[go: up one dir, main page]

JP2016125441A - Windmill blade - Google Patents

Windmill blade Download PDF

Info

Publication number
JP2016125441A
JP2016125441A JP2015001313A JP2015001313A JP2016125441A JP 2016125441 A JP2016125441 A JP 2016125441A JP 2015001313 A JP2015001313 A JP 2015001313A JP 2015001313 A JP2015001313 A JP 2015001313A JP 2016125441 A JP2016125441 A JP 2016125441A
Authority
JP
Japan
Prior art keywords
fiber
elastic modulus
fibers
reinforced plastic
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015001313A
Other languages
Japanese (ja)
Inventor
後藤 和也
Kazuya Goto
和也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015001313A priority Critical patent/JP2016125441A/en
Publication of JP2016125441A publication Critical patent/JP2016125441A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a windmill blade which comprises a spar cap formed from fiber-reinforced plastic, and has increased fatigue strength and is excellent in cost performance.SOLUTION: The windmill blade is provided that comprises a spar cap formed from fiber-reinforced plastic, the reinforcing fiber used in the fiber-reinforced plastic being two or more kinds of fiber with different elastic modulus. It is preferable that two or more kinds of fibers with different elastic modulus contain pitch-based carbon fiber and/or polyacrylonitrile carbon fiber. It is preferable that two or more kinds of fibers with different elastic modulus are arranged in such a way that their elastic modulus becomes low from a side where tensile stress is generated caused by bending deformation toward a side where a compression stress is generated.SELECTED DRAWING: Figure 1

Description

本発明は、風力発電に使用されるスパーキャップを備えた風車翼に関するものであり、繊維強化プラスチック製のスパーキャップにおいて高い曲げ剛性を有し、風車翼全体の曲げ剛性も向上させることによって変形量を低減した、疲労特性に優れた風車翼に関する。 The present invention relates to a wind turbine blade provided with a spar cap used for wind power generation, and has a high bending rigidity in a spar cap made of fiber reinforced plastic, and the amount of deformation is improved by improving the bending rigidity of the entire wind turbine blade. The present invention relates to a wind turbine blade with reduced fatigue and excellent fatigue characteristics.

近年、再生可能エネルギーの中でもコストパフォーマンスに優れる風力発電が注目されている。特に大型風車は1機当りの発電量も大きく、コストパフォーマンスに優れるので、風車の大型化が進んでいる。 In recent years, wind power generation, which is excellent in cost performance among renewable energies, has attracted attention. In particular, large windmills have a large power generation amount per unit and are excellent in cost performance.

大型風車はコストパフォーマンスに優れるものの、その風車翼は絶えず変動する風を数十年も受けて変形するため、非常に厳しい疲労環境下におかれるので、疲労強度を向上させることが重要となる。疲労強度が向上すれば風車翼の寿命は長くなるので、更にコストパフォーマンスの向上が期待できる。 Although a large wind turbine is excellent in cost performance, its wind turbine blades are deformed by being constantly subjected to fluctuating winds for several decades, so that they are placed in a very severe fatigue environment, so it is important to improve the fatigue strength. If the fatigue strength is improved, the service life of the wind turbine blade will be extended, so further improvement in cost performance can be expected.

このような要求に対して例えば特開2013−151927にはスパーキャップの補強繊維として炭素繊維を用いる技術について開示されている。炭素繊維は軽量かつ高弾性の繊維であり、ガラス繊維を用いたスパーキャップより格段に性能が向上する。 In response to such a requirement, for example, Japanese Patent Application Laid-Open No. 2013-151927 discloses a technique using carbon fiber as a reinforcing fiber for a spar cap. Carbon fiber is a lightweight and highly elastic fiber, and its performance is significantly improved over a spar cap using glass fiber.

特開2013−151927号公報JP 2013-151927 A

本発明の課題は、繊維強化プラスチックで形成されたスパーキャップを備えた風車翼において、その疲労強度を向上させたコストパフォーマンスに優れる風車翼を提供することである。 An object of the present invention is to provide a wind turbine blade having a superior cost performance with improved fatigue strength in a wind turbine blade having a spar cap formed of fiber reinforced plastic.

