときに流れた電気量を初回充電容量として求めた。次いで、0.2Itの定電流で電池電圧が3.0Vとなるまで放電させ、このときに流れた電気量を初回放電容量として求めた。そして、以下の計算式に基づいて初期充放電効率を求めた。結果を纏めて表1に示した。
初期充放電効率(%)=(初回放電容量/初回充電容量)×100
(Measurement of initial charge / discharge efficiency)
The lithium ion batteries immediately after assembling in Experimental Examples 1 to 4 were charged with a constant current of 0.5 It until the battery voltage reached 4.3 V, and after the battery voltage reached 4.3 V, 4.3 V The battery was charged until the charge current became 0.05 It at a constant voltage of. The amount of electricity that flowed at this time was determined as the initial charge capacity. Next, the battery was discharged at a constant current of 0.2 It until the battery voltage reached 3.0 V, and the amount of electricity that flowed at this time was determined as the initial discharge capacity. And the initial stage charge / discharge efficiency was calculated | required based on the following formulas. The results are summarized in Table 1.
Initial charge / discharge efficiency (%) = (initial discharge capacity / initial charge capacity) × 100

(レート特性)
上記の初期充放電効率を測定した各リチウムイオン電池について、再度0.5Itの定電流で電池電圧が4.3Vとなるまで充電し、電池電圧が4.3Vに達した後は、4.3Vの定電圧で充電電流が0.05Itとなるまで充電を行った。その後、1.0Itの定電流で電池電圧が3.0Vとなるまで放電を行い、このときに流れた電気量を1It放電容量として求めた。次いで、0.2Itの定電流で電池電圧が3.0Vとなるまで放電を行い、このときに流れた電気量を0.2It放電容量として求めた。そして、以下の計算式に基づいてレート特性を求めた。結果を纏めて表1に示した。
レート特性(%)=(1It放電容量/0.2It放電容量)×100
(Rate characteristics)
About each lithium ion battery which measured the said initial stage charge / discharge efficiency, it charges until a battery voltage will be 4.3V with a constant current of 0.5 It again, and after a battery voltage reaches 4.3V, it will be 4.3V The battery was charged until the charge current became 0.05 It at a constant voltage of. Thereafter, discharging was performed at a constant current of 1.0 It until the battery voltage reached 3.0 V, and the amount of electricity flowing at this time was determined as a 1 It discharge capacity. Next, discharging was performed at a constant current of 0.2 It until the battery voltage reached 3.0 V, and the amount of electricity flowing at this time was determined as a 0.2 It discharge capacity. And the rate characteristic was calculated | required based on the following formulas. The results are summarized in Table 1.
Rate characteristic (%) = (1 It discharge capacity / 0.2 It discharge capacity) × 100

(容量維持率の測定)
実験例1〜4のそれぞれの組み立て直後のリチウムイオン電池について、0.5Itの定電流で電池電圧が4.3Vとなるまで充電し、電池電圧が4.3Vに達した後は、4.3Vの定電圧で充電電流が0.05Itとなるまで充電を行った。次いで、1.0Itの定電流で電池電圧が3.0Vとなるまで放電させ、このときに流れた電気量を1サイクル目の放電容量として求めた。この充放電を1サイクルとして、100回繰り返し、100回目の放電時に流れた電気量を100サイクル目の放電容量として求めた。そして、以下の計算式に基づいて100サイクル目の容量維持率を求めた。結果を纏めて表1に示した。
容量維持率(%)
=(100サイクル目の放電容量/1サイクル目の放電容量)×100
(Measurement of capacity maintenance rate)
The lithium ion batteries immediately after assembling in Experimental Examples 1 to 4 were charged with a constant current of 0.5 It until the battery voltage reached 4.3 V, and after the battery voltage reached 4.3 V, 4.3 V The battery was charged until the charge current became 0.05 It at a constant voltage of. Next, the battery was discharged at a constant current of 1.0 It until the battery voltage reached 3.0 V, and the amount of electricity flowing at this time was determined as the discharge capacity of the first cycle. This charge / discharge was repeated 100 times, and the amount of electricity that flowed during the 100th discharge was determined as the discharge capacity of the 100th cycle. Then, the capacity maintenance rate at the 100th cycle was determined based on the following calculation formula. The results are summarized in Table 1.
Capacity maintenance rate (%)
= (Discharge capacity at the 100th cycle / discharge capacity at the first cycle) × 100

