JP2016085120A - Method and device for inspecting optical waveguide - Google Patents
Method and device for inspecting optical waveguide Download PDFInfo
- Publication number
- JP2016085120A JP2016085120A JP2014217957A JP2014217957A JP2016085120A JP 2016085120 A JP2016085120 A JP 2016085120A JP 2014217957 A JP2014217957 A JP 2014217957A JP 2014217957 A JP2014217957 A JP 2014217957A JP 2016085120 A JP2016085120 A JP 2016085120A
- Authority
- JP
- Japan
- Prior art keywords
- incident
- optical waveguide
- region
- integrated value
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000003384 imaging method Methods 0.000 claims abstract description 36
- 238000007689 inspection Methods 0.000 claims description 44
- 238000011156 evaluation Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 34
- 239000013307 optical fiber Substances 0.000 description 26
- 230000036544 posture Effects 0.000 description 10
- 238000005253 cladding Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000012854 evaluation process Methods 0.000 description 4
- 239000012792 core layer Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
本発明は、光導波路の検査方法及び検査装置に関する。 The present invention relates to an optical waveguide inspection method and inspection apparatus.
光の伝送路として光導波路の開発が盛んである。光導波路は、光路となるコア部と、コア部と屈折率が異なるクラッド部とを組み合わせて構成される。中でも長尺状の複数のコア部をフィルム状のクラッド部で取り囲んで構成された平面型の光導波路は、光−光集積回路や光−電子集積回路等を構成する重要なモジュールの1つとして近年注目されている。 Optical waveguides have been actively developed as optical transmission lines. The optical waveguide is configured by combining a core portion serving as an optical path and a cladding portion having a refractive index different from that of the core portion. In particular, a planar optical waveguide formed by surrounding a plurality of long core portions with a film-like cladding portion is one of important modules constituting an optical-optical integrated circuit, an optical-electronic integrated circuit, or the like. It has attracted attention in recent years.
図11は、このような光導波路の性能を示す指標の1つであるクロストーク性能の内容を模式的に示す図である。図11の左側において模式的に示すように、互いに平行にして設けられた複数のコア部(チャンネルともいう)のうちの1つについて、その入射端から光を入射すると、この入射光はクラッド部との境界で反射しながら反対側の出射端から出射する。ところが実際には、入射光の一部は光を入射したチャンネルだけでなくその近傍のチャンネルにも伝搬する場合があり、このような現象をクロストークという。 FIG. 11 is a diagram schematically showing the contents of the crosstalk performance, which is one of the indexes indicating the performance of such an optical waveguide. As schematically shown on the left side of FIG. 11, when light is incident on one of a plurality of core portions (also referred to as channels) provided in parallel to each other from the incident end, the incident light is converted into a cladding portion. The light is emitted from the opposite emission end while being reflected at the boundary. However, in practice, part of the incident light may propagate not only to the channel in which the light is incident but also to a channel in the vicinity thereof, and this phenomenon is called crosstalk.
従来では、光導波路のクロストーク性能を評価する場合、パワーメータに接続された光ファイバやフォトダイオード等の受光デバイスを評価対象である光導波路に突き当てながらスキャンし、各チャンネルの出射端面における光の強度を測定する。この際、受光デバイスと光導波路の出射端面が形成された面との間にはマッチングオイルが塗られるため、作業面が汚れるという課題がある。またコア部のサイズは小さなものでは数μmのものも存在するため、受光デバイスの位置合わせにも精密さが要求されることから、測定に時間がかかるという課題もある。 Conventionally, when evaluating the crosstalk performance of an optical waveguide, a light receiving device such as an optical fiber or a photodiode connected to a power meter is scanned while being abutted against the optical waveguide to be evaluated, and the light at the output end face of each channel is measured. Measure the strength. At this time, since the matching oil is applied between the light receiving device and the surface on which the emission end face of the optical waveguide is formed, there is a problem that the work surface becomes dirty. In addition, since the core portion has a small size of several μm, the positioning of the light receiving device requires precision, and there is a problem that it takes time for measurement.
特許文献1には、マルチコア光ファイバの性能を評価する試験方法が記載されている。特許文献1の試験方法では、試験対象であるマルチコア光ファイバの一端側の入射端面から光を入射しながら、他端側の出射面の画像をカメラによって撮像し、これにコンピュータ上で処理を施すことによって、マルチコア光ファイバのコア部の位置を特定する方法が記載されている。この方法では、カメラを用いた非接触の方法によってコア部の位置を特定し、取得したコア部の位置データを受光デバイスの位置合わせに用いることによって、マルチコア光ファイバに含まれる複数のコア部のうちの1つに対して受光デバイスを精度良く位置合わせすることができる。 Patent Document 1 describes a test method for evaluating the performance of a multi-core optical fiber. In the test method of Patent Document 1, an image of the exit surface on the other end side is captured by a camera while light is incident from the entrance end surface on one end side of the multicore optical fiber to be tested, and this is processed on a computer. Thus, a method for specifying the position of the core portion of the multi-core optical fiber is described. In this method, the position of the core part is specified by a non-contact method using a camera, and the acquired position data of the core part is used for the alignment of the light receiving device, whereby a plurality of core parts included in the multi-core optical fiber are used. The light receiving device can be accurately aligned with respect to one of them.
しかしながら特許文献1の方法では、カメラを用いることによってコアの位置を特定した後は、取得したコアの位置データを用いて受光デバイスをコアに位置合わせしながら突き当てた後、受光デバイスを介してコアからの出射光をパワーメータで検出し、コアの損失やクロストーク性能等を評価している。すなわち、特許文献1にはカメラを用いた非接触の方法によってコアの位置情報を取得することが記載されているものの、受光デバイスを突き当てずに非接触の方法によって出射光を測定し、さらにその各種性能を評価する手順については十分に検討されていない。 However, in the method of Patent Document 1, after specifying the position of the core by using the camera, the light receiving device is abutted while being aligned with the core using the acquired core position data, and then passed through the light receiving device. The light emitted from the core is detected by a power meter to evaluate the core loss and crosstalk performance. That is, Patent Document 1 describes that the position information of the core is acquired by a non-contact method using a camera, but the emitted light is measured by a non-contact method without hitting the light receiving device. The procedure for evaluating the various performances has not been sufficiently studied.
本発明は、光導波路に形成されたコア部の性能を、受光デバイスを接触させずに非接触の方法で測定できる光導波路の検査方法及び検査装置を提供することを目的とする。 It is an object of the present invention to provide an optical waveguide inspection method and inspection apparatus that can measure the performance of a core portion formed in an optical waveguide by a non-contact method without contacting a light receiving device.
(1)本発明の検査方法は、入射端から出射端へ延びる長尺状のコア部を複数有する光導波路の検査方法であって、前記入射端に光を入射しながら、前記出射端の近傍に設けられた撮像手段を用いて当該出射端から出射する光の近視野像を撮像する撮像工程と、前記撮像工程において撮像された近視野像から、所定の形状の領域を選択し、当該領域内の強度の積算値を算出する領域積算値算出工程と、前記積算値を用いて前記光導波路の性能を評価する性能評価工程と、を備えることを特徴とする。 (1) An inspection method of the present invention is an inspection method for an optical waveguide having a plurality of long core portions extending from an incident end to an output end, and in the vicinity of the output end while light is incident on the incident end. A region of a predetermined shape is selected from an imaging step of capturing a near-field image of light emitted from the emission end using the imaging unit provided in the imaging step, and a near-field image captured in the imaging step, and the region And a performance evaluation step of evaluating the performance of the optical waveguide using the integrated value.
(2)この場合、前記領域積算値算出工程では、略円状の領域を選択することが好ましい。 (2) In this case, it is preferable to select a substantially circular area in the area integrated value calculation step.
(3)この場合、前記領域積算値算出工程では、前記光導波路の出射端において直線上に並ぶ複数のコア部の前記直線に沿った方向における幅をWとし、前記直線に沿った方向における前記コア部の中心間の距離をPとし、前記領域の直径をDとしたときに、
D<2P−W
の関係を有する略円状の領域を選択することが好ましい。
(3) In this case, in the region integrated value calculating step, the width in the direction along the straight line of the plurality of core portions arranged in a straight line at the output end of the optical waveguide is W, and the width in the direction along the straight line is When the distance between the centers of the core parts is P and the diameter of the region is D,
D <2P-W
It is preferable to select a substantially circular region having the following relationship.
(4)この場合、前記光導波路には複数のコア部の出射端がそれぞれ面一になるように列に沿って設けられ、前記複数のコア部のうちの1つであって光が入射されるコア部を入射コア部と定義し、当該入射コア部の近傍のコア部を近傍コア部と定義し、前記撮像工程では、前記入射コア部の入射端に光を入射しながら、当該入射コア部及び近傍コア部の出射端の近傍に設けられた前記撮像手段を用いて、これら出射端から出射する光の近視野像を撮像し、前記領域積算値算出工程では、前記撮像工程において撮像された近視野像上で、前記入射コア部の出射端の少なくとも一部を含む出射領域と前記近傍コア部の出射端の少なくとも一部を含む近傍領域とを選択し、前記出射領域の強度の積算値と前記近傍領域の強度の積算値とを算出し、前記性能評価工程では、前記出射領域及び前記近傍領域に対して算出された積算値を用いて、前記入射コア部に入射した光の前記近傍コア部への漏れに関するクロストーク性能を評価することが好ましい。 (4) In this case, the optical waveguide is provided along the row so that the emission ends of the plurality of core portions are flush with each other, and light is incident on one of the plurality of core portions. A core portion near the incident core portion is defined as a near core portion, and in the imaging step, the incident core is incident while light is incident on the incident end of the incident core portion. The near-field image of the light emitted from the exit end is captured using the imaging means provided near the exit end of the part and the adjacent core part, and in the area integrated value calculation step, the image is captured in the image capture step. In addition, on the near-field image, an exit region including at least a part of the exit end of the incident core portion and a nearby region including at least a portion of the exit end of the nearby core portion are selected, and the intensity of the exit region is integrated Value and the integrated value of the intensity of the neighboring area In the performance evaluation step, it is preferable to evaluate a crosstalk performance related to leakage of light incident on the incident core part to the neighboring core part using an integrated value calculated for the emission area and the neighboring area. .
