JP2016136484A - Surface light-emitting device - Google Patents
Surface light-emitting device Download PDFInfo
- Publication number
- JP2016136484A JP2016136484A JP2015011394A JP2015011394A JP2016136484A JP 2016136484 A JP2016136484 A JP 2016136484A JP 2015011394 A JP2015011394 A JP 2015011394A JP 2015011394 A JP2015011394 A JP 2015011394A JP 2016136484 A JP2016136484 A JP 2016136484A
- Authority
- JP
- Japan
- Prior art keywords
- light
- region
- light emitting
- emitting device
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims description 47
- 238000000576 coating method Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 abstract description 16
- 239000000284 extract Substances 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- 238000005401 electroluminescence Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical class O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Light Guides In General And Applications Therefor (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
- Electroluminescent Light Sources (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
本発明は、液晶ディスプレイのバックライトなどに利用される面発光装置に関するものである。 The present invention relates to a surface light emitting device used for a backlight of a liquid crystal display.
有機EL(ELectro-Luminescence)は、たとえば液晶ディスプレイのバックライトに利用されており、大面積の有機EL素子が要求されている。しかし、有機RL素子は非常に薄く、有機層の厚さは数十〜数百nm程度であるため、有機層を広い面積に均一に成膜するのは難しく、歩留まりが悪くなる。この問題を解決するために有機EL素子を備える発光部材を複数並べて、大面積の面状発光装置として用いる技術が提案されている。 Organic EL (ELectro-Luminescence) is used, for example, as a backlight of a liquid crystal display, and a large-area organic EL element is required. However, since the organic RL element is very thin and the thickness of the organic layer is about several tens to several hundreds of nanometers, it is difficult to form the organic layer uniformly over a wide area, resulting in poor yield. In order to solve this problem, a technique has been proposed in which a plurality of light emitting members including organic EL elements are arranged to be used as a large area planar light emitting device.
ところが、発光部材を複数並べて大面積にする場合に隣接する発光部材間の接続箇所が問題となる。なぜならば、発光部材の周辺部は外部の駆動回路等と接続するための端子電極や電極接続線を設けているため、周辺部から光が出射せず、発光部と非発光部とができてしまうからである。この問題を解決するための技術が、特開2005−158665号公報(特許文献1)と特開2010−40486号公報(特許文献2)に開示されている。 However, when a plurality of light emitting members are arranged to have a large area, a connection location between adjacent light emitting members becomes a problem. This is because the peripheral part of the light emitting member is provided with terminal electrodes and electrode connection lines for connection to an external drive circuit, etc., so that no light is emitted from the peripheral part, and a light emitting part and a non-light emitting part can be formed. Because it ends up. Techniques for solving this problem are disclosed in Japanese Unexamined Patent Application Publication No. 2005-158665 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2010-40486 (Patent Document 2).
特許文献1に開示される発光素子および発光装置においては、発光部が設けられた透明基板の光出射面の面積が発光部の面積より大きく形成されている。これにより、発光部から透明基板に入射した光の一部が、透明基板の発光部と対応する部分以外の部分を導波する。 In the light-emitting element and the light-emitting device disclosed in Patent Document 1, the area of the light emission surface of the transparent substrate provided with the light-emitting portion is formed larger than the area of the light-emitting portion. Thereby, a part of the light incident on the transparent substrate from the light emitting part is guided in a part other than the part corresponding to the light emitting part of the transparent substrate.
透明基板の発光部と対応する部分以外の部分へ進んだ光のうち、透明基板の光出射面から出射しない方向へ進む光の多くは、偏向部の作用により光出射面から出射するようにその進行方向が変更され、光出射面から出射される。従って、発光部から透明基板へ入射した光のうち、従来利用されていなかった光が透明基板の発光部と対応する部分以外の部分の光出射面から出射され、発光部の発光面積を増大することを可能としている。 Of the light traveling to a portion other than the portion corresponding to the light emitting portion of the transparent substrate, most of the light traveling in the direction not exiting from the light exit surface of the transparent substrate is emitted from the light exit surface by the action of the deflecting portion. The traveling direction is changed and emitted from the light exit surface. Accordingly, of the light incident on the transparent substrate from the light emitting portion, light that has not been used conventionally is emitted from the light emitting surface of the portion other than the portion corresponding to the light emitting portion of the transparent substrate, thereby increasing the light emitting area of the light emitting portion. Making it possible.
しかしながら、特許文献1に開示された技術においては、一般的に発光部の屈折率は透明基板の屈折率より大きいため、透明基板に対して斜め方向に出射した光は全反射により発光部内を導波してしまう。したがって、周辺部に導かれる光の量が少なくなることによって、非発光部が発光部に対して暗くなってしまい、発光部は大面積には見えない。また、透明基板に偏向部として拡散粒子を分散させることは難しく、素子の作成プロセスが複雑になることが考えられる。 However, in the technique disclosed in Patent Document 1, since the refractive index of the light emitting part is generally larger than the refractive index of the transparent substrate, light emitted obliquely with respect to the transparent substrate is guided through the light emitting part by total reflection. It will wave. Therefore, when the amount of light guided to the peripheral portion is reduced, the non-light emitting portion becomes darker than the light emitting portion, and the light emitting portion does not appear in a large area. In addition, it is difficult to disperse the diffusing particles as the deflecting portion on the transparent substrate, and it is considered that the element fabrication process becomes complicated.
特許文献2に開示される発光素子および発光装置においては、周辺部、かつ、発光部よりも透明部材側に周期構造が設けられている。これにより、有機EL素子内部を導波する光は周期構造によって外部に取り出される。したがって、周辺部から光が出射するため、発光部の発光面積を増大することができる。 In the light-emitting element and the light-emitting device disclosed in Patent Document 2, the periodic structure is provided on the peripheral part and on the transparent member side with respect to the light-emitting part. Thereby, the light guided inside the organic EL element is extracted outside by the periodic structure. Therefore, since light is emitted from the peripheral portion, the light emitting area of the light emitting portion can be increased.
