[go: up one dir, main page]

JP2017162614A - Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same - Google Patents

Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same Download PDF

Info

Publication number
JP2017162614A
JP2017162614A JP2016044808A JP2016044808A JP2017162614A JP 2017162614 A JP2017162614 A JP 2017162614A JP 2016044808 A JP2016044808 A JP 2016044808A JP 2016044808 A JP2016044808 A JP 2016044808A JP 2017162614 A JP2017162614 A JP 2017162614A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
manganese
oxide mixture
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016044808A
Other languages
Japanese (ja)
Inventor
昌樹 岡田
Masaki Okada
昌樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016044808A priority Critical patent/JP2017162614A/en
Publication of JP2017162614A publication Critical patent/JP2017162614A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 高エネルギー密度と低コストを両立できる新しいマンガン酸化物混合物、混合正極活物質、さらには、これを正極に用いた高エネルギー密度のリチウム二次電池を提供する。【解決手段】 一般式Li(4/3)−(4X/5)Mn2/3O2−(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有するマンガン酸化物混合物、一般式[Li2MnO3]1−E・[Li4Mn5O12]E(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有するマンガン酸化物混合物、マンガン酸化物混合物を含む混合正極活物質、及び混合正極活物質を含有する正極を備えるリチウム二次電池。【選択図】 なしPROBLEM TO BE SOLVED: To provide a new manganese oxide mixture capable of achieving both high energy density and low cost, a mixed positive electrode active material, and a high energy density lithium secondary battery using the same. A lithium-containing manganese composition represented by the general formula: Li(4/3)-(4X/5)Mn2/3O2-(2X/5) (where 0<X<1 is satisfied), A manganese oxide mixture containing a positive electrode material, containing a lithium-containing manganese composition represented by the general formula [Li2MnO3]1-E.[Li4Mn5O12]E (where 0<E<1 is satisfied) and a positive electrode material. A lithium secondary battery comprising a manganese oxide mixture, a mixed positive electrode active material containing the manganese oxide mixture, and a positive electrode containing the mixed positive electrode active material. [Selection diagram] None

Description

本発明は、マンガン酸化物混合物、混合正極活物質及びこれを用いるリチウム二次電池に関する。   The present invention relates to a manganese oxide mixture, a mixed positive electrode active material, and a lithium secondary battery using the same.

リチウム二次電池は他の蓄電池に比べてエネルギー密度が高いことから、携帯端末用の蓄電池として幅広く使用されてきた。最近では、定置用や車載用といった大型で大容量が必要とされる用途への適用も進められている。   Lithium secondary batteries have been widely used as storage batteries for portable terminals because they have higher energy density than other storage batteries. Recently, application to a large-sized application requiring a large capacity such as a stationary one and an in-vehicle one has been promoted.

大容量が必要とされる用途では高エネルギー密度化の要望が強く、コストダウンに対する要求が特に厳しい。   In applications that require large capacity, there is a strong demand for higher energy density, and the demand for cost reduction is particularly severe.

高エネルギー密度化を目指して現在開発中のリチウム二次電池の正極材料には、コバルト(Co)やニッケル(Ni)などの金属元素を多く含む酸化物材料が主に検討されている。これら希少元素を多く含む正極材料のコストダウンは極めて難しく、現時点では高エネルギー密度と低コストを両立する実用材料はない。   As a positive electrode material of a lithium secondary battery currently being developed with the aim of increasing energy density, oxide materials containing a large amount of metal elements such as cobalt (Co) and nickel (Ni) are mainly studied. It is extremely difficult to reduce the cost of the positive electrode material containing a large amount of these rare elements. At present, there is no practical material that achieves both high energy density and low cost.

高エネルギー密度と低コストを両立する正極材料実現の取り組みとして、CoやNiを多く含む酸化物材料とスピネル型マンガン酸リチウム酸化物材料(LiMn)との混合正極活物質が提案され、一部で実用化されている。マンガン(Mn)系材料が選ばれる理由は、埋蔵量が多く安価な元素でありCoやNiに比べて安全性が高く環境への負荷も小さいことに基づいている。 As an effort to realize a positive electrode material that achieves both high energy density and low cost, a mixed positive electrode active material of an oxide material containing a large amount of Co and Ni and a spinel type lithium manganate oxide material (LiMn 2 O 4 ) has been proposed, Some have been put to practical use. The reason why the manganese (Mn) -based material is selected is based on the fact that it is an element that has a large reserve and is inexpensive and is safer and less burdened on the environment than Co and Ni.