(5)この場合、前記複数のコア部のうちの1つであって光が入射されるコア部を入射コア部と定義し、前記撮像工程では、前記入射コア部の入射端に光を入射しながら、当該入射コア部の出射端前の近傍に設けられた前記撮像手段を用いて、当該入射コア部の出射端から出射する光の近視野像を撮像し、前記領域積算値算出工程では、前記撮像工程において撮像された近視野像上で、前記入射コア部の出射端の少なくとも一部を含む出射領域を選択し、当該出射領域と前記出射端との相対位置を変えながら当該出射領域内の強度の積算値を前記相対位置ごとに算出し、前記性能評価工程では、前記相対位置ごとに算出された積算値を用いて、前記光導波路の出射端と受光デバイスとがオフセットした状態で光結合されたときのこれらの結合部における損失であるトレランス性能を評価することが好ましい。 (5) In this case, the core part that is one of the plurality of core parts and receives light is defined as an incident core part, and light is incident on the incident end of the incident core part in the imaging step. However, using the imaging means provided near the exit end of the incident core portion, a near-field image of the light emitted from the exit end of the incident core portion is captured, and in the area integrated value calculating step Selecting an exit region including at least a part of the exit end of the incident core portion on the near-field image captured in the imaging step, and changing the relative position between the exit region and the exit end In the performance evaluation step, using the integrated value calculated for each relative position, the emission end of the optical waveguide and the light receiving device are offset. These bonds when optically coupled It is preferable to evaluate the tolerance performance is lost in.
(6)この場合、前記検査方法は、前記複数のコア部のうちの1つであって光源からの光が入射されるコア部を入射コア部と定義し、前記光源を前記入射コア部の入射端の近傍で移動させながら前記撮像工程と前記領域積算値算出工程とを繰り返し行うことにより、前記光源と前記入射端との相対位置をずらしたときにおける前記領域内の強度の積算値を前記相対位置ごとに算出する光源走査工程をさらに備え、前記性能評価工程では、前記光源走査工程において前記相対位置ごとに算出された積算値を用いて前記光導波路の性能を評価することが好ましい。 (6) In this case, in the inspection method, the core part that is one of the plurality of core parts and receives light from the light source is defined as an incident core part, and the light source is defined as the incident core part. By repeatedly performing the imaging step and the region integrated value calculating step while moving in the vicinity of the incident end, the integrated value of the intensity in the region when the relative position between the light source and the incident end is shifted is calculated. It is preferable to further include a light source scanning step that calculates for each relative position, and in the performance evaluation step, the performance of the optical waveguide is evaluated using the integrated value calculated for each relative position in the light source scanning step.
(7)この場合、前記検査方法は、前記複数のコア部のうちの1つであって光源からの光が入射されるコア部を入射コア部と定義し、前記光源を前記入射コア部の入射端の近傍で移動させながら前記撮像工程を繰り返し行うことにより、前記光源と前記入射端との相対位置をずらしたときにおける前記近視野像を複数撮像し、当該複数の近視野像を用いて前記領域積算値算出工程を繰り返し行うことにより、前記光源と前記入射端との相対位置をずらしたときにおける前記領域内の強度の積算値を前記相対位置ごとに算出する光源走査工程をさらに備え、前記性能評価工程では、前記光源走査工程において前記相対位置ごとに算出された積算値を用いて前記光導波路の性能を評価することが好ましい。 (7) In this case, in the inspection method, the core part that is one of the plurality of core parts and receives light from the light source is defined as an incident core part, and the light source is defined as the incident core part. By repeatedly performing the imaging step while moving in the vicinity of the incident end, a plurality of the near-field images when the relative position between the light source and the incident end is shifted are captured, and the plurality of near-field images are used. A light source scanning step of calculating, for each relative position, an integrated value of intensity in the region when the relative position between the light source and the incident end is shifted by repeatedly performing the region integrated value calculating step; In the performance evaluation step, it is preferable to evaluate the performance of the optical waveguide using the integrated value calculated for each relative position in the light source scanning step.
(8)この場合、前記領域積算値算出工程では、前記領域内で設定された重み係数を用いて重み付けされた強度の積算値を算出することが好ましい。 (8) In this case, in the region integrated value calculating step, it is preferable to calculate an integrated value of intensity weighted using a weighting factor set in the region.
(9)本発明の検査装置は、入射端から出射端へ延びる長尺状のコア部を複数有する光導波路の検査装置であって、前記光導波路が載置されるステージと、前記ステージに載置された光導波路の入射端に光を入射する光源と、前記ステージに載置された光導波路の出射端から離間して設けられ、当該出射端のコア部から出射する光の近視野像を撮像する撮像手段と、前記撮像工程において撮像された画像から所定の形状の領域を選択し、当該領域内の強度の積算値を算出する画像処理手段と、前記画像処理手段によって算出された積算値を用いて前記光導波路の性能を評価する性能評価手段と、を備えることが好ましい。 (9) The inspection apparatus of the present invention is an optical waveguide inspection apparatus having a plurality of elongated core portions extending from the incident end to the output end, the stage on which the optical waveguide is placed, and the stage placed on the stage A light source for entering light into the incident end of the optical waveguide placed, and a near-field image of the light emitted from the core of the exit end, provided apart from the exit end of the optical waveguide placed on the stage An imaging means for imaging, an image processing means for selecting an area of a predetermined shape from the image taken in the imaging step, and calculating an integrated value of intensity in the area, and an integrated value calculated by the image processing means It is preferable to provide performance evaluation means for evaluating the performance of the optical waveguide using
(1)本発明の検査方法では、光導波路の入射端に光を入射しながら、撮像手段を用いて出射端から出射する光の近視野像を撮像し、さらにこの近視野像から所定の形状の領域(以下では、このような近視野像上で選択された所定の形状の領域を「関心領域」ともいう)を選択し、この関心領域内の強度の積算値を算出し、さらにこの積算値を用いて光導波路の性能を評価する。本発明によれば、例えば近視野像上で光導波路のコア部の出射端を含む領域を関心領域として選択することにより、関心領域とほぼ等しい受光面の形状を有する受光デバイスを出射端のうち関心領域が設定された部分に突き当てながら、出射端からの光をパワーメータで測定した場合とほぼ同等の効果を奏する。したがって本発明によれば、出射端からの出射光を測定するにあたって、受光デバイスをコア部に実際に突き当てたりマッチングオイルを塗ったりする必要がなくなる。また本発明によれば、従来の検査方法において受光デバイスを出射端に位置合わせしながら突き当てていた工程は、近視野像上で所定の形状の関心領域の位置を定める工程、すなわち実際の受光デバイスの精密な移動を伴わない画像処理上の一工程に置き換えられる。したがって、本発明の検査方法によれば、従来の検査方法と比較して検査にかかる時間を短縮することができる。特に近年ではコア部が高密度で形成された光導波路の開発が盛んであるところ、速やかな検査が可能な本発明は特にこのような多くのコア部が形成された高密度の光導波路の検査に効果的である。 (1) In the inspection method of the present invention, a near-field image of light emitted from the exit end is captured using the imaging means while light is incident on the entrance end of the optical waveguide, and a predetermined shape is obtained from the near-field image. (Hereinafter, a region of a predetermined shape selected on such a near-field image is also referred to as “region of interest”), an integrated value of intensity in this region of interest is calculated, and this integration is further performed. The value is used to evaluate the performance of the optical waveguide. According to the present invention, for example, by selecting a region including the emission end of the core portion of the optical waveguide as a region of interest on a near-field image, a light receiving device having a light receiving surface shape substantially equal to the region of interest is selected from the emission ends. While abutting on the portion where the region of interest is set, the same effect as that obtained when the light from the emission end is measured with a power meter is obtained. Therefore, according to the present invention, when measuring the outgoing light from the outgoing end, it is not necessary to actually hit the light receiving device against the core part or to apply matching oil. According to the present invention, in the conventional inspection method, the step of abutting the light receiving device while aligning it with the emission end is a step of determining the region of interest of a predetermined shape on the near-field image, that is, the actual light receiving. It is replaced with a step in image processing that does not involve precise movement of the device. Therefore, according to the inspection method of the present invention, the time required for the inspection can be shortened as compared with the conventional inspection method. In particular, in recent years, development of optical waveguides in which the core portion is formed with high density has been actively developed, and the present invention capable of quick inspection is particularly inspected for high-density optical waveguides in which such many core portions are formed. It is effective.
(2)本発明では、関心領域を略円状とすることにより、円状の断面形状を有する光ファイバを光導波路に突き当てながら出射光をパワーメータで測定した場合とほぼ同等の効果を得ることができる。 (2) In the present invention, by forming the region of interest into a substantially circular shape, substantially the same effect as that obtained when the emitted light is measured with a power meter while the optical fiber having a circular cross-sectional shape is abutted against the optical waveguide is obtained. be able to.
(3)本発明では、コア部の幅をWとし、コア部の中心間距離をPとした場合に、関心領域の直径Dを、2P−Wより小さな値とする。これにより、関心領域が、近視野像上で隣接する2つのコア部の出射端の両方を含まないようにできる。 (3) In the present invention, when the width of the core portion is W and the center-to-center distance of the core portion is P, the diameter D of the region of interest is a value smaller than 2P-W. Accordingly, the region of interest can be configured not to include both of the emission ends of the two core portions adjacent on the near-field image.