しかしながら、発光部から複数の波長を含む光が出射する場合、光は各波長によって回折角度が異なるため、取り出される光に色ずれが生じることが考えられる。さらに、周期構造の作成は難しく、素子の作成プロセスが複雑になることが考えられる。 However, when light including a plurality of wavelengths is emitted from the light emitting unit, it is conceivable that color deviation occurs in the extracted light because the light has different diffraction angles depending on each wavelength. Furthermore, it is difficult to create a periodic structure, and the element creation process may be complicated.
この発明は、上記課題に鑑みてなされたものであって、その目的は、発光部材の周辺部から光を取り出すとともに色ずれの発生を抑制して、発光面積を増大させることを可能とする構造を備える面発光装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to increase the light emitting area by extracting light from the peripheral portion of the light emitting member and suppressing the occurrence of color misregistration. It is providing a surface light-emitting device provided with.
この発明に基づいた面発光装置においては、発光部材と、上記発光部材の上に形成された導光部材と、上記導光部材の上に形成された透明部材とを備え、上記導光部材の屈折率は、上記透明部材の屈折率よりも大きく設けられ、上記透明部材側から平面視した場合において、上記導光部材、および、上記透明部材は、上記発光部材を覆う第1領域と、上記第1領域の周縁に隣接する第2領域とを有し、少なくも上記第2領域において、上記導光部材と上記透明部材との間には光拡散部材が設けられ、上記第2領域の光拡散強度は、上記第1領域の光拡散強度よりも強い光拡散強度領域を含む。 In the surface light-emitting device based on this invention, the light-emitting member includes a light-emitting member, a light guide member formed on the light-emitting member, and a transparent member formed on the light guide member. The refractive index is provided larger than the refractive index of the transparent member, and when viewed in plan from the transparent member side, the light guide member and the transparent member include a first region that covers the light emitting member, and the above A second region adjacent to the periphery of the first region, and at least in the second region, a light diffusing member is provided between the light guide member and the transparent member, and the light in the second region The diffusion intensity includes a light diffusion intensity region that is stronger than the light diffusion intensity of the first region.
他の形態においては、上記光拡散部材は、上記第2領域のみに設けられている。
他の形態においては、上記導光部材の屈折率は、上記発光部材の屈折率よりも大きく、上記発光部材の屈折率は、上記透明部材の屈折率よりも大きく設けられている。
In another embodiment, the light diffusing member is provided only in the second region.
In another form, the refractive index of the said light guide member is larger than the refractive index of the said light emitting member, and the refractive index of the said light emitting member is provided larger than the refractive index of the said transparent member.
他の形態においては、上記発光部材から出射する光の色が白色である。
他の形態においては、上記発光部材から出射される光の光量が正面方向よりも斜め方向に多い。
In another form, the color of the light emitted from the light emitting member is white.
In another embodiment, the amount of light emitted from the light emitting member is larger in the oblique direction than in the front direction.
他の形態においては、上記発光部材および上記光拡散部材は、塗布プロセスによって形成された層である。 In another embodiment, the light emitting member and the light diffusing member are layers formed by a coating process.
他の形態においては、上記光拡散部材は光を散乱させる散乱粒子を含み、上記第2領域中の上記散乱粒子の粒子数密度は上記第1領域中の上記散乱粒子の粒子数密度よりも大きい。 In another embodiment, the light diffusing member includes scattering particles that scatter light, and the particle number density of the scattering particles in the second region is larger than the particle number density of the scattering particles in the first region. .
他の形態においては、上記第2領域における上記光拡散部材の厚さは、上記第1領域における上記光拡散部材の厚さよりも厚い。 In another embodiment, the thickness of the light diffusing member in the second region is greater than the thickness of the light diffusing member in the first region.
この面発光装置によれば、発光部材の周辺部から光を取り出すとともに色ずれの発生を抑制して、発光面積を増大させることを可能とする構造を備える面発光装置を提供することを可能とする。 According to this surface light emitting device, it is possible to provide a surface light emitting device having a structure that allows light to be extracted from the peripheral portion of the light emitting member and suppress the occurrence of color misregistration to increase the light emitting area. To do.
本発明に基づいた各実施の形態における面発光装置について、以下、図を参照しながら説明する。なお、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、実施の形態の範囲は必ずしもその個数、量などに限定されない。また、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。また、各実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。 The surface light emitting device in each embodiment based on the present invention will be described below with reference to the drawings. Note that in the embodiment described below, when referring to the number, amount, and the like, the scope of the embodiment is not necessarily limited to the number, amount, or the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. In addition, it is planned from the beginning to use the structures in the embodiments in appropriate combinations.
図1から図3を参照して、本実施の形態における面発光装置100の構成について説明する。図1は、図2中のI−I線矢示断面図、図2は、透明部材側から平面視した場合の平面図、図3は、面発光装置100の構成部材の厚みを示す図である。 With reference to FIGS. 1 to 3, the configuration of surface emitting device 100 in the present embodiment will be described. 1 is a cross-sectional view taken along the line II in FIG. 2, FIG. 2 is a plan view when viewed from the transparent member side, and FIG. 3 is a diagram showing the thickness of the constituent members of the surface light emitting device 100. is there.
図1および図2を参照して、本実施の形態における面発光装置100は、発光部材10と、この発光部材10の上に形成された導光部材30と、この導光部材30の上に形成された透明部材20とを備えている。導光部材30の屈折率は、透明部材20の屈折率よりも大きく設けられている。 Referring to FIGS. 1 and 2, surface light emitting device 100 in the present embodiment includes light emitting member 10, light guide member 30 formed on light emitting member 10, and light guide member 30. And the formed transparent member 20. The refractive index of the light guide member 30 is set larger than the refractive index of the transparent member 20.
