[go: up one dir, main page]

JP2017010809A - Electrode for redox flow battery and redox flow battery - Google Patents

Electrode for redox flow battery and redox flow battery Download PDF

Info

Publication number
JP2017010809A
JP2017010809A JP2015125744A JP2015125744A JP2017010809A JP 2017010809 A JP2017010809 A JP 2017010809A JP 2015125744 A JP2015125744 A JP 2015125744A JP 2015125744 A JP2015125744 A JP 2015125744A JP 2017010809 A JP2017010809 A JP 2017010809A
Authority
JP
Japan
Prior art keywords
porous plate
battery
electrode
redox flow
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015125744A
Other languages
Japanese (ja)
Inventor
博之 中石
Hiroyuki Nakaishi
博之 中石
敏夫 重松
Toshio Shigematsu
敏夫 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015125744A priority Critical patent/JP2017010809A/en
Publication of JP2017010809A publication Critical patent/JP2017010809A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】セル抵抗が小さく、電解液の流通性にも優れるレドックスフロー電池、及びレドックスフロー電池用電極を提供する。
【解決手段】正極電極と、負極電極と、前記正極電極と前記負極電極との間に介在される隔膜とを備えるレドックスフロー電池であって、前記正極電極及び前記負極電極のうち、一方の電極は、炭素が結合して形成される連続的な三次元網目構造の骨子を主体とする多孔質板を備え、他方の電極は、互いに絡み合う複数の炭素繊維を主体とする繊維集合材を備え、前記多孔質板は、その少なくとも一面に開口し、電解液が流通される凹部を備えるレドックスフロー電池。
【選択図】図1
A redox flow battery and a redox flow battery electrode having low cell resistance and excellent electrolyte flowability are provided.
A redox flow battery comprising a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode, wherein one of the positive electrode and the negative electrode Is provided with a porous plate mainly composed of a continuous three-dimensional network structure formed by combining carbon, and the other electrode includes a fiber aggregate mainly composed of a plurality of carbon fibers intertwined with each other, The porous plate is a redox flow battery having an opening on at least one surface thereof and a recess through which an electrolytic solution is circulated.
[Selection] Figure 1

Description

本発明は、流体流通型の蓄電池の一つであるレドックスフロー電池、及びレドックスフロー電池用電極に関する。特に、セル抵抗が小さく、電解液の流通性にも優れるレドックスフロー電池に関する。   The present invention relates to a redox flow battery which is one of fluid flow storage batteries, and an electrode for a redox flow battery. In particular, the present invention relates to a redox flow battery having low cell resistance and excellent electrolyte flowability.

蓄電池の一つに、電解液を電極に供給して電池反応を行うレドックスフロー電池(以下、RF電池と呼ぶことがある)がある。RF電池は、(1)メガワット級(MW級)の大容量化が容易である、(2)長寿命である、(3)電池の充電状態(SOC:State of Charge)を正確に監視可能である、(4)電池出力と電池容量とを独立して設計できて設計の自由度が高い、等の特徴を有しており、電力系統の安定化用途の蓄電池に適すると期待される。   One type of storage battery is a redox flow battery (hereinafter sometimes referred to as an RF battery) in which an electrolytic solution is supplied to an electrode to perform a battery reaction. RF battery (1) Easy to increase the capacity of megawatt class (MW class), (2) Long life, (3) Battery state of charge (SOC) can be accurately monitored It has features such as (4) battery output and battery capacity can be designed independently and has a high degree of design freedom, and is expected to be suitable for storage batteries for power system stabilization applications.

RF電池は、代表的には、正極電解液が供給される正極電極と、負極電解液が供給される負極電極と、両極の電極間に介在される隔膜とを備える電池セルを主な構成要素とする。大容量用途では、複数の電池セルを積層し、ある程度締め付けて構成されるセルスタックと呼ばれるものが利用される。   An RF battery typically includes a battery cell including a positive electrode to which a positive electrode electrolyte is supplied, a negative electrode to which a negative electrode electrolyte is supplied, and a diaphragm interposed between both electrodes. And In large-capacity applications, a so-called cell stack configured by stacking a plurality of battery cells and tightening them to some extent is used.

正極電極、負極電極には、カーボンフェルトなどの炭素繊維を集合した板状の炭素材(以下、繊維集合材と呼ぶことがある)が利用されている(特許文献1)。特許文献1は、繊維集合材における隔膜に対向する面に複数の直線状の溝を並列に設けた電極を開示している。   As the positive electrode and the negative electrode, a plate-like carbon material (hereinafter sometimes referred to as a fiber assembly material) in which carbon fibers such as carbon felt are aggregated is used (Patent Document 1). Patent document 1 is disclosing the electrode which provided the several linear groove | channel in parallel in the surface facing the diaphragm in a fiber assembly.

特開2002−246035号公報JP 2002-246035 A

レドックスフロー電池に対して、セル抵抗が小さく、電解液の流通性にも優れることが望まれる。また、このようなレドックスフロー電池を構築できる電極が望まれる。   Compared to a redox flow battery, it is desired that the cell resistance is small and the flowability of the electrolyte is excellent. Moreover, an electrode capable of constructing such a redox flow battery is desired.

特許文献1に記載されるようにカーボンフェルトなどの繊維集合材に溝を設けると、電解液の流通性を高められる。しかし、繊維集合材は柔軟性に優れるため、上述のセルスタックのように締め付けられていると、経時的に変形などして溝が浅くなるなど、所定の溝を十分に維持できない可能性がある。溝が浅くなれば、電解液の流通性の向上効果が得られ難くなる。従って、長期に亘り、電解液の流通性に優れるレドックスフロー電池が望まれる。   When a groove is provided in a fiber aggregate such as carbon felt as described in Patent Document 1, the flowability of the electrolyte can be improved. However, since the fiber assembly is excellent in flexibility, if it is tightened like the above-mentioned cell stack, the predetermined groove may not be sufficiently maintained, for example, the groove becomes shallow due to deformation over time. . If the groove becomes shallow, it becomes difficult to obtain the effect of improving the flowability of the electrolytic solution. Therefore, a redox flow battery excellent in the flowability of the electrolyte over a long period of time is desired.

例えば、炭素繊維の充填量(目付量)をより多くして緻密な繊維集合材とすれば、経時的な変形をある程度抑制できると考えられる。また、炭素繊維の充填量が多くなれば、電池反応場が増大して電池反応性を高められてセル抵抗を小さくできる。しかし、上述の変形を十分に抑制可能なほどに繊維集合材を緻密化すると、電解液の流通性に劣る。   For example, it is considered that the deformation with time can be suppressed to some extent by increasing the filling amount (weight per unit area) of the carbon fiber to form a dense fiber assembly. Moreover, if the filling amount of carbon fiber is increased, the battery reaction field is increased, the battery reactivity is increased, and the cell resistance can be reduced. However, if the fiber assembly is densified to such a degree that the above deformation can be sufficiently suppressed, the flowability of the electrolytic solution is poor.

そこで、本発明の目的の一つは、セル抵抗が小さく、電解液の流通性にも優れるレドックスフロー電池、及びレドックスフロー電池用電極を提供することにある。   Accordingly, one of the objects of the present invention is to provide a redox flow battery and a redox flow battery electrode that have low cell resistance and excellent electrolyte flowability.

本発明の一態様に係るレドックスフロー電池は、正極電極と、負極電極と、前記正極電極と前記負極電極との間に介在される隔膜とを備える。
前記正極電極及び前記負極電極のうち、一方の電極は、炭素が結合して形成される連続的な三次元網目構造の骨子を主体とする多孔質板を備え、他方の電極は、互いに絡み合う複数の炭素繊維を主体とする繊維集合材を備える。
前記多孔質板は、その少なくとも一面に開口し、電解液が流通される凹部を備える。
A redox flow battery according to one embodiment of the present invention includes a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode.
Of the positive electrode and the negative electrode, one electrode includes a porous plate mainly composed of a continuous three-dimensional network structure formed by bonding carbon, and the other electrode includes a plurality of intertwined ones. A fiber assembly mainly composed of carbon fiber is provided.
The porous plate is provided with a recess that is open on at least one surface thereof and through which an electrolytic solution is circulated.

本発明の一態様に係るレドックスフロー電池用電極は、炭素が結合して形成される連続的な三次元網目構造の骨子を主体とし、少なくとも一面に開口して電解液が流通される凹部を備える多孔質板と、前記多孔質板の凹部が開口する面に対向して配置され、互いに絡み合う複数の炭素繊維を主体とする繊維集合材とが積層された積層体を備える。   An electrode for a redox flow battery according to an aspect of the present invention is mainly composed of a continuous three-dimensional network structure formed by bonding carbon, and includes a recess that is open at least on one surface and through which an electrolyte is distributed. A laminated body is provided in which a porous plate and a fiber assembly mainly composed of a plurality of carbon fibers that are arranged opposite to a surface of the porous plate where the concave portion is opened and intertwined with each other are laminated.

上記のレドックスフロー電池は、セル抵抗が小さく、電解液の流通性にも優れる。   The above redox flow battery has low cell resistance and excellent electrolyte circulation.

上記のレドックスフロー電池用電極は、セル抵抗が小さく、電解液の流通性にも優れるレドックスフロー電池を構築できる。   The above redox flow battery electrode has a low cell resistance and can build a redox flow battery excellent in the flowability of the electrolyte.

実施形態1のレドックスフロー電池を模式的に示す断面説明図である。2 is a cross-sectional explanatory view schematically showing the redox flow battery of Embodiment 1. FIG. 実施形態2のレドックスフロー電池を模式的に示す断面説明図である。4 is a cross-sectional explanatory view schematically showing a redox flow battery of Embodiment 2. FIG. 実施形態3のレドックスフロー電池を模式的に示す断面説明図である。6 is a cross-sectional explanatory view schematically showing a redox flow battery according to Embodiment 3. FIG. 実施形態4のレドックスフロー電池を模式的に示す断面説明図である。6 is a cross-sectional explanatory view schematically showing a redox flow battery of Embodiment 4. FIG. 実施形態5のレドックスフロー電池を模式的に示す断面説明図である。6 is a cross-sectional explanatory view schematically showing a redox flow battery of Embodiment 5. FIG. 実施形態のレドックスフロー電池用電極の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the electrode for redox flow batteries of embodiment. 実施形態のレドックスフロー電池などを備えるレドックスフロー電池システムの基本構成と、基本的な動作原理とを示す説明図である。It is explanatory drawing which shows the basic composition of a redox flow battery system provided with the redox flow battery etc. of embodiment, and a basic operating principle. 実施形態のレドックスフロー電池などに備えるセルスタックの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the cell stack with which the redox flow battery etc. of embodiment are equipped.

[本発明の実施形態の説明]
本発明者らは、レドックスフロー電池用電極を構成する炭素材として、炭素が結合して形成される連続的な三次元網目構造の骨子を主体とする板状の多孔質材を検討した。この多孔質材は、上述の炭素が結合してなる三次元網目構造を有することで、上述の炭素繊維が絡み合った繊維集合材よりも剛性が高い。そのため、この多孔質材は変形などし難く、溝を備える場合に電解液の流通性に優れるとの知見を得た。しかし、後述する試験例に示すように溝を備える多孔質材を正負の両極の電極に用いるとセル抵抗が高いとの知見を得た。更に検討した結果、溝を備える多孔質材と、カーボンフェルトなどの繊維集合材との双方を備えると、電解液の流通性に優れる上にセル抵抗が小さいレドックスフロー電池を構築できるとの知見を得た。本発明は、上記の知見に基づくものである。最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
The present inventors examined a plate-like porous material mainly composed of a continuous three-dimensional network structure formed by bonding carbon as a carbon material constituting an electrode for a redox flow battery. The porous material has a three-dimensional network structure formed by bonding the above-described carbon, and thus has a higher rigidity than the fiber aggregate in which the above-described carbon fibers are intertwined. For this reason, the porous material is difficult to be deformed, and it has been found that when the groove is provided, the flowability of the electrolytic solution is excellent. However, as shown in a test example to be described later, it has been found that when a porous material having grooves is used for both positive and negative electrodes, cell resistance is high. As a result of further investigation, it has been found that a redox flow battery having a low cell resistance can be constructed in addition to being excellent in the flowability of the electrolytic solution when both a porous material having grooves and a fiber aggregate such as carbon felt are provided. Obtained. The present invention is based on the above findings. First, the contents of the embodiment of the present invention will be listed and described.

(1)実施形態に係るレドックスフロー電池(RF電池)は、正極電極と、負極電極と、上記正極電極と上記負極電極との間に介在される隔膜とを備える。
上記正極電極及び上記負極電極のうち、一方の電極は、炭素が結合して形成される連続的な三次元網目構造の骨子を主体とする多孔質板を備え、他方の電極は、互いに絡み合う複数の炭素繊維を主体とする繊維集合材を備える。
上記多孔質板は、その少なくとも一面に開口し、電解液が流通される凹部を備える。
(1) A redox flow battery (RF battery) according to an embodiment includes a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode.
Of the positive electrode and the negative electrode, one electrode includes a porous plate mainly composed of a continuous three-dimensional network structure formed by bonding carbon, and the other electrode is a plurality of intertwined ones. A fiber assembly mainly composed of carbon fiber is provided.
The porous plate is provided with a recess that is open on at least one surface thereof and through which the electrolytic solution is circulated.

上記凹部とは、例えば、多孔質板の一面に開口する溝が挙げられる。
上記凹部は、多孔質板における骨子が形成する気孔よりも十分に大きい空間を形成することが好ましい。具体的には、多孔質板の厚さ方向に直交する面を切断面とし、任意の切断面における各凹部の断面積が多孔質板の平均気孔径を有する円の面積よりも十分に大きいことが好ましい。
Examples of the recess include a groove opened on one surface of a porous plate.
The recess preferably forms a space that is sufficiently larger than the pores formed by the skeleton of the porous plate. Specifically, the surface perpendicular to the thickness direction of the porous plate is a cut surface, and the cross-sectional area of each recess in an arbitrary cut surface is sufficiently larger than the area of a circle having the average pore diameter of the porous plate Is preferred.

上記のRF電池は、繊維集合材よりも剛性が高い多孔質板を備え、この多孔質板に凹部を備えるため、凹部を長期に亘り維持できて電解液の流通性に優れる。特に、上記のRF電池は、多孔質板よりも柔軟性に優れる繊維集合材を備えるため、繊維集合材を多孔質板に対するクッションとして機能させられて、多孔質板の割れなどの損傷を防止できる。この点からも、凹部の具備による良好な流通性を確保できる。   The RF battery includes a porous plate having higher rigidity than the fiber assembly, and the porous plate is provided with a concave portion. Therefore, the concave portion can be maintained for a long period of time, and the electrolyte solution is excellent in circulation. In particular, since the RF battery includes a fiber assembly that is more flexible than the porous plate, the fiber assembly can function as a cushion against the porous plate, and damage such as cracking of the porous plate can be prevented. . Also from this point, it is possible to ensure good flowability due to the provision of the recesses.

かつ、上記のRF電池は、緻密であることで導電性及び電池反応性に優れる多孔質板と、電解液を保持し易く電池反応性に優れる繊維集合材との双方を備えることで、後述する試験例に示すようにセル抵抗が小さい。   In addition, the RF battery described above includes both a porous plate that is dense and excellent in conductivity and battery reactivity, and a fiber assembly that is easy to hold an electrolyte solution and excellent in battery reactivity, which will be described later. As shown in the test examples, the cell resistance is small.

