JP2016125441A - Windmill blade - Google Patents
Windmill blade Download PDFInfo
- Publication number
- JP2016125441A JP2016125441A JP2015001313A JP2015001313A JP2016125441A JP 2016125441 A JP2016125441 A JP 2016125441A JP 2015001313 A JP2015001313 A JP 2015001313A JP 2015001313 A JP2015001313 A JP 2015001313A JP 2016125441 A JP2016125441 A JP 2016125441A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- elastic modulus
- fibers
- reinforced plastic
- wind turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims abstract description 20
- 239000011151 fibre-reinforced plastic Substances 0.000 claims abstract description 20
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 17
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 15
- 238000005452 bending Methods 0.000 claims abstract description 14
- 239000004917 carbon fiber Substances 0.000 claims abstract description 14
- 239000000835 fiber Substances 0.000 claims abstract description 14
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 5
- 230000007423 decrease Effects 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 7
- 230000006835 compression Effects 0.000 abstract description 2
- 238000007906 compression Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 8
- 238000010248 power generation Methods 0.000 description 5
- 239000011162 core material Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920006337 unsaturated polyester resin Polymers 0.000 description 4
- 229920000297 Rayon Polymers 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Wind Motors (AREA)
Abstract
Description
本発明は、風力発電に使用されるスパーキャップを備えた風車翼に関するものであり、繊維強化プラスチック製のスパーキャップにおいて高い曲げ剛性を有し、風車翼全体の曲げ剛性も向上させることによって変形量を低減した、疲労特性に優れた風車翼に関する。 The present invention relates to a wind turbine blade provided with a spar cap used for wind power generation, and has a high bending rigidity in a spar cap made of fiber reinforced plastic, and the amount of deformation is improved by improving the bending rigidity of the entire wind turbine blade. The present invention relates to a wind turbine blade with reduced fatigue and excellent fatigue characteristics.
近年、再生可能エネルギーの中でもコストパフォーマンスに優れる風力発電が注目されている。特に大型風車は1機当りの発電量も大きく、コストパフォーマンスに優れるので、風車の大型化が進んでいる。 In recent years, wind power generation, which is excellent in cost performance among renewable energies, has attracted attention. In particular, large windmills have a large power generation amount per unit and are excellent in cost performance.
大型風車はコストパフォーマンスに優れるものの、その風車翼は絶えず変動する風を数十年も受けて変形するため、非常に厳しい疲労環境下におかれるので、疲労強度を向上させることが重要となる。疲労強度が向上すれば風車翼の寿命は長くなるので、更にコストパフォーマンスの向上が期待できる。 Although a large wind turbine is excellent in cost performance, its wind turbine blades are deformed by being constantly subjected to fluctuating winds for several decades, so that they are placed in a very severe fatigue environment, so it is important to improve the fatigue strength. If the fatigue strength is improved, the service life of the wind turbine blade will be extended, so further improvement in cost performance can be expected.
このような要求に対して例えば特開2013−151927にはスパーキャップの補強繊維として炭素繊維を用いる技術について開示されている。炭素繊維は軽量かつ高弾性の繊維であり、ガラス繊維を用いたスパーキャップより格段に性能が向上する。 In response to such a requirement, for example, Japanese Patent Application Laid-Open No. 2013-151927 discloses a technique using carbon fiber as a reinforcing fiber for a spar cap. Carbon fiber is a lightweight and highly elastic fiber, and its performance is significantly improved over a spar cap using glass fiber.
本発明の課題は、繊維強化プラスチックで形成されたスパーキャップを備えた風車翼において、その疲労強度を向上させたコストパフォーマンスに優れる風車翼を提供することである。 An object of the present invention is to provide a wind turbine blade having a superior cost performance with improved fatigue strength in a wind turbine blade having a spar cap formed of fiber reinforced plastic.