(4)本発明では、入射コア部の入射端に光を入射しながら、この入射コア部の出射端と近傍コア部の出射端とを含む近視野像を撮像する。そして本発明では、この近視野像上で入射コア部の出射端の少なくとも一部を含む関心領域としての出射領域と、近傍コア部の出射端の少なくとも一部を含む関心領域としての近傍領域とを選択し、これら2つの領域の強度の積算値を算出する。さらに本発明では、これら入射コア部と近傍コア部について算出された積算値を用いて光導波路のクロストーク性能を評価する。ここでクロストーク性能とは、入射コア部に入射した光の近傍コア部への漏れに関する性能である。これにより、従来のように受光デバイスを光導波路のコア部に突き当てたり位置合わせをしたりすることなく光導波路のクロストーク性能を速やかに評価できる。 (4) In the present invention, a near-field image including the exit end of the entrance core portion and the exit end of the adjacent core portion is captured while light is incident on the entrance end of the entrance core portion. In the present invention, on this near-field image, an exit region as a region of interest including at least a part of the exit end of the incident core portion, and a nearby region as a region of interest including at least a portion of the exit end of the nearby core portion And the integrated value of the intensity of these two regions is calculated. Furthermore, in the present invention, the crosstalk performance of the optical waveguide is evaluated using the integrated values calculated for the incident core portion and the adjacent core portion. Here, the crosstalk performance is performance related to leakage of light incident on the incident core portion to the neighboring core portion. Thereby, the crosstalk performance of the optical waveguide can be quickly evaluated without hitting or aligning the light receiving device with the core portion of the optical waveguide as in the prior art.
(5)本発明では、入射コア部の入射端に光を入射しながら、この入射コア部の出射端から出射する光の近視野像を撮像する。そして本発明では、この近視野像上で入射コア部の出射端の少なくとも一部を含む出射領域を関心領域として選択し、この関心領域を出射端との相対位置を変えながら、この関心領域内の強度の積算値を相対位置ごとに算出する。さらに本発明では、このようにして算出された相対位置ごとの積算値、換言すれば関心領域の位置を出射端の近傍で変化させたときにおける積算値の変化を用いて、光導波路のトレランス性能を評価する。ここでトレランス性能とは、光導波路のコア部と受光デバイスとを突き合わせることによってこれらを光結合したときに、コア部と受光デバイスとで位置ずれが生じた場合の結合部における損失に関する性能である。本発明では、受光デバイスを光導波路のコア部に突き当てたり位置合わせをしたりすることなくこの結合部におけるトレランス性能を速やかに評価できる。 (5) In the present invention, a near-field image of light emitted from the exit end of the incident core part is captured while light is incident on the incident end of the incident core part. In the present invention, an exit region including at least a part of the exit end of the entrance core portion is selected as a region of interest on the near-field image, and the region of interest is changed within the region of interest while changing the relative position with the exit end. The integrated value of the intensity is calculated for each relative position. Furthermore, the present invention uses the integrated value for each relative position calculated in this way, in other words, the tolerance value of the optical waveguide by using the change in the integrated value when the position of the region of interest is changed near the exit end. To evaluate. Here, the tolerance performance is the performance related to the loss at the coupling portion when the core portion and the light receiving device are misaligned when the core portion of the optical waveguide and the light receiving device are optically coupled to each other. is there. In the present invention, it is possible to quickly evaluate the tolerance performance of the coupling portion without abutting or aligning the light receiving device with the core portion of the optical waveguide.
(6)本発明では、光源を入射コア部の入射端の近傍で移動させながら、出射端側に設けられた撮像手段による近視野像の撮像(撮像工程)と、この近視野像上での関心領域の選択及び積算値の算出(領域積算値算出工程)とを繰り返し行う。これにより、入射端側で光源の位置を変化させたときの出射端側での強度の積算値の変化を取得することができる。また本発明では、このような光源の位置を変えたときにおける積算値の変化を用いることにより、光導波路の様々な性能を評価できる。例えば、光導波路に第1〜第3まで3つのコア部がこの順で並列に設けられている場合を想定する。このような場合、入射端側の光源を第1コア部から第2コア部へ向かって移動させながら、第3コア部の出射端に対向する位置に固定された撮像手段を用いて上記撮像工程及び領域積算値算出工程を繰り返し行うことにより、第1コア部に入射した光の第3コア部への漏れ、及び第2コア部に入射した光の第3コア部への漏れに関するトレランス性能を、上記(5)の発明のように関心領域を移動させることなく評価できる。また、光源及び撮像手段をそれぞれ同じコア部の入射端側及び出射端側に設けた状態で、光源を入射端の近傍で移動させた場合には、入射端側で(5)の発明で説明したような位置ずれが生じた場合における損失に関する性能を評価できる。 (6) In the present invention, while moving the light source in the vicinity of the incident end of the incident core portion, the near-field image is captured by the imaging means provided on the exit end side (imaging process), and the near-field image is The selection of the region of interest and the calculation of the integrated value (region integrated value calculating step) are repeated. As a result, it is possible to acquire a change in the integrated value of intensity on the emission end side when the position of the light source is changed on the incident end side. In the present invention, various performances of the optical waveguide can be evaluated by using the change in the integrated value when the position of the light source is changed. For example, a case is assumed in which three core portions from the first to the third are provided in parallel in this order on the optical waveguide. In such a case, the imaging step is performed using an imaging unit fixed at a position facing the emission end of the third core part while moving the light source on the incident end side from the first core part toward the second core part. In addition, by repeating the region integrated value calculation step, tolerance performance regarding leakage of light incident on the first core portion to the third core portion and leakage of light incident on the second core portion to the third core portion is obtained. The evaluation can be performed without moving the region of interest as in the invention of (5) above. Further, when the light source is moved in the vicinity of the incident end in the state where the light source and the imaging means are provided on the incident end side and the emission end side of the same core part, respectively, the invention at the incident end side will be described in the invention (5). It is possible to evaluate the performance related to loss in the case where such a positional deviation occurs.
(7)本発明では、光源を入射コア部の入射端の近傍で移動させながら、撮像工程を繰り返し行うことによって複数の近視野像を撮像する。そして、これら複数の近視野像を用いて領域積算値算出工程を繰り返し行うことにより、光源と入射端との相対位置をずらしたときにおける領域の強度の積算値を相対位置ごとに算出する。これにより、(6)の発明と同じ効果を奏する。 (7) In the present invention, a plurality of near-field images are captured by repeating the imaging process while moving the light source in the vicinity of the incident end of the incident core portion. Then, by repeatedly performing the region integrated value calculation step using the plurality of near-field images, the integrated value of the intensity of the region when the relative position between the light source and the incident end is shifted is calculated for each relative position. Thereby, there exists the same effect as invention of (6).
(8)本発明では、領域積算値算出工程において選択した関心領域内で強度の積算値を算出する際、この領域内で設定された重み係数を用いて重み付けされた強度の積算値を算出する。上述のように近視野像上に設定する関心領域は、受光デバイスの受光面を模したものに相当する。一方、一般的な受光デバイスである光ファイバには、開口数の分布が一様でないものも存在する。本発明では、関心領域に重み係数を設定することにより、このような光ファイバの開口数分布を反映させることができる。よって本発明によれば、突き合わせる受光デバイスの種類を変えた場合におけるトレランス性能について、速やかに評価できる。 (8) In the present invention, when calculating the integrated value of the intensity in the region of interest selected in the integrated region calculation step, the integrated value of the weighted intensity is calculated using the weighting factor set in this region. . As described above, the region of interest set on the near-field image corresponds to the one imitating the light receiving surface of the light receiving device. On the other hand, some optical fibers, which are general light receiving devices, have non-uniform numerical aperture distributions. In the present invention, such a numerical aperture distribution of the optical fiber can be reflected by setting a weighting factor in the region of interest. Therefore, according to the present invention, it is possible to quickly evaluate the tolerance performance when the type of the light receiving device to be matched is changed.
(9)本発明によれば、(1)の発明と同等の効果を奏する。 (9) According to the present invention, an effect equivalent to that of the invention of (1) is achieved.
以下、本発明の一実施形態について図面を参照しながら説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の一実施形態に係る光導波路1の検査装置2の構成を示す図である。 FIG. 1 is a diagram showing a configuration of an inspection apparatus 2 for an optical waveguide 1 according to an embodiment of the present invention.
図2は、光導波路1の斜視図である。 FIG. 2 is a perspective view of the optical waveguide 1.
図2に示すように、光導波路1は、帯状であり、コア層13を、2つのクラッド層11,12で挟んだ積層構造を有する。コア層13は、複数の長尺状のコア部14と複数の長尺状のクラッド部15とを交互に配置して構成される。図2に示すように、光導波路1の側面には複数のコア部14の端面がそれぞれ面一になるように列に沿って設けられている。コア部14は、この周囲のクラッド部15及びクラッド層11,12よりも屈折率が高く光路となっている。 As shown in FIG. 2, the optical waveguide 1 has a strip shape and has a laminated structure in which a core layer 13 is sandwiched between two cladding layers 11 and 12. The core layer 13 is configured by alternately arranging a plurality of long core portions 14 and a plurality of long clad portions 15. As shown in FIG. 2, the side surfaces of the optical waveguide 1 are provided along the rows so that the end surfaces of the plurality of core portions 14 are flush with each other. The core portion 14 has a higher refractive index than the surrounding clad portion 15 and the clad layers 11 and 12 and serves as an optical path.