更に、多孔質板は上述のように剛性に優れるため、例えば触媒などの付着を容易に、かつ安定して行い易い。触媒を備える多孔質板を正極電極に含むと、電池反応性を高められてセル抵抗をより小さくできる。従って、上記のRF電池が特に正極電極に触媒付きの多孔質板を備える場合、セル抵抗をより小さくできる。   Furthermore, since the porous plate is excellent in rigidity as described above, for example, a catalyst or the like can be easily and stably attached. When the positive electrode includes a porous plate provided with a catalyst, battery reactivity can be enhanced and cell resistance can be further reduced. Therefore, the cell resistance can be further reduced particularly when the above-described RF battery includes a porous plate with a catalyst on the positive electrode.

その他、多孔質板は上述のように剛性に優れるため、溝といった凹部を容易に、かつ安定して形成できて、電極の製造性にも優れる。   In addition, since the porous plate is excellent in rigidity as described above, a concave portion such as a groove can be formed easily and stably, and the manufacturability of the electrode is also excellent.

(2)上記のRF電池の一例として、上記正極電極及び上記負極電極のうち少なくとも一方の電極は、上記多孔質板と上記繊維集合材とが積層された積層体を備える形態が挙げられる。 (2) As an example of the RF battery, at least one of the positive electrode and the negative electrode may include a laminated body in which the porous plate and the fiber assembly material are laminated.

上記形態は、少なくとも一方の電極に、凹部の具備によって電解液の流通性に優れる多孔質板と電池反応性に優れる繊維集合材との双方を備えるため、電解液の流通性により優れる上に、セル抵抗をより小さくできる。積層体を備える電極は、多孔質板に繊維集合材が接しているため、この繊維集合材によって多孔質板の割れなどの損傷をより防止し易いことからも、上記形態は、電解液の流通性により優れる。かつ、積層体を備える電極は、多孔質板と繊維集合材との双方で電池反応を行えるため、セル抵抗をより小さくできる。   Since the above-mentioned form includes both the porous plate excellent in the flowability of the electrolytic solution and the fiber aggregate excellent in the battery reactivity due to the provision of the recesses in at least one electrode, the flowability of the electrolytic solution is excellent. Cell resistance can be further reduced. Since the electrode provided with the laminate is in contact with the porous plate with the fiber assembly material, it is easier to prevent damage such as cracking of the porous plate with this fiber assembly material. It is more excellent in nature. And since the electrode provided with a laminated body can perform battery reaction with both a porous board and a fiber assembly material, it can make cell resistance smaller.

(3)上記(2)のRF電池の一例として、上記積層体における上記多孔質板は、上記繊維集合材との界面側に開口する凹部を備える形態が挙げられる。 (3) As an example of the RF battery of (2), the porous plate in the laminate may include a recess provided on the interface side with the fiber assembly.

上記形態の積層体は、多孔質板の凹部が開口する面に対向して繊維集合材が配置されて、凹部の開口部が繊維集合材によって直接覆われた状態といえる。このような積層体を備える電極は、繊維集合材によって凹部近傍の割れなどの損傷を防止できる上に、凹部と繊維集合材との間で電解液の授受を容易に行える。従って、上記形態は、電解液の流通性に更に優れる。特に、繊維集合材が隔膜側に配置された積層体を備える場合には、多孔質板は隔膜に対向する面(以下、隔膜側面と呼ぶことがある)に開口する凹部を備えることになり(後述の(4)の形態)、この多孔質板の凹部から供給された電解液によって繊維集合材は隔膜近傍で電池反応を行える。従って、この形態は、セル抵抗を一層小さくできる。   It can be said that the laminated body of the said form is the state by which the fiber assembly material was arrange | positioned facing the surface where the recessed part of a porous board opens, and the opening part of the recessed part was directly covered with the fiber assembly material. The electrode including such a laminate can prevent damage such as cracks in the vicinity of the recesses due to the fiber assembly material, and can easily transfer the electrolyte between the recesses and the fiber assembly material. Therefore, the said form is further excellent in the flowability of electrolyte solution. In particular, when the fiber assembly includes a laminated body disposed on the diaphragm side, the porous plate includes a recess that opens on a surface facing the diaphragm (hereinafter sometimes referred to as a diaphragm side surface) ( (Form (4) described later), the fiber assembly can perform a battery reaction in the vicinity of the diaphragm by the electrolytic solution supplied from the concave portion of the porous plate. Therefore, this form can further reduce the cell resistance.

(4)上記のRF電池の一例として、上記一方の電極に備える上記多孔質板が上記隔膜に対向する面に開口する凹部を備える形態が挙げられる。 (4) As an example of the RF battery, a form in which the porous plate provided in the one electrode includes a recess opening in a surface facing the diaphragm.

上記形態は、例えば、一方の電極を構成する多孔質板の隔膜側面に対向して、他方の電極を構成する繊維集合材が隔膜を介して配置される。その結果、多孔質板の隔膜側面に形成された凹部の開口部が繊維集合材によって間接的に覆われて、凹部近傍の割れなどの損傷を防止でき、上記形態は、電解液の流通性により優れる。かつ、上記形態は、多孔質板の隔膜側面に開口する凹部に電解液を保持できて隔膜近傍で電池反応を行えるため、セル抵抗をより小さくできる。   In the above-mentioned form, for example, the fiber aggregate constituting the other electrode is arranged through the diaphragm so as to face the diaphragm side surface of the porous plate constituting one electrode. As a result, the opening of the recess formed on the side surface of the diaphragm of the porous plate is indirectly covered with the fiber assembly material, and damage such as cracks in the vicinity of the recess can be prevented. Excellent. And the said form can hold | maintain electrolyte solution to the recessed part opened on the diaphragm side surface of a porous board, and can perform battery reaction in the vicinity of a diaphragm, Therefore A cell resistance can be made smaller.

(5)上記のRF電池の一例として、上記凹部は電解液の導入側と排出側とが連通しない複数の直線状の溝が並列された溝群を備える形態が挙げられる。 (5) As an example of the RF battery, the concave portion may include a groove group in which a plurality of linear grooves that do not communicate with the electrolyte introduction side and the discharge side are arranged in parallel.

上記形態に備える多孔質板は、隣り合う直線状の溝間を渡るように電池反応場を備え、この電池反応場に流通する電解液の量を、導入側と排出側とが連通した直線状の溝群を備える場合に比較して増加し易い。従って、上記形態は、上記電池反応場における電池反応の活性化が期待でき、セル抵抗をより小さくできる。また、上記形態は、電池反応場における電解液の流通状態が多孔質板の全体に亘って一様になり易く、多孔質板の広範囲に亘って電池反応を均一的に行い易い。更に、上記導入側と排出側とが連通しない溝群の各溝は直線状であり、かつ一端が多孔質板の一側面に開口しているため容易に形成でき、上記形態は、この溝群を備える多孔質板の製造性に優れる。   The porous plate provided in the above form is provided with a battery reaction field so as to cross between adjacent linear grooves, and the amount of the electrolyte flowing through the battery reaction field is a linear shape in which the introduction side and the discharge side communicate with each other. It is easy to increase as compared with the case where the groove group is provided. Therefore, the said form can anticipate activation of the battery reaction in the said battery reaction field, and can make cell resistance smaller. Moreover, the said form WHEREIN: The distribution | circulation state of the electrolyte solution in a battery reaction field tends to become uniform over the whole porous board, and it is easy to perform a battery reaction uniformly over the wide range of a porous board. Furthermore, each groove of the groove group in which the introduction side and the discharge side do not communicate with each other is linear and can be easily formed because one end is open on one side surface of the porous plate. It is excellent in manufacturability of a porous plate comprising

(6)上記のRF電池の一例として、上記凹部は溝を備え、上記溝の深さは0.3mm以上4mm以下であり、上記溝の開口部の幅は0.05mm以上5mm以下である形態が挙げられる。 (6) As an example of the RF battery, the recess includes a groove, the depth of the groove is 0.3 mm to 4 mm, and the width of the opening of the groove is 0.05 mm to 5 mm. Is mentioned.

上記形態は、深く、開口部が大きい溝、即ち容積が大きい溝を凹部として備えるため電解液の流通性に優れると共に、凹部が大き過ぎず電池反応場を十分に確保できるためセル抵抗が小さい。   The above-mentioned form is provided with a deep groove having a large opening, that is, a groove having a large volume as a recess, so that the flowability of the electrolytic solution is excellent, and the cell reaction field is sufficiently secured without the recess being too large.

(7)上記のRF電池の一例として、上記正極電極が上記多孔質板を備える形態が挙げられる。 (7) As an example of the RF battery, a form in which the positive electrode includes the porous plate can be given.

上述のように多孔質板は触媒の付着作業を行い易く、上記形態は、触媒を備える多孔質板を正極電極に備えることができる。この場合、電解液の流通性に優れる上に、セル抵抗をより小さくできる。   As described above, the porous plate can easily perform the adhesion operation of the catalyst, and in the above embodiment, the positive electrode can be provided with the porous plate including the catalyst. In this case, the flowability of the electrolytic solution is excellent, and the cell resistance can be further reduced.

(8)上記のRF電池の一例として、上記繊維集合材がカーボンフェルト、カーボンペーパー、及びカーボンクロスから選択される少なくとも一種を含む形態が挙げられる。 (8) As an example of the RF battery, a form in which the fiber assembly material includes at least one selected from carbon felt, carbon paper, and carbon cloth can be given.

列挙した繊維集合材はいずれもRF電池の電極として良好に利用できるため、上記形態は、電解液の流通性に優れる上に、セル抵抗が小さい。また、列挙した繊維集合材はいずれも、多孔質板よりも柔軟性に十分に優れて、多孔質板に対するクッション材として良好に機能する。   Since any of the listed fiber aggregates can be used satisfactorily as an electrode of an RF battery, the above-described form is excellent in the flowability of the electrolytic solution and has a low cell resistance. Further, all of the listed fiber aggregates are sufficiently superior in flexibility to the porous plate and function well as a cushioning material for the porous plate.

(9)実施形態に係るレドックスフロー電池(RF電池)用電極は、炭素が結合して形成される連続的な三次元網目構造の骨子を主体とし、少なくとも一面に開口して電解液が流通される凹部を備える多孔質板と、上記多孔質板の凹部が開口する面に対向して配置され、互いに絡み合う複数の炭素繊維を主体とする繊維集合材とが積層された積層体を備える。 (9) The electrode for the redox flow battery (RF battery) according to the embodiment is mainly composed of a continuous three-dimensional network structure formed by bonding of carbon, and is opened at least on one side and the electrolyte is distributed. And a laminated body in which a fiber assembly mainly composed of a plurality of carbon fibers that are disposed so as to face each other and face each other is opened.

上記のRF電池用電極は、上述のように剛性が高い多孔質板と柔軟性に優れる繊維集合材との双方を備え、かつ多孔質板に凹部を備えるため、RF電池に用いた場合に電解液の流通性に優れる上に、セル抵抗を小さくできる。特に、凹部近傍を繊維集合材によって保護できるため凹部を長期に亘り維持できる上に、凹部と繊維集合材との間で電解液の授受を容易に行えるため、上記のRF電池用電極は、電解液の流通性により優れるRF電池を構築できる。かつ、上記のRF電池用電極は、多孔質板と繊維集合材との双方で電池反応を行えるため、セル抵抗がより小さいRF電池を構築できる。その他、上記のRF電池用電極は、正極電極に利用する場合に多孔質板に触媒の付着などを容易に行えて製造性に優れる。   The above-mentioned electrode for an RF battery includes both a porous plate having high rigidity as described above and a fiber assembly material having excellent flexibility, and has a recess in the porous plate. In addition to excellent fluidity, the cell resistance can be reduced. In particular, since the vicinity of the recess can be protected by the fiber assembly, the recess can be maintained for a long period of time, and the electrolyte solution can be easily exchanged between the recess and the fiber assembly. It is possible to construct an RF battery that is superior in liquid circulation. In addition, since the RF battery electrode can perform a battery reaction with both the porous plate and the fiber assembly, an RF battery having a smaller cell resistance can be constructed. In addition, when the RF battery electrode is used as a positive electrode, the catalyst can be easily attached to the porous plate and has excellent productivity.

[本発明の実施形態の詳細]
以下、図面を参照して、本発明の実施形態に係るレドックスフロー電池(RF電池)、及び実施形態に係るRF電池用電極を詳細に説明する。図中、同一符号は同一名称物を示す。
[Details of the embodiment of the present invention]
Hereinafter, a redox flow battery (RF battery) according to an embodiment of the present invention and an electrode for an RF battery according to the embodiment will be described in detail with reference to the drawings. In the figure, the same reference numerals indicate the same names.

まず、図7,図8を参照して、実施形態のRF電池1を備えるRF電池システムの基本構成を説明し、次に図1〜図6を参照して、各実施形態のRF電池をより詳細に説明する。
図1〜図5は、正極電極10c、隔膜11、負極電極10aを積層して備える電池セル100A〜100Eをその積層方向に直交する断面で切断した断面図であり、分かり易いように電極10c,10aを厚く誇張して示す。また、分かり易いように、電極10c,10aと隔膜11との間に隙間をあけて示す。
図7において正極タンク106内及び負極タンク107内に示すイオンは各極の電解液中に含むイオン種の一例を示し、実線矢印は充電、破線矢印は放電を意味する。
First, the basic configuration of the RF battery system including the RF battery 1 according to the embodiment will be described with reference to FIGS. 7 and 8, and then the RF battery according to each embodiment will be described with reference to FIGS. 1 to 6. This will be described in detail.
FIGS. 1 to 5 are cross-sectional views of battery cells 100A to 100E each including a positive electrode 10c, a diaphragm 11, and a negative electrode 10a, cut along a cross section perpendicular to the stacking direction. 10a is shown exaggerated thickly. For easy understanding, a gap is provided between the electrodes 10c and 10a and the diaphragm 11.
In FIG. 7, the ions shown in the positive electrode tank 106 and the negative electrode tank 107 are examples of ion species included in the electrolyte solution of each electrode, the solid line arrow means charging, and the broken line arrow means discharging.

(RF電池の概要)
実施形態に係るRF電池1は、図7に示すようなRF電池1に電解液を循環供給する循環機構が設けられたRF電池システムが構築されて利用される。RF電池1は、代表的には、交流/直流変換器200や変電設備210などを介して、発電部300と、電力系統や需要家などの負荷400とに接続される。RF電池1は、発電部300を電力供給源として充電を行い、負荷400を電力提供対象として放電を行う。発電部300は、例えば、太陽光発電機、風力発電機、その他一般の発電所などが挙げられる。
(Outline of RF battery)
The RF battery 1 according to the embodiment is constructed by using an RF battery system provided with a circulation mechanism that circulates and supplies an electrolytic solution to the RF battery 1 as shown in FIG. The RF battery 1 is typically connected to a power generation unit 300 and a load 400 such as a power system or a consumer via an AC / DC converter 200, a substation facility 210, and the like. The RF battery 1 performs charging using the power generation unit 300 as a power supply source and discharging using the load 400 as a power supply target. Examples of the power generation unit 300 include a solar power generator, a wind power generator, and other general power plants.