透明部材20側から平面視した場合において、導光部材30、および、透明部材20は、発光部材10を覆う第1領域R1と、第1領域R1の周縁に隣接する第2領域R2とを有している。導光部材30と透明部材20との間には光拡散部材40が設けられ、第2領域R2の光拡散強度は、第1領域R1の光拡散強度よりも強い領域を含む。本実施の形態において、発光部材10、導光部材30、光拡散部材40、および、透明部材20は、光学的に密着するように形成されている。 When viewed in plan from the transparent member 20 side, the light guide member 30 and the transparent member 20 have a first region R1 that covers the light emitting member 10 and a second region R2 that is adjacent to the periphery of the first region R1. doing. A light diffusion member 40 is provided between the light guide member 30 and the transparent member 20, and the light diffusion intensity of the second region R2 includes a region that is stronger than the light diffusion intensity of the first region R1. In the present embodiment, the light emitting member 10, the light guide member 30, the light diffusing member 40, and the transparent member 20 are formed so as to be optically in close contact with each other.
以下、各構成部材について説明する。発光部材10は、二つの電極が有機EL層を狭持している構成になっている。光出射面(透明部材20)側の電極は透明導電材で形成され、ITO(酸化インジウムスズ(Tin-doped indium oxide))などが使用されている。また、有機EL層を跨いで反対側に位置する電極はアルミニウムや銀などの金属で形成され、光反射性を有する。 Hereinafter, each component will be described. The light emitting member 10 has a configuration in which two electrodes sandwich an organic EL layer. The electrode on the light emitting surface (transparent member 20) side is formed of a transparent conductive material, and ITO (Tin-doped indium oxide) or the like is used. Moreover, the electrode located on the opposite side across the organic EL layer is formed of a metal such as aluminum or silver and has light reflectivity.
有機EL層は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の5層で構成されており、発光層から出射する光は複数の波長を含む白色光である。よって、上述の発光部材10から出射する光の色も白色となる。 The organic EL layer is composed of five layers including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and light emitted from the light emitting layer is white light including a plurality of wavelengths. . Therefore, the color of the light emitted from the light emitting member 10 is also white.
導光部材30は光透過性を有するインクによって構成されている。光拡散部材40は酸化チタンに代表される白色散乱粒子を含む散乱粒子41等を含んだインクによって構成されている。透明部材20はアクリル、PC等の樹脂、または、ガラスといった光透過性を有する材料であることが好ましい。シリコーンゴム等の湾曲可能な材料で構成されていても良い。 The light guide member 30 is made of light-transmitting ink. The light diffusing member 40 is composed of ink containing scattering particles 41 including white scattering particles typified by titanium oxide. The transparent member 20 is preferably a light transmissive material such as a resin such as acrylic or PC, or glass. It may be made of a bendable material such as silicone rubber.
図3を参照して、構成部材の厚みを示す。導光部材30の内部を導光する光の吸収率を抑制するために、導光部材30の厚さは光の波長程度にするのが望ましい。具体的には、発光部材10から出射する光の色が白色の場合、出射された光は、赤(620nm〜750nm)、緑(495nm〜570nm)、青(450nm〜495nm)の波長の光を含むため、導光部材30の膜厚は、750nm〜450nmが望ましい。 With reference to FIG. 3, the thickness of a structural member is shown. In order to suppress the absorption rate of light that guides the inside of the light guide member 30, it is desirable that the thickness of the light guide member 30 be about the wavelength of light. Specifically, when the color of light emitted from the light emitting member 10 is white, the emitted light is light having a wavelength of red (620 nm to 750 nm), green (495 nm to 570 nm), and blue (450 nm to 495 nm). Therefore, the thickness of the light guide member 30 is preferably 750 nm to 450 nm.
また、透明部材20の厚みは、約0.2mm、光拡散部材40は、約1μm以下、導光部材30は、約1μm以下、発光部材は、約1μm以下が望ましい。 The transparent member 20 preferably has a thickness of about 0.2 mm, the light diffusion member 40 has a thickness of about 1 μm or less, the light guide member 30 has a thickness of about 1 μm or less, and the light emitting member has a thickness of about 1 μm or less.
散乱粒子41の材料として、粒子を形成しやすい物としてはTiO2(屈折率n=2.5),SiOx(屈折率n=1.4〜3.5)が挙げられる。その他の材料の例としては、ダイヤモンド、弗化カルシウム(CaF)、チッ化シリコン(Si3N4)などが例示できる。 Examples of the material of the scattering particles 41 that can easily form particles include TiO 2 (refractive index n = 2.5) and SiOx (refractive index n = 1.4 to 3.5). Examples of other materials include diamond, calcium fluoride (CaF), silicon nitride (Si 3 N 4), and the like.
製造プロセスについて説明する。導光部材30および光拡散部材40は、塗布プロセスによって形成される。発光部材10の電極はスパッタリング法、蒸着法、または、塗布プロセスによって形成され、有機EL層も、スパッタリング法、蒸着法、または、塗布プロセスによって形成される。 A manufacturing process will be described. The light guide member 30 and the light diffusing member 40 are formed by a coating process. The electrode of the light emitting member 10 is formed by a sputtering method, a vapor deposition method, or a coating process, and the organic EL layer is also formed by a sputtering method, a vapor deposition method, or a coating process.
次に、図4を参照して、各構成部材における屈折率の関係について説明する。図4は、面発光装置100の部分拡大断面図である。使用する材料の関係上、一般的に発光部材10における有機EL層の屈折率は約1.7、光出射面側の透明部材で形成される電極の屈折率は約1.8、透明部材20は約1.5となる。 Next, with reference to FIG. 4, the relationship of the refractive index in each structural member is demonstrated. FIG. 4 is a partial enlarged cross-sectional view of the surface light emitting device 100. In general, the refractive index of the organic EL layer in the light emitting member 10 is about 1.7, the refractive index of the electrode formed of the transparent member on the light emitting surface side is about 1.8, and the transparent member 20 in terms of the materials used. Is about 1.5.