特許文献1ではコバルト酸リチウム(LiCoO)、特許文献2ではニッケル・マンガン酸リチウム(LiNi1/2・Mn1/2)、特許文献3ではアルミニウム(Al)を添加したニッケル・コバルト酸リチウム(LiNi0.8Co0.15Al0.05;略称NCA)、特許文献4では固溶体材料(LiMnO−LiMeO,Me=Ni,Mn,Co;略称/LiMnO−NMC)との混合正極活物質が提案されている。 In Patent Document 1, lithium cobaltate (LiCoO 2 ), in Patent Document 2, nickel / lithium manganate (LiNi 1/2 · Mn 1/2 O 2 ), and in Patent Document 3 nickel / cobalt acid to which aluminum (Al) is added. Lithium (LiNi 0.8 Co 0.15 Al 0.05 O 2 ; abbreviated NCA), in Patent Document 4, solid solution material (Li 2 MnO 3 —LiMeO 2 , Me = Ni, Mn, Co; abbreviated / Li 2 MnO 3 -NMC) and mixed cathode active materials have been proposed.

しかし、LiMnの実用容量が100mAh/g程度と小さいことから、その混合割合は高エネルギー密度の特徴を損なわない程度に抑えられ、これまでの混合正極活物質では低コスト化に限界があった。 However, since the practical capacity of LiMn 2 O 4 is as small as about 100 mAh / g, the mixing ratio is suppressed to such an extent that the characteristics of high energy density are not impaired, and there is a limit to cost reduction with the conventional mixed positive electrode active material. there were.

また、ハイブリッド自動車、プラグインハイブリッド自動車および電気自動車用の車載蓄電池では、軽量化や航続距離の延伸を目的に高エネルギー密度化が必須とされ、最近では蓄電池の経済性と引き換えにLiMnの混合割合を少なくした混合正極活物質の使用によって高エネルギー密度化を図る対応が成されている。 In addition, in-vehicle storage batteries for hybrid vehicles, plug-in hybrid vehicles, and electric vehicles, it is essential to increase the energy density for the purpose of reducing the weight and extending the cruising distance. Recently, LiMn 2 O 4 in exchange for the economics of the storage battery. The use of a mixed positive electrode active material with a reduced mixing ratio has been made to increase the energy density.

LiMnに代わる高容量なMn系正極材料との混合正極活物質の実現が望まれていた。 Realization of a mixed positive electrode active material with a high-capacity Mn-based positive electrode material instead of LiMn 2 O 4 has been desired.

特許第3754218号号公報Japanese Patent No. 3754218 特開2003‐168430号公報Japanese Patent Laid-Open No. 2003-168430 特開2010‐262914号公報JP 2010-262914 A 特表2013‐520782号公報Special table 2013-520882 gazette

本発明の目的は、高エネルギー密度と低コストを両立できる従来にはない新しいマンガン酸化物混合物と混合正極活物質を提供するものであり、さらに、これを正極に用いた経済性に優れる高エネルギー密度のリチウム二次電池を提供するものである。   An object of the present invention is to provide an unprecedented new manganese oxide mixture and mixed positive electrode active material that can achieve both high energy density and low cost, and furthermore, high energy that is excellent in economic efficiency using this as a positive electrode. A lithium secondary battery having a high density is provided.