実験例1〜実験例4のそれぞれのセパレータの模式断面図を図3A〜図3Dに示した。実験例1のセパレータ18Aは、セパレータ基体18aの一方の面に多孔質耐熱性層18bが、同じく他方の面に均質なリチウム金属層18cが形成されている。実験例2のセパレータ18Bは、セパレータ基体18aの一方の面に多孔質耐熱性層18bのみが形成されており、リチウム金属層は形成されていない。実験例3のセパレータ18Cは、セパレータ基体18aの一方の面に多孔質耐熱性層18bが形成されており、更にその表面にリチウム金属層18dが形成されている。実験例4のセパレータ18Dは、セパレータ基体18aの一方の面に多孔質耐熱性層18bが、同じく他方の面に表面が安定化処理されたリチウム金属粒子層18eが形成されている。   The schematic cross-sectional views of the separators of Experimental Examples 1 to 4 are shown in FIGS. 3A to 3D. In the separator 18A of Experimental Example 1, the porous heat-resistant layer 18b is formed on one surface of the separator substrate 18a, and the homogeneous lithium metal layer 18c is formed on the other surface. In the separator 18B of Experimental Example 2, only the porous heat-resistant layer 18b is formed on one surface of the separator substrate 18a, and no lithium metal layer is formed. In the separator 18C of Experimental Example 3, the porous heat-resistant layer 18b is formed on one surface of the separator substrate 18a, and the lithium metal layer 18d is further formed on the surface thereof. In the separator 18D of Experimental Example 4, the porous heat-resistant layer 18b is formed on one surface of the separator substrate 18a, and the lithium metal particle layer 18e whose surface is stabilized similarly is formed on the other surface.

表1に示した結果から以下のことが分かる。実験例1、3及び4の電池と実験例2の電池との構成の差異は、セパレータ基体にリチウム層が形成されている(実験例1、3及び4)か、形成されていない(実験例2)かであるから、実験例2の電池は負極の不可逆容量が大きいため、初回充放電効率が低下したと考えられる。   From the results shown in Table 1, the following can be understood. The difference in configuration between the batteries of Experimental Examples 1, 3 and 4 and the battery of Experimental Example 2 is that a lithium layer is formed on the separator substrate (Experimental Examples 1, 3 and 4) or not (Experimental Example). 2), the battery of Experimental Example 2 has a large negative electrode irreversible capacity, and thus the initial charge / discharge efficiency is considered to have decreased.

実験例1、3及び4の電池は、それぞれセパレータ基体に形成されたリチウム金属層の形成方法の差異に基づいて、リチウム金属層の微細構造が相違している。すなわち、実験例1の電池におけるリチウム金属層は、セパレータ基体に真空蒸着法によって形成されているため、均一な厚さに形成されている。一方、実験例3の電池におけるリチウム金属層は、多孔質耐熱層と反応してリチウムが消費される。そのため、実験例3の電池では実験例1の電池よりも初回充放電効率が低下したものと考えられる。   The batteries of Experimental Examples 1, 3, and 4 differ in the microstructure of the lithium metal layer based on the difference in the method of forming the lithium metal layer formed on the separator substrate. That is, since the lithium metal layer in the battery of Experimental Example 1 is formed on the separator substrate by a vacuum deposition method, the lithium metal layer is formed to have a uniform thickness. On the other hand, the lithium metal layer in the battery of Experimental Example 3 reacts with the porous heat-resistant layer to consume lithium. Therefore, it is considered that the charge / discharge efficiency of the battery of Experimental Example 3 is lower than that of the battery of Experimental Example 1.