したがって、導光部材30には屈折率(n=1.9)が透明部材20の屈折率(n=1.5)より高いものを使用する。また、導光部材30から光拡散部材40に入射した光が、第1領域R1の周辺部となる第2領域R2で取り出しやすいように、光拡散部材40の屈折率(n=2.0)は導光部材30の屈折率(n=1.9)より高いことが望ましい。 Therefore, a light guide member 30 having a refractive index (n = 1.9) higher than the refractive index (n = 1.5) of the transparent member 20 is used. Further, the refractive index of the light diffusing member 40 (n = 2.0) so that the light incident on the light diffusing member 40 from the light guide member 30 can be easily taken out in the second region R2 which is the peripheral portion of the first region R1. Is preferably higher than the refractive index of the light guide member 30 (n = 1.9).
上記の面発光装置100の構成によって得られる効果について、図5から図7を参照して説明する。図5は、関連技術における面発光装置の構成をモデル化した断面図、図6および図7は、本実施の形態における面発光装置の構成をモデル化した第1および第2断面図である。 The effects obtained by the configuration of the surface light emitting device 100 will be described with reference to FIGS. FIG. 5 is a cross-sectional view modeling the configuration of the surface light emitting device in the related art, and FIGS. 6 and 7 are first and second cross-sectional views modeling the configuration of the surface light emitting device in the present embodiment.
図5を参照して、関連技術における構成では、発光部材10と透明部材20との間に、透明部材20より屈折率が高い導光部材が設けられていない。そのため、発光部材10から斜め方向に出射する大部分の光L1が、透明部材20と発光部材10との屈折率差(透明部材20の屈折率(n=1.5)<発光部材10の屈折率(n=1.8))によって発光部材10内で導光し、第1領域R1の周辺部となる第2領域R2から光を取り出すことが難しい。 With reference to FIG. 5, in the related art configuration, a light guide member having a refractive index higher than that of transparent member 20 is not provided between light emitting member 10 and transparent member 20. Therefore, most of the light L1 emitted obliquely from the light emitting member 10 has a difference in refractive index between the transparent member 20 and the light emitting member 10 (refractive index of the transparent member 20 (n = 1.5) <refraction of the light emitting member 10). It is difficult to extract light from the second region R2 that is guided in the light emitting member 10 at a rate (n = 1.8)) and is a peripheral portion of the first region R1.
一方、本実施の形態における面発光装置100においては、図6に示すように、発光部材10と透明部材20との間に導光部材30が設けられ、この導光部材30が透明部材20より屈折率が高いことにより(透明部材20の屈折率(n=1.5)<導光部材30の屈折率(n=1.7))、発光部材10内で導光していた光L11を導光部材30に入射させやすくすることができる。 On the other hand, in the surface light emitting device 100 according to the present embodiment, as shown in FIG. 6, a light guide member 30 is provided between the light emitting member 10 and the transparent member 20, and the light guide member 30 is formed by the transparent member 20. Due to the high refractive index (the refractive index of the transparent member 20 (n = 1.5) <the refractive index of the light guide member 30 (n = 1.7)), the light L11 guided in the light emitting member 10 is reflected. The light can be easily incident on the light guide member 30.
たとえば、図5に示す屈折率の関係では、入射角度がαの光L1の場合に、導光部材30に光L1を入射させることはできなかった。しかし、図6に示す示す屈折率の関係では、導光部材30に光L11を入射させることを可能とする。また、導光部材30と透明部材20との間の屈折率の関係を、上記の関係(透明部材20の屈折率(n=1.5)<導光部材30の屈折率(n=1.7))とすることにより、導光部材30への入射光を全反射させ、第2領域R2に相当する位置まで導光させることができる。 For example, in the relationship of the refractive index shown in FIG. 5, in the case of the light L1 having an incident angle α, the light L1 cannot be incident on the light guide member 30. However, the refractive index relationship shown in FIG. 6 allows the light L11 to be incident on the light guide member 30. Further, the relationship of the refractive index between the light guide member 30 and the transparent member 20 is the above relationship (refractive index of the transparent member 20 (n = 1.5) <refractive index of the light guide member 30 (n = 1. 7)), the incident light on the light guide member 30 can be totally reflected and guided to a position corresponding to the second region R2.
さらに、図7に示すように、導光部材30の屈折率を発光部材10の屈折率よりも高く(導光部材30の屈折率(n=1.9)>発光部材10の屈折率(n=1.8)>透明部材20の屈折率(n=1.5))することによって、発光部材10内で全反射をして導波する光は無くなり、全ての光L21が導光部材30に入射することが可能となる。 Furthermore, as shown in FIG. 7, the refractive index of the light guide member 30 is higher than the refractive index of the light emitting member 10 (refractive index of the light guide member 30 (n = 1.9)> refractive index of the light emitting member 10 (n = 1.8)> The refractive index of the transparent member 20 (n = 1.5)), the light that is totally reflected and guided in the light emitting member 10 is eliminated, and all the light L21 is guided by the light guide member 30. It becomes possible to enter.
その結果、屈折率差が「発光部材10の屈折率>導光部材30の屈折率>透明部材20の屈折率」の関係(図6に示す関係)の場合よりも多くの光を第1領域R1の周辺部となる第2領域R2の位置にまで導光させることができる。 As a result, the first region emits more light than the case where the difference in refractive index is “the refractive index of the light emitting member 10> the refractive index of the light guide member 30> the refractive index of the transparent member 20” (the relationship shown in FIG. 6). The light can be guided to the position of the second region R2 that is the peripheral portion of R1.