本発明者は、高エネルギー密度と低コストを両立できるマンガン酸化物と正極活物質について鋭意検討を重ねた。その結果、一般式Li(4/3)−(4X/5)Mn2/32−(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物、一般式[LiMnO1−E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物を基にしたマンガン酸化物混合物を、混合正極活物質の正極材料に用いることで、従来のLiMnを用いた混合正極活物質に比べて極めて高い容量で充放電することが可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度かつ低コストのリチウム二次電池が構成できることを見出し、本発明を完成するに至った。すなわち、本発明は、一般式Li(4/3)−(4X/5)Mn2/32−(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有するマンガン酸化物混合物、一般式[LiMnO1−E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有するマンガン酸化物混合物、マンガン酸化物混合物を含む混合正極活物質、及び混合正極活物質を含有する正極を備えるリチウム二次電池である。 The inventor has conducted extensive studies on a manganese oxide and a positive electrode active material that can achieve both high energy density and low cost. As a result, the lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied). , Manganese based on a lithium-containing manganese composition represented by the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied) By using the oxide mixture as the positive electrode material of the mixed positive electrode active material, it becomes possible to charge and discharge at a very high capacity compared to the conventional mixed positive electrode active material using LiMn 2 O 4. The present inventors have found that a lithium secondary battery having a high energy density and a low cost can be constructed by using it as a positive electrode of a secondary battery, and the present invention has been completed. That is, the present invention relates to lithium represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied). Manganese oxide mixture containing manganese composition and positive electrode material, general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied). A lithium secondary battery comprising a lithium-containing manganese composition and a manganese oxide mixture containing a positive electrode material, a mixed positive electrode active material containing a manganese oxide mixture, and a positive electrode containing a mixed positive electrode active material.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明のマンガン酸化物混合物は、一般式Li(4/3)−(4X/5)Mn2/32−(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有するものである。 The manganese oxide mixture of the present invention is represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied). The lithium-containing manganese composition and the positive electrode material are contained.

また、本発明のマンガン酸化物混合物は、一般式[LiMnO1−E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有するものである。 Further, the manganese oxide mixture of the present invention has a general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied). It contains a manganese composition and a positive electrode material.

本発明のマンガン酸化物混合物が含有するリチウム含有マンガン組成物は、LiMnに比べて高容量であり、その容量は130〜170mAh/gであるLiCoO、LiNi1/2・Mn1/2、NCA(リチウム・ニッケル・コバルト・アルミニウム複合酸化物)、NMC(リチウム・ニッケル・マンガン・コバルト複合酸化物)と比較しても遜色なく、混合割合によらず高エネルギー密度の特徴を損なうことはない。このため、混合正極活物質において、高エネルギー密度と低コストが両立可能になる。 The lithium-containing manganese composition contained in the manganese oxide mixture of the present invention has a higher capacity than LiMn 2 O 4 , and its capacity is 130 to 170 mAh / g. LiCoO 2 , LiNi 1/2 · Mn 1 / Compared with 2 O 2 , NCA (lithium / nickel / cobalt / aluminum composite oxide) and NMC (lithium / nickel / manganese / cobalt composite oxide), it has the characteristics of high energy density regardless of the mixing ratio. There is no loss. For this reason, in the mixed positive electrode active material, both high energy density and low cost can be achieved.

リチウム含有マンガン組成物である一般式Li(4/3)−(4X/5)Mn2/32−(2X/5)のXの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 The value of X in the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , which is a lithium-containing manganese composition, is determined from the composition analysis of the lithium-containing manganese composition. be able to.

リチウム含有マンガン組成物である一般式[LiMnO1−E・[LiMn12のEの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 The value of E in the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E , which is a lithium-containing manganese composition, can be determined from the composition analysis of the lithium-containing manganese composition.

組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。   Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.

リチウム含有マンガン組成物のMn原子価は、一般的な遷移金属の原子価評価手法で求めることができる。例えば、XPS測定(X−ray photoelectron spectroscopy)、XAFS測定(X−ray adsorption fine structure)、PES測定(Photoelectron spectroscopy)で得られる各スペクトルから見積もる方法、JIS(日本工業規格)に記載のMnの定量分析手法(G 1311‐1)とJISに記載の二酸化マンガン分析手法(K 1467)を組み合わせた方法等が例示されるが、これらに制限されない。   The Mn valence of the lithium-containing manganese composition can be determined by a general transition metal valence evaluation method. For example, a method for estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.