本発明は、かかる課題を解決するために次の手段を採用するものである。すなわち、繊維強化プラスチックで形成されたスパーキャップを備えた風車翼であって、該繊維強化プラスチックに使用する強化繊維が弾性率の異なる2種類以上の繊維である風車翼である。
弾性率の異なる2種類以上の繊維が、ピッチ系炭素繊維および/またはポリアクリロニトリル系炭素繊維を含む風車翼であることが好ましい。
弾性率の異なる2種類以上の繊維が、曲げ変形による引張応力が発生する側から圧縮応力が発生する側に向かって弾性率が低くなるように配置されている風車翼であることが好ましい。
The present invention employs the following means in order to solve such problems. That is, a wind turbine blade provided with a spar cap formed of fiber reinforced plastic, wherein the reinforcing fiber used for the fiber reinforced plastic is two or more types of fibers having different elastic moduli.
The two or more types of fibers having different elastic moduli are preferably wind turbine blades including pitch-based carbon fibers and / or polyacrylonitrile-based carbon fibers.
Two or more types of fibers having different elastic moduli are preferably wind turbine blades arranged so that the elastic modulus decreases from the side where tensile stress due to bending deformation occurs to the side where compressive stress occurs.
本発明の風車翼は、軽量、高剛性で、かつ疲労強度にも優れた構造を備えるため、この風車翼を使用した風車は寿命が長くなり、コストパフォーマンスに優れ、発電コストの低減につながることが期待できる。また同じ風による曲げ荷重を受けた時の変形量が小さいので、受風面積の低下を防ぎ、高いエネルギー変換効率が期待できる。 Since the wind turbine blade of the present invention has a structure that is lightweight, highly rigid, and excellent in fatigue strength, the wind turbine using this wind turbine blade has a long life, excellent cost performance, and leads to reduction in power generation cost. Can be expected. Moreover, since the amount of deformation when subjected to a bending load caused by the same wind is small, a reduction in the wind receiving area can be prevented and high energy conversion efficiency can be expected.
また本発明の技術は、例えば潮流発電の羽根のように、常に同じ方向から荷重を受けて、曲げ変形を受けるような材料にも応用することができる。すなわち常に引張応力が発生する側に、より弾性率の高い強化繊維からなる繊維強化プラスチックを配置することにより、同じ曲げ荷重でも変形量が抑えられるので、製品の寿命向上の効果が期待できる。 The technology of the present invention can also be applied to a material that receives a load from the same direction and is subjected to bending deformation, such as a blade of a tidal power generation. That is, by arranging a fiber reinforced plastic made of reinforced fibers having a higher elastic modulus on the side where tensile stress is always generated, the amount of deformation can be suppressed even with the same bending load, so that the effect of improving the product life can be expected.
以下本発明を、図面を参照しながらさらに詳細に説明する。図1は代表的な、スパーキャップを有する風車翼の断面図である。図に示す通り、スパーキャップは風車の風によって生じる曲げ荷重を受ける主たる部位であり、この部分の剛性が風車翼全体の曲げ変形量の抑制を担う。 Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a cross-sectional view of a typical wind turbine blade having a spar cap. As shown in the figure, the spar cap is a main part that receives a bending load generated by wind of the windmill, and the rigidity of this part is responsible for suppressing the amount of bending deformation of the entire windmill blade.
風車翼は風を受けて曲げ変形するが、曲げられる方向はおおよそ常に一定である。図1のケースでは常に上方面から風を受けるので図中の上側が凸に曲げ変形する。(以下、風車翼に生じる曲げ変形に基づき、風上側を凸側、風下側を凹側呼ぶことがある。) The windmill blade is bent and deformed by the wind, but the direction in which it is bent is almost always constant. In the case of FIG. 1, since the wind is always received from the upper surface, the upper side in the figure is bent and deformed to be convex. (Hereinafter, the windward side may be called the convex side and the leeward side may be called the concave side based on the bending deformation generated in the wind turbine blade.)
すなわち、それぞれのスパーキャップとしては、凸側のスパーキャップは常に引張変形を受け、凹側のスパーキャップは圧縮変形を受ける。 That is, as each spar cap, the convex spar cap always undergoes tensile deformation, and the concave spar cap undergoes compressive deformation.