再び、図4を参照して、第2領域R2の位置にまで導波した光は、導光部材30の上に設けられた光拡散部材40により進行方向を偏向させられ、透明部材20を介して外部へ取り出される。光拡散部材40は、散乱粒子によって光をランダムな方向に偏向するため発光部材10が複数の波長を含む光を出射した場合にも色ずれを起こすことはない。その結果、色ずれを起こすことなく第1領域R1および第2領域R2においての発光が可能になり、面発光装置100として、発光面積を増大することができる。 Referring again to FIG. 4, the light guided to the position of the second region R <b> 2 is deflected in the traveling direction by the light diffusion member 40 provided on the light guide member 30, and passes through the transparent member 20. To be taken out. Since the light diffusing member 40 deflects light in a random direction by scattering particles, no color shift occurs even when the light emitting member 10 emits light including a plurality of wavelengths. As a result, it is possible to emit light in the first region R1 and the second region R2 without causing a color shift, and the surface emitting device 100 can increase the light emitting area.
(実施例1)
次に、図8を参照して、実施例1における面発光装置100Aについて説明する。図8は、図2中のI−I線矢視断面に対応する断面であり、基本的構造は、面発光装置100と同じである。
Example 1
Next, with reference to FIG. 8, the surface light-emitting device 100A in Example 1 will be described. FIG. 8 is a cross section corresponding to the cross section taken along line I-I in FIG. 2, and the basic structure is the same as that of the surface light emitting device 100.
発光部材10、導光部材30、透明部材20の面積は、発光部材10は、一辺が3.5mmの正方形形状、導光部材30および透明部材20には、一辺が7.9mmの正方形形状が用いられ、面発光装置100Aを透明部材20側から平面視した場合において、発光部材10を覆う領域が第1領域R1を構成し、第1領域R1の周縁に隣接する領域が第2領域R2を構成している。発光部材10は、導光部材30および透明部材20の中心に位置していることから、第2領域R2の幅は、発光部材10の全周において、2.2mmとなる。発光部材10の配光分布はランバート配光となっている。 The light emitting member 10, the light guide member 30, and the transparent member 20 have areas of a square shape with a side of 3.5 mm, and the light guide member 30 and the transparent member 20 have a square shape with a side of 7.9 mm. When the planar light emitting device 100A is used as viewed from the transparent member 20 side, the area covering the light emitting member 10 constitutes the first area R1, and the area adjacent to the periphery of the first area R1 is the second area R2. It is composed. Since the light emitting member 10 is located at the center of the light guide member 30 and the transparent member 20, the width of the second region R <b> 2 is 2.2 mm over the entire circumference of the light emitting member 10. The light distribution of the light emitting member 10 is Lambert light distribution.
導光部材30と透明部材20との間には、発光部材10の光出射面を覆うように、平面視において導光部材30および透明部材20と同じ形状の光拡散部材40が設けられている。本実施例においては、光拡散部材40の内部に設けられる散乱粒子41の密度は、発光部材10が対向する第1領域R1から第2領域R2に向かうにつれて連続的に大きくなるように形成されている。散乱粒子41の密度は、発光部材10の中央部から周辺部に向かうにつれて離散的に大きくなっていてもよい(実施例1の変形例)。 Between the light guide member 30 and the transparent member 20, a light diffusion member 40 having the same shape as the light guide member 30 and the transparent member 20 in a plan view is provided so as to cover the light emitting surface of the light emitting member 10. . In the present embodiment, the density of the scattering particles 41 provided in the light diffusing member 40 is formed so as to increase continuously from the first region R1 to the second region R2 facing the light emitting member 10. Yes. The density of the scattering particles 41 may be discretely increased from the central part to the peripheral part of the light emitting member 10 (modified example of Example 1).
上記の構成にすることによって、図8に示すように、発光部材10から正面方向である第1領域R1に向けて出射される光は散乱粒子41に当たる確率が低くなるため、大部分の光L51がそのまま直進して外部へ取り出される。また、一部の光L53は散乱粒子41と当たることによって進行方向を偏向させられるため周辺部である第2領域R2へ向かう導波光となる。 With the above configuration, as shown in FIG. 8, the light emitted from the light emitting member 10 toward the first region R <b> 1 in the front direction has a low probability of hitting the scattering particles 41, and thus most of the light L <b> 51. Goes straight ahead and is taken out. In addition, since a part of the light L53 is deflected in the traveling direction by hitting the scattering particles 41, the light L53 becomes guided light toward the second region R2 which is the peripheral portion.
一方、発光部材10から斜め方向に出射され導光部材30を全反射して導波する光L53は、第1領域R1から第2領域R2に向かうにつれて散乱粒子41と当たる確率が高くなっていくため、第1領域R1から第2領域R2に向かうにつれて徐々に外部へ取り出される。 On the other hand, the light L53 emitted in an oblique direction from the light emitting member 10 and guided by being totally reflected by the light guide member 30 is likely to hit the scattering particles 41 from the first region R1 toward the second region R2. Therefore, it is gradually extracted to the outside as it goes from the first region R1 to the second region R2.
したがって、散乱粒子41の密度は、第1領域R1から第2領域R2に向かうにつれて高くなるように形成されることで、散乱粒子41の密度が第1領域R1から第2領域R2に向かうにつれて低くなる場合や、散乱粒子41の密度が導光層全体で均一な場合に比べて、第1領域R1および第2領域R2の光量差を一定にしつつ、発光面積を増大することができる。 Therefore, the density of the scattering particles 41 is formed so as to increase from the first region R1 toward the second region R2, so that the density of the scattering particles 41 decreases as the distance from the first region R1 toward the second region R2. As compared with the case where the density of the scattering particles 41 is uniform in the entire light guide layer, the light emission area can be increased while the light amount difference between the first region R1 and the second region R2 is made constant.
(実施例2)
図9および図10を参照して、実施例2における面発光装置200の構成について説明する。図9は、図2中のI−I線矢視断面に対応する断面であり、基本的構造は、面発光装置100と同じである。図10は、図9に示す面発光装置200の部分拡大断面図である。
(Example 2)
With reference to FIG. 9 and FIG. 10, the structure of the surface emitting device 200 in Example 2 is demonstrated. FIG. 9 is a cross section corresponding to the cross section taken along line I-I in FIG. 2, and the basic structure is the same as that of the surface light emitting device 100. FIG. 10 is a partially enlarged cross-sectional view of the surface light emitting device 200 shown in FIG.