リチウム含有マンガン組成物は、可逆的にリチウムを挿入脱離させるため、層状岩塩型構造とスピネル型構造が共存している2相共存の状態が好ましく、より高い可逆性を発現させるため、これらが同一の結晶固体の中で特定の結晶面や結晶軸を共通にして層状岩塩型構造のドメインとスピネル型構造のドメインが結合した状態の双晶構造がより好ましい。   Since the lithium-containing manganese composition reversibly inserts and desorbs lithium, a two-phase coexistence state in which a layered rock salt type structure and a spinel type structure coexist is preferable. A twin structure in which a domain of a layered rock salt structure and a domain of a spinel structure are combined with a specific crystal plane or crystal axis in common in the same crystal solid is more preferable.

リチウム含有マンガン組成物である一般式Li(4/3)−(4X/5)Mn2/32−(2X/5)、リチウム含有マンガン組成物である一般式[LiMnO1−E・[LiMn12は、Mn原料とLi原料のモル比(Li/Mn比)を、0.8<Li/Mn比<2.0として、Mn原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300〜800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 General formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) which is a lithium-containing manganese composition, general formula [Li 2 MnO 3 ] 1 which is a lithium-containing manganese composition -E. [Li 4 Mn 5 O 12 ] E is a molar ratio of the Mn source to the Li source (Li / Mn ratio) with 0.8 <Li / Mn ratio <2.0. Can be prepared by baking a solid phase, a liquid phase, or a combination of both. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.

リチウム含有マンガン組成物の製造で使用するMn原料に特に制限はないが、層状岩塩型構造とスピネル型構造を含有するためには、+2価のマンガンを含むマンガン原料および/又は単斜晶マンガン原料を使用することが好ましい。+2価のマンガンを含むマンガン原料としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、塩化マンガン、四三酸化マンガン(Mn)、MnO、Mn(OH)、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。単斜晶マンガン原料としては、例えば、Birnessite、Hollandite、Manganite、Romanechite、Todorokite、これらに類似の構造を持つマンガン酸化物、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。リチウム含有マンガン組成物の製造で使用するLi原料に特に制限はないが、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウム、ヨウ化リチウム、蓚酸リチウム、硫酸リチウム、酸化リチウム等が例示されるが、これらに制限されない。 There is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition, but in order to contain a layered rock salt type structure and a spinel type structure, a manganese raw material containing + 2-valent manganese and / or a monoclinic manganese raw material Is preferably used. Examples of manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials Although a processed material etc. are illustrated, it is not restrict | limited to these. Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials. . The Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.

本発明のマンガン酸化物混合物が含有する正極材料は、リチウムを含有してそのリチウムが電気化学的酸化により放出することができる材料であれば、特に制限がないが、例えば、NCA(リチウム・ニッケル・コバルト・アルミニウム複合酸化物)、NMC(リチウム・ニッケル・マンガン・コバルト複合酸化物)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウム・ニッケル・マンガン複合酸化物(LiNi1/2Mn1/2)、リチウム・ニッケル・マンガンスピネル複合酸化物(LiNi1/2・Mn3/2)、固溶体材料、オリビン型LiMnPO、オリビン型LiFePO等が例示される。 The positive electrode material contained in the manganese oxide mixture of the present invention is not particularly limited as long as it contains lithium and the lithium can be released by electrochemical oxidation. For example, NCA (lithium / nickel) Cobalt / aluminum composite oxide), NMC (lithium / nickel / manganese / cobalt composite oxide), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium / nickel / manganese composite oxide (LiNi 1) / 2Mn 1/2 O 2 ), lithium / nickel / manganese spinel composite oxide (LiNi 1/2 · Mn 3/2 O 4 ), solid solution material, olivine type LiMnPO 4 , olivine type LiFePO 4 and the like. .

本発明のマンガン酸化物混合物は、リチウム含有マンガン組成物と正極材料を混合することにより、製造することができる。   The manganese oxide mixture of the present invention can be produced by mixing a lithium-containing manganese composition and a positive electrode material.

混合の方法は均一に混合できる方法であれば制限はない。例えば、乳鉢による混合、ミキサーによる混合等が例示される。   The mixing method is not limited as long as it can be uniformly mixed. For example, mixing with a mortar, mixing with a mixer, etc. are illustrated.