(RF電池の基本構成)
RF電池1は、正極電解液が供給される正極電極10cと、負極電解液が供給される負極電極10aと、正極電極10cと負極電極10aとの間に介在される隔膜11とを備える電池セル100を主な構成要素とする。RF電池1は、代表的には、複数の電池セル100を備えて、隣り合う電池セル100,100間に双極板150(図8)を備える。
(Basic configuration of RF battery)
The RF battery 1 includes a positive electrode 10c to which a positive electrode electrolyte is supplied, a negative electrode 10a to which a negative electrode electrolyte is supplied, and a diaphragm 11 interposed between the positive electrode 10c and the negative electrode 10a. 100 is the main component. The RF battery 1 typically includes a plurality of battery cells 100 and a bipolar plate 150 (FIG. 8) between adjacent battery cells 100 and 100.

各極の電極10c,10aは、供給された電解液に含まれる活物質イオンが電池反応を行う反応場であり、電解液を流通できるように多孔体から構成される。
隔膜11は、正極電極10c,負極電極10aを分離すると共に所定のイオンを透過する正負の分離部材である。
The electrodes 10c and 10a of each electrode are reaction fields where the active material ions contained in the supplied electrolyte solution perform a battery reaction, and are made of a porous body so that the electrolyte solution can flow.
The diaphragm 11 is a positive / negative separation member that separates the positive electrode 10c and the negative electrode 10a and transmits predetermined ions.

双極板150は、両極の電極10c,10aに挟まれ、電流を流すが電解液を通さない導電性部材である。代表的には、図8に示すように双極板150の外周に形成された枠体151を備えるフレームアッシー15の状態で利用される。枠体151は、その表裏面に開口し、双極板150上に配置された電極10に電解液を供給する給液孔152c,152a及び電解液を排出する排液孔154c,154aを有する。   The bipolar plate 150 is a conductive member which is sandwiched between the electrodes 10c and 10a of both electrodes and allows current to flow but does not allow electrolyte to pass through. Typically, it is used in the state of a frame assembly 15 including a frame 151 formed on the outer periphery of the bipolar plate 150 as shown in FIG. The frame 151 has openings on the front and back surfaces thereof, and liquid supply holes 152 c and 152 a for supplying an electrolytic solution to the electrode 10 disposed on the bipolar plate 150 and drainage holes 154 c and 154 a for discharging the electrolytic solution.

複数の電池セル100は積層されて、セルスタックと呼ばれる形態で利用される。セルスタックは、図8に示すように、あるフレームアッシー15の双極板150、正極電極10c、隔膜11、負極電極10a、別のフレームアッシー15の双極板150、…と順に繰り返し積層されて構成される。セルスタックにおける電池セル100の積層方向の両端に位置する電極10には、双極板150に代えて集電板(図示せず)が配置される。セルスタックにおける電池セル100の積層方向の両端には代表的にはエンドプレート170が配置されて、一対のエンドプレート170,170間が長ボルトなどの連結部材172で連結されて一体化される。   The plurality of battery cells 100 are stacked and used in a form called a cell stack. As shown in FIG. 8, the cell stack is configured by repeatedly laminating a bipolar plate 150 of one frame assembly 15, a positive electrode 10c, a diaphragm 11, a negative electrode 10a, a bipolar plate 150 of another frame assembly 15, and so on. The A current collector plate (not shown) is disposed in place of the bipolar plate 150 on the electrodes 10 positioned at both ends of the battery cell 100 in the stacking direction of the cell stack. End plates 170 are typically disposed at both ends of the battery cell 100 in the cell stack in the cell stack, and the pair of end plates 170 and 170 are connected and integrated by a connecting member 172 such as a long bolt.

(RF電池システムの概要)
RF電池システムは、RF電池1と、以下の正極循環経路及び負極循環経路を備えて、正極電極10cに正極電解液を循環供給すると共に負極電極10aに負極電解液を循環供給する。この循環供給によって、RF電池1は、各極の電解液中の活物質となるイオンの価数変化反応に伴って充放電を行う。
正極循環経路は、正極電極10cに供給する正極電解液を貯留する正極タンク106と、正極タンク106とRF電池1との間を接続する配管108,110と、供給側の配管108に設けられたポンプ112とを備える。
負極循環経路は、負極電極10aに供給する負極電解液を貯留する負極タンク107と、負極タンク107とRF電池1との間を接続する配管109,111と、供給側の配管109に設けられたポンプ113とを備える。
複数のフレームアッシー15を積層することで給液孔152c,152a及び排液孔154c,154aは電解液の流通管路を構成し、この管路に配管108〜111が接続される。RF電池システムの基本構成は、公知の構成を適宜利用できる。
(Outline of RF battery system)
The RF battery system includes the RF battery 1 and the following positive electrode circulation path and negative electrode circulation path, and circulates and supplies the positive electrode electrolyte to the positive electrode 10c and circulates and supplies the negative electrode electrolyte to the negative electrode 10a. By this circulation supply, the RF battery 1 performs charging / discharging in accordance with the valence change reaction of ions serving as active materials in the electrolyte solution of each electrode.
The positive electrode circulation path is provided in the positive electrode tank 106 that stores the positive electrode electrolyte supplied to the positive electrode 10c, the pipes 108 and 110 that connect the positive electrode tank 106 and the RF battery 1, and the supply-side pipe 108. And a pump 112.
The negative electrode circulation path is provided in the negative electrode tank 107 that stores the negative electrode electrolyte supplied to the negative electrode 10 a, the pipes 109 and 111 that connect the negative electrode tank 107 and the RF battery 1, and the supply-side pipe 109. And a pump 113.
By laminating the plurality of frame assemblies 15, the liquid supply holes 152 c and 152 a and the drain holes 154 c and 154 a constitute a flow path for the electrolytic solution, and the pipes 108 to 111 are connected to the pipe lines. As the basic configuration of the RF battery system, a known configuration can be used as appropriate.

(RF電池の主な特徴点)
実施形態のRF電池1は、一つの電池セル100に複数の異種の炭素材を備えて、これら炭素材によって電極を構成していることを特徴の一つとする。具体的には、一方の電極は、炭素が結合して形成される連続的な三次元網目構造の骨子を主体とする多孔質板を備え、他方の電極は、互いに絡み合う複数の炭素繊維を主体とする繊維集合材を備える。また、実施形態のRF電池1は、上記多孔質板に、その少なくとも一面に開口し、電解液が流通される凹部を備えることを特徴の一つとする。実施形態のRF電池1は、電極として剛性が比較的高い多孔質板と柔軟性に比較的優れる繊維集合材との双方を備えると共に、多孔質板に凹部を備えることで、電解液の良好な流通性の確保とセル抵抗の低減とを実現する。
(Main features of RF battery)
One of the features of the RF battery 1 of the embodiment is that a plurality of different carbon materials are provided in one battery cell 100, and an electrode is constituted by these carbon materials. Specifically, one electrode includes a porous plate mainly composed of a continuous three-dimensional network structure formed by bonding carbon, and the other electrode mainly includes a plurality of carbon fibers intertwined with each other. A fiber assembly material is provided. In addition, the RF battery 1 according to the embodiment is characterized in that the porous plate is provided with a recess that is open on at least one surface thereof and through which the electrolytic solution is circulated. The RF battery 1 according to the embodiment includes both a porous plate having relatively high rigidity as an electrode and a fiber assembly material having relatively excellent flexibility, and has a concave portion in the porous plate, so that the electrolyte solution has a good quality. Ensures flowability and reduces cell resistance.

以下、各実施形態のRF電池を説明し、次に、多孔質板及び繊維集合材を詳細に説明する。各実施形態は、電池セル100に備える多孔質板と繊維集合材との配列状態が異なることから、配列状態を中心に説明し、重複する構成及び効果は詳細な説明を省略する。   Hereinafter, the RF battery of each embodiment will be described, and then the porous plate and the fiber assembly will be described in detail. In each embodiment, since the arrangement state of the porous plate and the fiber assembly provided in the battery cell 100 is different, description will be made mainly on the arrangement state, and detailed description of overlapping configurations and effects will be omitted.

[実施形態1]
実施形態1のRF電池は、図1に示す電池セル100Aを備える。電池セル100Aは、正極電極10c及び負極電極10aのいずれもが、多孔質板101と繊維集合材102とが積層された積層体を備える。多孔質板101は、その一面に開口する凹部101gを備える。この例では、積層体における多孔質板101は、繊維集合材102との界面側に開口する凹部101gを備え、繊維集合材102は、多孔質板101における凹部101gが開口する界面側の面に対向して配置される。この積層体は、実施形態のRF電池用電極の一例である。
[Embodiment 1]
The RF battery of Embodiment 1 includes a battery cell 100A shown in FIG. In the battery cell 100A, both the positive electrode 10c and the negative electrode 10a include a laminate in which a porous plate 101 and a fiber assembly material 102 are laminated. The porous plate 101 includes a recess 101g that opens on one surface thereof. In this example, the porous plate 101 in the laminate includes a recess 101g that opens on the interface side with the fiber assembly 102, and the fiber assembly 102 is on the surface on the interface side where the recess 101g in the porous plate 101 opens. Opposed to each other. This laminate is an example of the RF battery electrode of the embodiment.

図1では、凹部101gが並列された複数の直線状の溝を備え、各溝が各積層体に備える多孔質板101における上記界面側の面、ここでは隔膜11に対向する隔膜側面に開口する例を示す(この点は後述する図2〜図5も同様である)。各積層体における繊維集合材102は、凹部101g(溝)の開口部を覆うと共に、隣り合う溝間に存在する畝部に接するように多孔質板101の一面(ここでは凹部101gが開口する隔膜側面)に積層されている(この点は後述する実施形態3,5も同様である)。   In FIG. 1, a plurality of linear grooves in which concave portions 101g are arranged in parallel are provided, and each groove opens on the surface on the interface side of the porous plate 101 provided in each laminate, here on the side surface of the diaphragm facing the diaphragm 11. An example is shown (this is the same in FIGS. 2 to 5 described later). The fiber assembly 102 in each laminate covers the opening of the recess 101g (groove), and also covers one surface of the porous plate 101 (here, the diaphragm in which the recess 101g is open) so as to contact the ridge that exists between adjacent grooves. (This is the same in the embodiments 3 and 5 described later).

電池セル100Aでは、正極電極10cを構成する上述の積層体と、負極電極10aを構成する上述の積層体とが隔膜11を介して対称に配置されている。即ち、正極電極10cに備える多孔質板101の凹部形成面と、負極電極10aに備える多孔質板101の凹部形成面とが向かい合って配置され、両極の多孔質板101,101間に両極の繊維集合材102,102と隔膜11とが介在されている。   In the battery cell 100A, the above-described laminate constituting the positive electrode 10c and the above-described laminate constituting the negative electrode 10a are arranged symmetrically with the diaphragm 11 interposed therebetween. That is, the concave portion forming surface of the porous plate 101 provided in the positive electrode 10c and the concave portion forming surface of the porous plate 101 provided in the negative electrode 10a are arranged to face each other, and the bipolar fibers 101, 101 are disposed between the bipolar plates 101, 101. The aggregates 102 and 102 and the diaphragm 11 are interposed.

実施形態1のRF電池は、以下の効果を奏する。
各極の電極10c,10aが、繊維集合材102よりも剛性が高い多孔質板101と、柔軟性に優れる繊維集合材102との双方を備えると共に、多孔質板101に凹部101gを備えるため、多孔質板101自体が変形し難い上に繊維集合材102のクッション機能によって凹部101gを長期に亘り維持できる。かつ、各極の電極10c,10aが、多孔質板101と繊維集合材102との双方で電池反応を行えて電池反応性に優れる。従って、実施形態1のRF電池は、電解液の流通性に優れる上に、セル抵抗が小さい。この効果は、後述する試験例で具体的に説明する。
The RF battery of Embodiment 1 has the following effects.
Since each electrode 10c, 10a includes both the porous plate 101 having higher rigidity than the fiber assembly 102 and the fiber assembly 102 having excellent flexibility, the porous plate 101 includes the recess 101g. The porous plate 101 itself is not easily deformed, and the concave portion 101g can be maintained for a long time by the cushion function of the fiber assembly 102. In addition, the electrodes 10c and 10a of each electrode can perform a battery reaction with both the porous plate 101 and the fiber assembly 102, and are excellent in battery reactivity. Therefore, the RF battery of Embodiment 1 is excellent in the flowability of the electrolyte and has a low cell resistance. This effect will be specifically described in a test example described later.

特に、この例のRF電池は、以下の点でセル抵抗をより小さくできる。
(α)凹部101gに流れる電解液を凹部101gの開口部から繊維集合材102に容易に導入できて、繊維集合材102の電池反応を良好に行える。
(β)凹部101gが多孔質板101の隔膜側面に開口しているため、隔膜11近傍に電解液を貯留できて、隔膜11近傍(この例では特に繊維集合材102)で電池反応を行える(この点は後述する実施形態2〜6のRF電池も同様である)。
In particular, the RF battery of this example can reduce the cell resistance in the following points.
(Α) The electrolyte flowing through the recess 101g can be easily introduced into the fiber assembly 102 from the opening of the recess 101g, so that the battery reaction of the fiber assembly 102 can be performed satisfactorily.
(Β) Since the recess 101g is open on the side surface of the diaphragm of the porous plate 101, the electrolyte can be stored in the vicinity of the diaphragm 11, and the battery reaction can be performed in the vicinity of the diaphragm 11 (in this example, the fiber aggregate 102 in particular) ( This also applies to the RF batteries of Embodiments 2 to 6 described later).

また、この例のRF電池は、以下の効果を奏する。
(γ)正極電極10cに上述のように剛性に優れる多孔質板101を備えており、例えば、触媒の付着を容易に行えるため、触媒を備える多孔質板101を含む正極電極10cとすることができる。この場合、セル抵抗の更なる低減が期待できる。
(δ)多孔質板101と繊維集合材102とが実質的に同一平面面積を有しており(図6参照)、多孔質板101の隔膜側面の全面が繊維集合材102で覆われて、多孔質板101の損傷をより防止し易い(この点は後述する実施形態2〜6のRF電池も同様である)。
Moreover, the RF battery of this example has the following effects.
(Γ) The positive electrode 10c includes the porous plate 101 having excellent rigidity as described above. For example, since the catalyst can be easily attached, the positive electrode 10c including the porous plate 101 including the catalyst can be obtained. it can. In this case, further reduction in cell resistance can be expected.
(Δ) The porous plate 101 and the fiber assembly material 102 have substantially the same plane area (see FIG. 6), and the entire surface of the diaphragm side surface of the porous plate 101 is covered with the fiber assembly material 102, It is easier to prevent damage to the porous plate 101 (this also applies to the RF batteries of Embodiments 2 to 6 described later).

実施形態1のRF電池の変形例として、少なくとも一方の電極に備える積層体の積層順序を変更できる(この変形は後述する実施形態3,5も同様である)。例えば、一方の電極は、隔膜11側に多孔質板101、双極板側に繊維集合材102が配置された積層体を備えることができる(図4の正極電極10c参照)。   As a modification of the RF battery of the first embodiment, the stacking order of the stacked body provided in at least one of the electrodes can be changed (this modification is the same in the third and fifth embodiments described later). For example, one electrode can include a laminate in which the porous plate 101 is disposed on the diaphragm 11 side and the fiber assembly 102 is disposed on the bipolar plate side (see the positive electrode 10c in FIG. 4).