実施例1に示す面発光装置100Aの構成との違いは、第2領域R2のみに光拡散部材40が形成されていることである。さらに、導光部材30から光拡散部材40へ光を入射しやすくするために、光拡散部材40の屈折率は導光部材30の屈折率より高くなっていることが望ましい。この構成にすることによって、発光部材10から第1領域R1に出射される光は散乱粒子41に当たることなく、そのまま直進して外部へ取り出される。 The difference from the configuration of the surface light emitting device 100A shown in Example 1 is that the light diffusion member 40 is formed only in the second region R2. Furthermore, it is desirable that the refractive index of the light diffusing member 40 is higher than the refractive index of the light guiding member 30 in order to make it easier for light to enter the light diffusing member 40 from the light guiding member 30. With this configuration, the light emitted from the light emitting member 10 to the first region R1 does not hit the scattering particles 41, and proceeds straight as it is to the outside.
一方、発光部材10から斜め方向に出射され、導光部材30を全反射しながら第2領域R2へ導波する光は、第2領域R2に位置する光拡散部材40の散乱粒子41と当たり、外部へ取り出される。したがって、光拡散部材40は、少なくとも第2領域R2に設ければよいことから、光拡散部材40に使用する材料を少なくすることが可能となり製作コストを抑制することが可能となる。 On the other hand, the light emitted from the light emitting member 10 in the oblique direction and guided to the second region R2 while totally reflecting the light guide member 30 hits the scattering particles 41 of the light diffusion member 40 located in the second region R2, Take out to the outside. Therefore, since the light diffusing member 40 may be provided at least in the second region R2, it is possible to reduce the material used for the light diffusing member 40 and to reduce the manufacturing cost.
(実施例3)
実施例3は、実施例2と同じ構成であるが配光分布が異なっている。図11に実施例3の発光部材10の配光分布を示す。発光部材10から出射される光の光量は正面方向よりも斜め方向に多くなっており、発光部材10の法線方向から傾いた方向に光強度のピークを持つ(ハート型配光)。配光分布は、図12に示すように、発光部材10の法線方向と法線方向から傾いた方向とに光強度のピークを持つ形状(三つ又配光)であってもよく、また、法線方向から傾いた方向に複数のピークを持つ形状であってもよい。なお、図11および図12において、半径方向は規格化輝度(最も輝度が大きい角度を1とした)、周方向は角度を示す。
Example 3
Example 3 has the same configuration as that of Example 2, but has a different light distribution. FIG. 11 shows a light distribution of the light emitting member 10 of Example 3. The amount of light emitted from the light emitting member 10 is larger in the oblique direction than the front direction, and has a light intensity peak in a direction inclined from the normal direction of the light emitting member 10 (heart-shaped light distribution). As shown in FIG. 12, the light distribution may have a shape (three-way light distribution) having a light intensity peak in the normal direction of the light emitting member 10 and a direction inclined from the normal direction. The shape may have a plurality of peaks in a direction inclined from the line direction. In FIG. 11 and FIG. 12, the radial direction indicates the normalized luminance (the angle with the highest luminance is 1), and the circumferential direction indicates the angle.
実施例1および2における面発光装置100A,200との違いは、発光部材10から出射される光の光量が正面方向よりも斜め方向に多い発光部材を使用している点である。例えば、図11は、発光部材10から出射される光の配光形状はハート型であり、図12は、発光部材10から出射される光の配光形状は三つ又である。 The difference from the surface light emitting devices 100A and 200 in the first and second embodiments is that a light emitting member is used in which the amount of light emitted from the light emitting member 10 is larger in the oblique direction than in the front direction. For example, in FIG. 11, the light distribution shape of the light emitted from the light emitting member 10 is a heart shape, and in FIG. 12, the light distribution shape of the light emitted from the light emitting member 10 is trifurcated.
図11および図12に示すような配光形状を有する発光部材10を用いることで、導光部材30を全反射して導波する光の量が多くなるため、第1領域R1および第2領域R2の光量差を小さくし、面発光装置の発光面積を増大することを可能とする。 By using the light emitting member 10 having the light distribution shape as shown in FIG. 11 and FIG. 12, the amount of light that is totally reflected by the light guide member 30 and guided is increased, so that the first region R1 and the second region It is possible to reduce the light amount difference of R2 and increase the light emitting area of the surface light emitting device.
(比較検討)
図13および図14を参照して、本実施例1〜3と、図5にモデル化した比較例技術との面発光装置における発光面積の比較結果を示す。図13は、本実施例1〜3および比較例技術の発光面積の比較結果を示す図、図14は、発光面積の測定位置を示す図である。
(Comparison)
With reference to FIG. 13 and FIG. 14, the comparison result of the light emission area in the surface emitting device of this Example 1-3 and the comparative example technique modeled in FIG. 5 is shown. FIG. 13 is a diagram illustrating a comparison result of the light emission areas of Examples 1 to 3 and the comparative example technique, and FIG. 14 is a diagram illustrating a measurement position of the light emission area.