実験例4の電池におけるリチウム金属層は、セパレータ基体に表面が安定化処理されたリチウム金属粒子を設けているため、リチウム金属層は用いたリチウム金属粒子の形状に対応した凹凸構造が残存している。また、初回の充電時には、正極及び負極と対向している部分のリチウム金属層は、負極に移動することによって消失するが、負極の表面にはリチウムの安定化処理に用いられた成分が残存している。そのため、実験例4の電池では、リチウムの安定化処理に用いられた成分によって内部抵抗が大きくなるため、実験例1の電池よりも初回充放電効率が小さくなったものと考えられる。   Since the lithium metal layer in the battery of Experimental Example 4 is provided with lithium metal particles whose surface is stabilized on the separator substrate, the lithium metal layer has an uneven structure corresponding to the shape of the lithium metal particles used. Yes. In addition, during the first charge, the portion of the lithium metal layer facing the positive electrode and the negative electrode disappears by moving to the negative electrode, but the components used for the lithium stabilization treatment remain on the surface of the negative electrode. ing. Therefore, in the battery of Experimental Example 4, the internal resistance increases due to the components used for the stabilization treatment of lithium, and thus it is considered that the initial charge / discharge efficiency is lower than that of the battery of Experimental Example 1.

実験例1、実験例3及び実験例4の電池においては、充放電サイクルを繰り返すと、それぞれのセパレータが正極及び負極と対向している部分のリチウム金属膜は、リチウムが負極に補填されて消失する。しかしながら、それぞれのセパレータが正極及び負極と対向していない部分では、リチウムが負極に補填されることがないので、充放電サイクルを繰り返してもリチウム金属膜は残存している。   In the batteries of Experimental Example 1, Experimental Example 3 and Experimental Example 4, when the charge / discharge cycle is repeated, the lithium metal film in the portion where each separator faces the positive electrode and the negative electrode disappears as lithium is supplemented to the negative electrode. To do. However, in a portion where each separator does not face the positive electrode and the negative electrode, lithium is not supplemented to the negative electrode, so that the lithium metal film remains even after repeated charge / discharge cycles.

レート特性については、実験例1及び実験例2の電池ともに同等の結果が得られたが、実験例3及び実験例4の電池では、いずれも実験例1及び実験例2の結果よりも劣っていた。このことは、実験例3の電池ではリチウム金属とアルミナ等の多孔質耐熱層との間の反応生成物が、実験例4の電池ではリチウム安定化処理に用いられた成分が、それぞれ抵抗成分となり、レート特性の低下に繋がったものと考えられる。   Regarding the rate characteristics, the same results were obtained for both the batteries of Experimental Example 1 and Experimental Example 2, but the batteries of Experimental Example 3 and Experimental Example 4 were both inferior to the results of Experimental Example 1 and Experimental Example 2. It was. This means that the reaction product between the lithium metal and the porous heat-resistant layer such as alumina is the resistance component in the battery of Experimental Example 3, and the component used for the lithium stabilization treatment in the battery of Experimental Example 4 is the resistance component. This is thought to have led to a decrease in rate characteristics.

容量維持率については、実験例1及び実験例3の電池ともにほぼ同等の結果が得られたが、実験例3の電池では実験例1の電池よりも劣っており、実験例2の電池では最も劣っていた。実験例2の電池では、負極の不可逆容量が大きいために、充放電サイクル時に不可逆容量の補填にリチウムが消費されたことによって容量維持率が低下したものと考えられる。実験例3の電池ではリチウム金属とアルミナ等の多孔質耐熱層との間の反応生成物が、さらに実験例4の電池ではリチウム安定化処理に用いられた成分が、それぞれ抵抗成分となり、それぞれ容量維持率の低下に繋がったものと考えられる。   As for the capacity maintenance ratio, almost the same results were obtained for both the batteries of Experimental Example 1 and Experimental Example 3, but the battery of Experimental Example 3 was inferior to the battery of Experimental Example 1, and the battery of Experimental Example 2 was the most. It was inferior. In the battery of Experimental Example 2, since the irreversible capacity of the negative electrode is large, it is considered that the capacity retention rate was reduced due to the consumption of lithium in the irreversible capacity supplement during the charge / discharge cycle. In the battery of Experimental Example 3, the reaction product between the lithium metal and the porous heat-resistant layer such as alumina becomes a resistance component, and in the battery of Experimental Example 4, the component used for the lithium stabilization treatment becomes a resistance component. This is thought to have led to a decrease in the maintenance rate.