本発明は、かかる課題を解決するために次の手段を採用するものである。すなわち、繊維強化プラスチックで形成されたスパーキャップを備えた風車翼であって、該繊維強化プラスチックに使用する強化繊維が弾性率の異なる2種類以上の繊維である風車翼である。
弾性率の異なる2種類以上の繊維が、ピッチ系炭素繊維および/またはポリアクリロニトリル系炭素繊維を含む風車翼であることが好ましい。
弾性率の異なる2種類以上の繊維が、曲げ変形による引張応力が発生する側から圧縮応力が発生する側に向かって弾性率が低くなるように配置されている風車翼であることが好ましい。
The present invention employs the following means in order to solve such problems. That is, a wind turbine blade provided with a spar cap formed of fiber reinforced plastic, wherein the reinforcing fiber used for the fiber reinforced plastic is two or more types of fibers having different elastic moduli.
The two or more types of fibers having different elastic moduli are preferably wind turbine blades including pitch-based carbon fibers and / or polyacrylonitrile-based carbon fibers.
Two or more types of fibers having different elastic moduli are preferably wind turbine blades arranged so that the elastic modulus decreases from the side where tensile stress due to bending deformation occurs to the side where compressive stress occurs.

本発明の風車翼は、軽量、高剛性で、かつ疲労強度にも優れた構造を備えるため、この風車翼を使用した風車は寿命が長くなり、コストパフォーマンスに優れ、発電コストの低減につながることが期待できる。また同じ風による曲げ荷重を受けた時の変形量が小さいので、受風面積の低下を防ぎ、高いエネルギー変換効率が期待できる。 Since the wind turbine blade of the present invention has a structure that is lightweight, highly rigid, and excellent in fatigue strength, the wind turbine using this wind turbine blade has a long life, excellent cost performance, and leads to reduction in power generation cost. Can be expected. Moreover, since the amount of deformation when subjected to a bending load caused by the same wind is small, a reduction in the wind receiving area can be prevented and high energy conversion efficiency can be expected.

また本発明の技術は、例えば潮流発電の羽根のように、常に同じ方向から荷重を受けて、曲げ変形を受けるような材料にも応用することができる。すなわち常に引張応力が発生する側に、より弾性率の高い強化繊維からなる繊維強化プラスチックを配置することにより、同じ曲げ荷重でも変形量が抑えられるので、製品の寿命向上の効果が期待できる。 The technology of the present invention can also be applied to a material that receives a load from the same direction and is subjected to bending deformation, such as a blade of a tidal power generation. That is, by arranging a fiber reinforced plastic made of reinforced fibers having a higher elastic modulus on the side where tensile stress is always generated, the amount of deformation can be suppressed even with the same bending load, so that the effect of improving the product life can be expected.

スパーキャップ構造を有する風車翼における断面の一例を示す模式図である。It is a schematic diagram which shows an example of the cross section in the windmill blade which has a spar cap structure. シェアウェブの構造例を示す模式図である。It is a schematic diagram which shows the structural example of a share web. 繊維強化プラスチックの積層角度の表示を示す図である。It is a figure which shows the display of the lamination angle of a fiber reinforced plastic. 実施例、比較例における荷重を示す図である。It is a figure which shows the load in an Example and a comparative example.

以下本発明を、図面を参照しながらさらに詳細に説明する。図1は代表的な、スパーキャップを有する風車翼の断面図である。図に示す通り、スパーキャップは風車の風によって生じる曲げ荷重を受ける主たる部位であり、この部分の剛性が風車翼全体の曲げ変形量の抑制を担う。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a cross-sectional view of a typical wind turbine blade having a spar cap. As shown in the figure, the spar cap is a main part that receives a bending load generated by wind of the windmill, and the rigidity of this part is responsible for suppressing the amount of bending deformation of the entire windmill blade.

風車翼は風を受けて曲げ変形するが、曲げられる方向はおおよそ常に一定である。図1のケースでは常に上方面から風を受けるので図中の上側が凸に曲げ変形する。(以下、風車翼に生じる曲げ変形に基づき、風上側を凸側、風下側を凹側呼ぶことがある。)   The windmill blade is bent and deformed by the wind, but the direction in which it is bent is almost always constant. In the case of FIG. 1, since the wind is always received from the upper surface, the upper side in the figure is bent and deformed to be convex. (Hereinafter, the windward side may be called the convex side and the leeward side may be called the concave side based on the bending deformation generated in the wind turbine blade.)