図13を参照して、規格化輝度0.4(40%)において本実施例1,2,3は、比較例に比べて光源幅が増大していることが分かる。なかでも実施例3(ハート型配光)が最も光源幅を増大している。これは発光部材10が、第1領域R1よりも第2領域R2に光量を多く持つ配光を有しているため、実施例1,2および比較例に比べて、第2領域R2から光を多く取り出して、第1領域R1と第2領域R2との間において、輝度差を軽減することを可能としているからである。なお、実施例1の構成においても、光量が正面方向よりも斜め方向に多い配光を用いることで、第2領域R2から光を多く取り出して、第1領域R1と第2領域R2との間において、輝度差を軽減することが可能になる。 Referring to FIG. 13, it can be seen that the light source width is increased in Examples 1, 2, and 3 in comparison with the comparative example at the normalized luminance of 0.4 (40%). In particular, Example 3 (heart-shaped light distribution) has the largest light source width. This is because the light emitting member 10 has a light distribution having a larger amount of light in the second region R2 than in the first region R1, so that light is emitted from the second region R2 as compared with the first and second embodiments and the comparative example. This is because it is possible to reduce the luminance difference between the first region R1 and the second region R2 by taking out a large amount. Even in the configuration of the first embodiment, by using a light distribution in which the amount of light is larger in the oblique direction than in the front direction, a large amount of light is extracted from the second region R2, and between the first region R1 and the second region R2. In this case, it is possible to reduce the luminance difference.
また、図15および図16を参照して、光拡散部材40内の散乱粒子41の粒子数密度について検討する。図15は、実施例1から3における、光拡散部材40内の散乱粒子41の粒子数密度を示す図であり、図16は、散乱粒子数密度の測定位置を示す図である。 Further, the particle number density of the scattering particles 41 in the light diffusing member 40 will be examined with reference to FIGS. 15 and 16. FIG. 15 is a diagram illustrating the particle number density of the scattering particles 41 in the light diffusing member 40 in Examples 1 to 3, and FIG. 16 is a diagram illustrating measurement positions of the scattering particle number density.
図15では、発光部材10の中央部を0mmとし、発光部材10の幅を、端部−1.75mm〜端部1.75mmの3.5mmとしている。実施例1において、散乱粒子41の粒子数密度は、発光部材10の中央部から周辺部に向かうにつれて連続的に大きくなるように設けられている。散乱粒子41の粒子数密度は、光源端部1.75mm,−1.75mmで最も大きくなり、発光部材10の端部(第1領域R1の端部)から第2領域R2ではそのまま密度最大で一定となる。 In FIG. 15, the central portion of the light emitting member 10 is set to 0 mm, and the width of the light emitting member 10 is set to 3.5 mm from the end portion-1.75 mm to the end portion 1.75 mm. In Example 1, the particle number density of the scattering particles 41 is provided so as to increase continuously from the central part to the peripheral part of the light emitting member 10. The particle number density of the scattering particles 41 is highest at the light source end portions of 1.75 mm and −1.75 mm, and the density is the maximum from the end portion of the light emitting member 10 (end portion of the first region R1) to the second region R2. It becomes constant.
実施例1の面発光装置では、散乱粒子41の粒子数密度は、発光部材10の中央部から第2領域R2に向かうにつれて離散的に大きくなっていってもよい(実施例1変形例)。実施例2、3においては、散乱粒子41は、第1領域R1の端部から第2領域R2に存在し、第1領域R1の「−1.75mm〜1.75mm」には存在しない。 In the surface light emitting device of Example 1, the particle number density of the scattering particles 41 may be discretely increased from the central part of the light emitting member 10 toward the second region R2 (Modified Example 1). In Examples 2 and 3, the scattering particles 41 are present in the second region R2 from the end of the first region R1, and are not present in “−1.75 mm to 1.75 mm” of the first region R1.
以上、本実施の形態における面発光装置においては、導光部材30が第2領域R2にまで延伸し、かつ、導光部材30の屈折率が透明部材20よりも高いことによって、発光部材10から斜め方向に導光部材30に入射する光は導光部材30内を全反射により導波し、第2領域R2の位置から光拡散部材40によって外部へ取り出される。したがって、より多くの光を第2領域R2の位置まで導波することができるため面発光装置100の発光面積を増大することを可能とする。 As described above, in the surface light emitting device according to the present embodiment, the light guide member 30 extends to the second region R2, and the refractive index of the light guide member 30 is higher than that of the transparent member 20, thereby Light incident on the light guide member 30 in an oblique direction is guided through the light guide member 30 by total reflection, and is extracted to the outside by the light diffusion member 40 from the position of the second region R2. Accordingly, since more light can be guided to the position of the second region R2, the light emitting area of the surface light emitting device 100 can be increased.
実施例1〜3における面発光装置においては、第2領域R2の光拡散強度を第1領域R1の光拡散強度よりも大きくするために、光拡散部材40内の第2領域の散乱粒子41の粒子数密度を第1領域の粒子数密度よりも大きくしていたが、散乱粒子41の粒子数密度が第1領域と第2領域とで同じであっても、光拡散部材40の厚さを変えることで斜め方向の光に作用する散乱粒子41の数を増やすことができる。例えば、光拡散強度を第1領域から第2領域にかけて大きくする場合は、図17に示すように、発光部材10の中央部から周辺部に向かうにつれて光拡散部材40の厚さを厚くすればよい。 In the surface emitting devices in Examples 1 to 3, in order to make the light diffusion intensity of the second region R2 larger than the light diffusion intensity of the first region R1, the scattering particles 41 of the second region in the light diffusion member 40 Although the particle number density is larger than the particle number density in the first region, even if the particle number density of the scattering particles 41 is the same in the first region and the second region, the thickness of the light diffusion member 40 is reduced. By changing the number, the number of scattering particles 41 acting on the light in the oblique direction can be increased. For example, when the light diffusion intensity is increased from the first region to the second region, the thickness of the light diffusion member 40 may be increased from the central portion to the peripheral portion of the light emitting member 10 as shown in FIG. .
以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present invention have been described above, the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all modifications within the scope.
10 発光部材、20 透明部材、30 導光部材、40 光拡散部材、41 散乱粒子、100,100A,200 面発光装置、R1 第1領域、R2 第2領域。 DESCRIPTION OF SYMBOLS 10 Light emitting member, 20 Transparent member, 30 Light guide member, 40 Light-diffusion member, 41 Scattering particle | grains, 100,100A, 200 Surface light-emitting device, R1 1st area | region, R2 2nd area | region.