[実施形態2]
実施形態2のRF電池は、図2に示す電池セル100Bを備える。電池セル100Bは、一方の電極(図2では正極電極10c)に多孔質板101を備え、かつ繊維集合材102を備えておらず、他方の電極(図2では負極電極10a)に繊維集合材102を備え、かつ多孔質板101を備えておらず、両極の電極10c,10aが異種の炭素材から構成される。多孔質板101は、その一面に開口する凹部101gを備える。この例では、一方の電極に備える多孔質板101が、隔膜11に対向する隔膜側面に開口する凹部101gを備える。そのため、この多孔質板101の隔膜側面に設けられた凹部101gの開口部は、隔膜11を介して繊維集合材102に覆われる。
[Embodiment 2]
The RF battery of Embodiment 2 includes a battery cell 100B shown in FIG. The battery cell 100B includes the porous plate 101 on one electrode (the positive electrode 10c in FIG. 2) and does not include the fiber assembly 102, and the fiber assembly on the other electrode (the negative electrode 10a in FIG. 2). 102, the porous plate 101 is not provided, and the electrodes 10c and 10a of both electrodes are made of different carbon materials. The porous plate 101 includes a recess 101g that opens on one surface thereof. In this example, the porous plate 101 included in one electrode includes a recess 101 g that opens on the side surface of the diaphragm facing the diaphragm 11. Therefore, the opening part of the recessed part 101g provided in the diaphragm side surface of this porous board 101 is covered with the fiber assembly material 102 through the diaphragm 11.

実施形態2のRF電池は、以下の効果を奏する。
一方の電極に繊維集合材102よりも剛性が高い多孔質板101を備え、他方の電極に柔軟性に優れる繊維集合材102を備えると共に、多孔質板101に凹部101gを備えるため、多孔質板101自体が変形し難い上に、他方の電極に備える繊維集合材102のクッション機能によって、一方の電極に備える多孔質板101に形成された凹部101gを長期に亘り維持できる。かつ、緻密であることで導電性及び電池反応性に優れる多孔質板101と、電解液を保持し易く電池反応性に優れる繊維集合材102との双方を備える。従って、実施形態2のRF電池は、電解液の流通性に優れる上に、セル抵抗が小さい。この効果は、後述する試験例で具体的に説明する。
The RF battery of Embodiment 2 has the following effects.
Since one electrode includes the porous plate 101 having higher rigidity than the fiber assembly 102 and the other electrode includes the fiber assembly 102 having excellent flexibility, and the porous plate 101 includes the recess 101g, the porous plate 101 101 itself is not easily deformed, and the recess 101g formed in the porous plate 101 provided in one electrode can be maintained for a long time by the cushion function of the fiber assembly 102 provided in the other electrode. Moreover, both the porous plate 101 which is excellent in conductivity and battery reactivity due to being dense, and the fiber assembly material 102 which is easy to hold an electrolytic solution and excellent in battery reactivity are provided. Therefore, the RF battery of Embodiment 2 has excellent electrolyte flowability and low cell resistance. This effect will be specifically described in a test example described later.

この例のRF電池は、正極電極10cに上述のように剛性に優れる多孔質板101を備えており、例えば、触媒の付着作業を容易に行えるため、触媒を備える正極電極10cとすることができる。この場合、セル抵抗の更なる低減が期待できる。この点は、後述する実施形態3〜5のRF電池も同様である。   The RF battery of this example includes the porous plate 101 having excellent rigidity as described above on the positive electrode 10c. For example, since the catalyst can be easily attached, the positive electrode 10c including the catalyst can be obtained. . In this case, further reduction in cell resistance can be expected. This also applies to the RF batteries of Embodiments 3 to 5 described later.

実施形態2のRF電池の変形例として、正極電極10cに繊維集合材102を備え、かつ多孔質板101を備えず、負極電極10aに多孔質板101を備え、かつ繊維集合材102を備えていない構成とすることができる。   As a modification of the RF battery of Embodiment 2, the positive electrode 10c includes the fiber assembly 102 and does not include the porous plate 101, and the negative electrode 10a includes the porous plate 101 and includes the fiber assembly 102. There can be no configuration.

[実施形態3]
実施形態3のRF電池は、図3に示す電池セル100Cを備える。電池セル100Cは、一方の電極(図3では正極電極10c)に凹部101gが形成された多孔質板101と繊維集合材102とが積層された積層体を備え、他方の電極(図3では負極電極10a)に繊維集合材102を備え、かつ多孔質板101を備えていない。電池セル100Cは、一方の電極(ここでは正極電極10c、以下この形態において同様)にのみ多孔質板101を備え、両極の電極10c,10aに繊維集合材102を備える。
[Embodiment 3]
The RF battery of Embodiment 3 includes a battery cell 100C shown in FIG. The battery cell 100C includes a laminate in which a porous plate 101 having a recess 101g formed on one electrode (positive electrode 10c in FIG. 3) and a fiber assembly 102 are laminated, and the other electrode (negative electrode in FIG. 3). The electrode 10a) is provided with a fiber assembly 102 and is not provided with a porous plate 101. The battery cell 100C includes the porous plate 101 only in one electrode (here, positive electrode 10c, hereinafter the same in this embodiment), and the fiber aggregate 102 in both electrodes 10c and 10a.

電池セル100Cは、一方の電極に上記積層体を備える点及びこの積層体における多孔質板101の凹部101gが繊維集合材102との界面側に開口している点で実施形態1と共通し、一方の電極に多孔質板101を備え、他方の電極(ここでは負極電極10a)に繊維集合材102を備え、一方の電極に備える多孔質板101が隔膜11に対向する隔膜側面に開口する凹部101gを備える点で実施形態2と共通する。   The battery cell 100C is common to the first embodiment in that one electrode is provided with the above laminate and the concave portion 101g of the porous plate 101 in this laminate is open on the interface side with the fiber assembly 102. One electrode is provided with a porous plate 101, the other electrode (here, negative electrode 10 a) is provided with a fiber assembly 102, and the porous plate 101 provided on one electrode is opened on the side of the diaphragm facing the diaphragm 11. It is common with Embodiment 2 by the point provided with 101g.

実施形態3のRF電池は、上述のように実施形態1と実施形態2とに共通する構成を備えるため、上述の実施形態1及び実施形態2の双方の効果を奏し、電解液の流通性に優れる上に、セル抵抗が小さい。   Since the RF battery of the third embodiment has the same configuration as that of the first and second embodiments as described above, the effects of both the first and second embodiments described above are achieved, and the flowability of the electrolyte is improved. In addition to being excellent, the cell resistance is small.

この例のRF電池は、一方の電極に備える多孔質板101に対して、クッションとなる繊維集合材102を両極の電極10c,10aに備えるため、多孔質板101の機械的保護を十分に図ることができると期待される。特に、多孔質板101における凹部101gが開口する面に対向して複数の繊維集合材102が配置されるため、凹部101gをより維持し易いと期待される。   In the RF battery of this example, the porous plate 101 provided in one electrode is provided with the fiber assembly material 102 serving as a cushion in the electrodes 10c and 10a of both electrodes, so that the porous plate 101 is sufficiently mechanically protected. Expected to be able to. In particular, since the plurality of fiber aggregates 102 are arranged so as to face the surface of the porous plate 101 where the concave portion 101g opens, it is expected that the concave portion 101g is more easily maintained.

実施形態3のRF電池の変形例として、正極電極10cに繊維集合材102を備え、かつ多孔質板101を備えず、負極電極10aに上述の積層体を備えることができる。   As a modification of the RF battery according to Embodiment 3, the positive electrode 10c includes the fiber assembly 102, and does not include the porous plate 101, and the negative electrode 10a can include the above-described laminate.

[実施形態4]
実施形態4のRF電池は、図4に示す電池セル100Dを備える。電池セル100Dは、実施形態3のRF電池と同様に、一方の電極(図4では正極電極10c)に凹部101gが形成された多孔質板101と繊維集合材102とが積層された積層体を備え、他方の電極(図4では負極電極10a)に繊維集合材102を備え、かつ多孔質板101を備えていない。実施形態4のRF電池では、上記積層体の積層順序が実施形態3とは異なり、隔膜11側に多孔質板101を備え、双極板150(図8)側に繊維集合材102を備える。このように積層体を構成する多孔質板101と繊維集合材102との積層順序を変更できる。
[Embodiment 4]
The RF battery of Embodiment 4 includes a battery cell 100D shown in FIG. As with the RF battery of the third embodiment, the battery cell 100D is a laminate in which a porous plate 101 having a recess 101g formed in one electrode (the positive electrode 10c in FIG. 4) and a fiber assembly 102 are laminated. Provided, the other electrode (the negative electrode 10a in FIG. 4) is provided with the fiber assembly 102, and the porous plate 101 is not provided. In the RF battery of Embodiment 4, the stacking order of the laminate is different from that of Embodiment 3, and the porous plate 101 is provided on the diaphragm 11 side and the fiber assembly 102 is provided on the bipolar plate 150 (FIG. 8) side. In this way, the stacking order of the porous plate 101 and the fiber assembly 102 constituting the laminate can be changed.

実施形態4のRF電池は、実施形態3と同様に実施形態1と実施形態2とに共通する構成を備えるため、上述の実施形態1及び実施形態2の双方の効果を奏し、電解液の流通性に優れる上に、セル抵抗が小さい。   Since the RF battery of the fourth embodiment has the same configuration as that of the first and second embodiments similarly to the third embodiment, the effects of both the first and second embodiments described above can be achieved, and the electrolyte can be circulated. In addition to excellent properties, the cell resistance is small.

特に、実施形態4のRF電池は、各極の電極10c,10aの電解液特性に合わせて、電解液の流通性を変えられて電解液の流通性に優れる。また、実施形態4のRF電池は、一方の電極に備える多孔質板101が繊維集合材102,102に挟まれるため、多孔質板101を機械的により保護し易い。その他、この例のRF電池では、一方の電極に備える多孔質板101が隔膜側面に開口する凹部101gを備えるため、隔膜11近傍で電池反応を行い易く、セル抵抗を小さくし易い。   In particular, the RF battery of Embodiment 4 is excellent in the flowability of the electrolytic solution by changing the flowability of the electrolytic solution in accordance with the electrolytic solution characteristics of the electrodes 10c and 10a of each electrode. In the RF battery according to the fourth embodiment, the porous plate 101 included in one electrode is sandwiched between the fiber aggregates 102 and 102, and thus the porous plate 101 is more easily protected mechanically. In addition, in the RF battery of this example, since the porous plate 101 provided in one of the electrodes is provided with the concave portion 101g opened in the side surface of the diaphragm, the battery reaction is easily performed in the vicinity of the diaphragm 11, and the cell resistance is easily reduced.

実施形態4のRF電池の変形例として、正極電極10cに繊維集合材102を備え、かつ多孔質板101を備えず、負極電極10aに上述の隔膜11側に多孔質板101が配置された積層体を備えることができる。   As a modification of the RF battery of Embodiment 4, a laminate in which the positive electrode 10c is provided with the fiber assembly 102, the porous plate 101 is not provided, and the negative electrode 10a is provided with the porous plate 101 on the above-described diaphragm 11 side. The body can be provided.

[実施形態5]
実施形態5のRF電池は、図5に示す電池セル100Eを備える。電池セル100Eは、一方の電極(図5では正極電極10c)に凹部101gが形成された多孔質板101と繊維集合材102とが積層された積層体を備える点で実施形態1,3と共通し、他方の電極(図5では負極電極10a)に凹部101gが形成された多孔質板101を備え、かつ繊維集合材102を備えていない点で実施形態3とは異なる。電池セル100Eは、一方の電極(ここでは正極電極10c、以下この形態において同様)にのみ繊維集合材102を備え、両極の電極10c,10aに多孔質板101を備える。この例では、両極の電極10c,10aに備える多孔質板101,101のいずれもが、隔膜11に対向する隔膜側面に開口する凹部101gを備える。
[Embodiment 5]
The RF battery of Embodiment 5 includes a battery cell 100E shown in FIG. The battery cell 100E is common to the first and third embodiments in that the battery cell 100E includes a laminate in which a porous plate 101 having a recess 101g formed in one electrode (positive electrode 10c in FIG. 5) and a fiber assembly 102 are laminated. However, this embodiment is different from the third embodiment in that the other plate (the negative electrode 10a in FIG. 5) includes the porous plate 101 in which the concave portion 101g is formed and the fiber assembly material 102 is not provided. The battery cell 100E includes the fiber aggregate 102 only on one electrode (here, the positive electrode 10c, hereinafter the same in this embodiment), and includes the porous plate 101 on both electrodes 10c and 10a. In this example, both of the porous plates 101, 101 provided in the electrodes 10 c, 10 a of both electrodes include a recess 101 g that opens on the side surface of the diaphragm facing the diaphragm 11.

実施形態5のRF電池は、実施形態1,3と共通する構成を備えるため、上述の実施形態1,3と同様の効果を奏し、電解液の流通性に優れる上に、セル抵抗が小さい。特に、実施形態5のRF電池は、両極の電極10c,10aに凹部101gが形成された多孔質板101を備えるため、電解液の流通性により優れる。その他、この例のRF電池では、両極の電極10c,10aに備える多孔質板101,101がいずれも、隔膜側面に開口する凹部101gを備えるため、隔膜11近傍で電池反応を行い易く、セル抵抗を小さくし易い。   Since the RF battery of the fifth embodiment has the same configuration as that of the first and third embodiments, the same effects as those of the first and third embodiments described above can be obtained, the electrolytic solution is excellent in flowability, and the cell resistance is small. In particular, the RF battery of Embodiment 5 is superior in the flowability of the electrolytic solution because it includes the porous plate 101 in which the recesses 101g are formed in the electrodes 10c and 10a of both electrodes. In addition, in the RF battery of this example, since the porous plates 101 and 101 provided in the bipolar electrodes 10c and 10a each include the concave portion 101g opened on the side surface of the diaphragm, the battery reaction is easily performed in the vicinity of the diaphragm 11, and the cell resistance It is easy to make small.

実施形態5のRF電池の変形例として、正極電極10cに凹部101gが形成された多孔質板101を備え、かつ繊維集合材102を備えず、負極電極10aに上述の積層体を備えることができる。   As a modification of the RF battery of Embodiment 5, the positive electrode 10c is provided with the porous plate 101 in which the concave portion 101g is formed, the fiber aggregate 102 is not provided, and the negative electrode 10a can be provided with the above-described laminate. .

[実施形態6]
実施形態1などでは、一方の電極に備える積層体として、多孔質板101と繊維集合材102とをそれぞれ一つずつ備える例を説明した。少なくとも一方の電極に備える積層体は、多孔質板101及び繊維集合材102の少なくとも一方を複数備えることができる。例えば、多孔質板101の両面を挟むように一対の繊維集合材102,102を備える積層体(図示せず)が挙げられる。この積層体は、実施形態のRF電池用電極の別例である。
[Embodiment 6]
Embodiment 1 etc. demonstrated the example provided with the porous board 101 and the fiber assembly material 102 each as a laminated body with which one electrode is equipped. The laminate provided for at least one electrode can include a plurality of at least one of the porous plate 101 and the fiber assembly 102. For example, the laminated body (not shown) provided with a pair of fiber aggregate 102,102 so that both surfaces of the porous board 101 may be pinched | interposed. This laminate is another example of the RF battery electrode of the embodiment.