そこで本発明においては、引張変形を受ける凸側に弾性率の高い強化繊維で補強された繊維強化プラスチック製のスパーキャップを配置し、凹側には低い弾性率の強化繊維で補強された繊維強化プラスチック製のスパーキャップを配置する。 Accordingly, in the present invention, a fiber reinforced plastic spar cap reinforced with a high elastic modulus reinforcing fiber is disposed on the convex side subjected to tensile deformation, and a fiber reinforced with a low elastic modulus reinforcing fiber is disposed on the concave side. Place a plastic spar cap.
ここでいう弾性率とは強化繊維の引張弾性率(ヤング率)のことであり、「高い、低い」は相対的なものである。高い弾性率と低い弾性率の比率は特に限定はないが、高い弾性率が低い弾性率の2倍以上であれば風車翼全体としての曲げ変形がより抑えられ、好ましい。 The elastic modulus here means the tensile elastic modulus (Young's modulus) of the reinforcing fiber, and “high” and “low” are relative. The ratio between the high elastic modulus and the low elastic modulus is not particularly limited, but it is preferable that the high elastic modulus is at least twice that of the low elastic modulus because bending deformation as a whole of the wind turbine blade is further suppressed.
このような弾性率の異なる強化繊維の組み合わせとしては、例えば弾性率の高い強化繊維として弾性率が600−1000GPaのピッチ系炭素繊維と、弾性率の低い強化繊維として弾性率が200−500GPaのポリアクリロニトリル系炭素繊維の組み合わせが最も好適であるが、弾性率が600−1000GPaのピッチ系炭素繊維とガラス繊維、あるいは弾性率が200−500GPaのポリアクリロニトリル系の炭素繊維とガラス繊維、あるいはこれら3つを同時に用いることも本発明の好適な形態である。 Examples of such a combination of reinforcing fibers having different elastic moduli include a pitch-based carbon fiber having an elastic modulus of 600 to 1000 GPa as a reinforcing fiber having a high elastic modulus and a polycrystal having an elastic modulus of 200 to 500 GPa as a reinforcing fiber having a low elastic modulus. A combination of acrylonitrile-based carbon fibers is most suitable, but pitch-based carbon fibers and glass fibers having an elastic modulus of 600-1000 GPa, or polyacrylonitrile-based carbon fibers and glass fibers having an elastic modulus of 200-500 GPa, or these three. The simultaneous use of is also a preferred form of the present invention.
また曲げ変形を受ける風車翼の凸側のスパーキャップに用いる強化繊維の全てに高い弾性率の強化繊維を用いてもよいし、一つのスパーキャップの中での曲げ変形を考え、その凸側に高い弾性率の強化繊維を用い、凹側に低弾性の強化繊維を用いてもよい。その場合は一本のスパーキャップ内で凸側から凹側に向かって弾性率が低くなるように、弾性率の異なる2種類以上の強化繊維からなる繊維強化プラスチックを配置すればよい。 In addition, reinforcing fibers having a high elastic modulus may be used for all the reinforcing fibers used for the spar cap on the convex side of the wind turbine blade that undergoes bending deformation, or considering bending deformation in one spar cap, A high elastic modulus reinforcing fiber may be used, and a low elastic reinforcing fiber may be used on the concave side. In that case, a fiber reinforced plastic composed of two or more types of reinforcing fibers having different elastic moduli may be arranged so that the elastic modulus decreases from the convex side to the concave side in one spar cap.
(風車翼の構造)
本発明の実施形態であるスパーキャップを備えた風車翼の構造を図1に示す。図1の風車翼100は、外皮材11、前縁サンドイッチ材12、スパーキャップ13a、13b、後縁サンドイッチ材14、シェアウェブ15、内皮材17を備えている。なお、図1の符号16は、スパーキャップ13a、13bとシェアウェブ15とを接続する接着剤である。
(Structure of windmill blade)
A structure of a wind turbine blade provided with a spar cap according to an embodiment of the present invention is shown in FIG. A wind turbine blade 100 of FIG. 1 includes an outer skin material 11, a leading edge sandwich material 12, spar caps 13 a and 13 b, a trailing edge sandwich material 14, a shear web 15, and an endothelial material 17. In addition, the code | symbol 16 of FIG. 1 is the adhesive agent which connects the spar caps 13a and 13b and the share web 15. FIG.