図1に示すように、検査装置2は、検査対象としての光導波路1が載置されるセンターステージ3と、光導波路1の一端側に設けられた光源ユニット4及びその光源ステージ5と、光導波路1の他端側に設けられた測定ユニット6及びその測定ステージ7と、これらステージ5,7のコントローラドライバ8と、測定ユニット6によって取得したデータを処理しさらに光導波路1の性能を評価するコンピュータ9と、を備える。 As shown in FIG. 1, an inspection apparatus 2 includes a center stage 3 on which an optical waveguide 1 as an inspection target is placed, a light source unit 4 provided on one end side of the optical waveguide 1, its light source stage 5, The measurement unit 6 and its measurement stage 7 provided on the other end of the waveguide 1, the controller driver 8 of these stages 5 and 7, and the data acquired by the measurement unit 6 are processed to further evaluate the performance of the optical waveguide 1. And a computer 9.
光導波路1は、コア部14の一端側を光源ユニット4に向け他端側を測定ユニット6に向けた状態でセンターステージ3の上に固定される。以下では、光導波路1のコア部14の光源ユニット4側の端部を入射端といい、測定ユニット6側の端部を出射端という。また以下では、光導波路1のコア部14の延在方向とX軸は平行とし、複数のコア部14の配列方向とY軸は平行とする(図2参照)。 The optical waveguide 1 is fixed on the center stage 3 with one end of the core portion 14 facing the light source unit 4 and the other end facing the measuring unit 6. Hereinafter, the end on the light source unit 4 side of the core portion 14 of the optical waveguide 1 is referred to as an incident end, and the end on the measurement unit 6 side is referred to as an emission end. In the following, the extending direction of the core portion 14 of the optical waveguide 1 and the X axis are parallel, and the arrangement direction of the plurality of core portions 14 and the Y axis are parallel (see FIG. 2).
光源ユニット4は、所定の波長で発光する発光素子及びそのドライバ等で構成された発光装置41と、発光素子の光を光導波路1のコア部14の入射端へ導く光ファイバ42と、を含んで構成される。発光素子としては、例えば、発光ダイオードや半導体レーザ等が用いられる。 The light source unit 4 includes a light emitting device 41 including a light emitting element that emits light at a predetermined wavelength and a driver thereof, and an optical fiber 42 that guides light of the light emitting element to an incident end of the core portion 14 of the optical waveguide 1. Consists of. For example, a light emitting diode or a semiconductor laser is used as the light emitting element.
光源ステージ5は、例えば、XYZ軸3方向への移動及び各軸での回転が可能な6軸の電動ステージである。光源ステージ5のステージ面には光源ユニット4の光ファイバ42を挟持するクランプ52が固定されている。光ファイバ42は、その端面を光導波路1の入射端面から僅かに離間した状態でクランプ52に固定されている。これにより、発光素子で発生した光は光ファイバ42を介して光導波路1のコア部14の入射端に入射する。 The light source stage 5 is, for example, a six-axis electric stage that can move in the XYZ axis 3 direction and rotate on each axis. A clamp 52 that holds the optical fiber 42 of the light source unit 4 is fixed to the stage surface of the light source stage 5. The optical fiber 42 is fixed to the clamp 52 with its end face slightly spaced from the incident end face of the optical waveguide 1. Thereby, the light generated by the light emitting element enters the incident end of the core portion 14 of the optical waveguide 1 through the optical fiber 42.
測定ユニット6は、NFP用光学系61とデジタルカメラ62とを組み合わせて構成される。 The measurement unit 6 is configured by combining an NFP optical system 61 and a digital camera 62.
NFP用光学系61は、光導波路1の出射端の近視野像を測定するために複数のレンズを組み合わせて構成された光学系である。NFP用光学系61を構成する複数のレンズのうち最も光導波路1の出射端に近い位置には対物レンズ63が設けられる。この対物レンズ63の開口数は、従来の検査装置において検査対象に実際に突き当てて用いられる受光デバイス(例えば、光ファイバ)の開口数と対応している。従って、対物レンズ63の開口数は、従来の検査装置による結果との比較を考慮して、例えば0.5以下のものから選択される。 The NFP optical system 61 is an optical system configured by combining a plurality of lenses in order to measure a near-field image at the exit end of the optical waveguide 1. An objective lens 63 is provided at a position closest to the exit end of the optical waveguide 1 among the plurality of lenses constituting the NFP optical system 61. The numerical aperture of the objective lens 63 corresponds to the numerical aperture of a light receiving device (for example, an optical fiber) that is actually used in contact with an inspection target in a conventional inspection apparatus. Therefore, the numerical aperture of the objective lens 63 is selected from, for example, 0.5 or less in consideration of comparison with the result obtained by the conventional inspection apparatus.
デジタルカメラ62は、上記NFP用光学系61によって結像された光導波路1の出射端から出射する光の近視野像を撮像する。このデジタルカメラ62には、既知のものが用いられる。ただし後に詳述する手順に従ってクロストーク性能やトレランス性能を精度良く評価する場合、ビット深度が12bit以上のものを用いることが好ましい。例えば、12bitのものを用いた場合、−30dB程度まで測定でき、16bitのものを用いた場合、−40dB程度まで測定できる。 The digital camera 62 captures a near-field image of light emitted from the exit end of the optical waveguide 1 imaged by the NFP optical system 61. A known camera is used for the digital camera 62. However, when the crosstalk performance and tolerance performance are accurately evaluated according to the procedure described in detail later, it is preferable to use a bit depth of 12 bits or more. For example, when a 12-bit one is used, measurement can be performed up to about −30 dB, and when a 16-bit one is used, measurement can be performed up to about −40 dB.
測定ステージ7は、例えば、XYZ軸3方向への移動及び各軸での回転が可能な6軸の電動ステージである。測定ステージ7のステージ面には上述の測定ユニット6が固定されている。測定ユニット6は、その対物レンズ63を光導波路1の出射端面から僅かに離間した状態でステージ面に固定されている。これにより、光導波路1の出射端から出射する光の近視野像がデジタルカメラ62によって撮像される。 The measurement stage 7 is, for example, a 6-axis electric stage that can move in the XYZ axis 3 direction and rotate on each axis. The measurement unit 6 described above is fixed to the stage surface of the measurement stage 7. The measurement unit 6 is fixed to the stage surface with the objective lens 63 slightly spaced from the exit end face of the optical waveguide 1. As a result, a near-field image of light emitted from the emission end of the optical waveguide 1 is captured by the digital camera 62.
コントローラドライバ8は、予め定められたティーチングプログラムに従って光源ステージ5及び測定ステージ7の電動アクチュエータを駆動し、それぞれのステージ面に固定された光ファイバ42及び測定ユニット6の位置及び姿勢を変更する。コントローラドライバ8とコンピュータ9は通信回線によって接続されており、光ファイバ42や測定ユニット6の位置及び姿勢を変化させるためのティーチングプログラムは、コンピュータ9を利用して設定することが可能となっている。 The controller driver 8 drives the electric actuators of the light source stage 5 and the measurement stage 7 according to a predetermined teaching program, and changes the positions and postures of the optical fiber 42 and the measurement unit 6 fixed to the respective stage surfaces. The controller driver 8 and the computer 9 are connected by a communication line, and a teaching program for changing the position and posture of the optical fiber 42 and the measurement unit 6 can be set using the computer 9. .
コンピュータ9は、検査装置2全体の制御及び各種演算を行うCPU、後述の領域積算値算出処理(後述の図3のS5、図9のS15)や性能評価処理(後述の図3のS6、図9のS16)等を実行するための各種プログラムやデータを記憶するROMやハードディスク等の記憶装置、及びデジタルカメラ62やコントローラドライバ8等と接続されるI/Oポート等で構成されるコンピュータ本体91と、作業者が本体91に指令を与えるために操作可能なキーボード等の入力装置92と、作業者が本体91による演算結果を視認可能な態様で表示する表示装置93と、を含んで構成される。 The computer 9 controls the entire inspection apparatus 2 and performs various operations, a region integrated value calculation process (S5 in FIG. 3 to be described later, S15 in FIG. 9) and a performance evaluation process (S6 in FIG. 3 to be described later, FIG. 9 S16) and the like, a computer main body 91 including a storage device such as a ROM and a hard disk for storing various programs and data, an I / O port connected to the digital camera 62, the controller driver 8, and the like. And an input device 92 such as a keyboard that can be operated by an operator to give a command to the main body 91, and a display device 93 that displays the calculation result of the main body 91 in a manner that the operator can visually recognize. The
次に、図3〜10を参照しながら、上記検査装置2を用いた光導波路1の検査方法の具体的な手順について説明する。より具体的には、クロストーク性能に関する検査方法と、トレランス性能に関する検査方法とについて順に説明する。 Next, a specific procedure of the inspection method of the optical waveguide 1 using the inspection apparatus 2 will be described with reference to FIGS. More specifically, an inspection method related to crosstalk performance and an inspection method related to tolerance performance will be described in order.
図3は、検査装置を用いて光導波路のクロストーク性能を評価する手順を示すフローチャートである。 FIG. 3 is a flowchart showing a procedure for evaluating the crosstalk performance of the optical waveguide using the inspection apparatus.
図4は、図3のフローチャートに従ってクロストーク性能を評価する際、又は後述の図9のフローチャートに従ってトレランス性能を評価する際における光源4と光導波路1と測定ユニット6との位置関係を模式的に示す平面図である。 4 schematically illustrates the positional relationship among the light source 4, the optical waveguide 1, and the measurement unit 6 when evaluating the crosstalk performance according to the flowchart of FIG. 3 or when evaluating the tolerance performance according to the flowchart of FIG. 9 described later. FIG.