すなわち、それぞれのスパーキャップとしては、凸側のスパーキャップは常に引張変形を受け、凹側のスパーキャップは圧縮変形を受ける。   That is, as each spar cap, the convex spar cap always undergoes tensile deformation, and the concave spar cap undergoes compressive deformation.

そこで本発明においては、引張変形を受ける凸側に弾性率の高い強化繊維で補強された繊維強化プラスチック製のスパーキャップを配置し、凹側には低い弾性率の強化繊維で補強された繊維強化プラスチック製のスパーキャップを配置する。   Accordingly, in the present invention, a fiber reinforced plastic spar cap reinforced with a high elastic modulus reinforcing fiber is disposed on the convex side subjected to tensile deformation, and a fiber reinforced with a low elastic modulus reinforcing fiber is disposed on the concave side. Place a plastic spar cap.

ここでいう弾性率とは強化繊維の引張弾性率(ヤング率)のことであり、「高い、低い」は相対的なものである。高い弾性率と低い弾性率の比率は特に限定はないが、高い弾性率が低い弾性率の2倍以上であれば風車翼全体としての曲げ変形がより抑えられ、好ましい。   The elastic modulus here means the tensile elastic modulus (Young's modulus) of the reinforcing fiber, and “high” and “low” are relative. The ratio between the high elastic modulus and the low elastic modulus is not particularly limited, but it is preferable that the high elastic modulus is at least twice that of the low elastic modulus because bending deformation as a whole of the wind turbine blade is further suppressed.

このような弾性率の異なる強化繊維の組み合わせとしては、例えば弾性率の高い強化繊維として弾性率が600−1000GPaのピッチ系炭素繊維と、弾性率の低い強化繊維として弾性率が200−500GPaのポリアクリロニトリル系炭素繊維の組み合わせが最も好適であるが、弾性率が600−1000GPaのピッチ系炭素繊維とガラス繊維、あるいは弾性率が200−500GPaのポリアクリロニトリル系の炭素繊維とガラス繊維、あるいはこれら3つを同時に用いることも本発明の好適な形態である。   Examples of such a combination of reinforcing fibers having different elastic moduli include a pitch-based carbon fiber having an elastic modulus of 600 to 1000 GPa as a reinforcing fiber having a high elastic modulus and a polycrystal having an elastic modulus of 200 to 500 GPa as a reinforcing fiber having a low elastic modulus. A combination of acrylonitrile-based carbon fibers is most suitable, but pitch-based carbon fibers and glass fibers having an elastic modulus of 600-1000 GPa, or polyacrylonitrile-based carbon fibers and glass fibers having an elastic modulus of 200-500 GPa, or these three. The simultaneous use of is also a preferred form of the present invention.

また曲げ変形を受ける風車翼の凸側のスパーキャップに用いる強化繊維の全てに高い弾性率の強化繊維を用いてもよいし、一つのスパーキャップの中での曲げ変形を考え、その凸側に高い弾性率の強化繊維を用い、凹側に低弾性の強化繊維を用いてもよい。その場合は一本のスパーキャップ内で凸側から凹側に向かって弾性率が低くなるように、弾性率の異なる2種類以上の強化繊維からなる繊維強化プラスチックを配置すればよい。   In addition, reinforcing fibers having a high elastic modulus may be used for all the reinforcing fibers used for the spar cap on the convex side of the wind turbine blade that undergoes bending deformation, or considering bending deformation in one spar cap, A high elastic modulus reinforcing fiber may be used, and a low elastic reinforcing fiber may be used on the concave side. In that case, a fiber reinforced plastic composed of two or more types of reinforcing fibers having different elastic moduli may be arranged so that the elastic modulus decreases from the convex side to the concave side in one spar cap.

(風車翼の構造)
本発明の実施形態であるスパーキャップを備えた風車翼の構造を図1に示す。図1の風車翼100は、外皮材11、前縁サンドイッチ材12、スパーキャップ13a、13b、後縁サンドイッチ材14、シェアウェブ15、内皮材17を備えている。なお、図1の符号16は、スパーキャップ13a、13bとシェアウェブ15とを接続する接着剤である。
(Structure of windmill blade)
A structure of a wind turbine blade provided with a spar cap according to an embodiment of the present invention is shown in FIG. A wind turbine blade 100 of FIG. 1 includes an outer skin material 11, a leading edge sandwich material 12, spar caps 13 a and 13 b, a trailing edge sandwich material 14, a shear web 15, and an endothelial material 17. In addition, the code | symbol 16 of FIG. 1 is the adhesive agent which connects the spar caps 13a and 13b and the share web 15. FIG.