上述の積層体を備える実施形態6のRF電池は、実施形態1と同様に電解液の流通性に優れる上にセル抵抗が小さい。特に、実施形態6のRF電池は、積層体における多孔質板101の積層数が多い場合には電解液の流通性により優れる。   The RF battery of the sixth embodiment provided with the above-described laminate is excellent in the flowability of the electrolytic solution as in the first embodiment and has a low cell resistance. In particular, the RF battery of Embodiment 6 is more excellent in the flowability of the electrolytic solution when the number of laminated porous plates 101 in the laminate is large.

[実施形態7]
複数の電池セルを備えるRF電池とする場合、各電池セルとして同一仕様のものを備える、例えば、複数の電池セルのいずれもが電池セル100Aで構成されるなどの他、実施形態1〜6で説明した電池セル100A〜100Eなどから選択される少なくとも2種以上を組み合わせて備えることができる。
[Embodiment 7]
In the case of an RF battery including a plurality of battery cells, each battery cell has the same specification, for example, all of the plurality of battery cells are configured by the battery cell 100A, and in Embodiments 1 to 6 A combination of at least two or more selected from the battery cells 100A to 100E described above can be provided.

(多孔質板)
多孔質板101は、炭素同士が少なくとも物理的に結合しており、この結合によって連続した三次元の網目を形成する骨子と、網目によって形成される複数の開気孔とを備える板状の多孔質炭素材である。
(Porous plate)
The porous plate 101 has a plate-like porous structure in which carbons are at least physically bonded to each other, and a skeleton that forms a continuous three-dimensional network by the bonding and a plurality of open pores formed by the network. Carbon material.

・成分
多孔質板101は、気孔を除いて、実質的に炭素で構成され、上記網目状の骨子を主体とする。「骨子を主体とする」とは、多孔質板101のうち骨子が占める割合が30質量%超であることとする。50質量%以下の範囲で炭素繊維などを含むことを許容する。この質量割合の測定は、例えば、密度測定法などを利用できる。
Ingredients The porous plate 101 is substantially composed of carbon except for pores, and is mainly composed of the above-described network-like skeleton. “Mainly composed of the main body” means that the ratio of the main body in the porous plate 101 is more than 30% by mass. It is allowed to contain carbon fiber or the like in the range of 50% by mass or less. For example, a density measurement method can be used for the measurement of the mass ratio.

・気孔
多孔質板101の気孔率(空隙率)は例えば30体積%以上90体積%以下程度が挙げられる。また、多孔質板101の気孔率は、繊維集合材102の気孔率(代表的には50体積%以上95体積%以下程度)よりも低いことが挙げられる。
多孔質板101の平均気孔径は例えば0.01μm以上5μm以下程度が挙げられる。気孔径が大きいほど電解液が浸透し易く、気孔径が小さいほど単位体積当たりの炭素が多くなって(密度が大きくなって)導電性が向上し、電池反応場を大きくできる(この点は繊維集合材102も同様である)。
-Porosity The porosity (porosity) of the porous plate 101 is, for example, about 30% to 90% by volume. In addition, the porosity of the porous plate 101 is lower than the porosity of the fiber assembly material 102 (typically about 50 volume% or more and 95 volume% or less).
The average pore diameter of the porous plate 101 is, for example, about 0.01 μm or more and 5 μm or less. The larger the pore size, the easier the electrolyte penetrates, and the smaller the pore size, the more carbon per unit volume (the higher the density), the better the conductivity, and the larger the cell reaction field (this is the fiber The same applies to the aggregate material 102).

・その他の成分
多孔質板101は、その表面に酸素(酸化物でもよい)を含有すると、電解液との濡れ性に優れて好ましい。酸素含有量は例えば光電子分光法による分析で表面酸素元素比が原子数比で3%以上15%以下程度が挙げられる。後述する酸化処理を行うと、酸素を含有する多孔質板101とすることができる。
-Other components It is preferable that the porous plate 101 contains oxygen (or an oxide) on the surface because of excellent wettability with the electrolytic solution. Examples of the oxygen content include a surface oxygen element ratio of about 3% to about 15% in terms of the number ratio by analysis by photoelectron spectroscopy. When an oxidation treatment described later is performed, the porous plate 101 containing oxygen can be obtained.

・剛性
多孔質板101は、繊維集合材102よりも剛性が高いものが好ましい。セルスタックに備えられて所定の締め付け状態で長期に亘り維持された場合でも変形し難く、凹部101gを長期に亘り維持できるからである。また、凹部101gの形成や触媒の付着などを容易に行えて、溝付き多孔質板や触媒付き多孔質板の製造性に優れるからである。
-Rigidity The porous board 101 preferably has higher rigidity than the fiber assembly 102. This is because even when the cell stack is provided and maintained in a predetermined tightening state for a long period of time, it is difficult to deform, and the recess 101g can be maintained for a long period of time. Moreover, it is because formation of the recessed part 101g, adhesion of a catalyst, etc. can be performed easily and it is excellent in the productivity of the porous board with a groove | channel and the porous board with a catalyst.

定性的には、多孔質板101は、所定の応力が付与された場合に経時的な厚さ変化が小さい又は厚さ変化が実質的に生じない程度の剛性を備えることが好ましい。定量的には、例えば圧縮弾性係数でいうと、繊維集合材102がカーボンフェルトであれば1kgf/2mm程度、カーボンペーパーであれば1kgf/0.05mm程度、カーボンクロスであれば1kgf/0.1mm程度であるのに対し、多孔質板101では(1kgf/0.03mm)程度以上である(1kgf≒10N)。圧縮弾性係数の測定には、引張試験機を利用できる。繊維集合材102の圧縮弾性係数が(1kgf/0.05mm)以下であり、多孔質板101の圧縮弾性係数が(1kgf/0.03mm)程度以上であれば、多孔質板101は、繊維集合材102よりも剛性が高いといえる。   Qualitatively, it is preferable that the porous plate 101 has such rigidity that a change in thickness over time is small or a change in thickness does not substantially occur when a predetermined stress is applied. Quantitatively, for example, in terms of compression modulus, if the fiber assembly 102 is carbon felt, about 1 kgf / 2 mm, if carbon paper is about 1 kgf / 0.05 mm, if carbon cloth, 1 kgf / 0.1 mm. On the other hand, in the porous plate 101, it is about (1 kgf / 0.03 mm) or more (1 kgf≈10 N). A tensile tester can be used to measure the compression modulus. If the compression elastic modulus of the fiber aggregate 102 is not more than (1 kgf / 0.05 mm) and the compression elastic modulus of the porous plate 101 is not less than about (1 kgf / 0.03 mm), the porous plate 101 is a fiber assembly. It can be said that the rigidity is higher than that of the material 102.

・形状、大きさ
多孔質板101は、代表的には、図6に示すように長方形状の平板材が挙げられる。その他の平面形状として、円形状、楕円形状、多角形状などの種々の形状とすることができる。
多孔質板101を平面視したときの大きさ、例えば平面形状が長方形状であれば幅及び長さ、円形状であれば直径、その他、平面面積などは、所望の容量を満たすRF電池1が形成できるように選択すればよい。
-Shape and size The porous plate 101 is typically a rectangular flat plate as shown in FIG. Other planar shapes can be various shapes such as a circular shape, an elliptical shape, and a polygonal shape.
The size of the porous plate 101 when viewed in plan, for example, the width and length if the planar shape is rectangular, the diameter if the planar shape is circular, and the planar area, etc., are determined by the RF battery 1 satisfying a desired capacity. What is necessary is just to select so that it can form.

多孔質板101の厚さt101は、厚いほど電池反応場を増大でき、薄いほど薄型のRF電池1を構築できて好ましい。具体的な厚さt101は、0.5mm以上5mm以下が挙げられる。特に、少なくとも一方の電極が、多孔質板101と繊維集合材102とを含む積層体である場合(実施形態1など)には厚さt101が薄くてもよく、例えば、厚さt101を1.5mm以下とすることができる。積層体の場合により好ましい厚さt101は、0.5mm以上1.5mm以下程度が挙げられる。積層体以外の場合(実施形態2など)の厚さt101は0.5mm以上5mm以下程度が挙げられる。 As the thickness t 101 of the porous plate 101 is thicker, the battery reaction field can be increased, and the thinner the thin plate RF battery 1 is, the better. Specific thickness t101 is 0.5 mm or more and 5 mm or less. In particular, when at least one of the electrodes is a laminated body including the porous plate 101 and the fiber assembly material 102 (such as Embodiment 1), the thickness t 101 may be thin. For example, the thickness t 101 may be It can be 1.5 mm or less. A more preferable thickness t 101 in the case of the laminated body is about 0.5 mm or more and 1.5 mm or less. The thickness t 101 in the case other than the laminated body (Embodiment 2 or the like) is about 0.5 mm or more and 5 mm or less.

・凹部
多孔質板101は、図1などに示すように隔膜11に対向配置される隔膜側面と、隔膜側面に対向し、双極板150(図8)に平行配置される双極板側面とを備える。多孔質板101は、これら隔膜側面と双極側面との少なくとも一面に開口する凹部101gを備える。多孔質板101は、上述のように気孔率が比較的小さく緻密であるものの、凹部101gを備えるため、電解液の流通性に優れる。かつ、上述のように剛性に優れる多孔質板101に凹部101gを備えるため、凹部101gを長期に亘り維持し易く、電解液の良好な流通性を確保できる。また、後述する試験例2に示すように凹部101gの大きさなどを調整することで、セル抵抗を低減し易くなる。
-Concave part The porous plate 101 includes a diaphragm side surface disposed opposite to the diaphragm 11 and a bipolar plate side surface opposed to the diaphragm side surface and disposed parallel to the bipolar plate 150 (FIG. 8) as shown in FIG. . The porous plate 101 includes a recess 101g that opens on at least one of the diaphragm side surface and the bipolar side surface. The porous plate 101 has a relatively small porosity and is dense as described above, but is excellent in the flowability of the electrolyte because it includes the recess 101g. And since the recessed part 101g is provided in the porous board 101 excellent in rigidity as mentioned above, it is easy to maintain the recessed part 101g over a long period of time, and the favorable distribution | circulation property of electrolyte solution can be ensured. Further, as shown in Test Example 2 to be described later, the cell resistance can be easily reduced by adjusting the size of the recess 101g and the like.

・・凹部の種類
凹部101gは、隔膜側面のみに開口する溝、双極板側面のみに開口する溝の少なくとも一つを含む。図1〜図6に示す凹部101gはいずれも、隔膜側面のみに開口した溝である。
凹部101gが溝を含むと、溝の長手方向に沿って電解液が容易に流通でき、電解液の流通性に優れる。また、溝は切削工具によって容易に形成でき、凹部101gを備える多孔質板101の製造性に優れる。特に、図6に示すように多孔質板101の周縁に至り、側面に開口する溝とすれば、更に形成し易い。
..Type of concave portion The concave portion 101g includes at least one of a groove that opens only on the side surface of the diaphragm and a groove that opens only on the side surface of the bipolar plate. Each of the recesses 101g shown in FIGS. 1 to 6 is a groove opened only on the side surface of the diaphragm.
When the concave portion 101g includes a groove, the electrolytic solution can easily flow along the longitudinal direction of the groove, and the flowability of the electrolytic solution is excellent. Further, the groove can be easily formed by a cutting tool, and the productivity of the porous plate 101 having the recess 101g is excellent. In particular, as shown in FIG. 6, it is easier to form the groove if the groove reaches the periphery of the porous plate 101 and opens on the side surface.

・・凹部の存在状態
一つの多孔質板101に複数の凹部101gを備えると、電解液の流通性に優れて好ましい。また、一つの多孔質板101に複数の凹部101gを備える場合に、同じ側の面に開口した溝を備える形態(図1〜図6)の他、溝と貫通孔との双方を備える形態、隔膜側面に開口する溝と双極板側面に開口する溝との双方を備える形態(隔膜側面と双極板側面との両面に溝を備える形態)などとすることができる。一つの多孔質板101の一面にのみ開口する溝を備える形態は、溝を形成し易く、凹部101gを備える多孔質板101の製造性に優れる。特に、多孔質板101の一面に均一的な形状、大きさ、間隔で設けられた溝を備える形態は、一つの多孔質板101における電解液の流通状態を均一的にし易い。
.. Existence of recesses It is preferable to provide a plurality of recesses 101g in one porous plate 101 because of excellent fluidity of the electrolyte solution. Moreover, when providing the several recessed part 101g in one porous board 101, the form provided with both a groove | channel and a through-hole other than the form (FIGS. 1-6) provided with the groove | channel opened on the surface of the same side, It is possible to adopt a configuration including both a groove opening on the diaphragm side surface and a groove opening on the bipolar plate side surface (a configuration including grooves on both the diaphragm side surface and the bipolar plate side surface). The form provided with the groove that opens only on one surface of one porous plate 101 is easy to form the groove, and is excellent in the productivity of the porous plate 101 provided with the recess 101g. In particular, a configuration in which grooves having uniform shapes, sizes, and intervals are provided on one surface of the porous plate 101 can easily make the distribution state of the electrolyte solution in one porous plate 101 uniform.

・・溝
凹部101gが溝を含む場合、電解液の供給側から排出側に沿って形成された溝を備えることが好ましい。例えば、図8に示すセルスタックを構築して、図8の下方から上方に電解液を供給する場合、上下方向に沿った縦溝を備えることが好ましい。溝の断面形状は適宜選択できる。図1などに示すような断面矩形状の他、V字状、U字状(半円弧状)などが挙げられる。溝の平面形状は、長方形状などといった直線的な形状が挙げられる。例えば、並列された複数の直線状の溝を備える形態が挙げられる。このとき、各溝が上述のように多孔質板101の一側面に開口して、一側面(周縁)から連続するものであれば、(1)電解液を周縁から溝の長手方向に沿って容易に導入できて電解液の流通性に優れる、(2)隣り合う直線状の溝間を渡るように電池反応場(畝部)を備えて電池反応を良好に行える、(3)並列した直線状の溝を容易に形成できて凹部101gを備える多孔質板101の製造性に優れる、といった種々の効果を奏する。
.. Groove When the recess 101g includes a groove, it is preferable to include a groove formed from the electrolyte supply side to the discharge side. For example, when the cell stack shown in FIG. 8 is constructed and the electrolytic solution is supplied from the lower side to the upper side in FIG. 8, it is preferable to provide vertical grooves along the vertical direction. The cross-sectional shape of the groove can be selected as appropriate. In addition to a rectangular cross section as shown in FIG. 1 and the like, a V shape, a U shape (semi-arc shape), and the like can be given. The planar shape of the groove may be a linear shape such as a rectangular shape. For example, the form provided with the several linear groove | channel arranged in parallel is mentioned. At this time, if each groove opens to one side surface of the porous plate 101 as described above and continues from one side surface (periphery), (1) the electrolyte solution extends from the periphery along the longitudinal direction of the groove. Easy to introduce and excellent in the flowability of the electrolyte. (2) A battery reaction field (saddle) is provided so as to cross between adjacent linear grooves, and the battery reaction can be performed well. (3) Parallel straight lines Various effects can be achieved, such as the ability to easily form a groove and excellent manufacturability of the porous plate 101 having the recess 101g.