本発明のマンガン酸化物混合物を混合正極活物質として使用することで、従来では得ることができなかった高容量で低コストのリチウム二次電池を提供することが可能になる。   By using the manganese oxide mixture of the present invention as a mixed cathode active material, it becomes possible to provide a high-capacity and low-cost lithium secondary battery that could not be obtained conventionally.

混合正極活物質を導電助剤、バインダー等と混合することで、正極とすることができる。   By mixing the mixed positive electrode active material with a conductive additive, a binder, and the like, a positive electrode can be obtained.

正極以外のリチウム二次電池の構成としては、特に制限はないが、負極にはLiを吸蔵放出する材料、例えば、炭素系材料、酸化錫系材料、LiTi12、SiO、Liと合金を形成する材料等が例示され、Liと合金を形成する材料としては、例えば、シリコン系材料やアルミニウム系材料等が例示される。電解質には、例えば、有機溶媒にLi塩や各種添加剤を溶解した有機電解液や、Liイオン伝導性の固体電解質、これらを組み合わせたもの等が例示される。 The configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li, and the like. Examples of the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials. Examples of the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.

本発明のマンガン酸化物混合物、混合正極活物質は、従来の混合正極活物質に比べて極めて高い容量での充放電が可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度と低コストを両立できるリチウム二次電池の提供が可能になる。   The manganese oxide mixture and mixed positive electrode active material of the present invention can be charged / discharged at a very high capacity compared to the conventional mixed positive electrode active material, and can be used for a positive electrode of a lithium secondary battery to achieve high energy. It is possible to provide a lithium secondary battery that can achieve both density and low cost.

実施例1、実施例2で使用したリチウム含有マンガン組成物の粉末X線回折パターンである。It is a powder X-ray-diffraction pattern of the lithium containing manganese composition used in Example 1 and Example 2. FIG. 実施例3、実施例4で使用したリチウム含有マンガン組成物の粉末X線回折パターンである。It is a powder X-ray-diffraction pattern of the lithium containing manganese composition used in Example 3 and Example 4. 実施例1、実施例3、比較例1で使用したNCAの粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of NCA used in Example 1, Example 3, and Comparative Example 1. FIG. 実施例2、実施例4、比較例2で使用したNMCの粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of NMC used in Example 2, Example 4, and Comparative Example 2. FIG. 比較例1、比較例2で使用したLiMnの粉末X線回折パターンである。 3 is a powder X-ray diffraction pattern of LiMn 2 O 4 used in Comparative Example 1 and Comparative Example 2. FIG.

次に、本発明を具体的な実施例で説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated with a specific Example, this invention is not limited to these Examples.

<電池の作製>
得られたマンガン酸化物混合物(混合正極活物質)と導電性バインダー(商品名:TAB−2,宝泉株式会社製)を重量比2:1でメノウ乳鉢を使用して混合を行い、13mmφのSUSメッシュ(SUS316)に1ton/cmで一軸プレスしてペレット状にした後に、150℃で2時間、減圧乾燥して正極とした。
<Production of battery>
The obtained manganese oxide mixture (mixed positive electrode active material) and conductive binder (trade name: TAB-2, manufactured by Hosen Co., Ltd.) were mixed at a weight ratio of 2: 1 using an agate mortar. A SUS mesh (SUS316) was uniaxially pressed at 1 ton / cm 2 to form a pellet, and then dried under reduced pressure at 150 ° C. for 2 hours to obtain a positive electrode.

負極に金属リチウムを、エチレンカーボネートとジメチルカーボネートの体積比1:2の溶媒にLiPFを1mol/dm溶解したものを電解液に、セパレータにポリエチレンシート(商品名:セルガード,ポリポア株式会社製)を使用して2032型コインセルを作製した。 Metallic lithium for the negative electrode, 1 mol / dm 3 of LiPF 6 dissolved in a 1: 2 volume ratio solvent of ethylene carbonate and dimethyl carbonate in the electrolyte, polyethylene sheet in the separator (trade name: Celgard, manufactured by Polypore Corporation) A 2032 type coin cell was prepared using