S1では、光導波路に形成された複数のコア部14a〜14eのうちの1つを選択し、これを入射コア部と定義し、この入射コア部の近傍のコア部を近傍コア部と定義する。図4には、符号“14c”が付されたコア部を入射コア部と定義し、これ以外のものを近傍コア部と定義した場合の例を示す。 In S1, one of the plurality of core portions 14a to 14e formed in the optical waveguide is selected, this is defined as the incident core portion, and the core portion near the incident core portion is defined as the neighboring core portion. . FIG. 4 shows an example in which the core part to which the reference numeral “14c” is attached is defined as the incident core part, and the other part is defined as the neighboring core part.
S2では、光源及び測定ユニットのコントローラドライバ上での基準位置及び基準姿勢を設定する。光源の基準位置は、光源の光軸が入射コア部の入射端面の中心を通過するように設定され、光源の基準姿勢は、光源の光軸が入射コア部の入射端面側の光軸が平行になるように設定される。測定ユニットの基準位置は、測定ユニットの光軸が入射コア部の出射端面の中心を通過するように設定され、測定ユニットの基準姿勢は、測定ユニットの光軸が入射コア部の出射端面側の光軸と平行になるように設定される。S3では、コントローラドライバを用いることによって、光源及び測定ユニットをS2で設定した基準位置及び基準姿勢に固定する。 In S2, a reference position and a reference posture on the controller driver of the light source and the measurement unit are set. The reference position of the light source is set so that the optical axis of the light source passes through the center of the incident end face of the incident core, and the reference posture of the light source is such that the optical axis of the light source is parallel to the optical axis of the incident end face of the incident core. Is set to be The reference position of the measurement unit is set so that the optical axis of the measurement unit passes through the center of the exit end face of the incident core part, and the reference posture of the measurement unit is that the optical axis of the measurement unit is on the exit end face side of the incident core part. It is set to be parallel to the optical axis. In S3, the light source and the measurement unit are fixed to the reference position and reference posture set in S2 by using a controller driver.
S4では、光源を駆動し入射コア部の入射端に光を入射しながら、測定ユニットを用いて、入射コア部の出射端及び近傍コア部の出射端から出射する光の近視野像を撮像する。図5は、S4で撮像された光導波路の出射端の近視野像の一例を示す図である。図5では、コア部14a〜14eを説明の便宜上、一点鎖線で示す。また図5では、光の強度の大小を模式的に濃淡で示している。 In S4, a near-field image of the light emitted from the exit end of the entrance core portion and the exit end of the adjacent core portion is captured using the measurement unit while driving the light source and entering light to the entrance end of the entrance core portion. . FIG. 5 is a diagram illustrating an example of a near-field image of the exit end of the optical waveguide imaged in S4. In FIG. 5, the core portions 14 a to 14 e are indicated by alternate long and short dash lines for convenience of explanation. Further, in FIG. 5, the magnitude of light intensity is schematically shown by shading.
S5では、S4で取得した近視野像上に略円状の関心領域を設定するとともに、この関心領域を近視野像上で移動させながら各位置における関心領域内の強度の積算値を算出する領域積算値算出処理を実行する。 In S5, a region of interest is set in a substantially circular shape on the near-field image acquired in S4, and the integrated value of the intensity in the region of interest at each position is calculated while moving the region of interest on the near-field image. The integrated value calculation process is executed.
図6は、クロストーク性能を評価する場合における領域積算値算出処理及び性能評価処理の内容を説明するための図である。 FIG. 6 is a diagram for explaining the contents of the region integrated value calculation process and the performance evaluation process when the crosstalk performance is evaluated.
S5の処理では、入射コア部14cから最も離れた近傍コア部14aを選択し、この近傍コア部14aの出射端の中心Oaを含む位置に関心領域ROIを設定する。この際、関心領域ROIの中心ORと近傍コア部14aの中心OaのZ軸に沿った高さは等しくなるようにすることが好ましい。 In the process of S5, the neighboring core part 14a farthest from the incident core part 14c is selected, and the region of interest ROI is set at a position including the center Oa of the exit end of the neighboring core part 14a. At this time, the height along the Z-axis of the center Oa of the center O R and the neighboring core portions 14a of the region of interest ROI is preferably set to be equal.
次に、図6において矢印で示すように、設定した関心領域ROIをY軸方向に沿って近傍コア部14a、近傍コア部14b、入射コア部14c、近傍コア部14d、近傍コア部14eの順で移動させながら、各位置において関心領域内の光の強度の積算値を算出する。これにより、図6の中段又は下段で示すように、Y軸の各地点における強度積算値が取得される。図6には、強度積算値の振る舞いについて特徴的な2つの例を示す。なお以下では、このように関心領域を近視野像上で移動させながら各位置における関心領域内の強度積算値を算出することを、近視野像上で関心領域を走査する、ともいう。 Next, as shown by arrows in FIG. 6, the set region of interest ROI is arranged in the order of the neighboring core portion 14a, the neighboring core portion 14b, the incident core portion 14c, the neighboring core portion 14d, and the neighboring core portion 14e along the Y-axis direction. The integrated value of the intensity of light in the region of interest at each position is calculated while moving. Thereby, as shown in the middle or lower part of FIG. 6, the integrated intensity value at each point on the Y axis is acquired. FIG. 6 shows two characteristic examples of the behavior of the integrated intensity value. In the following, calculating the integrated intensity value in the region of interest at each position while moving the region of interest on the near-field image in this way is also referred to as scanning the region of interest on the near-field image.
ここで、略円状の関心領域ROIの半径の好ましい設定について説明する。 Here, a preferable setting of the radius of the substantially circular region of interest ROI will be described.
図7は光導波路1の出射端側の面を示す図である。図7に示すように、コア部14のY軸に沿った方向における幅をWとし、Y軸に沿った方向における隣接するコア部14,14の中心間の距離をPとした場合、関心領域ROIの半径D/2は、下記関係式を満たすような大きさに設定することが好ましい。 FIG. 7 is a view showing a surface on the emission end side of the optical waveguide 1. As shown in FIG. 7, when the width in the direction along the Y axis of the core portion 14 is W and the distance between the centers of adjacent core portions 14 and 14 in the direction along the Y axis is P, the region of interest The ROI radius D / 2 is preferably set to a size that satisfies the following relational expression.
D<2P−W
これにより、関心領域ROIの中心と1つのコア部の中心が一致した時には、関心領域ROIが2つのコア部に跨ることがない。
D <2P-W
Thereby, when the center of the region of interest ROI coincides with the center of one core part, the region of interest ROI does not straddle the two core parts.
次にS6では、上記S5において算出された強度積算値を用いて性能評価処理を実行する。近傍コア部14aから近傍コア部14eまで関心領域ROIを近視野像上で走査すると、Y軸の各地点における強度積算値が得られる。ここで、図6の中段及び下段に示すように、強度積算値は関心領域ROIの中心が入射コア部14cの中心と一致した所で最大となる。また図6の中段及び下段に示すように、関心領域ROIが入射コア部から離れるに従って強度積算値は概ね低下する。なお、関心領域ROIが入射コア部から離れると、関心領域ROIの中心が各近傍コア部の中心に一致したときに強度積算値に局所的な極大が現れる場合(図6の中段の例)と、関心領域ROIの中心が各近傍コア部の中心に一致したときに強度積算値に局所的な極小が現れる場合(図6の下段の例)とがある。入射コア部に入射した光の近傍コア部への漏れに関するクロストーク性能は、関心領域ROIの中心と入射コア部の中心と概ねが一致したときにおける強度積算値と、関心領域ROIの中心と各近傍コア部の中心とが概ね一致したときにおける強度積算値との比(図6中、Xcd及びXce参照)によって表される。 Next, in S6, the performance evaluation process is executed using the integrated intensity value calculated in S5. When the region of interest ROI is scanned on the near-field image from the neighboring core part 14a to the neighboring core part 14e, an integrated intensity value at each point on the Y axis is obtained. Here, as shown in the middle and lower stages of FIG. 6, the integrated intensity value becomes maximum when the center of the region of interest ROI coincides with the center of the incident core part 14 c. Further, as shown in the middle and lower stages of FIG. 6, the integrated intensity value generally decreases as the region of interest ROI moves away from the incident core part. When the region of interest ROI moves away from the incident core portion, a local maximum appears in the intensity integrated value when the center of the region of interest ROI coincides with the center of each neighboring core portion (example in the middle stage of FIG. 6). In some cases, a local minimum appears in the integrated intensity value when the center of the region of interest ROI coincides with the center of each neighboring core portion (example in the lower part of FIG. 6). The crosstalk performance related to the leakage of light incident on the incident core part to the neighboring core part is obtained by integrating the intensity integrated value when the center of the region of interest ROI substantially coincides with the center of the incident core part, the center of the region of interest ROI, It is represented by a ratio (see Xcd and Xce in FIG. 6) with the integrated intensity value when the center of the neighboring core portion substantially coincides.
ところで、上述のように近視野像上で設定される関心領域の形状は、従来の検査装置における受光デバイスの受光面の形状に相当する。また、一般的には受光デバイスとして光ファイバが用いられる。 By the way, the shape of the region of interest set on the near-field image as described above corresponds to the shape of the light receiving surface of the light receiving device in the conventional inspection apparatus. In general, an optical fiber is used as a light receiving device.