凹部101gが並列された複数の直線状の溝を備え、更に図6に示すように電解液の導入側と排出側とが連通しない複数の直線状の溝が並列された溝群を備えることが好ましい。導入側から排出側に連通した直線状の溝、即ち多孔質板の一側面から対向する他側面に連通する溝が並列された溝群を備える場合に比較して、上記畝部に導入される電解液量を多くできて、電池反応の活性化を期待できるからである。ひいてはセル抵抗の低下を期待できる。
特に、図6に示すように、各溝の一端が多孔質板101の側面に開口し、その他端が多孔質板101の途中にまで至る溝であり、溝の一端が一側面に開口した導入側の溝と、溝の一端が一側面に対向する他側面に開口した排出側の溝とが交互に並んだ溝群を備えると、電池反応の更なる活性化を期待できる。このような溝群は容易に形成でき、上記溝群を備える多孔質板101の製造性に優れる。
図6では、導入側の溝と排出側の溝とが1本ずつ交互に並んだ形態を示すが、複数本ずつがまとまって交互に並んだ形態などとすることができる。
その他、導入側の溝及び排出側の溝がそれぞれ、横溝と横溝から延びる並列された複数の縦溝とを備える櫛歯状の溝であり、導入側の縦溝と排出側の縦溝とを噛み合うように配置した対向櫛歯溝を備える形態とすることができる。
A plurality of linear grooves in which the recesses 101g are arranged in parallel, and a groove group in which a plurality of linear grooves in which the electrolyte introduction side and the discharge side do not communicate with each other as shown in FIG. preferable. Compared to the case where a linear groove communicated from the introduction side to the discharge side, that is, a groove group communicated from one side surface of the porous plate to the other side surface opposed to each other, is introduced into the flange portion. This is because the amount of the electrolyte can be increased and activation of the battery reaction can be expected. As a result, a decrease in cell resistance can be expected.
In particular, as shown in FIG. 6, one end of each groove is open to the side surface of the porous plate 101, the other end is a groove reaching the middle of the porous plate 101, and one end of the groove is open to one side surface. Further activation of the battery reaction can be expected by providing a groove group in which the groove on the side and the groove on the discharge side opened on the other side surface where one end of the groove faces one side surface are alternately arranged. Such a groove group can be easily formed, and the productivity of the porous plate 101 including the groove group is excellent.
Although FIG. 6 shows a form in which the introduction-side grooves and the discharge-side grooves are alternately arranged one by one, a form in which a plurality of grooves are arranged alternately and the like can be adopted.
In addition, the introduction-side groove and the discharge-side groove are comb-like grooves each having a lateral groove and a plurality of parallel longitudinal grooves extending from the transverse groove, and the introduction-side longitudinal groove and the discharge-side longitudinal groove are It can be set as the form provided with the opposing comb tooth groove arrange | positioned so that it may mesh | engage.

凹部101gが複数の溝を備える場合に、各溝の深さd、開口部の幅w、及び長さlの少なくとも一つが大きいほど、溝の容積が大きくなる。幅wが大きいと電解液の流通性に優れて好ましい。溝の容積が大き過ぎると、多孔質板101における電池反応場の狭小化を招き得る。また、各溝の大きさは実質的に同じであると、溝を形成し易く、多孔質板101における電解液の流れを一様にし易い。但し、複数の溝のうち、大きさが異なる溝を含むことができる。   When the recess 101g includes a plurality of grooves, the larger the depth d of each groove, the width w of the opening, and the length l, the larger the volume of the groove. It is preferable that the width w is large because of excellent flowability of the electrolytic solution. If the volume of the groove is too large, the battery reaction field in the porous plate 101 may be narrowed. Further, if the size of each groove is substantially the same, it is easy to form the groove, and the flow of the electrolytic solution in the porous plate 101 is easily made uniform. However, the groove | channels from which a magnitude | size differs among some groove | channels can be included.

溝の深さd(最大深さ)は、例えば0.3mm以上4mm以下が挙げられる。多孔質板101の厚さt101、幅w、長さlにもよるが、深さdは例えば0.3mm以上3mm以下、更に0.5mm以上2mm以下とすることができる。深さdは、多孔質板101の厚さt101の20%以上80%以下、更に40%以上70%以下とすることができる。 The depth d (maximum depth) of the groove is, for example, 0.3 mm or more and 4 mm or less. Although depending on the thickness t 101 , width w, and length l of the porous plate 101, the depth d can be set to, for example, 0.3 mm to 3 mm, and further 0.5 mm to 2 mm. Depth d, 20% to 80% of the thickness t 101 of the porous plate 101 or less, may be further 40% to 70%.

溝の開口部の幅wは、例えば0.05mm以上5mm以下が挙げられる。多孔質板101の厚さt101、深さd、長さlにもよるが、幅wは例えば0.1mm以上4mm以下、更に0.4mm以上1mm以下とすることができる。 The width w of the groove opening is, for example, 0.05 mm or more and 5 mm or less. Although depending on the thickness t 101 , depth d, and length l of the porous plate 101, the width w can be set to, for example, 0.1 mm to 4 mm, and further 0.4 mm to 1 mm.

溝の長さlは、例えば多孔質板101の長さの80%以上99%以下、更に90%以上98%以下とすることができる。   The length l of the groove can be, for example, 80% to 99% of the length of the porous plate 101, and further 90% to 98%.

凹部101gが上述の導入側の溝と排出側の溝とが並列された溝群を備える場合に、隣り合う溝の重複長さllは、例えば多孔質板101の長さの70%以上95%以下、更に80%以上90%以下が挙げられる。   When the recess 101g includes a groove group in which the above-described introduction-side groove and the discharge-side groove are arranged in parallel, the overlapping length ll of adjacent grooves is, for example, 70% or more and 95% of the length of the porous plate 101. Hereinafter, 80% or more and 90% or less are mentioned.

凹部101gが複数の溝を並列して備える場合に隣り合う溝間隔cgは、例えば、0.5mm以上20mm以下、更に1mm以上5mm以下が挙げられる。溝間隔cgは、開口部の幅wと同等程度とすることができる。   When the recess 101g includes a plurality of grooves in parallel, the adjacent groove interval cg is, for example, 0.5 mm or more and 20 mm or less, and further 1 mm or more and 5 mm or less. The groove interval cg can be set to the same level as the width w of the opening.

・製造方法など
多孔質板101は、公知のものを利用できる。例えば、多孔質炭素材として市販されているものや公知の製造方法によって製造されたものを利用できる。製造方法の一例として、炭素粉末(活性炭を含むことが好ましい)と、炭素元素を含む繊維と、樹脂とを含む成形体を焼成して炭素化することが挙げられる。更に高温処理による黒鉛化を行ってもよい。
-Manufacturing method etc. The porous board 101 can utilize a well-known thing. For example, what is marketed as a porous carbon material and what was manufactured by the well-known manufacturing method can be utilized. As an example of the production method, a molded body containing carbon powder (preferably containing activated carbon), a fiber containing carbon element, and a resin is fired and carbonized. Further, graphitization by high temperature treatment may be performed.

炭素は一般に疎水性が高いため、親水性を高めるための熱処理(酸化処理)を更に行うことができる。以下に熱処理の条件(加熱温度、雰囲気、保持時間)を例示する。この熱処理が施された多孔質板101は、その表面に酸素又は酸化物が存在して電解液との濡れ性を高められて、上記表面で電気化学反応を良好に行える。
加熱温度 400℃以上700℃以下程度
雰囲気 大気などの酸素を含有する雰囲気。酸素含有量は10体積%以上30体積%以下程度が挙げられる。
保持時間 5分以上30分以下程度。
その他、親水性を高めるために、プラズマ処理などを行うことができる。
Since carbon is generally highly hydrophobic, heat treatment (oxidation treatment) for enhancing hydrophilicity can be further performed. Examples of heat treatment conditions (heating temperature, atmosphere, holding time) are shown below. The porous plate 101 that has been subjected to the heat treatment has oxygen or oxide on the surface thereof, and has improved wettability with the electrolytic solution, so that the electrochemical reaction can be favorably performed on the surface.
Heating temperature 400 ° C. to 700 ° C. Atmosphere An atmosphere containing oxygen such as air. As for oxygen content, 10 volume% or more and about 30 volume% or less are mentioned.
Retention time 5 minutes or more and 30 minutes or less.
In addition, plasma treatment or the like can be performed to increase hydrophilicity.

(繊維集合材)
繊維集合材102は、複数の炭素繊維が互いに絡み合って形成される網目状の本体と、炭素繊維間に形成される複数の開気孔とを備えるシート状の炭素材である。繊維集合材102は、上述の多孔質板101よりも柔軟性に優れ、この点から上述のように多孔質板101のクッション材として機能する。また、繊維集合材102は、多孔質板101よりも電解液を保持し易く、この点から電池反応性に優れる。
(Fiber aggregate)
The fiber aggregate 102 is a sheet-like carbon material including a mesh-like main body formed by intertwining a plurality of carbon fibers and a plurality of open pores formed between the carbon fibers. The fiber assembly material 102 is more flexible than the porous plate 101 described above, and functions as a cushion material for the porous plate 101 in this respect as described above. In addition, the fiber assembly material 102 is easier to hold the electrolytic solution than the porous plate 101 and is excellent in battery reactivity in this respect.

・成分
繊維集合材102は、気孔を除いて、実質的に炭素で構成され、上記炭素繊維を主体とする。「炭素繊維を主体とする」とは、繊維集合材102のうち炭素繊維が占める割合が85質量%以上であることとする。
-Component The fiber assembly 102 is substantially composed of carbon except for pores, and is mainly composed of the carbon fiber. “Mainly composed of carbon fibers” means that the proportion of carbon fibers in the fiber aggregate 102 is 85% by mass or more.

炭素繊維に加えて、バインダー炭素を含むことができる。バインダー炭素を含有する繊維集合材102は、導電性の向上(特にカーボンフェルト)、強度の向上(特にカーボンペーパー)などの効果が得られる。
炭素繊維の大きさ(繊維径)は、例えば1μm以上15μm以下程度が挙げられる。
In addition to carbon fibers, binder carbon can be included. The fiber aggregate 102 containing the binder carbon has effects such as improvement in conductivity (particularly carbon felt) and improvement in strength (particularly carbon paper).
As for the magnitude | size (fiber diameter) of carbon fiber, 1 micrometer or more and about 15 micrometers or less are mentioned, for example.

・気孔
繊維集合材102は、炭素繊維が絡み合って形成されるため、気孔率(空隙率)が多孔質板101よりも大きい傾向にある。繊維集合材102の気孔率は、例えば、50体積%以上95体積%以下程度が挙げられる。
繊維集合材102の平均気孔径は例えば1μm以上30μm以下程度が挙げられる。
-Pore Since the fiber assembly 102 is formed by entangled carbon fibers, the porosity (porosity) tends to be larger than that of the porous plate 101. Examples of the porosity of the fiber aggregate 102 include about 50% by volume to 95% by volume.
The average pore diameter of the fiber aggregate 102 is, for example, about 1 μm or more and 30 μm or less.

・具体例
具体的な繊維集合材102は、カーボンフェルト、カーボンペーパー(いずれも繊維を織っていなもの)及びカーボンクロス(繊維を織ったものや繊維を撚った糸を織ったもの)から選択される少なくとも一種が挙げられる。列挙した繊維集合材102は、市販品や公知の製造方法によって製造されたものを利用できる。一方の電極に、列挙した1種の繊維集合材のみを備える形態、列挙した2種以上の繊維集合材を積層して備える形態、例えば、カーボンフェルトとカーボンクロスとを備える形態などとすることができる。
Specific examples The specific fiber assembly material 102 is selected from carbon felt, carbon paper (all of which are not woven with fibers), and carbon cloth (what is woven of fibers or woven of twisted fibers). At least one kind. As the listed fiber assembly 102, commercially available products or those manufactured by a known manufacturing method can be used. One electrode may be provided with only one type of fiber aggregate listed, or may be provided with two or more types of fiber aggregate stacked, for example, a form including carbon felt and carbon cloth. it can.

カーボンフェルトを利用すると、(1)電解液に水溶液を用いた場合において充電時に酸素発生電位になっても酸素ガスが発生し難い、(2)電解液の流通性に優れるものがある、といった効果を期待できる。
カーボンペーパーを利用すると、(1)電子導電性に優れる、(2)強度に優れる、(3)電極を薄くし易い、といった効果を期待できる。
カーボンクロスを利用すると、柔軟性があり電極を薄くできる。
When carbon felt is used, (1) when an aqueous solution is used as the electrolytic solution, oxygen gas is hardly generated even when the oxygen generation potential is reached during charging, and (2) there is an advantage in that there is an excellent flowability of the electrolytic solution. Can be expected.
When carbon paper is used, effects such as (1) excellent electronic conductivity, (2) excellent strength, and (3) easy thinning of the electrode can be expected.
When carbon cloth is used, there is flexibility and the electrode can be made thin.

・形状、大きさなど
繊維集合材102は、代表的には、図6に示すように長方形状の平板材が挙げられる。その他の平面形状として、円形状、楕円形状、多角形状などの種々の形状とすることができる。図6に示すように繊維集合材102の平面形状と多孔質板101の平面形状とを等しくする他、両者を異ならせることができる。
-Shape, size, etc. The fiber aggregate 102 is typically a rectangular flat plate as shown in FIG. Other planar shapes can be various shapes such as a circular shape, an elliptical shape, and a polygonal shape. As shown in FIG. 6, the planar shape of the fiber assembly 102 and the planar shape of the porous plate 101 can be equalized, and both can be made different.

繊維集合材102を平面視したときの大きさ、例えば平面形状が長方形状であれば幅及び長さ、円形状であれば直径、その他、平面面積などは、所望の容量を満たすRF電池1が形成できるように選択すればよい。図6に示すように繊維集合材102における平面視したときの大きさと多孔質板101における平面視したときの大きさとを等しくする他、両者を異ならせることができる。   The size of the fiber assembly 102 when viewed in plan, for example, the width and length if the planar shape is rectangular, the diameter if the planar shape is circular, and the planar area, etc., are determined by the RF battery 1 satisfying a desired capacity. What is necessary is just to select so that it can form. As shown in FIG. 6, in addition to making the size of the fiber assembly 102 viewed in plan and the size of the porous plate 101 viewed in plan, they can be made different.

繊維集合材102を多孔質板101のクッション材として良好に機能させるためには、繊維集合材102の一面と多孔質板101の一面は、平面形状及び平面視したときの大きさが実質的に等しいことが好ましい。   In order for the fiber aggregate 102 to function satisfactorily as a cushioning material for the porous plate 101, one side of the fiber aggregate 102 and one side of the porous plate 101 have substantially the same planar shape and size when viewed in plan. Preferably equal.

繊維集合材102の厚さt102は、厚いほど電池反応場を増大できる上にクッション性を高められ、薄いほど薄型のRF電池1を構築できて好ましい。具体的な厚さt102は、0.05mm以上1mm以下程度が挙げられる。少なくとも一方の電極に多孔質板101と繊維集合材102との積層体を含む場合には(実施形態1など)、厚さt102を薄くでき、例えば0.5mm以下、更に0.3mm以下とすることができる。積層体に備える繊維集合材102の好ましい厚さt102は0.1mm以上0.8mm以下程度が挙げられる。積層体以外の場合(実施形態2,5)の繊維集合材102の好ましい厚さt102は、0.3mm以上1mm以下程度が挙げられる。 As the thickness t102 of the fiber assembly 102 is thicker, the battery reaction field can be increased and the cushioning property can be enhanced, and the thinner the tatter 102 is, the thinner the RF battery 1 can be constructed. Specific thicknesses t 102 include the extent to 1mm 0.05 mm. If containing laminate of the porous plate 101 and a fiber assemblage 102 on at least one of the electrodes can be made thin (for example, Embodiment 1), the thickness t 102, for example 0.5mm or less, and further 0.3mm or less can do. The preferred thickness t 102 of the fiber aggregate member 102 provided on the laminate include extent than 0.8mm or less 0.1 mm. The preferred thickness t 102 of the fiber aggregate member 102 in the case of non-laminate (Embodiment 2,5) include the extent to 1mm 0.3 mm.