実験例4のセパレータについて、2回の充放電サイクルを経た後の表面のSEM写真(50倍)を図4に示し、図4のVA部分及びVB部分の拡大写真(2000倍)をそれぞれ図5A及び図5Bに示した。図4及び図5に示したように、実験例4のセパレータには、充放電サイクルを経ると、セパレータに穴が開いていることが確認された。この穴の周囲では、セパレータ基体の繊維状構造が消失しており、充放電サイクルに伴う熱的ダメージの可能性が懸念される。それに対し、実験例1〜3の電池で用いられたセパレータには、充放電サイクルを経ても、このような穴は形成されていなかった。   FIG. 4 shows an SEM photograph (50 times) of the surface of the separator of Experimental Example 4 after two charge / discharge cycles, and FIG. 5A shows enlarged photographs (2000 times) of the VA portion and VB portion of FIG. And shown in FIG. 5B. As shown in FIGS. 4 and 5, the separator of Experimental Example 4 was confirmed to have a hole in the separator after a charge / discharge cycle. Around this hole, the fibrous structure of the separator substrate has disappeared, and there is concern about the possibility of thermal damage associated with the charge / discharge cycle. On the other hand, such a hole was not formed in the separator used in the batteries of Experimental Examples 1 to 3 even after the charge / discharge cycle.

実験例4の電池で用いられたセパレータに穴が形成されることの原因は、現在のところ明確ではなく、今後の研究結果を待つ必要がある。しかしながら、実験例3及び実験例4の電池の結果を対比すると、レート特性及び容量維持率は、実験例4の電池は実験例3の電池よりも劣る結果となっている。そのため、レート特性及び容量維持率を向上させるためには、少なくともセパレータ基体の表面に直接形成するリチウム金属膜を凹凸が存在しない均質な膜とする必要があることが示唆される。   The cause of the formation of holes in the separator used in the battery of Experimental Example 4 is not clear at present, and it is necessary to wait for future research results. However, when comparing the results of the batteries of Experimental Example 3 and Experimental Example 4, the battery of Experimental Example 4 is inferior to the battery of Experimental Example 3 in rate characteristics and capacity retention. Therefore, in order to improve the rate characteristics and capacity retention rate, it is suggested that at least the lithium metal film directly formed on the surface of the separator substrate needs to be a homogeneous film without unevenness.

実験例1では、リチウム金属膜の厚さは4μmとしたが、リチウム金属膜の厚みに特に制限はない。ただし、適切なリチウム金属膜の厚さは、使用する負極活物質層の不可逆容量の大きさによって異なるものであり、適宜調整することが必要である。リチウム金属膜の厚みが小さすぎると負極活物質層への不可逆容量の補填が不十分となって、初期効率やサイクル特性が充分に改善されない場合がある。リチウム金属膜の厚みが大きすぎると、負極上でリチウムが析出しやすくなり、安全性が低下する場合がある。   In Experimental Example 1, the thickness of the lithium metal film was 4 μm, but the thickness of the lithium metal film is not particularly limited. However, the appropriate thickness of the lithium metal film varies depending on the irreversible capacity of the negative electrode active material layer to be used, and needs to be appropriately adjusted. If the thickness of the lithium metal film is too small, the irreversible capacity in the negative electrode active material layer may not be sufficiently compensated, and the initial efficiency and cycle characteristics may not be sufficiently improved. If the thickness of the lithium metal film is too large, lithium is likely to precipitate on the negative electrode, which may reduce safety.

負極活物質として不可逆容量の大きいSiOx(x=0.5〜1.5)を用いる場合には、SiOxと炭素系活物質(黒鉛など)の質量比が5:95〜100:0の場合であって、負極合剤塗布量を100〜300g/ mとした場合、好ましいリチウム金属膜の厚さは、1〜40μmである。 When SiO x (x = 0.5 to 1.5) having a large irreversible capacity is used as the negative electrode active material, the mass ratio of SiO x to the carbon-based active material (such as graphite) is 5:95 to 100: 0. In this case, when the negative electrode mixture coating amount is 100 to 300 g / m 2 , the preferable thickness of the lithium metal film is 1 to 40 μm.