(シェアウェブ)
シェアウェブ15は、図2のように桁材表皮15aと桁材コア15bのサンドイッチ構造で形成される。桁材表皮15aは繊維強化プラスチックの複数方向積層であり、バイアス方向(±45°)積層が好ましい。桁材コア15bは、ポリ塩化ビニル等の樹脂の発泡体やバルサ等の軽量木材で形成される。
(Share web)
As shown in FIG. 2, the share web 15 is formed by a sandwich structure of a girder skin 15a and a girder core 15b. The girder skin 15a is a multi-directional laminate of fiber reinforced plastics, and preferably a bias direction (± 45 °) laminate. The girder core 15b is made of a resin foam such as polyvinyl chloride or a lightweight wood such as balsa.
(繊維強化プラスチックの樹脂)
スパーキャップ13a、13bを形成する繊維強化プラスチックに用いる樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などの熱硬化性樹脂(硬化物)や、ポリプロピレン、ポリエチレン、ナイロンなどの熱可塑性樹脂が挙げられる。エポキシ樹脂は伸度が高く、耐疲労特性上好ましい。また、不飽和ポリエステル樹脂は低コストであり、ビニルエステル樹脂は耐候性と耐環境性に優れているのでそれぞれ好適である。
(Resin of fiber reinforced plastic)
Examples of the resin used for the fiber reinforced plastic forming the spar caps 13a and 13b include thermosetting resins (cured products) such as epoxy resins, unsaturated polyester resins, and vinyl ester resins, and thermoplastic resins such as polypropylene, polyethylene, and nylon. Is mentioned. Epoxy resins have high elongation and are preferable in terms of fatigue resistance. Unsaturated polyester resins are suitable for low cost, and vinyl ester resins are suitable because they are excellent in weather resistance and environmental resistance.
(繊維強化プラスチックの成形方法)
スパーキャップ13a、13bを形成する繊維強化プラスチックの成形法は、プリプレグ法、RTM法、VaRTM法、引抜き成形法、フィラメントワインド法、ハンドレイアップ法、パウダー散布法、コミングル法、等の公知の成形技術を用いることができる。
(Fiber-reinforced plastic molding method)
The fiber reinforced plastic forming method for forming the spar caps 13a and 13b is a known forming method such as a prepreg method, RTM method, VaRTM method, pultrusion forming method, filament winding method, hand lay-up method, powder spraying method, comingle method, etc. Technology can be used.
(実施例)
図1に示す断面構造の風車翼において、翼長が50.0m、スパーキャップ13a及び13bの幅(平行に並ぶ2本のシェアウェブ15間の距離)が300mmの風車翼を作る。
(Example)
In the wind turbine blade having the cross-sectional structure shown in FIG. 1, a wind turbine blade having a blade length of 50.0 m and a width of the spar caps 13a and 13b (a distance between two parallel webs 15 arranged in parallel) is formed.
スパーキャップ13aは、三菱レイヨン社製エポキシ樹脂製品名#391と三菱樹脂社製ピッチ系炭素繊維製品名K13916(弾性率:760GPa)からなる、強化繊維目付け600g/m2、樹脂含有量35質量%の一方向(UD)プリプレグを、スパーキャップの長手方向に強化繊維の方向を揃えて積層数50plyで成形し、110℃、4時間で真空バグ成形し、高い弾性率を有する繊維強化プラスチックを得る。 The spar cap 13a is made of an epoxy resin product name # 391 manufactured by Mitsubishi Rayon Co., Ltd. and a pitch-based carbon fiber product name K13916 (elastic modulus: 760 GPa) manufactured by Mitsubishi Resin Co., Ltd., and has a basis weight of 600 g / m 2 and a resin content of 35% by mass. A unidirectional (UD) prepreg is formed at a stacking number of 50 ply with the direction of the reinforcing fiber aligned with the longitudinal direction of the spar cap, and vacuum bag forming is performed at 110 ° C. for 4 hours to obtain a fiber reinforced plastic having a high elastic modulus. .