<充放電試験>
作製したコインセルを用いて、室温条件下(22〜27℃)、10mA/gの定電流でセル電圧が4.8Vと2.0Vの間で、最初に充電を行い、次に放電を行い、以後充電・放電を繰り返し、1サイクル目の充電容量(mAh/g)、1サイクル目の放電容量(mAh/g)、10サイクル目の放電容量(mAh/g)、50サイクル目の放電容量(mAh/g)を測定した。
<Charge / discharge test>
Using the produced coin cell, the cell voltage is between 4.8 V and 2.0 V at a constant current of 10 mA / g under room temperature conditions (22 to 27 ° C.), and then discharged. Thereafter, charging and discharging are repeated, the charging capacity at the first cycle (mAh / g), the discharging capacity at the first cycle (mAh / g), the discharging capacity at the 10th cycle (mAh / g), the discharging capacity at the 50th cycle ( mAh / g) was measured.

<組成分析>
調製したリチウム含有マンガン組成物のリチウムとマンガンの組成は、誘電結合プラズマ発光分析装置(商品名:ICP−AES,株式会社パーキンエルマージャパン製)で分析した。
<Composition analysis>
The composition of lithium and manganese in the prepared lithium-containing manganese composition was analyzed with a dielectric coupled plasma emission spectrometer (trade name: ICP-AES, manufactured by PerkinElmer Japan Co., Ltd.).

<結晶性の評価>
調製したリチウム含有マンガン組成物の結晶構造の同定を粉末X線回折測定装置(商品名:MXP3,マックサイエンス製)で行った。
<Evaluation of crystallinity>
The crystal structure of the prepared lithium-containing manganese composition was identified with a powder X-ray diffraction measurement device (trade name: MXP3, manufactured by Mac Science).

計測条件は、以下の通りとした。   The measurement conditions were as follows.

ターゲット:Cu
出力:1.2kW(30mA−40kV)
ステップスキャン:0.04°(2θ/θ)
計測時間:3秒
実施例1
炭酸マンガンの0.5水和物(特級試薬)12.35gと水酸化リチウムの1水和物(特級試薬)6.66g(Li/Mn比=11/7)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Target: Cu
Output: 1.2kW (30mA-40kV)
Step scan: 0.04 ° (2θ / θ)
Measurement time: 3 seconds Example 1
Manganese carbonate 0.5 hydrate (special grade reagent) 12.35 g and lithium hydroxide monohydrate (special grade reagent) 6.66 g (Li / Mn ratio = 11/7) using a mortar 30 After dry-mixing for a minute, the mixture was pulverized until it passed through a mesh having a mesh size of 150 μm.

得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、400℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態であった。   2 g of the obtained mixed powder was put in a baking dish, subjected to a heat treatment at 400 ° C. for 32 hours under a 1-liter air aeration condition in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled at 150 ° C. or lower.

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は11/7であった。この値から、Xの値は0.36で、Li1.05Mn2/31.86のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.10で、[LiMnO0.90・[LiMn120.10のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. The value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 · [Li 4 Mn 5 O 12 ] 0.10 .

得られたリチウム含有マンガン組成物と正極材料(NCA:LiNi0.8Co0.15Al0.05,株式会社豊島製作所製)を重量比1:1でメノウ乳鉢を使用して混合を行い、マンガン酸化物混合物(混合正極活物質)を調製した。 The obtained lithium-containing manganese composition and the positive electrode material (NCA: LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.

充放電試験の結果を表1に示す。その結果から、比較例1のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 1, and the same performance as that of the case of only NCA was exhibited.

Figure 2017162614
実施例2
正極材料として、NMC(111)(LiNi1/3Mn1/3Co1/3,株式会社豊島製作所製)を用いた以外は実施例1と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Figure 2017162614
Example 2
A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 1 except that NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the positive electrode material. Material) was prepared.

充放電試験の結果を表1に示す。その結果から、比較例2のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 2, and the same performance as that of NMC (111) alone was exhibited.

実施例3
四三酸化マンガン<化学式:Mn>(商品名;CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化リチウムの1水和物(特級試薬)4.66gを用いた以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した。
Example 3
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name; CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that 4.66 g of monohydrate of lithium hydroxide (special grade reagent) was used.