本発明の一局面のリチウムイオン電池用負極及びこれを用いたリチウムイオン電池は、例えば、携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高エネルギー密度が必要とされる用途に適用することができる。また、電気自動車(EV)、ハイブリッド電気自動車(HEV、PHEV)や電動工具のような高出力用途への展開も期待できる。   A negative electrode for a lithium ion battery according to one aspect of the present invention and a lithium ion battery using the negative electrode are, for example, a driving power source for a mobile information terminal such as a mobile phone, a notebook personal computer, and a PDA, and applications that require a particularly high energy density. Can be applied to. In addition, it can be expected to be used for high output applications such as electric vehicles (EV), hybrid electric vehicles (HEV, PHEV) and electric tools.

10…リチウムイオン電池
11…正極タブ
12…負極タブ
13…巻回電極群
14…外装体
15…閉口部
16…正極
17…負極
18、18A〜18D…セパレータ
18a…セパレータ基体
18b…多孔質耐熱層
18c、18d…リチウム金属層
18e…表面が安定化されたリチウム金属粒子層
DESCRIPTION OF SYMBOLS 10 ... Lithium ion battery 11 ... Positive electrode tab 12 ... Negative electrode tab 13 ... Winding electrode group 14 ... Exterior body 15 ... Closure part 16 ... Positive electrode 17 ... Negative electrode 18, 18A-18D ... Separator 18a ... Separator base | substrate 18b ... Porous heat-resistant layer 18c, 18d ... lithium metal layer 18e ... lithium metal particle layer with stabilized surface

Claims (6)

リチウムを可逆的に吸蔵・放出可能な正極活物質層を含む正極板と、
リチウムを可逆的に吸蔵・放出可能な負極活物質層を含む負極板と、
前記正極板及び前記負極板を隔離するセパレータと、
非水溶媒及び電解質塩を含む非水電解液と、を備え、
前記セパレータは、
ポリオレフィンを主材としたセパレータ基材と、
前記セパレータ基材の一方の面上であって、前記正極活物質層と前記負極活物質層の未対向部分に形成された均質なリチウム金属膜と、を備え、
前記リチウム金属膜は、前記セパレータ基材の前記負極板側に設けられている、リチウムイオン電池。
A positive electrode plate including a positive electrode active material layer capable of reversibly inserting and extracting lithium;
A negative electrode plate including a negative electrode active material layer capable of reversibly inserting and extracting lithium;
A separator that separates the positive electrode plate and the negative electrode plate;
A non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte salt, and
The separator is
A separator base material based on polyolefin;
A homogeneous lithium metal film formed on one surface of the separator base material and on the non-opposing portion of the positive electrode active material layer and the negative electrode active material layer,
The lithium metal film is a lithium ion battery provided on the negative electrode plate side of the separator substrate.
前記セパレータは、前記セパレータ基材上の他方の面上に多孔質耐熱層が形成されている、請求項2に記載のリチウムイオン電池。   The lithium ion battery according to claim 2, wherein the separator has a porous heat-resistant layer formed on the other surface on the separator substrate. 前記リチウム金属膜の厚さは1〜40μmである、請求項1又2に記載のリチウムイオン電池。   The lithium ion battery according to claim 1 or 2, wherein the lithium metal film has a thickness of 1 to 40 µm. ポリオレフィンを主材としたセパレータ基材の一方の面のみ、面上に均質なリチウム金属膜が設けられている、リチウムイオン電池用セパレータ。   A separator for a lithium ion battery, in which a homogeneous lithium metal film is provided on only one surface of a separator base material mainly composed of polyolefin. 前記セパレータ基材の他方の面上に多孔質耐熱層が形成されている、請求項4に記載のリチウムイオン電池用セパレータ。   The separator for lithium ion batteries according to claim 4, wherein a porous heat-resistant layer is formed on the other surface of the separator substrate. 前記リチウム金属膜の厚さは1〜40μmである、請求項4又は5に記載のリチウムイオン電池用セパレータ。   The lithium ion battery separator according to claim 4 or 5, wherein the lithium metal film has a thickness of 1 to 40 µm.
JP2013017127A 2013-01-31 2013-01-31 Lithium ion battery and lithium ion battery separator Pending JP2016058129A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013017127A JP2016058129A (en) 2013-01-31 2013-01-31 Lithium ion battery and lithium ion battery separator
PCT/JP2014/000393 WO2014119274A1 (en) 2013-01-31 2014-01-27 Lithium-ion battery and lithium-ion battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013017127A JP2016058129A (en) 2013-01-31 2013-01-31 Lithium ion battery and lithium ion battery separator