スパーキャップ13bも同様に、三菱レイヨン社製エポキシ樹脂製品名#391と三菱レイヨン社製ポリアクリロニトリル系炭素繊維製品名TRW40(弾性率:240GPa)からなる、強化繊維目付け600g/m2、樹脂含有量35質量%の一方向(UD)プリプレグを、スパーキャップの長手方向に強化繊維の方向を揃えて積層数50plyで成形し、110℃、4時間で真空バグ成形し、低い弾性率を有する繊維強化プラスチックを得る。 Similarly, the spar cap 13b is made of an epoxy resin product name # 391 manufactured by Mitsubishi Rayon Co., Ltd. and a polyacrylonitrile-based carbon fiber product name TRW40 (elastic modulus: 240 GPa) manufactured by Mitsubishi Rayon Co., Ltd., having a basis weight of 600 g / m 2 , and a resin content. A 35% by mass unidirectional (UD) prepreg was formed with 50 ply of laminated layers with the direction of the reinforcing fibers aligned with the longitudinal direction of the spar cap, vacuum bag formed at 110 ° C. for 4 hours, and fiber reinforced with low elastic modulus Get plastic.
外皮材11と内皮材17は、ガラス繊維強化プラスチック(繊維体積含有率45%、不飽和ポリエステル樹脂)の3軸方向積層4ply(0°/±60°/0°)で形成され、積層厚み2.82mmである。前縁サンドイッチ材12および後縁サンドイッチ材17は、前縁と後縁(スパーキャップ13a、13bを除く部分)の座屈強度を保つために必要な厚みとして30mmとする。 The outer skin material 11 and the inner skin material 17 are formed by 4ply (0 ° / ± 60 ° / 0 °) of triaxial lamination of glass fiber reinforced plastic (fiber volume content 45%, unsaturated polyester resin), and the lamination thickness 2 .82 mm. The leading edge sandwich material 12 and the trailing edge sandwich material 17 have a thickness of 30 mm necessary for maintaining the buckling strength of the leading edge and the trailing edge (portions excluding the spar caps 13a and 13b).
シェアウェブ15について、桁材表皮15aは、ガラス繊維強化プラスチック(繊維体積含有率45%、不飽和ポリエステル樹脂)のバイアス方向(±45°)積層2plyで形成され、積層厚み1.41mmを得る。また、桁材コア15bの厚みは50mmとする。 For the shear web 15, the girder skin 15 a is formed by laminating 2 ply of glass fiber reinforced plastic (fiber volume content 45%, unsaturated polyester resin) in the bias direction (± 45 °) to obtain a laminating thickness of 1.41 mm. Moreover, the thickness of the girder core 15b is 50 mm.
負荷条件は図4で示すように、風車翼の根元を完全拘束し、10m/秒の風を受けた想定で、4箇所に加える荷重条件を設定し、荷重時の風車翼の先端の変形量(変位)を算出して風車翼全体の剛性を表現する。先端での変形量は7.4mであった。 As shown in Fig. 4, the load conditions are set as shown in Fig. 4, assuming that the wind turbine blade root is completely restrained and receiving wind of 10m / sec. (Displacement) is calculated to represent the rigidity of the entire wind turbine blade. The amount of deformation at the tip was 7.4 m.
(比較例)
実施例1において、スパーキャップ13aを形成する(炭素)繊維強化プラスチックにスパーキャップ13bと同じものを使用し、その他はすべて実施例1と同じとする。風車翼先端での変形量は10.7mと40%以上大きな変形量であった。
(Comparative example)
In the first embodiment, the (carbon) fiber reinforced plastic forming the spar cap 13a is the same as the spar cap 13b, and the rest is the same as the first embodiment. The amount of deformation at the tip of the wind turbine blade was 10.7 m, which was a large amount of deformation of 40% or more.