Claims (8)
前記発光部材の上に形成された導光部材と、
前記導光部材の上に形成された透明部材と、を備え、
前記導光部材の屈折率は、前記透明部材の屈折率よりも大きく設けられ、
前記透明部材側から平面視した場合において、前記導光部材、および、前記透明部材は、前記発光部材を覆う第1領域と、前記第1領域の周縁に隣接する第2領域とを有し、
少なくも前記第2領域において、前記導光部材と前記透明部材との間には光拡散部材が設けられ、
前記第2領域の光拡散強度は、前記第1領域の光拡散強度よりも強い光拡散強度領域を含む、面発光装置。 A light emitting member;
A light guide member formed on the light emitting member;
A transparent member formed on the light guide member,
The refractive index of the light guide member is provided larger than the refractive index of the transparent member,
In a plan view from the transparent member side, the light guide member and the transparent member have a first region covering the light emitting member, and a second region adjacent to the periphery of the first region,
At least in the second region, a light diffusion member is provided between the light guide member and the transparent member,
The surface light-emitting device includes a light diffusion intensity region in which the light diffusion intensity of the second region is stronger than the light diffusion intensity of the first region.
前記発光部材の屈折率は、前記透明部材の屈折率よりも大きく設けられている、請求項1または請求項2のいずれかに記載の面発光装置。 The refractive index of the light guide member is larger than the refractive index of the light emitting member,
The surface light-emitting device according to claim 1, wherein a refractive index of the light-emitting member is set larger than a refractive index of the transparent member.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015011394A JP2016136484A (en) | 2015-01-23 | 2015-01-23 | Surface light-emitting device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015011394A JP2016136484A (en) | 2015-01-23 | 2015-01-23 | Surface light-emitting device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2016136484A true JP2016136484A (en) | 2016-07-28 |
Family
ID=56513080
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2015011394A Pending JP2016136484A (en) | 2015-01-23 | 2015-01-23 | Surface light-emitting device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2016136484A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107102475A (en) * | 2017-06-08 | 2017-08-29 | 合肥京东方显示光源有限公司 | A kind of backlight module and display device |
| KR20190141042A (en) * | 2018-06-12 | 2019-12-23 | 삼성디스플레이 주식회사 | Display apparatus and manufacturing method of the same |
| KR20200141761A (en) * | 2019-06-11 | 2020-12-21 | 엘지디스플레이 주식회사 | Lighting apparatus |
| JP2022513014A (en) * | 2018-11-12 | 2022-02-07 | コーニング インコーポレイテッド | Methods for Manufacturing Backlights and Backlights Including Patterned Reflectors, Diffusing Plates |
-
2015
- 2015-01-23 JP JP2015011394A patent/JP2016136484A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107102475A (en) * | 2017-06-08 | 2017-08-29 | 合肥京东方显示光源有限公司 | A kind of backlight module and display device |
| WO2018223807A1 (en) * | 2017-06-08 | 2018-12-13 | 京东方科技集团股份有限公司 | Backlight module and display device |
| KR20190141042A (en) * | 2018-06-12 | 2019-12-23 | 삼성디스플레이 주식회사 | Display apparatus and manufacturing method of the same |
| KR102526548B1 (en) * | 2018-06-12 | 2023-05-02 | 삼성디스플레이 주식회사 | Display apparatus and manufacturing method of the same |
| JP2022513014A (en) * | 2018-11-12 | 2022-02-07 | コーニング インコーポレイテッド | Methods for Manufacturing Backlights and Backlights Including Patterned Reflectors, Diffusing Plates |
| JP7470684B2 (en) | 2018-11-12 | 2024-04-18 | コーニング インコーポレイテッド | BACKLIGHT INCLUDING A PATTERNED REFLECTOR, A DIFFUSER AND METHODS FOR MANUFACTURING A BACKLIGHT - Patent application |
| KR20200141761A (en) * | 2019-06-11 | 2020-12-21 | 엘지디스플레이 주식회사 | Lighting apparatus |
| KR102690779B1 (en) * | 2019-06-11 | 2024-08-02 | 엘지디스플레이 주식회사 | Lighting apparatus |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9525013B2 (en) | Organic light-emitting diode display device and its manufacturing method | |
| CN104103776B (en) | Organic light-emitting display device and its manufacture method | |
| US9634289B2 (en) | Transparent display panel and manufacturing method thereof, and transparent display device | |
| JP6082907B2 (en) | Display device and manufacturing method of display device | |
| US20210366993A1 (en) | Oled display panel and manufaturing method thereof | |
| US20170133357A1 (en) | Display device | |
| CN104282844B (en) | Organic light-emitting structure, manufacturing method thereof, and organic light-emitting component | |
| JP2007080579A (en) | Surface light emitting device | |
| US8648527B2 (en) | Display apparatus | |
| JP2012226931A (en) | Display device | |
| JP2013073799A (en) | Display device | |
| CN108123055A (en) | light emitting device | |
| JP2004296215A (en) | Transparent substrate for planar light source, method for manufacturing transparent substrate, planar light source, and liquid crystal display device | |
| JP2016136484A (en) | Surface light-emitting device | |
| JP2024015135A (en) | light emitting device | |
| JP2012221686A (en) | Display device | |
| CN105929591A (en) | Quantum dot display base plate, manufacturing method of quantum dot display base plate and quantum dot display device | |
| CN105226203B (en) | Organic light emitting diode device, display comprising it and preparation method thereof | |
| US10468463B1 (en) | Display device with optical reflecting layer | |
| KR102608318B1 (en) | Organic Light Emitting Device | |
| US20130082909A1 (en) | Display apparatus | |
| KR20060027341A (en) | EL device, manufacturing method thereof, and liquid crystal display device using EL device | |
| WO2020238856A1 (en) | Display panel and manufacturing method therefor, and display device | |
| KR20060027340A (en) | EL device, manufacturing method thereof, and liquid crystal display device using EL device | |
| JP2006210119A (en) | Light emitting device |