その他、繊維集合材102は、目付量が大きいほど電池反応場を増大できる上にクッション性を高められる傾向にあり、小さいほどポンプロスを小さくできる傾向にある。具体的な目付量は30g/m以上300g/m以下程度が挙げられる。 In addition, the fiber aggregate 102 has a tendency to increase the battery reaction field as the basis weight increases and to improve the cushioning property, and to decrease the pump loss as it decreases. Specific weight per unit area is about 30 g / m 2 or more and 300 g / m 2 or less.

(その他のRF電池の構成部材)
・フレームアッシー
双極板150は、電気抵抗が小さい導電性材料であって、電解液と反応せず、電解液に対する耐性(耐薬品性、耐酸性など)を有するもの、例えば、炭素材と有機材とを含有する複合材料を利用できる。より具体的には黒鉛などの導電性無機材(粉末や繊維など)とポリオレフィン系有機化合物や塩素化有機化合物などの有機材とを含む導電性プラスチックなどを板状に成形したものを利用できる。
枠体151は、電解液に対する耐性、電気絶縁性に優れる樹脂などで構成される。
(Other RF battery components)
Frame assembly The bipolar plate 150 is a conductive material having a low electrical resistance, does not react with the electrolyte, and has resistance to the electrolyte (chemical resistance, acid resistance, etc.), for example, carbon materials and organic materials Can be used. More specifically, it is possible to use a conductive plastic material including a conductive inorganic material such as graphite (powder or fiber) and an organic material such as a polyolefin-based organic compound or a chlorinated organic compound formed into a plate shape.
The frame 151 is made of a resin having excellent resistance to an electrolytic solution and excellent electrical insulation.

・隔膜
隔膜11は、例えば、陽イオン交換膜や陰イオン交換膜といったイオン交換膜が挙げられる。イオン交換膜は、(1)正極活物質のイオンと負極活物質のイオンとの隔離性に優れる、(2)電池セル100内での電荷担体であるHイオンの透過性に優れる、といった特性を有しており、隔膜11に好適に利用できる。公知の隔膜を利用できる。
-Diaphragm Examples of the diaphragm 11 include an ion exchange membrane such as a cation exchange membrane or an anion exchange membrane. The ion exchange membrane has characteristics such as (1) excellent isolation between positive electrode active material ions and negative electrode active material ions, and (2) excellent H + ion permeability as a charge carrier in the battery cell 100. It can be suitably used for the diaphragm 11. A known diaphragm can be used.

(電解液)
RF電池1に利用する電解液は、金属イオンや非金属イオンなどの活物質イオンを含む。例えば、正極極活物質及び負極活物質として、価数の異なるバナジウムイオン(図7)を含むバナジウム系電解液が挙げられる。その他、正極活物質として鉄(Fe)イオン、負極活物質としてクロム(Cr)イオンを含む鉄−クロム系電解液、正極活物質としてマンガン(Mn)イオン、負極活物質としてチタン(Ti)イオンを含むマンガン−チタン系電解液などが挙げられる。電解液は、活物質に加えて、硫酸、リン酸、硝酸、塩酸から選択される少なくとも1種の酸又は酸塩を含む水溶液などを利用できる。
(Electrolyte)
The electrolytic solution used for the RF battery 1 includes active material ions such as metal ions and non-metal ions. For example, the positive electrode active material and the negative electrode active material include vanadium-based electrolytes containing vanadium ions (FIG. 7) having different valences. In addition, an iron-chromium-based electrolyte containing iron (Fe) ions as a positive electrode active material, chromium (Cr) ions as a negative electrode active material, manganese (Mn) ions as a positive electrode active material, and titanium (Ti) ions as a negative electrode active material Examples thereof include a manganese-titanium electrolyte solution. As the electrolytic solution, in addition to the active material, an aqueous solution containing at least one acid or acid salt selected from sulfuric acid, phosphoric acid, nitric acid, and hydrochloric acid can be used.

[試験例1]
正極電極及び負極電極として種々の炭素材を備えるRF電池を作製して、電解液の流通状態、及びセル抵抗を測定した。
[Test Example 1]
RF batteries including various carbon materials as a positive electrode and a negative electrode were produced, and the flow state of the electrolyte and the cell resistance were measured.

この試験、及び後述する試験例2では、電極に用いる炭素材として、縦30mm×横30mm×厚さ1mmの長方形状の多孔質板と、縦30mm×横30mm×厚さ0.2mmの長方形状のカーボンペーパー(繊維集合材の一例)と、縦30mm×横30mm×厚さ0.3mmの長方形状のカーボンクロス(繊維集合材の一例)とを用意した。いずれも市販品である。
多孔質板は、気孔率が約40体積%、炭素繊維を1質量%以下の範囲で含み、残部は炭素が結合されて連続した三次元網目構造の骨子を形成する。各試料の多孔質板には、550℃×1時間、大気雰囲気の酸化処理を行った。
カーボンペーパーの気孔率は約70体積%、カーボンクロスの気孔率は約60体積%であり、多孔質板よりも気孔率が大きい。
In this test and Test Example 2 described later, as a carbon material used for the electrodes, a rectangular porous plate having a length of 30 mm × width of 30 mm × thickness of 1 mm, and a rectangular shape of length of 30 mm × width of 30 mm × thickness of 0.2 mm. Carbon paper (an example of a fiber assembly) and a rectangular carbon cloth (an example of a fiber assembly) having a length of 30 mm × width of 30 mm × thickness of 0.3 mm were prepared. Both are commercially available products.
The porous plate has a porosity of about 40% by volume and carbon fiber in the range of 1% by mass or less, and the remainder is bonded with carbon to form a continuous three-dimensional network structure. The porous plate of each sample was oxidized in an air atmosphere at 550 ° C. for 1 hour.
The porosity of carbon paper is about 70% by volume, the porosity of carbon cloth is about 60% by volume, and the porosity is larger than that of the porous plate.

多孔質板の一面に並列された複数の直線状の溝であって、導入側と排出側とが連通しておらず、溝の一端が多孔質板の一側面に開口した導入側の溝と、溝の一端が多孔質板の一側面に対向する他側面に開口した排出側の溝とが交互に並んだ溝群(図6参照)を切削工具によって形成し、溝付き多孔質板も用意した。
溝の幅w:0.7mm、深さd:0.7mm、溝間隔cg:1mm、溝長さl:28mm、重複長さll:25mmである。各直線状の溝は、その長手方向が電解液の流通方向(ここでは上下方向)に沿うように設けると共に、上述のように多孔質板の側面に開口するように、対向する周縁に溝の一端が位置するように設けた。
A plurality of linear grooves arranged in parallel on one surface of the porous plate, the introduction side and the discharge side are not in communication, and one end of the groove is open on one side of the porous plate; A groove group (refer to FIG. 6) in which one end of the groove is alternately arranged with a groove on the discharge side opened on the other side opposite to one side of the porous plate is formed by a cutting tool, and a porous plate with a groove is also prepared. did.
The groove width w is 0.7 mm, the depth d is 0.7 mm, the groove interval cg is 1 mm, the groove length l is 28 mm, and the overlap length ll is 25 mm. Each linear groove is provided so that its longitudinal direction is along the flow direction of the electrolyte (in this case, the vertical direction), and as described above, the groove is formed on the opposite peripheral edge so as to open on the side surface of the porous plate. It provided so that one end might be located.

試料No.1−101の正極電極及び負極電極はいずれも、上記溝を形成していない多孔質板を備え、繊維集合材を備えていない。
試料No.1−102の正極電極及び負極電極はいずれも、溝付き多孔質板を備え、繊維集合材を備えていない。この試験では、多孔質板の隔膜側面に溝の開口部が位置するように各極の電極の多孔質板を配置した。
試料No.1−1の正極電極は溝付き多孔質板を備え、負極電極はカーボンペーパーを備える。この試験では、多孔質板の隔膜側面に溝の開口部が位置するように、正極電極の多孔質板を配置した。
試料No.1−2の正極電極及び負極電極はいずれも、溝付き多孔質板と、カーボンクロスとを積層させた積層体を備える。この試験では、多孔質板における繊維集合材との界面側を隔膜側とし、隔膜側面に溝の開口部が位置し、この開口部がカーボンクロスによって覆われるように積層体を配置した。
Sample No. Each of the positive electrode and the negative electrode 1-101 includes a porous plate that does not form the groove, and does not include a fiber assembly.
Sample No. Each of the positive electrode and the negative electrode 1-102 includes a grooved porous plate and does not include a fiber assembly. In this test, the porous plate of the electrode of each electrode was disposed so that the opening of the groove was located on the side surface of the diaphragm of the porous plate.
Sample No. The positive electrode of 1-1 is provided with a grooved porous plate, and the negative electrode is provided with carbon paper. In this test, the porous plate of the positive electrode was arranged so that the opening of the groove was located on the side surface of the diaphragm of the porous plate.
Sample No. Each of the positive electrode and the negative electrode of 1-2 includes a laminate in which a grooved porous plate and a carbon cloth are laminated. In this test, the laminated body was disposed so that the interface side of the porous plate with the fiber assembly was the diaphragm side, the opening of the groove was located on the side of the diaphragm, and the opening was covered with carbon cloth.

上述の正極電極及び負極電極と隔膜とを用いて、単セルの電池セルを作製し、電解液を供給して電解液の流通状態を調べた。また、以下の充放電試験を行ってセル抵抗率(Ω・cm)を調べた。各試料における隔膜などの電池セル構成部材は、同じものを用いた。 A single-cell battery cell was prepared using the positive electrode and negative electrode described above and the diaphragm, and the electrolyte solution was supplied to examine the flow state of the electrolyte solution. Further, the following charge / discharge test was conducted to examine the cell resistivity (Ω · cm 2 ). The same battery cell components such as a diaphragm in each sample were used.

電解液として、バナジウム系電解液を用意して、複数サイクルの定電流定電圧の充放電試験を行ってセル抵抗率を求めた。試験条件は、放電終了電圧:1V、充電終了電圧:1.6V、電流:600mAとした。セル抵抗率は、充放電試験に基づいて充放電曲線を作成し、この充放電曲線から、3サイクル目のセル抵抗率を調べた。   A vanadium-based electrolyte was prepared as the electrolyte, and a cell resistivity was determined by conducting a charge / discharge test with a constant current and a constant voltage for a plurality of cycles. The test conditions were: discharge end voltage: 1V, charge end voltage: 1.6V, current: 600mA. For the cell resistivity, a charge / discharge curve was created based on the charge / discharge test, and the cell resistivity at the third cycle was examined from this charge / discharge curve.

この試験の結果、両極の電極に多孔質板を備え、繊維集合材を備えていない試料No.1−101では、電解液の流れが不十分であり、充放電を繰り返し行うことが困難であった。
両極の電極に溝付き多孔質板を備え、繊維集合材を備えていない試料No.1−102では、電解液が流れて充放電を繰り返し行えたが、セル抵抗率が2.5Ω・cmであり、セル抵抗が大きい。
As a result of this test, Sample No. No. 2 was provided with a porous plate on both electrodes and no fiber assembly. In 1-101, the flow of the electrolyte was insufficient, and it was difficult to repeatedly charge and discharge.
Sample No. provided with a porous plate with grooves in both electrodes and no fiber assembly. In 1-102, the electrolyte flowed and charge / discharge could be repeated, but the cell resistivity was 2.5 Ω · cm 2 and the cell resistance was large.

一方の電極に多孔質板を備え、他方の電極に繊維集合材を備える試料No.1−1では、電解液が良好に流れて充放電を繰り返し行えた上に、セル抵抗率が1.1Ω・cmであり、セル抵抗が小さい。この試験では、試料No.1−1のセル抵抗率は、試料No.1−102の半分未満である。
更に、両極の電極に多孔質板と繊維集合材との積層体を備えるNo.1−2では、電解液が良好に流れて充放電を繰り返し行えた上に、セル抵抗率が0.87Ω・cmであり、セル抵抗が更に小さく、1Ω・cm未満である。
Sample No. provided with a porous plate on one electrode and a fiber assembly on the other electrode. In 1-1, the electrolyte solution flowed satisfactorily and charge / discharge could be repeated, and the cell resistivity was 1.1 Ω · cm 2 and the cell resistance was small. In this test, sample no. The cell resistivity of 1-1 is the sample No. Less than half of 1-102.
Furthermore, No. 1 provided with a laminate of a porous plate and a fiber assembly on both electrodes. In 1-2, on the electrolyte has repeatedly performed satisfactorily flow discharge, is a cell resistivity of 0.87Ω · cm 2, the cell resistance is even smaller, less than 1Ω · cm 2.

この試験結果から、電極の素材として、凹部が形成された多孔質板と、繊維集合材とを備えるRF電池は、電解液の流通性に優れる上に、セル抵抗が小さいことが示された。また、少なくとも一方の電極に多孔質板と繊維集合材との積層体を備えると、セル抵抗を更に小さくできることが示された。   From this test result, it was shown that an RF battery including a porous plate having a recess formed as a material for an electrode and a fiber assembly material has excellent electrolyte flowability and low cell resistance. Moreover, it was shown that the cell resistance can be further reduced by providing a laminate of a porous plate and a fiber assembly on at least one electrode.

[試験例2]
一方の電極として多孔質板を備え、他方の電極として繊維集合材を備えるRF電池を作製し、電解液の流通状態、及びセル抵抗を測定した。
[Test Example 2]
An RF battery including a porous plate as one electrode and a fiber assembly as the other electrode was produced, and the flow state of the electrolytic solution and the cell resistance were measured.

この試験では、試験例1で説明した多孔質板の一面に導入側の溝と排出側の溝とが交互に並列した溝群(図6参照)を形成したものを正極電極とし、試験例1で説明したカーボンペーパーとカーボンクロスとを積層した積層体を負極電極として備える単セルのRF電池を作製した。多孔質板の隔膜側面に溝の開口部が位置するように、正極電極の多孔質板を配置した。特に、この試験では、多孔質板の厚さ、溝の大きさが異なる溝付き多孔質板を複数用意して、正極電極に利用した。各試料の多孔質板の厚さt(mm)、溝の幅w(mm)、深さd(mm)、溝間隔cg(mm)を表1に示す。試験例2で用意した多孔質板は、試験例1で用いた多孔質板とは厚さが異なるものである。   In this test, a positive electrode was formed by forming a groove group (see FIG. 6) in which introduction-side grooves and discharge-side grooves were alternately arranged in parallel on one surface of the porous plate described in Test Example 1. A single-cell RF battery comprising a laminate obtained by laminating the carbon paper and the carbon cloth described in 1 as a negative electrode was produced. The porous plate of the positive electrode was arranged so that the groove opening was positioned on the side surface of the diaphragm of the porous plate. In particular, in this test, a plurality of grooved porous plates having different thicknesses and groove sizes were prepared and used for the positive electrode. Table 1 shows the thickness t (mm), groove width w (mm), depth d (mm), and groove interval cg (mm) of the porous plate of each sample. The porous plate prepared in Test Example 2 is different in thickness from the porous plate used in Test Example 1.