11 外皮材
12 前縁サンドイッチ材
13a 凸側(引張側)のスパーキャップ
13b 凹側(圧縮側)のスパーキャップ
14 後縁サンドイッチ材
15 シェアウェブ(桁材)
15a 桁材表皮
15b 桁材コア材
16 接着剤
17 内皮材
100 風車翼
X 曲げ中心
11 Skin material 12 Leading edge sandwich material 13a Convex side (tensile side) spar cap 13b Concave side (compression side) spar cap 14 Trailing edge sandwich material 15 Share web (girder)
15a Girder material skin 15b Girder core material
16 Adhesive 17 Endothelial material 100 Windmill blade X Bending center
Claims (3)
The wind turbine blade according to claim 1, wherein two or more types of fibers having different elastic moduli are arranged so that the elastic modulus decreases from a side where tensile stress due to bending deformation is generated toward a side where compressive stress is generated.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015001313A JP2016125441A (en) | 2015-01-07 | 2015-01-07 | Windmill blade |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015001313A JP2016125441A (en) | 2015-01-07 | 2015-01-07 | Windmill blade |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2016125441A true JP2016125441A (en) | 2016-07-11 |
Family
ID=56357671
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2015001313A Pending JP2016125441A (en) | 2015-01-07 | 2015-01-07 | Windmill blade |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2016125441A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108998964A (en) * | 2018-08-10 | 2018-12-14 | 佛山腾鲤新能源科技有限公司 | A kind of preparation method of the anti-freeze wind electricity blade material of noise reduction |
| CN110073100A (en) * | 2016-12-21 | 2019-07-30 | 西门子歌美飒可再生能源公司 | Wind turbine blade with variable deflection-related stiffness |
| WO2024190111A1 (en) * | 2023-03-13 | 2024-09-19 | 東レ株式会社 | Wind turbine blade |
-
2015
- 2015-01-07 JP JP2015001313A patent/JP2016125441A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110073100A (en) * | 2016-12-21 | 2019-07-30 | 西门子歌美飒可再生能源公司 | Wind turbine blade with variable deflection-related stiffness |
| CN108998964A (en) * | 2018-08-10 | 2018-12-14 | 佛山腾鲤新能源科技有限公司 | A kind of preparation method of the anti-freeze wind electricity blade material of noise reduction |
| WO2024190111A1 (en) * | 2023-03-13 | 2024-09-19 | 東レ株式会社 | Wind turbine blade |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DK178020B1 (en) | SAVE CAP UNIT FOR A WINDOW MILLER CIRCUIT | |
| US20110171038A1 (en) | Wind turbine rotor blade and producing method of wind turbine rotor blade | |
| US20180252201A1 (en) | Triaxial fiber-reinforced composite laminate | |
| US20140154092A1 (en) | Wind turbine blade with transition region | |
| WO2011077881A1 (en) | Wind wheel blade and wind-driven electricity generation device using same | |
| US8480371B2 (en) | Wind turbine rotor blade and wind-generating wind turbine | |
| WO2013010979A2 (en) | Wind turbine blade with transition region | |
| US20230182405A1 (en) | Pultruded bibre-reinforced strip for a reinforced structure, such as a spar cap | |
| US8651822B2 (en) | Wind turbine rotor blade and wind-generating wind turbine | |
| JP2016125441A (en) | Windmill blade | |
| AU2011226066B2 (en) | Wind turbine rotor blade | |
| CN210622996U (en) | Main beams, blades and wind turbines of the blades of wind turbines | |
| JP2012112264A (en) | Blade for wind power generation and wind power generation device | |
| JP2019218886A (en) | Windmill blade and wind power generation apparatus | |
| JP2023004899A (en) | Wind turbine blade | |
| Sundar et al. | Opportunities for natural fiber reinforced composites towards tropical wind turbine material needs | |
| KR20140003597U (en) | Trailing edge reinforced blade for wind power generator | |
| KR102719754B1 (en) | A blade of wind power generator | |
| WO2024190111A1 (en) | Wind turbine blade | |
| JP2013151927A (en) | Windmill blade | |
| JP2024062016A (en) | Windmill blade | |
| US20240295210A1 (en) | A blade for a wind turbine | |
| WO2024257699A1 (en) | Wind turbine blade | |
| WO2024203216A1 (en) | Wind turbine blade | |
| WO2023026662A1 (en) | Skin member and blade structure |