図8は、SI型とGI型の光ファイバの屈折率分布を比較した図である。図8に示すように、SI型の光ファイバのコアの屈折率分布は一様である。したがって、SI型の光ファイバは、受光面内であればどこでもコアとクラッドの屈折率差によって定まる開口数で受光することができる。従って本発明では、受光デバイスとしてSI型の光ファイバを用いることを想定する場合、S5の処理では、図8において下段に示すように関心領域内で一定の重み係数を用いて重み付けされた強度の積算値を算出することが好ましい。ここで、重み係数の具体的な値は、想定する光ファイバの開口数によって定められる。 FIG. 8 is a diagram comparing the refractive index distributions of SI type and GI type optical fibers. As shown in FIG. 8, the refractive index distribution of the core of the SI type optical fiber is uniform. Therefore, the SI type optical fiber can receive light with a numerical aperture determined by the difference in refractive index between the core and the clad anywhere within the light receiving surface. Therefore, in the present invention, when it is assumed that an SI type optical fiber is used as the light receiving device, in the process of S5, as shown in the lower part of FIG. It is preferable to calculate the integrated value. Here, the specific value of the weighting coefficient is determined by the assumed numerical aperture of the optical fiber.
一方、GI型の光ファイバのコアの屈折率は、中心において最も高く、中心から外側のクラッドに近づくにしたがって低下する。従ってGI型の光ファイバは、中心から外側に近づくに従って開口数が小さくなり直線成分しか受光できなくなる。従って本発明では、受光デバイスとしてGI型の光ファイバを用いることを想定する場合、S5の処理では、図8において下段に示すように関心領域内で中心から外側へ向かって低下するように上に凸となるような重み係数を設定し、この重み係数を用いて重み付けされた強度の積算値を算出することが好ましい。 On the other hand, the refractive index of the core of the GI type optical fiber is highest at the center, and decreases as it approaches the outer cladding from the center. Therefore, the GI type optical fiber has a smaller numerical aperture as it approaches the outside from the center, and can receive only a linear component. Therefore, in the present invention, when it is assumed that a GI type optical fiber is used as the light receiving device, in the process of S5, as shown in the lower part of FIG. It is preferable to set a weighting factor that is convex, and calculate an integrated value of the weighted intensity using this weighting factor.
図9は、検査装置を用いて光導波路のトレランス性能を評価する手順を示すフローチャートである。ここで光導波路のトレランス性能とは、光導波路のコア部と受光デバイスとが中心位置からYZ軸方向に所定間隔だけオフセットした状態で光結合されたときのこれらの結合部における損失に関する性能をいう。より具体的には、このトレランス性能は、例えば、ピーク値からの損失増加量が所定の許容値(例えば、1dBや3dB等)以下となる受光デバイスの中心位置からの位置ずれ量によって定量的に評価される。以下では、このような位置ずれ量をトレランス値と定義し、このトレランス値を具体的に算出する手順について説明する。 FIG. 9 is a flowchart showing a procedure for evaluating the tolerance performance of the optical waveguide using the inspection apparatus. Here, the tolerance performance of the optical waveguide refers to the performance related to the loss in the coupling portion when the core portion of the optical waveguide and the light receiving device are optically coupled in a state offset from the center position by a predetermined distance in the YZ axis direction. . More specifically, the tolerance performance is quantitatively determined by, for example, the amount of positional deviation from the center position of the light receiving device where the amount of increase in loss from the peak value is a predetermined allowable value (for example, 1 dB or 3 dB). Be evaluated. In the following, such a positional deviation amount is defined as a tolerance value, and a procedure for specifically calculating the tolerance value will be described.
S11では、光導波路に形成された複数のコア部14a〜14cのうちの1つを選択し、これを入射コア部と定義する。図4には、符号“14c”が付されたコア部を入射コア部と定義する。S12及びS13では、図3のS2及びS3と同様の手順に従って光源及び測定ユニットの基準位置及び基準姿勢を設定するとともに、これら光源及び測定ユニットを基準位置及び基準姿勢に固定する。S14では、図3のS4と同様の手順に従って入射コア部の出射端から出射する光の近視野像を撮像する。 In S11, one of the plurality of core portions 14a to 14c formed in the optical waveguide is selected and defined as an incident core portion. In FIG. 4, the core part to which the reference numeral “14c” is attached is defined as the incident core part. In S12 and S13, the reference position and reference orientation of the light source and measurement unit are set according to the same procedure as in S2 and S3 of FIG. 3, and the light source and measurement unit are fixed to the reference position and reference orientation. In S14, a near-field image of the light emitted from the exit end of the incident core unit is taken according to the same procedure as S4 in FIG.
S15では、S14で取得した近視野像上に略円状の関心領域を設定するとともに、この関心領域を近視野像上で移動させながら各位置における関心領域内の強度の積算値を算出する領域積算値算出処理を実行する。 In S15, a substantially circular region of interest is set on the near-field image acquired in S14, and an integrated value of the intensity in the region of interest at each position is calculated while moving the region of interest on the near-field image. The integrated value calculation process is executed.
図10は、トレランス性能を評価する場合における領域積算値算出処理及び性能評価処理の内容を説明するための図である。 FIG. 10 is a diagram for explaining the contents of the region integrated value calculation process and the performance evaluation process when the tolerance performance is evaluated.
S15の処理では、始めに、関心領域ROIの中心ORの走査経路を入射コア部14cの近傍に設定する。この走査経路は、例えば図10に示すように、Y軸と平行でありかつ入射コア部14cの中心Ocを通過する経路P1と、この経路P1からZ軸の正方向に沿って間隔dだけ離れた経路P2と、経路P1からZ軸の負方向に沿って間隔dだけ離れた経路P3とで構成される。なお走査経路は、図10に例示するものに限らない。例えば、走査経路に沿って関心領域ROIを移動させたときに、関心領域ROI内に常に入射コア部14cの出射端の少なくとも一部が含まれていれば、出射経路はどのような経路でもよい。次に、S15の処理では、設定した走査経路に沿って関心領域ROIを近視野像上で走査し、各地点における強度積算値を算出する。 In step S15, first, it sets the scanning path of the center O R of the region of interest ROI in the vicinity of the incident core portion 14c. For example, as shown in FIG. 10, the scanning path is parallel to the Y axis and is separated from the path P1 passing through the center Oc of the incident core portion 14c by a distance d along the positive direction of the Z axis from the path P1. Path P2 and a path P3 spaced from the path P1 by a distance d along the negative direction of the Z-axis. The scanning path is not limited to that illustrated in FIG. For example, when the region of interest ROI is moved along the scanning path, the exit path may be any path as long as at least a part of the exit end of the incident core portion 14c is always included in the region of interest ROI. . Next, in the process of S15, the region of interest ROI is scanned on the near-field image along the set scanning path, and the integrated intensity value at each point is calculated.
次にS16では、上記S15において算出された強度積算値を用いて性能評価処理を実行する。例えば、図6の経路P1に沿って関心領域ROIを走査すると、図10の右側に示すように、Y軸の各地点における強度積算値が得られる。この図10の右側に示すように、強度積算値は関心領域ROIの中心が入射コア部14cの中心と一致した所で最大となる。そして強度積算値は、関心領域ROIの中心が入射コア部14cの中心から離れるに従って小さくなる。このように、受光デバイスと光導波路の入射コア部とが中心からオフセットして光結合されたときにおけるトレランス性能は、各位置における強度積算値と中心が一致したときにおける強度積算値との比によって表される。また、図10に示すように、所定の許容損失(例えば、1dB)に対するトレランス値は、上記強度積算値の比が許容損失となる点の間の距離として算出される。 Next, in S16, performance evaluation processing is executed using the integrated intensity value calculated in S15. For example, when the region of interest ROI is scanned along the path P1 in FIG. 6, as shown on the right side in FIG. 10, the integrated intensity value at each point on the Y axis is obtained. As shown on the right side of FIG. 10, the integrated intensity value becomes maximum when the center of the region of interest ROI coincides with the center of the incident core portion 14 c. The integrated intensity value becomes smaller as the center of the region of interest ROI becomes farther from the center of the incident core portion 14c. As described above, the tolerance performance when the light receiving device and the incident core portion of the optical waveguide are optically coupled with an offset from the center depends on the ratio between the integrated intensity value at each position and the integrated intensity value when the centers coincide. expressed. As shown in FIG. 10, the tolerance value for a predetermined allowable loss (for example, 1 dB) is calculated as a distance between points at which the ratio of the intensity integrated values becomes the allowable loss.
以上、本発明の一実施形態について説明したが、本発明はこれに限るものではない。本発明の趣旨の範囲内で、細部の構成を適宜変更してもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to this. Within the scope of the gist of the present invention, the detailed configuration may be changed as appropriate.
例えば、上記実施形態では、光源及び測定ユニットの位置をそれぞれで設定した基準位置及び基準姿勢に固定した状態で近視野像を撮像し(図3のS1〜S4及び図9のS11〜S14参照)、この1つの近視野像上で関心領域を走査することによって得られた強度積算値を用いてクロストーク性能やトレランス性能を評価したが(図3のS5〜S6及び図9のS15〜S16参照)、本発明はこれに限らない。例えば、測定ユニットの位置を基準位置及び基準姿勢に固定し、一方で光源の位置を光導波路の入射端の近傍で移動させながら、複数回にわたって近視野像の撮像(例えば、図3のS4参照)と領域積算値算出処理(例えば、図3のS5参照)とを繰り返し行うことにより、光源と光導波路の入射端との相対位置をずらしたときにおける関心領域内の強度積算値を相対位置ごとに算出し、ここで得られた強度積算値を用いてクロストーク性能やトレランス性能を評価してもよい。このように、光源の位置を変えても同様の評価を行うことができる。なお、この場合、光源の位置を変えながら近視野像を複数撮像しておき、これら複数の近視野像に対し領域積算値算出処理を繰り返し行うことにより、光源と光導波路の入射端との相対位置をずらしたときにおける関心領域内の強度積算値を相対位置ごとに算出してもよい。 For example, in the above-described embodiment, a near-field image is captured in a state where the positions of the light source and the measurement unit are fixed to the reference position and the reference posture respectively set (see S1 to S4 in FIG. 3 and S11 to S14 in FIG. 9). The crosstalk performance and tolerance performance were evaluated using the integrated intensity value obtained by scanning the region of interest on this one near-field image (see S5 to S6 in FIG. 3 and S15 to S16 in FIG. 9). The present invention is not limited to this. For example, the position of the measurement unit is fixed at the reference position and the reference posture, while the position of the light source is moved in the vicinity of the incident end of the optical waveguide while taking a near-field image multiple times (for example, see S4 in FIG. ) And region integrated value calculation processing (for example, refer to S5 in FIG. 3), the integrated intensity value in the region of interest for each relative position when the relative position between the light source and the incident end of the optical waveguide is shifted is determined. And the crosstalk performance and tolerance performance may be evaluated using the integrated intensity value obtained here. Thus, the same evaluation can be performed even if the position of the light source is changed. In this case, a plurality of near-field images are captured while changing the position of the light source, and the region integrated value calculation process is repeatedly performed on the plurality of near-field images, so that the relative relationship between the light source and the incident end of the optical waveguide The integrated intensity value in the region of interest when the position is shifted may be calculated for each relative position.