Publications (1)

Publication Number Publication Date
JP2016058129A true JP2016058129A (en) 2016-04-21

Family

ID=51261992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013017127A Pending JP2016058129A (en) 2013-01-31 2013-01-31 Lithium ion battery and lithium ion battery separator

Country Status (2)

Country Link
JP (1) JP2016058129A (en)
WO (1) WO2014119274A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149921A (en) * 2019-03-15 2020-09-17 Tdk株式会社 Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery employing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009750A2 (en) 2011-07-11 2013-01-17 California Institute Of Technology Novel separators for electrochemical systems
US9379368B2 (en) 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
US20150171398A1 (en) 2013-11-18 2015-06-18 California Institute Of Technology Electrochemical separators with inserted conductive layers
JP6811175B2 (en) * 2015-05-29 2021-01-13 マクセルホールディングス株式会社 Lithium ion secondary battery
WO2017096258A1 (en) 2015-12-02 2017-06-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948569A (en) * 1997-07-21 1999-09-07 Duracell Inc. Lithium ion electrochemical cell
JP2003197198A (en) * 2001-12-26 2003-07-11 Kakogawa Plastic Kk Non-aqueous battery, electrode film and battery element constituting the same
JP4842633B2 (en) * 2005-12-22 2011-12-21 富士重工業株式会社 Method for producing lithium metal foil for battery or capacitor
JP2007220452A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
JP5256660B2 (en) * 2006-08-30 2013-08-07 信越化学工業株式会社 Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery
JP5680868B2 (en) * 2010-03-31 2015-03-04 Jmエナジー株式会社 Lithium ion capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149921A (en) * 2019-03-15 2020-09-17 Tdk株式会社 Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery employing the same
CN111697196A (en) * 2019-03-15 2020-09-22 Tdk株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same

Also Published As

Publication number Publication date
WO2014119274A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
US9093705B2 (en) Porous, amorphous lithium storage materials and a method for making the same
JP6183361B2 (en) Negative electrode active material, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
CN102420323B (en) Electrode composite material of lithium secondary battery and preparation method thereof
WO2015063979A1 (en) Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
JP7020721B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
US10903491B2 (en) Rechargeable lithium-ion battery chemistry with fast charge capability and high energy density
WO2014119274A1 (en) Lithium-ion battery and lithium-ion battery separator
TW201611393A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
CN102272985A (en) Positive electrode active material and lithium secondary battery containing said positive electrode active material
TWI709274B (en) Method for manufacturing negative electrode active material and method for manufacturing non-aqueous electrolyte secondary battery
CN107112581A (en) Lithium Ion Battery
CN107078280A (en) Non-aqueous electrolyte secondary battery
WO2015041167A1 (en) Non-aqueous secondary battery
TW202115951A (en) Negative electrode active material, negative electrode, and method for manufacturing negative electrode active material
JP7270833B2 (en) High nickel electrode sheet and manufacturing method thereof
US20240088378A1 (en) Lithium Secondary Battery
JPWO2013042610A1 (en) Lithium ion secondary battery
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
CN100466340C (en) Non-aqueous electrolyte rechargeable battery
CN106558725B (en) Lithium-ion secondary battery
JP2016134218A (en) Lithium ion secondary battery
CN118556308A (en) Lithium secondary battery with improved safety
JP2024526876A (en) Plate, lithium ion battery, battery unit, battery pack and electric device
CN105934845A (en) Electrical device
JP5880942B2 (en) Non-aqueous electrolyte secondary battery