(シェアウェブ)
シェアウェブ15は、図2のように桁材表皮15aと桁材コア15bのサンドイッチ構造で形成される。桁材表皮15aは繊維強化プラスチックの複数方向積層であり、バイアス方向(±45°)積層が好ましい。桁材コア15bは、ポリ塩化ビニル等の樹脂の発泡体やバルサ等の軽量木材で形成される。
(Share web)
As shown in FIG. 2, the share web 15 is formed by a sandwich structure of a girder skin 15a and a girder core 15b. The girder skin 15a is a multi-directional laminate of fiber reinforced plastics, and preferably a bias direction (± 45 °) laminate. The girder core 15b is made of a resin foam such as polyvinyl chloride or a lightweight wood such as balsa.

(繊維強化プラスチックの樹脂)
スパーキャップ13a、13bを形成する繊維強化プラスチックに用いる樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などの熱硬化性樹脂(硬化物)や、ポリプロピレン、ポリエチレン、ナイロンなどの熱可塑性樹脂が挙げられる。エポキシ樹脂は伸度が高く、耐疲労特性上好ましい。また、不飽和ポリエステル樹脂は低コストであり、ビニルエステル樹脂は耐候性と耐環境性に優れているのでそれぞれ好適である。
(Resin of fiber reinforced plastic)
Examples of the resin used for the fiber reinforced plastic forming the spar caps 13a and 13b include thermosetting resins (cured products) such as epoxy resins, unsaturated polyester resins, and vinyl ester resins, and thermoplastic resins such as polypropylene, polyethylene, and nylon. Is mentioned. Epoxy resins have high elongation and are preferable in terms of fatigue resistance. Unsaturated polyester resins are suitable for low cost, and vinyl ester resins are suitable because they are excellent in weather resistance and environmental resistance.

(繊維強化プラスチックの成形方法)
スパーキャップ13a、13bを形成する繊維強化プラスチックの成形法は、プリプレグ法、RTM法、VaRTM法、引抜き成形法、フィラメントワインド法、ハンドレイアップ法、パウダー散布法、コミングル法、等の公知の成形技術を用いることができる。
(Fiber-reinforced plastic molding method)
The fiber reinforced plastic forming method for forming the spar caps 13a and 13b is a known forming method such as a prepreg method, RTM method, VaRTM method, pultrusion forming method, filament winding method, hand lay-up method, powder spraying method, comingle method, etc. Technology can be used.

(実施例)
図1に示す断面構造の風車翼において、翼長が50.0m、スパーキャップ13a及び13bの幅(平行に並ぶ2本のシェアウェブ15間の距離)が300mmの風車翼を作る。
(Example)
In the wind turbine blade having the cross-sectional structure shown in FIG. 1, a wind turbine blade having a blade length of 50.0 m and a width of the spar caps 13a and 13b (a distance between two parallel webs 15 arranged in parallel) is formed.

スパーキャップ13aは、三菱レイヨン社製エポキシ樹脂製品名#391と三菱樹脂社製ピッチ系炭素繊維製品名K13916(弾性率:760GPa)からなる、強化繊維目付け600g/m、樹脂含有量35質量%の一方向(UD)プリプレグを、スパーキャップの長手方向に強化繊維の方向を揃えて積層数50plyで成形し、110℃、4時間で真空バグ成形し、高い弾性率を有する繊維強化プラスチックを得る。 The spar cap 13a is made of an epoxy resin product name # 391 manufactured by Mitsubishi Rayon Co., Ltd. and a pitch-based carbon fiber product name K13916 (elastic modulus: 760 GPa) manufactured by Mitsubishi Resin Co., Ltd., and has a basis weight of 600 g / m 2 and a resin content of 35% by mass. A unidirectional (UD) prepreg is formed at a stacking number of 50 ply with the direction of the reinforcing fiber aligned with the longitudinal direction of the spar cap, and vacuum bag forming is performed at 110 ° C. for 4 hours to obtain a fiber reinforced plastic having a high elastic modulus. .