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は1/1であった。この値から、Xの値は0.83で、Li0.67Mn2/31.67のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.50で、[LiMnO0.50・[LiMn120.50のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 1/1. From this value, it was found that the value of X was 0.83, and a lithium-containing manganese composition of Li 0.67 Mn 2/3 O 1.67 was obtained. The value of E was 0.50, which was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.50 · [Li 4 Mn 5 O 12 ] 0.50 .

得られたリチウム含有マンガン組成物と正極材料(NCA:LiNi0.8Co0.15Al0.05,株式会社豊島製作所製)を重量比1:1でメノウ乳鉢を使用して混合を行い、マンガン酸化物混合物(混合正極活物質)を調製した。 The obtained lithium-containing manganese composition and the positive electrode material (NCA: LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.

充放電試験の結果を表1に示す。その結果から、比較例1のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 1, and the same performance as that of the case of only NCA was exhibited.

実施例4
正極材料として、NMC(111)(LiNi1/3Mn1/3Co1/3,株式会社豊島製作所製)を用いた以外は実施例3と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Example 4
A manganese oxide mixture (mixed positive electrode active material) was used in the same manner as in Example 3 except that NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the positive electrode material. Material) was prepared.

充放電試験の結果を表1に示す。その結果から、比較例2のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 2, and the same performance as that of NMC (111) alone was exhibited.

比較例1
水酸化リチウムの1水和物(特級試薬)を2.12g、加熱処理温度を800℃とした以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=1/2)。
Comparative Example 1
A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that 2.12 g of lithium hydroxide monohydrate (special grade reagent) and the heat treatment temperature were 800 ° C. (Li / Mn ratio = 1 / 2).

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、LiMnであることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, it was found that the obtained lithium-containing manganese composition had a spinel structure and was LiMn 2 O 4 .

リチウム含有マンガン組成物として、得られたLiMnを使用した以外は実施例1と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。 A manganese oxide mixture (mixed cathode active material) was prepared in the same manner as in Example 1 except that the obtained LiMn 2 O 4 was used as the lithium-containing manganese composition.

充放電試験の結果を表1に示す。その結果から、実施例1、実施例3のマンガン酸化物混合物(混合正極活物質)に比べて容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity was smaller than the manganese oxide mixture of Example 1 and Example 3 (mixed positive electrode active material).

比較例2
リチウム含有マンガン組成物として、比較例1で得られたLiMnを使用した以外は実施例2と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Comparative Example 2
A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 2 except that LiMn 2 O 4 obtained in Comparative Example 1 was used as the lithium-containing manganese composition.

充放電試験の結果を表1に示す。その結果から、実施例2、実施例4のマンガン酸化物混合物(混合正極活物質)に比べて容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity was smaller than the manganese oxide mixture (mixed positive electrode active material) of Example 2 and Example 4.

本発明のマンガン酸化物混合物、混合正極活物質は、リチウム二次電池の正極に使用することができる。   The manganese oxide mixture and mixed positive electrode active material of the present invention can be used for a positive electrode of a lithium secondary battery.

Claims (5)

一般式Li(4/3)−(4X/5)Mn2/32−(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有することを特徴とするマンガン酸化物混合物。 Lithium-containing manganese composition and positive electrode represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied) A manganese oxide mixture comprising a material. 一般式[LiMnO1−E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有することを特徴とするマンガン酸化物混合物。 A lithium-containing manganese composition represented by the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied) and a positive electrode material. Manganese oxide mixture characterized by リチウム含有マンガン組成物が、層状岩塩型構造とスピネル型構造とを有することを特徴とする請求項1又は請求項2に記載のマンガン酸化物混合物。 The manganese oxide mixture according to claim 1 or 2, wherein the lithium-containing manganese composition has a layered rock salt structure and a spinel structure. 請求項1〜請求項3のいずれかの項に記載のマンガン酸化物混合物を含むことを特徴とする混合正極活物質。 A mixed cathode active material comprising the manganese oxide mixture according to any one of claims 1 to 3. 請求項4に記載の混合正極活物質を含有する正極を備えることを特徴とするリチウム二次電池。 A lithium secondary battery comprising a positive electrode containing the mixed positive electrode active material according to claim 4.
JP2016044808A 2016-03-08 2016-03-08 Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same Pending JP2017162614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016044808A JP2017162614A (en) 2016-03-08 2016-03-08 Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044808A JP2017162614A (en) 2016-03-08 2016-03-08 Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2017162614A true JP2017162614A (en) 2017-09-14