試験例1と同様の充放電試験を行って、試験例1と同様にしてセル抵抗率を調べた。その結果を表1に示す。   The same charge / discharge test as in Test Example 1 was performed, and the cell resistivity was examined in the same manner as in Test Example 1. The results are shown in Table 1.

また、電流効率(%)を調べた。その結果を表1に示す。この試験では、電流効率ηは、充電終了電圧:1.6Vまでの充電に要した電気量Qと、放電終了電圧:1.0Vまでの定電流放電で取出した電気量Qと、1.0Vでの定電圧放電で取出した電気量Qとを用いて、η=[(Q+Q)/Q]×100で求めた。 In addition, the current efficiency (%) was examined. The results are shown in Table 1. In this test, the current efficiency η is defined as the amount of electricity Q 1 required for charging up to a charging end voltage: 1.6 V, the amount of electricity Q 2 taken out by constant current discharging up to a discharging end voltage: 1.0 V, and 1 Using the quantity of electricity Q 3 extracted by constant voltage discharge at 0.0 V, η = [(Q 2 + Q 3 ) / Q 1 ] × 100.

Figure 2017010809
Figure 2017010809

表1に示すように、電極の素材に溝付き多孔質板と繊維集合材とを備えるRF電池を構築するにあたり、多孔質板の厚さや溝の大きさを調整することで、セル抵抗をより低減したり、電流効率をより向上したりできることが分かる。この試験では、いずれの試料もセル抵抗率が1.2Ω・cm以下であり、セル抵抗が小さい。また、この試験では、セル抵抗率が1Ω・cm以下である上に、電流効率が97%以上である試料が多数存在する。 As shown in Table 1, in constructing an RF battery comprising a grooved porous plate and a fiber assembly as the electrode material, the cell resistance can be further increased by adjusting the thickness of the porous plate and the size of the groove. It can be seen that the current efficiency can be further reduced. In this test, each sample has a cell resistivity of 1.2 Ω · cm 2 or less and a low cell resistance. In this test, there are many samples having a cell resistivity of 1 Ω · cm 2 or less and a current efficiency of 97% or more.

この試験結果から、電極の素材として、凹部が形成された多孔質板と繊維集合材とを備えるRF電池は、電解液の流通性に優れる上に、セル抵抗が小さいこと、更に、多孔質板の厚さや溝の大きさなどによってセル抵抗をより低減できることが示された。   From this test result, as an electrode material, an RF battery including a porous plate with a concave portion and a fiber assembly is excellent in the flowability of the electrolyte, and has a low cell resistance. It was shown that the cell resistance can be further reduced by the thickness of the substrate and the size of the groove.

本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、試験例1,2における電極の仕様(素材、大きさ、積層順、凹部の大きさ、形状など)、電解液の種類などを変更することができる。   The present invention is not limited to these exemplifications, but is defined by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. For example, the electrode specifications (material, size, stacking order, recess size, shape, etc.) in Test Examples 1 and 2 and the type of electrolyte can be changed.

本発明のレドックスフロー電池は、太陽光発電、風力発電などの自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした蓄電池に利用できる。また、本発明のレドックスフロー電池は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした蓄電池としても利用できる。特に、本発明のレドックスフロー電池は、上述の目的の大容量の蓄電池に好適に利用できる。本発明のレドックスフロー電池用電極は、レドックスフロー電池の構成部材に利用できる。   The redox flow battery of the present invention is a storage battery for the purpose of stabilizing fluctuations in power generation output, storing electricity when surplus generated power, load leveling, etc., for power generation of natural energy such as solar power generation and wind power generation. Available. In addition, the redox flow battery of the present invention can be used as a storage battery that is installed in a general power plant and is used for the purpose of instantaneous voltage drop / power failure countermeasures and load leveling. In particular, the redox flow battery of the present invention can be suitably used for a large-capacity storage battery for the aforementioned purpose. The electrode for redox flow batteries of the present invention can be used as a constituent member of a redox flow battery.

1 レドックスフロー電池(RF電池)
100,100A,100B,100C,100D,100E 電池セル
10 電極 10c 正極電極 10a 負極電極 11 隔膜
101 多孔質板 101g 凹部 102 繊維集合材
15 フレームアッシー 150 双極板 151 枠体
152c,152a 給液孔 154c,154a 排液孔
170 エンドプレート 172 連結部材
106 正極タンク 107 負極タンク 108〜111 配管
112,113 ポンプ
200 交流/直流変換器 210 変電設備 300 発電部 400 負荷
1 Redox flow battery (RF battery)
100, 100A, 100B, 100C, 100D, 100E Battery cell 10 Electrode 10c Positive electrode 10a Negative electrode 11 Diaphragm 101 Porous plate 101g Recess 102 Fiber assembly 15 Frame assembly 150 Bipolar plate 151 Frame body 152c, 152a Supply hole 154c, 154a Drainage hole 170 End plate 172 Connecting member 106 Positive electrode tank 107 Negative electrode tank 108-111 Piping 112, 113 Pump 200 AC / DC converter 210 Substation equipment 300 Power generation unit 400 Load

Claims (9)

正極電極と、負極電極と、前記正極電極と前記負極電極との間に介在される隔膜とを備えるレドックスフロー電池であって、
前記正極電極及び前記負極電極のうち、
一方の電極は、炭素が結合して形成される連続的な三次元網目構造の骨子を主体とする多孔質板を備え、
他方の電極は、互いに絡み合う複数の炭素繊維を主体とする繊維集合材を備え、
前記多孔質板は、その少なくとも一面に開口し、電解液が流通される凹部を備えるレドックスフロー電池。
A redox flow battery comprising a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode,
Of the positive electrode and the negative electrode,
One electrode includes a porous plate mainly composed of a continuous three-dimensional network structure formed by bonding carbon,
The other electrode includes a fiber assembly mainly composed of a plurality of carbon fibers intertwined with each other,
The porous plate is a redox flow battery having an opening on at least one surface thereof and a recess through which an electrolytic solution is circulated.
前記正極電極及び前記負極電極のうち、少なくとも一方の電極は、前記多孔質板と前記繊維集合材とが積層された積層体を備える請求項1に記載のレドックスフロー電池。   2. The redox flow battery according to claim 1, wherein at least one of the positive electrode and the negative electrode includes a laminate in which the porous plate and the fiber assembly are laminated. 前記積層体における前記多孔質板は、前記繊維集合材との界面側に開口する凹部を備える請求項2に記載のレドックスフロー電池。   The redox flow battery according to claim 2, wherein the porous plate in the laminate includes a concave portion that opens to an interface side with the fiber assembly. 前記一方の電極に備える前記多孔質板は、前記隔膜に対向する面に開口する凹部を備える請求項1〜請求項3のいずれか1項に記載のレドックスフロー電池。   The redox flow battery according to any one of claims 1 to 3, wherein the porous plate included in the one electrode includes a recess that opens to a surface facing the diaphragm. 前記凹部は、電解液の導入側と排出側とが連通しない複数の直線状の溝が並列された溝群を備える請求項1〜請求項4のいずれか1項に記載のレドックスフロー電池。   5. The redox flow battery according to claim 1, wherein the concave portion includes a groove group in which a plurality of linear grooves in which the electrolyte introduction side and the discharge side do not communicate with each other are arranged in parallel. 前記凹部は溝を備え、前記溝の深さは0.3mm以上4mm以下であり、前記溝の開口部の幅は0.05mm以上5mm以下である請求項1〜請求項5のいずれか1項に記載のレドックスフロー電池。   The said recessed part is provided with a groove | channel, The depth of the said groove | channel is 0.3 mm or more and 4 mm or less, The width | variety of the opening part of the said groove | channel is 0.05 mm or more and 5 mm or less, The any one of Claims 1-5. Redox flow battery according to 1. 前記正極電極は、前記多孔質板を備える請求項1〜請求項6のいずれか1項に記載のレドックスフロー電池。   The redox flow battery according to claim 1, wherein the positive electrode includes the porous plate. 前記繊維集合材は、カーボンフェルト、カーボンペーパー、及びカーボンクロスから選択される少なくとも一種を含む請求項1〜請求項7のいずれか1項に記載のレドックスフロー電池。   The redox flow battery according to any one of claims 1 to 7, wherein the fiber assembly includes at least one selected from carbon felt, carbon paper, and carbon cloth. 炭素が結合して形成される連続的な三次元網目構造の骨子を主体とし、少なくとも一面に開口して電解液が流通される凹部を備える多孔質板と、
前記多孔質板の凹部が開口する面に対向して配置され、互いに絡み合う複数の炭素繊維を主体とする繊維集合材とが積層された積層体を備えるレドックスフロー電池用電極。
A porous plate mainly comprising a continuous three-dimensional network structure formed by bonding carbon, and having a recess that is open at least on one surface and through which an electrolyte flows;
An electrode for a redox flow battery, comprising a laminate in which a plurality of carbon fibers mainly composed of carbon fibers are disposed so as to face a surface of the porous plate where the concave portion is open and are intertwined with each other.
JP2015125744A 2015-06-23 2015-06-23 Electrode for redox flow battery and redox flow battery Pending JP2017010809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015125744A JP2017010809A (en) 2015-06-23 2015-06-23 Electrode for redox flow battery and redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125744A JP2017010809A (en) 2015-06-23 2015-06-23 Electrode for redox flow battery and redox flow battery

Publications (1)

Publication Number Publication Date
JP2017010809A true JP2017010809A (en) 2017-01-12

Family

ID=57761731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125744A Pending JP2017010809A (en) 2015-06-23 2015-06-23 Electrode for redox flow battery and redox flow battery

Country Status (1)

Country Link
JP (1) JP2017010809A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268569A (en) * 2017-02-10 2019-09-20 Cmblu企划股份公司 Flow through formula electrode unit and application thereof, redox flow battery system and application thereof, the method for formula electrode unit, the method for operating redox flow battery system are flowed through in manufacture
CN110326142A (en) * 2017-02-28 2019-10-11 株式会社Lg化学 Electrode structure and redox flow battery including the same
CN112534614A (en) * 2018-08-13 2021-03-19 住友电气工业株式会社 Redox flow battery cell and redox flow battery
WO2021070311A1 (en) 2019-10-09 2021-04-15 住友電気工業株式会社 Electrode, battery cell, cell stack, and redox-flow battery system
WO2021119911A1 (en) * 2019-12-16 2021-06-24 宁德新能源科技有限公司 Battery cell
CN114041222A (en) * 2019-07-18 2022-02-11 住友电气工业株式会社 Redox flow battery cells, cell stacks and redox flow battery systems
CN114072944A (en) * 2019-07-18 2022-02-18 住友电气工业株式会社 Redox flow battery cells, cell stacks and redox flow battery systems
US12193298B2 (en) 2020-12-11 2025-01-07 Lg Display Co., Ltd. Organic light emitting display apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268569B (en) * 2017-02-10 2023-07-04 CMBlu 能源股份公司 Flow-through electrode unit and use thereof, redox flow battery system and use thereof, method for manufacturing flow-through electrode unit, method for operating redox flow battery system
CN110268569A (en) * 2017-02-10 2019-09-20 Cmblu企划股份公司 Flow through formula electrode unit and application thereof, redox flow battery system and application thereof, the method for formula electrode unit, the method for operating redox flow battery system are flowed through in manufacture
CN110326142A (en) * 2017-02-28 2019-10-11 株式会社Lg化学 Electrode structure and redox flow battery including the same
JP2020500403A (en) * 2017-02-28 2020-01-09 エルジー・ケム・リミテッド Electrode structure and redox flow battery including the same
US11309565B2 (en) 2017-02-28 2022-04-19 Lg Chem, Ltd. Electrode structure and redox flow battery comprising same
CN112534614A (en) * 2018-08-13 2021-03-19 住友电气工业株式会社 Redox flow battery cell and redox flow battery
EP3840095A4 (en) * 2018-08-13 2022-04-06 Sumitomo Electric Industries, Ltd. REDOX FLOW BATTERY CELL AND REDOX FLOW BATTERY
US11316170B2 (en) 2018-08-13 2022-04-26 Sumitomo Electric Industries, Ltd. Redox flow battery cell and redox flow battery
CN112534614B (en) * 2018-08-13 2023-08-04 住友电气工业株式会社 Redox flow battery monomer and redox flow battery
CN114072944B (en) * 2019-07-18 2024-01-09 住友电气工业株式会社 Redox flow battery cell, cell stack, and redox flow battery system
CN114041222A (en) * 2019-07-18 2022-02-11 住友电气工业株式会社 Redox flow battery cells, cell stacks and redox flow battery systems
CN114072944A (en) * 2019-07-18 2022-02-18 住友电气工业株式会社 Redox flow battery cells, cell stacks and redox flow battery systems
WO2021070311A1 (en) 2019-10-09 2021-04-15 住友電気工業株式会社 Electrode, battery cell, cell stack, and redox-flow battery system
EP4044295A4 (en) * 2019-10-09 2022-11-16 Sumitomo Electric Industries, Ltd. ELECTRODE, BATTERY CELL, CELL STACK AND REDOX FLOW BATTERY SYSTEM
CN114503313A (en) * 2019-10-09 2022-05-13 住友电气工业株式会社 Electrode, battery cell, battery stack and redox flow battery system
US12362367B2 (en) 2019-10-09 2025-07-15 Sumitomo Electric Industries, Ltd. Electrode, battery cell, cell stack, and redox flow battery system
WO2021119911A1 (en) * 2019-12-16 2021-06-24 宁德新能源科技有限公司 Battery cell
US12193298B2 (en) 2020-12-11 2025-01-07 Lg Display Co., Ltd. Organic light emitting display apparatus

Similar Documents

Publication Publication Date Title
JP2017010809A (en) Electrode for redox flow battery and redox flow battery
JP6701514B2 (en) Redox flow battery electrode and redox flow battery
CN108352554B (en) Bipolar plates, cell frames, cell stacks, and redox flow batteries
KR101667123B1 (en) Flow battery with mixed flow
US10680248B2 (en) Electrode material, electrode of redox flow battery, and redox flow battery
WO2016189970A1 (en) Redox flow battery
JP3203665U (en) Improved electrode for flow battery
KR20140084246A (en) Flow battery with carbon paper
JP2013065530A (en) Redox flow battery
JP6970388B2 (en) Redox flow battery electrodes, redox flow battery cells and redox flow batteries
JP5890561B1 (en) Electrolyzer and battery
CN106605326A (en) Redox flow battery electrode, redox flox battery, and method for evaluating electrode properties
WO2017006729A1 (en) Electrode for redox flow battery, and redox flow battery system
JPWO2018025406A1 (en) Redox flow battery
KR101807378B1 (en) Electrochemical device and method for controlling corrosion
WO2019150570A1 (en) Cell frame, battery cell, cell stack, and redox flow battery
CN112534614B (en) Redox flow battery monomer and redox flow battery
Lourenssen et al. Design, development, and testing of a low-concentration vanadium redox flow battery
EP3435455A1 (en) Graphite-containing electrode and method related thereto
US20150030954A1 (en) Redox flow secondary battery
JP6346913B2 (en) Vanadium air battery
JP2016213177A (en) Electrolytic cell and battery
TWI699927B (en) Redox flow battery, electrode for redox flow battery and electrode characteristic evaluation method
Kolli Optimum structure of cell components for a membrane-less iron-ion/hydrogen redox flow battery
JP2006252941A (en) Fuel cell