スパーキャップ13bも同様に、三菱レイヨン社製エポキシ樹脂製品名#391と三菱レイヨン社製ポリアクリロニトリル系炭素繊維製品名TRW40(弾性率:240GPa)からなる、強化繊維目付け600g/m、樹脂含有量35質量%の一方向(UD)プリプレグを、スパーキャップの長手方向に強化繊維の方向を揃えて積層数50plyで成形し、110℃、4時間で真空バグ成形し、低い弾性率を有する繊維強化プラスチックを得る。 Similarly, the spar cap 13b is made of an epoxy resin product name # 391 manufactured by Mitsubishi Rayon Co., Ltd. and a polyacrylonitrile-based carbon fiber product name TRW40 (elastic modulus: 240 GPa) manufactured by Mitsubishi Rayon Co., Ltd., having a basis weight of 600 g / m 2 , and a resin content. A 35% by mass unidirectional (UD) prepreg was formed with 50 ply of laminated layers with the direction of the reinforcing fibers aligned with the longitudinal direction of the spar cap, vacuum bag formed at 110 ° C. for 4 hours, and fiber reinforced with low elastic modulus Get plastic.

外皮材11と内皮材17は、ガラス繊維強化プラスチック(繊維体積含有率45%、不飽和ポリエステル樹脂)の3軸方向積層4ply(0°/±60°/0°)で形成され、積層厚み2.82mmである。前縁サンドイッチ材12および後縁サンドイッチ材17は、前縁と後縁(スパーキャップ13a、13bを除く部分)の座屈強度を保つために必要な厚みとして30mmとする。 The outer skin material 11 and the inner skin material 17 are formed by 4ply (0 ° / ± 60 ° / 0 °) of triaxial lamination of glass fiber reinforced plastic (fiber volume content 45%, unsaturated polyester resin), and the lamination thickness 2 .82 mm. The leading edge sandwich material 12 and the trailing edge sandwich material 17 have a thickness of 30 mm necessary for maintaining the buckling strength of the leading edge and the trailing edge (portions excluding the spar caps 13a and 13b).

シェアウェブ15について、桁材表皮15aは、ガラス繊維強化プラスチック(繊維体積含有率45%、不飽和ポリエステル樹脂)のバイアス方向(±45°)積層2plyで形成され、積層厚み1.41mmを得る。また、桁材コア15bの厚みは50mmとする。 For the shear web 15, the girder skin 15 a is formed by laminating 2 ply of glass fiber reinforced plastic (fiber volume content 45%, unsaturated polyester resin) in the bias direction (± 45 °) to obtain a laminating thickness of 1.41 mm. Moreover, the thickness of the girder core 15b is 50 mm.

負荷条件は図4で示すように、風車翼の根元を完全拘束し、10m/秒の風を受けた想定で、4箇所に加える荷重条件を設定し、荷重時の風車翼の先端の変形量(変位)を算出して風車翼全体の剛性を表現する。先端での変形量は7.4mであった。 As shown in Fig. 4, the load conditions are set as shown in Fig. 4, assuming that the wind turbine blade root is completely restrained and receiving wind of 10m / sec. (Displacement) is calculated to represent the rigidity of the entire wind turbine blade. The amount of deformation at the tip was 7.4 m.

(比較例)
実施例1において、スパーキャップ13aを形成する(炭素)繊維強化プラスチックにスパーキャップ13bと同じものを使用し、その他はすべて実施例1と同じとする。風車翼先端での変形量は10.7mと40%以上大きな変形量であった。
(Comparative example)
In the first embodiment, the (carbon) fiber reinforced plastic forming the spar cap 13a is the same as the spar cap 13b, and the rest is the same as the first embodiment. The amount of deformation at the tip of the wind turbine blade was 10.7 m, which was a large amount of deformation of 40% or more.

11 外皮材
12 前縁サンドイッチ材
13a 凸側(引張側)のスパーキャップ
13b 凹側(圧縮側)のスパーキャップ
14 後縁サンドイッチ材
15 シェアウェブ(桁材)
15a 桁材表皮
15b 桁材コア材
16 接着剤
17 内皮材
100 風車翼
X 曲げ中心
11 Skin material 12 Leading edge sandwich material 13a Convex side (tensile side) spar cap 13b Concave side (compression side) spar cap 14 Trailing edge sandwich material 15 Share web (girder)
15a Girder material skin 15b Girder core material
16 Adhesive 17 Endothelial material 100 Windmill blade X Bending center

Claims (3)