また上記実施形態では、光源及び測定ユニットの姿勢をそれぞれの光軸が入射コア部の光軸と平行になるように設定したが、本発明はこれに限らない。例えば、入射コア部の光軸に対して所定の角度で傾斜するように光源や測定ユニットの姿勢を設定してもよい。例えば、光源の位置を基準位置及び基準姿勢に固定し、一方で測定ユニットの光軸と入射コア部の光軸との成す角度を変えながら、複数回にわたっての近視野像の撮像(例えば、図3のS4参照)と、領域積算値算出処理(例えば、図3のS5参照)とを繰り返し行うことにより、関心領域内の強度積算値を撮像角度ごとに算出し、ここで得られた強度積算値を用いて角度ずれに対するトレランス性能を評価してもよい。 Moreover, in the said embodiment, although the attitude | position of the light source and the measurement unit was set so that each optical axis might be parallel to the optical axis of an incident core part, this invention is not limited to this. For example, the posture of the light source or the measurement unit may be set so as to be inclined at a predetermined angle with respect to the optical axis of the incident core portion. For example, the position of the light source is fixed at the reference position and the reference posture, while the near-field image is captured a plurality of times while changing the angle formed by the optical axis of the measurement unit and the optical axis of the incident core (for example, FIG. 3 (see S4 in FIG. 3) and region integrated value calculation processing (for example, see S5 in FIG. 3), the intensity integrated value in the region of interest is calculated for each imaging angle, and the intensity integration obtained here The tolerance performance against angular deviation may be evaluated using the value.
また上記実施形態では、関心領域の形状を指定半径D/2で特定される真円状としたが、本発明はこれに限らない。上述のように、本発明において関心領域の形状は、従来の検査装置において光導波路の端面に突き当てて用いられる受光デバイスの受光面の形状に相当する。従って、関心領域の形状は、受光デバイスの受光面の形状として従来から採用されていた形状はもちろんのこと、従来にはない形状であってもよい。 Moreover, in the said embodiment, although the shape of the region of interest was made into the perfect circle shape specified by the designated radius D / 2, this invention is not limited to this. As described above, the shape of the region of interest in the present invention corresponds to the shape of the light receiving surface of the light receiving device that is used in contact with the end face of the optical waveguide in the conventional inspection apparatus. Therefore, the shape of the region of interest may be a shape not conventionally used as well as the shape conventionally adopted as the shape of the light receiving surface of the light receiving device.
また上記実施形態では、コア部の出射端面から直接出射する光の近視野像を撮像する場合について説明したが、本発明はこれに限らない。例えば、コア部の出射端面に設けられたミラーから出射する光の近視野像を撮像し、これを用いてクロストーク性能やトレランス性能を評価してもよい。 Moreover, although the said embodiment demonstrated the case where the near-field image of the light directly radiate | emitted from the output end surface of a core part was demonstrated, this invention is not limited to this. For example, a near-field image of light emitted from a mirror provided on the exit end face of the core part may be captured and used to evaluate crosstalk performance and tolerance performance.
1…光導波路
11,12…クラッド層
13…コア層
14…コア部
14c…入射コア部
14a,14b,14d,14e…近傍コア部
15…クラッド部
2…検査装置
3…センターステージ
4…光源
41…発光装置
42…光ファイバ
5…光源ステージ
52…クランプ
6…測定ユニット
61…NPF用光学系
62…コデジタルカメラ
63…対物レンズ
7…測定ステージ
9…コンピュータ
91…コンピュータ本体
92…入力装置
93…表示装置
ROI…関心領域
OR…関心領域の中心
Oa…近傍コア部の中心
Oc…入射コア部の中心
W…コア部の幅
P…隣接するコア部の中心間の距離
D…関心領域の直径
DESCRIPTION OF SYMBOLS 1 ... Optical waveguide 11, 12 ... Cladding layer 13 ... Core layer 14 ... Core part 14c ... Incident core part 14a, 14b, 14d, 14e ... Neighboring core part 15 ... Cladding part 2 ... Inspection apparatus 3 ... Center stage 4 ... Light source 41 DESCRIPTION OF SYMBOLS ... Light-emitting device 42 ... Optical fiber 5 ... Light source stage 52 ... Clamp 6 ... Measurement unit 61 ... Optical system for NPF 62 ... Co-digital camera 63 ... Objective lens 7 ... Measurement stage 9 ... Computer 91 ... Computer main body 92 ... Input device 93 ... the diameter of the distance D ... ROI between the display device ROI ... ROI O R ... center of width P ... adjacent core portion of the center W ... core portion of the center Oc ... incident core portion of the center Oa ... near the core part of the region of interest
Claims (9)
前記入射端に光を入射しながら、前記出射端の近傍に設けられた撮像手段を用いて当該出射端から出射する光の近視野像を撮像する撮像工程と、
前記撮像工程において撮像された近視野像から、所定の形状の領域を選択し、当該領域内の強度の積算値を算出する領域積算値算出工程と、
前記積算値を用いて前記光導波路の性能を評価する性能評価工程と、を備えることを特徴とする光導波路の検査方法。 An inspection method for an optical waveguide having a plurality of elongated core portions extending from an incident end to an output end,
An imaging step of capturing a near-field image of light exiting from the exit end using an imaging means provided in the vicinity of the exit end while light is incident on the entrance end;
A region integrated value calculating step of selecting a region having a predetermined shape from the near-field image captured in the imaging step and calculating an integrated value of the intensity in the region;
And a performance evaluation step for evaluating the performance of the optical waveguide using the integrated value.
D<2P−W
の関係を有する略円状の領域を選択することを特徴とする請求項1又は2に記載の光導波路の検査方法。 In the area integrated value calculating step, the width in the direction along the straight line of the plurality of core parts arranged in a straight line at the output end of the optical waveguide is defined as W, and between the centers of the core parts in the direction along the straight line. When the distance is P and the diameter of the region is D,
D <2P-W
3. The method for inspecting an optical waveguide according to claim 1, wherein a substantially circular region having the following relationship is selected.
前記複数のコア部のうちの1つであって光が入射されるコア部を入射コア部と定義し、当該入射コア部の近傍のコア部を近傍コア部と定義し、
前記撮像工程では、前記入射コア部の入射端に光を入射しながら、当該入射コア部及び近傍コア部の出射端の近傍に設けられた前記撮像手段を用いて、これら出射端から出射する光の近視野像を撮像し、
前記領域積算値算出工程では、前記撮像工程において撮像された近視野像上で、前記入射コア部の出射端の少なくとも一部を含む出射領域と前記近傍コア部の出射端の少なくとも一部を含む近傍領域とを選択し、前記出射領域の強度の積算値と前記近傍領域の強度の積算値とを算出し、
前記性能評価工程では、前記出射領域及び前記近傍領域に対して算出された積算値を用いて、前記入射コア部に入射した光の前記近傍コア部への漏れに関するクロストーク性能を評価することを特徴とする請求項1から3の何れかに記載の光導波路の検査方法。 The optical waveguide is provided along the row so that the emission ends of the plurality of core portions are flush with each other,
A core part that is one of the plurality of core parts and into which light is incident is defined as an incident core part, and a core part in the vicinity of the incident core part is defined as a neighboring core part;
In the imaging step, light is emitted from these emission ends using the imaging means provided in the vicinity of the emission ends of the incident core portion and the adjacent core portion while light is incident on the incidence end of the incident core portion. Take a near-field image of
In the area integrated value calculating step, on the near-field image imaged in the imaging step, an emission region including at least a part of the exit end of the incident core part and at least a part of the exit end of the neighboring core part are included. Select a nearby region, calculate an integrated value of the intensity of the emission region and an integrated value of the intensity of the nearby region,
In the performance evaluation step, the crosstalk performance relating to leakage of light incident on the incident core part to the neighboring core part is evaluated using an integrated value calculated for the emission area and the neighboring area. The optical waveguide inspection method according to claim 1, wherein the optical waveguide is inspected.