Family

ID=59857464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044808A Pending JP2017162614A (en) 2016-03-08 2016-03-08 Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2017162614A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193008A (en) * 2018-11-14 2020-05-22 三星Sdi株式会社 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN113353985A (en) * 2021-05-25 2021-09-07 北京大学深圳研究生院 Lithium ion battery positive electrode material and preparation method thereof, lithium ion battery positive electrode and lithium ion battery
US11757092B2 (en) 2018-11-15 2023-09-12 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US12034149B2 (en) 2019-02-01 2024-07-09 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511960A (en) * 2004-09-03 2008-04-17 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニー Manganese oxide composite electrode for lithium battery
WO2011111364A1 (en) * 2010-03-09 2011-09-15 株式会社豊田自動織機 Method for producing composite oxide, positive electrode material for lithium ion secondary battery and lithium ion secondary battery
CN103219507A (en) * 2013-03-28 2013-07-24 浙江大学 Composite material with tubular structure as well as preparation method and application thereof
JP2013219013A (en) * 2012-03-14 2013-10-24 Seiko Instruments Inc Cathode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014179248A (en) * 2013-03-15 2014-09-25 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2015179662A (en) * 2014-02-27 2015-10-08 パナソニック株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511960A (en) * 2004-09-03 2008-04-17 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニー Manganese oxide composite electrode for lithium battery
WO2011111364A1 (en) * 2010-03-09 2011-09-15 株式会社豊田自動織機 Method for producing composite oxide, positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2013219013A (en) * 2012-03-14 2013-10-24 Seiko Instruments Inc Cathode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2014179248A (en) * 2013-03-15 2014-09-25 Toshiba Corp Nonaqueous electrolyte secondary battery
CN103219507A (en) * 2013-03-28 2013-07-24 浙江大学 Composite material with tubular structure as well as preparation method and application thereof
JP2015179662A (en) * 2014-02-27 2015-10-08 パナソニック株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193008A (en) * 2018-11-14 2020-05-22 三星Sdi株式会社 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2020087925A (en) * 2018-11-14 2020-06-04 三星エスディアイ株式会社Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN111193008B (en) * 2018-11-14 2022-08-09 三星Sdi株式会社 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US11495796B2 (en) 2018-11-14 2022-11-08 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US11757092B2 (en) 2018-11-15 2023-09-12 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US12034149B2 (en) 2019-02-01 2024-07-09 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
CN113353985A (en) * 2021-05-25 2021-09-07 北京大学深圳研究生院 Lithium ion battery positive electrode material and preparation method thereof, lithium ion battery positive electrode and lithium ion battery

Similar Documents

Publication Publication Date Title
KR100609789B1 (en) Non-Aqueous Electrolyte Secondary Battery
CN104169222B (en) Lithium composite oxide particle powder for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
CN106450272B (en) Positive electrode active material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5382025B2 (en) Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
JP5923036B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
WO2011108595A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
KR20130098372A (en) Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
US9337479B2 (en) Nonaqueous electrolyte secondary battery
JP7645180B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
US20150180031A1 (en) Lithium metal oxide electrodes for lithium batteries
US10573889B2 (en) Layered-spinel electrodes for lithium batteries
KR20140111045A (en) Manganese spinel-type lithium transition metal oxide
JP2017162614A (en) Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same
JP6191351B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2006147500A (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2016175825A (en) Manganese oxide, method for producing the same, and lithium secondary battery using the same
JP2016190782A (en) Manganese oxide and method for producing the same, and lithium secondary battery using the same
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP2018043889A (en) Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same
KR20230123965A (en) Spinel-type lithium manganate, manufacturing method thereof and use thereof
JP5482755B2 (en) Novel lithium manganese composite oxide, method for producing the same, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210119