繊維強化プラスチックで形成されたスパーキャップを備えた風車翼であって、該繊維強化プラスチックに使用する強化繊維が弾性率の異なる2種類以上の繊維である風車翼。   A wind turbine blade including a spar cap formed of fiber reinforced plastic, wherein the reinforcing fibers used in the fiber reinforced plastic are two or more types of fibers having different elastic moduli. 弾性率の異なる2種類以上の繊維が、ピッチ系炭素繊維および/またはポリアクリロニトリル系炭素繊維を含む請求項1記載の風車翼。   The wind turbine blade according to claim 1, wherein the two or more types of fibers having different elastic moduli include pitch-based carbon fibers and / or polyacrylonitrile-based carbon fibers. 弾性率の異なる2種類以上の繊維が、曲げ変形による引張応力が発生する側から圧縮応力が発生する側に向かって弾性率が低くなるように配置されている請求項1記載の風車翼。
The wind turbine blade according to claim 1, wherein two or more types of fibers having different elastic moduli are arranged so that the elastic modulus decreases from a side where tensile stress due to bending deformation is generated toward a side where compressive stress is generated.
JP2015001313A 2015-01-07 2015-01-07 Windmill blade Pending JP2016125441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001313A JP2016125441A (en) 2015-01-07 2015-01-07 Windmill blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001313A JP2016125441A (en) 2015-01-07 2015-01-07 Windmill blade

Publications (1)

Publication Number Publication Date
JP2016125441A true JP2016125441A (en) 2016-07-11

Family

ID=56357671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001313A Pending JP2016125441A (en) 2015-01-07 2015-01-07 Windmill blade

Country Status (1)

Country Link
JP (1) JP2016125441A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998964A (en) * 2018-08-10 2018-12-14 佛山腾鲤新能源科技有限公司 A kind of preparation method of the anti-freeze wind electricity blade material of noise reduction
CN110073100A (en) * 2016-12-21 2019-07-30 西门子歌美飒可再生能源公司 Wind turbine blade with variable deflection-related stiffness
WO2024190111A1 (en) * 2023-03-13 2024-09-19 東レ株式会社 Wind turbine blade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073100A (en) * 2016-12-21 2019-07-30 西门子歌美飒可再生能源公司 Wind turbine blade with variable deflection-related stiffness
CN108998964A (en) * 2018-08-10 2018-12-14 佛山腾鲤新能源科技有限公司 A kind of preparation method of the anti-freeze wind electricity blade material of noise reduction
WO2024190111A1 (en) * 2023-03-13 2024-09-19 東レ株式会社 Wind turbine blade

Similar Documents

Publication Publication Date Title
DK178020B1 (en) SAVE CAP UNIT FOR A WINDOW MILLER CIRCUIT
US20110171038A1 (en) Wind turbine rotor blade and producing method of wind turbine rotor blade
US20180252201A1 (en) Triaxial fiber-reinforced composite laminate
US20140154092A1 (en) Wind turbine blade with transition region
WO2011077881A1 (en) Wind wheel blade and wind-driven electricity generation device using same
US8480371B2 (en) Wind turbine rotor blade and wind-generating wind turbine
WO2013010979A2 (en) Wind turbine blade with transition region
US20230182405A1 (en) Pultruded bibre-reinforced strip for a reinforced structure, such as a spar cap
US8651822B2 (en) Wind turbine rotor blade and wind-generating wind turbine
JP2016125441A (en) Windmill blade
AU2011226066B2 (en) Wind turbine rotor blade
CN210622996U (en) Main beams, blades and wind turbines of the blades of wind turbines
JP2012112264A (en) Blade for wind power generation and wind power generation device
JP2019218886A (en) Windmill blade and wind power generation apparatus
JP2023004899A (en) Wind turbine blade
Sundar et al. Opportunities for natural fiber reinforced composites towards tropical wind turbine material needs
KR20140003597U (en) Trailing edge reinforced blade for wind power generator
KR102719754B1 (en) A blade of wind power generator
WO2024190111A1 (en) Wind turbine blade
JP2013151927A (en) Windmill blade
JP2024062016A (en) Windmill blade
US20240295210A1 (en) A blade for a wind turbine
WO2024257699A1 (en) Wind turbine blade
WO2024203216A1 (en) Wind turbine blade
WO2023026662A1 (en) Skin member and blade structure