前記撮像工程では、前記入射コア部の入射端に光を入射しながら、当該入射コア部の出射端前の近傍に設けられた前記撮像手段を用いて、当該入射コア部の出射端から出射する光の近視野像を撮像し、
前記領域積算値算出工程では、前記撮像工程において撮像された近視野像上で、前記入射コア部の出射端の少なくとも一部を含む出射領域を選択し、当該出射領域と前記出射端との相対位置を変えながら当該出射領域内の強度の積算値を前記相対位置ごとに算出し、
前記性能評価工程では、前記相対位置ごとに算出された積算値を用いて、前記光導波路の出射端と受光デバイスとがオフセットした状態で光結合されたときのこれらの結合部における損失であるトレランス性能を評価することを特徴とする請求項1から3の何れかに記載の光導波路の検査方法。 A core part that is one of the plurality of core parts and into which light is incident is defined as an incident core part,
In the imaging step, the light is incident on the incident end of the incident core portion, and is emitted from the output end of the incident core portion using the imaging means provided in the vicinity of the incident end of the incident core portion. Take a near-field image of light,
In the area integrated value calculation step, an emission region including at least a part of the emission end of the incident core portion is selected on the near-field image captured in the imaging step, and the emission region and the emission end are relatively Calculate the integrated value of the intensity in the emission region for each relative position while changing the position,
In the performance evaluation step, a tolerance that is a loss in the coupling portion when the output end of the optical waveguide and the light receiving device are optically coupled in an offset state using the integrated value calculated for each relative position. 4. The optical waveguide inspection method according to claim 1, wherein performance is evaluated.
前記光源を前記入射コア部の入射端の近傍で移動させながら前記撮像工程と前記領域積算値算出工程とを繰り返し行うことにより、前記光源と前記入射端との相対位置をずらしたときにおける前記領域内の強度の積算値を前記相対位置ごとに算出する光源走査工程をさらに備え、
前記性能評価工程では、前記光源走査工程において前記相対位置ごとに算出された積算値を用いて前記光導波路の性能を評価することを特徴とする請求項1から3の何れかに記載の光導波路の検査方法。 A core part that is one of the plurality of core parts and receives light from a light source is defined as an incident core part,
The region when the relative position between the light source and the incident end is shifted by repeatedly performing the imaging step and the region integrated value calculating step while moving the light source in the vicinity of the incident end of the incident core portion. Further comprising a light source scanning step of calculating an integrated value of the intensity for each relative position,
4. The optical waveguide according to claim 1, wherein in the performance evaluation step, the performance of the optical waveguide is evaluated using an integrated value calculated for each relative position in the light source scanning step. 5. Inspection method.
前記光源を前記入射コア部の入射端の近傍で移動させながら前記撮像工程を繰り返し行うことにより、前記光源と前記入射端との相対位置をずらしたときにおける前記近視野像を複数撮像し、当該複数の近視野像を用いて前記領域積算値算出工程を繰り返し行うことにより、前記光源と前記入射端との相対位置をずらしたときにおける前記領域内の強度の積算値を前記相対位置ごとに算出する光源走査工程をさらに備え、
前記性能評価工程では、前記光源走査工程において前記相対位置ごとに算出された積算値を用いて前記光導波路の性能を評価することを特徴とする請求項1から3の何れかに記載の光導波路の検査方法。 A core part that is one of the plurality of core parts and receives light from a light source is defined as an incident core part,
By repeatedly performing the imaging step while moving the light source in the vicinity of the incident end of the incident core portion, a plurality of the near-field images when the relative position between the light source and the incident end is shifted are captured, and By repeatedly performing the region integrated value calculation step using a plurality of near-field images, the integrated value of the intensity in the region when the relative position between the light source and the incident end is shifted is calculated for each relative position. Further comprising a light source scanning step,
4. The optical waveguide according to claim 1, wherein in the performance evaluation step, the performance of the optical waveguide is evaluated using an integrated value calculated for each relative position in the light source scanning step. 5. Inspection method.
前記光導波路が載置されるステージと、
前記ステージに載置された光導波路の入射端に光を入射する光源と、
前記ステージに載置された光導波路の出射端から離間して設けられ、当該出射端のコア部から出射する光の近視野像を撮像する撮像手段と、
前記撮像工程において撮像された画像から所定の形状の領域を選択し、当該領域内の強度の積算値を算出する画像処理手段と、
前記画像処理手段によって算出された積算値を用いて前記光導波路の性能を評価する性能評価手段と、を備えることを特徴とする光導波路の検査装置。 An inspection apparatus for an optical waveguide having a plurality of elongated core portions extending from an incident end to an exit end,
A stage on which the optical waveguide is mounted;
A light source that makes light incident on an incident end of an optical waveguide mounted on the stage;
An imaging unit that is provided apart from the exit end of the optical waveguide placed on the stage, and that captures a near-field image of light exiting from the core portion of the exit end;
Image processing means for selecting a region of a predetermined shape from the image captured in the imaging step, and calculating an integrated value of the intensity in the region;
An optical waveguide inspection apparatus comprising: a performance evaluation unit that evaluates the performance of the optical waveguide using an integrated value calculated by the image processing unit.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014217957A JP6398608B2 (en) | 2014-10-27 | 2014-10-27 | Optical waveguide inspection method and inspection apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014217957A JP6398608B2 (en) | 2014-10-27 | 2014-10-27 | Optical waveguide inspection method and inspection apparatus |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2016085120A true JP2016085120A (en) | 2016-05-19 |
| JP6398608B2 JP6398608B2 (en) | 2018-10-03 |
Family
ID=55972830
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014217957A Active JP6398608B2 (en) | 2014-10-27 | 2014-10-27 | Optical waveguide inspection method and inspection apparatus |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6398608B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017145629A1 (en) * | 2016-02-26 | 2017-08-31 | 株式会社フジクラ | Multi-core fiber cross talk measuring method and measuring apparatus |
| JP2017156335A (en) * | 2016-02-26 | 2017-09-07 | 株式会社フジクラ | Method and apparatus for measuring crosstalk of multi-core fiber |
| JP2018138910A (en) * | 2017-02-24 | 2018-09-06 | 株式会社フジクラ | Device and method for measuring characteristics of multi-core fiber |
| CN114062882A (en) * | 2020-08-03 | 2022-02-18 | 日本麦可罗尼克斯股份有限公司 | Measurement system and measurement method |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130001405A1 (en) * | 2011-07-01 | 2013-01-03 | James Albert Walker | Optoelectronic-Device Wafer Probe and Method Therefor |
| JP2014173849A (en) * | 2013-03-05 | 2014-09-22 | Synergy Optosystems Co Ltd | Detection device and detection method |
-
2014
- 2014-10-27 JP JP2014217957A patent/JP6398608B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130001405A1 (en) * | 2011-07-01 | 2013-01-03 | James Albert Walker | Optoelectronic-Device Wafer Probe and Method Therefor |
| JP2014173849A (en) * | 2013-03-05 | 2014-09-22 | Synergy Optosystems Co Ltd | Detection device and detection method |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017145629A1 (en) * | 2016-02-26 | 2017-08-31 | 株式会社フジクラ | Multi-core fiber cross talk measuring method and measuring apparatus |
| JP2017156335A (en) * | 2016-02-26 | 2017-09-07 | 株式会社フジクラ | Method and apparatus for measuring crosstalk of multi-core fiber |
| US10444113B2 (en) | 2016-02-26 | 2019-10-15 | Fujikura Ltd. | Method of measuring crosstalk of multicore fiber and apparatus of measuring the same |
| JP2018138910A (en) * | 2017-02-24 | 2018-09-06 | 株式会社フジクラ | Device and method for measuring characteristics of multi-core fiber |
| US10488297B2 (en) | 2017-02-24 | 2019-11-26 | Fujikura Ltd. | Characteristic-measuring apparatus and characteristic-measuring method for multi-core fiber |
| CN114062882A (en) * | 2020-08-03 | 2022-02-18 | 日本麦可罗尼克斯股份有限公司 | Measurement system and measurement method |
| CN114062882B (en) * | 2020-08-03 | 2024-03-19 | 日本麦可罗尼克斯股份有限公司 | Measuring systems and measuring methods |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6398608B2 (en) | 2018-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6818702B2 (en) | Optical inspection equipment and optical inspection method | |
| JP6398608B2 (en) | Optical waveguide inspection method and inspection apparatus | |
| EP3431918B1 (en) | Multichannel confocal sensor and related method for inspecting a sample | |
| JP5786528B2 (en) | Core positioning method and alignment device | |
| TW201829977A (en) | Inclination measuring device and control system | |
| CN111426287A (en) | Parallel color confocal flatness measuring system | |
| CN108983370B (en) | System and method for characterizing the position of an optical component in an optical module | |
| US7894053B2 (en) | Inspection apparatus | |
| JP2010139483A (en) | Inspection system and inspection method of optical waveguide | |
| JP2020126050A (en) | Plastic optical fiber core diameter measuring method, plastic optical fiber core diameter measuring apparatus used therefor, plastic optical fiber defect detection method, and plastic optical fiber defect detecting apparatus used therefor | |
| US20210157295A1 (en) | Hybrid Wide Field of View Target System | |
| JP6496699B2 (en) | Apparatus and method for measuring eccentricity of multi-fiber optical connector ferrule | |
| JP2021165707A (en) | Lens array inspection device | |
| US20130163007A1 (en) | Lens array and lens edge detection method thereof | |
| JP2015081779A (en) | Detection method for light and measurement method for optical transmission loss | |
| US10571244B2 (en) | Measuring surface roughness | |
| JP7347673B2 (en) | Optical fiber evaluation device and optical fiber evaluation method | |
| CN204831214U (en) | Shape measuring device | |
| WO2017104522A1 (en) | Method for testing optical waveguide and method for producing optical waveguide in which said method is used | |
| KR101602436B1 (en) | Improved 3-D measurement using fiber optic devices | |
| JP7215161B2 (en) | Optical waveguide evaluation method and optical module manufacturing method | |
| KR101546906B1 (en) | Method for position detection and optical alignment of microhole | |
| JP6097123B2 (en) | 3D measurement system | |
| Filipenko et al. | Improving of photonic crystal fibers connection quality using positioning by the autoconvolution method | |
| JP7289780B2 (en) | Eccentricity measuring method and eccentricity measuring device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170926 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180531 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180612 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180628 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180807 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180820 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6398608 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |