JP2017503157A - 慣性センサを使用することでモーションシステムの位置を較正すること - Google Patents
慣性センサを使用することでモーションシステムの位置を較正すること Download PDFInfo
- Publication number
- JP2017503157A JP2017503157A JP2016536952A JP2016536952A JP2017503157A JP 2017503157 A JP2017503157 A JP 2017503157A JP 2016536952 A JP2016536952 A JP 2016536952A JP 2016536952 A JP2016536952 A JP 2016536952A JP 2017503157 A JP2017503157 A JP 2017503157A
- Authority
- JP
- Japan
- Prior art keywords
- error
- static
- movable member
- displacement
- calibrating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
- G01B21/042—Calibration or calibration artifacts
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
Abstract
モーションシステムの較正。座標測定機などのようなモーションシステムの位置測定システム(36、128)は、1または複数の加速度計(25、125、150、40)を使用して、静的誤差に関して較正される。モーションシステムの変位(d、50)は、位置測定システムを使用すること、および、加速度計の出力を二重積分すること(58)の両方によって測定される(54、56)。加速度計を使用した変位測定は、静的誤差が生じにくく、または、それらの静的誤差は、繰り返し可能であり、補正され得る。したがって、それらを、位置測定システムを使用した測定と比較することは、差分値を作り出し(70)、差分値は、位置測定システムの静的誤差を補正するための誤差マップまたは誤差関数を構築するために使用され得る。
Description
本発明は、相対的に移動可能な部材が相対的に固定された部材に対して変位可能であるモーションシステムの較正に関する。
モーションシステムの例は、座標測定機、手動座標測定関節アーム、検査ロボット、工作機械、印刷システム、精密ステージ、およびピックアンドプレースマシンなどを含む。移動可能な部材は、たとえば、ワークピースまたは他の対象物の上で動作するためのツールを支持することが可能である。または、それは、ワークピースまたはサンプルを支持することが可能である。座標測定機のケースでは、上記ツールは、ワークピースを測定する際に使用するためのプローブであることが可能である。
公知のモーションシステムでは、相対的に移動可能な部材は、相対的に固定された部材に対して変位可能である。位置測定システムは、相対変位を測定する。モーションシステムがモーター付きである場合には、位置測定システムが、サーボループの中のモーターを制御するために位置のフィードバックを提供することが可能である。
従来のモーションシステムは、いわゆるシリアルキネマティック(serial kinematics)を利用している。2つ以上の直列に接続されている移動可能な部材を含むチェーンが存在している。これらは、滑動ジョイントまたは回転ジョイントを介して次から次へと接続されている。たとえば、部材は、キャリッジであることが可能であり、キャリッジは、2つのまたは3つの直交する軸線X、Yまたは軸線X、Y、Zの上でそれぞれ滑動可能である。それぞれの軸線は、エンコーダなどのような、それぞれのトランスデューサを有することが可能であり、それは、対応する方向において、それぞれのキャリッジの変位を測定し、チェーンの(または、その上に装着されるツールの)最終的な移動可能な部材のX、Y座標位置またはX、Y、Z座標位置を与えるようになっている。また、モーションの追加的な軸線が提供され得る(たとえば、回転軸線)。あるいは、関節アームは、直列に配置されているいくつかの回転ジョイントを有することが可能であり、それらは、回転エンコーダなどのような回転トランスデューサをそれぞれ備えている。
加えて、これらのトランスデューサは、多軸マシン全体に関する位置測定システムとして考慮され得る。または、モーションのそれぞれの個々の軸線は、一次元のモーションシステムとして考慮され、それは、その軸線に関する個々の位置測定システムを形成するそれぞれのトランスデューサを備えている。
別の公知のタイプのモーションシステムは、パラレルキネマティック(parallel kinematics)を利用している。これは、たとえば、3つまたは6つの伸長可能な支柱を含むことが可能であり、それらは、移動可能な部材と相対的に固定されたベース部材またはフレームとの間で並列に作用するようにそれぞれ接続されている。システムのX、Y、Z可動範囲における移動可能な部材の移動は、次いで、3つまたは6つの支柱のそれぞれの伸長を連動させることによって制御される。パラレルキネマティックマシンの例は、特許文献1および特許文献2に示されている。
また、パラレルキネマティックシステムは、移動可能な部材のX、Y、Z座標位置を提供する位置測定システムを有している。典型的に、これは、エンコーダなどのようなトランスデューサを含むことが可能であり、それは、支柱の伸長を測定し、次いで、それからX、Y、Z座標位置が計算され得る。
モーションシステムは、さまざまな静的誤差(それらは、システム構成またはトランスデューサの幾何学的な不正確さから生じ得るので、「幾何学的」誤差とも称される)に悩まされる。これらは、位置測定システムが、それが静止しているときに、移動可能な部材の位置の正確な読み値を与えないということを意味している。そのような静的誤差を補正するためにマシンを較正することが知られている。たとえば、特許文献3(Bellら)を参照されたい。この特許文献は、レーザ干渉計、電子的なレベル、およびボールバーなどのような器具を使用する、3次元のシリアルキネマティック座標測定機の静的(幾何学的)誤差の較正を示している。これは、非常に時間のかかる高価なプロセスである。
また、いくつかのモーションシステムは、動的誤差(慣性誤差とも称される)に悩まされる。これらは、たとえば、マシンのさまざまなコンポーネントをそれが動いている間に曲げることによって、加速の結果として引き起こされる。また、動的誤差は、振動によって引き起こされ得る。そのような動的な曲げまたは振動は、位置測定システムによって正確に変換されることができない、移動可能な部材のモーションを引き起こす。しかし、いくつかの多軸シリアルキネマティックマシンは、そのような曲げおよび動的誤差を起こしやすいが、他のモーションシステムの構造も、移動可能な部材と、位置測定システムのトランスデューサがそのモーションを変換するポイントとの間に、相対的に堅固なまたは剛性のある連結を提供することが可能であり、動的誤差が低減されるようになっている。そのような相対的に堅固なシステムの例は、パラレルキネマティックマシン、単軸システム(および、多軸シリアルキネマティックマシンの個々の単軸)、ならびに、巨大な、および、したがって本質的に堅固なコンポーネントパーツを有する工作機械などのようなシステムを含むことが可能である。他のモーションシステムは、機械的な周波数応答を有することが可能であり、機械的な周波数応答は、他の周波数で移動させられるときではなく、特定の周波数で移動させられるときに、相対的に剛性のある連結を提供する。
特許文献4(Naiら)は、X、Y、Z滑動軸線を備えるシリアルキネマティック座標測定機、および、X、Y、Z軸における変位を測定する位置測定トランスデューサを示している。動的誤差の問題を解決するために、1または複数の加速度計は、その加速度を測定するために、マシンの移動可能な部材の上に装着されている。加速度計出力は、動的誤差を示す変位値を与えるために二重積分され得る。次いで、これは、位置測定トランスデューサの出力に加えられる。したがって、X、Y、Z位置測定トランスデューサによって変換されない任意のモーションは、加速度計によってリアルタイムに測定される。したがって、動的誤差(および、必要な補正)は、リアルタイムに決定される。
Swavik A.Spiewak, 「Versatile Inertial Displacement Sensor for Planar Motion」,Proceedings of the 2005 International Conference on MEMS,NANO and Smart Systems(ICMENS’05)、463−466
しかし、そのような加速度計情報は、位置測定トランスデューサの静的誤差を補正しない。実際に、それとは対照的に、特許文献4は、位置測定トランスデューサがさまざまな静的誤差に関して加速度計データを較正するために使用され得るということを提案している。したがって、位置測定トランスデューサの任意の静的誤差は、別々に決定されなければならず、上記に述べられているように、これは、時間がかかり、高価である可能性がある。
本発明は、モーションシステムの中の静的誤差を較正する方法であって、システムは、
相対的に固定された部材および相対的に移動可能な部材と、
固定された部材に対する移動可能な部材の位置を決定するための位置測定システムであって、決定は、静的誤差が生じやすい、位置測定システムと
を含み、
方法は、
1または複数の慣性センサを提供するステップであって、1または複数の慣性センサは、移動可能な部材とともに移動するように、および、移動可能な部材の変位を測定するように配置されている、ステップと、
固定された部材に対する移動可能な部材の変位を引き起こすステップと、
1または複数の慣性センサを使用して前記変位の量を測定するステップと、
位置測定システムを使用して前記変位の量を測定するステップと、
位置測定システムを使用して測定されるような変位の量を、1または複数の慣性センサを使用して測定されるような変位の量と比較するステップと
を含み、
比較は、位置測定システムの1または複数の静的誤差のその後の補正において使用するための差分値を作り出す、
方法を提供する。
相対的に固定された部材および相対的に移動可能な部材と、
固定された部材に対する移動可能な部材の位置を決定するための位置測定システムであって、決定は、静的誤差が生じやすい、位置測定システムと
を含み、
方法は、
1または複数の慣性センサを提供するステップであって、1または複数の慣性センサは、移動可能な部材とともに移動するように、および、移動可能な部材の変位を測定するように配置されている、ステップと、
固定された部材に対する移動可能な部材の変位を引き起こすステップと、
1または複数の慣性センサを使用して前記変位の量を測定するステップと、
位置測定システムを使用して前記変位の量を測定するステップと、
位置測定システムを使用して測定されるような変位の量を、1または複数の慣性センサを使用して測定されるような変位の量と比較するステップと
を含み、
比較は、位置測定システムの1または複数の静的誤差のその後の補正において使用するための差分値を作り出す、
方法を提供する。
1または複数の慣性センサを使用して測定された変位は、位置測定システムよりも、モーションシステムの任意の静的誤差が生じにくいか、または、静的誤差がまったく生じないことが可能である。
いくつかのケースでは、この点において、慣性センサの精度を単純に信用することが可能であり得る。他のケースでは、これは、モーションシステムの外部にある参照基準に対して、1または複数の慣性センサによって測定される変位の直接的な較正をすることによって実現され得る。または、同じ効果が、モーションシステムの上の参照基準の測定によって間接的に実現され、たとえば、参照基準のそのような測定との比較によって、差分値(または、差分値から導き出されるスケーリングファクタ、または、誤差マップもしくは誤差関数)を補正することが可能である。
慣性センサの測定値の中に出現するシステムの任意の動的誤差またはモーションによって誘発される誤差は、位置測定システムの静的誤差と比較して小さくなるように構成され得る。これを実現するために、慣性センサは、モーションシステムの一部に装着され、モーションシステムは、位置測定システムのトランスデューサがそのモーションを変換するポイントに機械的に連結されており、機械的な連結は、十分に剛性があり、慣性センサの測定値の中に出現するシステムの任意の動的誤差が、位置測定システムの静的誤差と比較して小さくなることを確実にする。あるいは、または追加的に、システムの較正の間の移動可能な部材の変位は、機械的な連結に剛性が十分にあるということをシステムの機械的な周波数応答が保証する周波数での振動(oscillation)であることが可能である。したがって、慣性センサを使用した移動可能な部材の測定値は、動的誤差によって相対的に影響を受けない。
あるいは、剛性のある連結は、モーションシステムが本質的に十分に堅固であるからであり得る(たとえば、それは、パラレルキネマティックシステム、または、相対的に巨大なコンポーネントを備える工作機械であることが可能である)。
位置測定システムおよび加速度計の両方によって測定されるような同じ変位を比較することによって、静的誤差値が結果として生じる。これを保存して、その後にこれを使用して、位置測定システムから生じる静的誤差を補正することが可能である。そのような静的誤差値は、先行技術において加速度計を使用して測定される動的誤差から区別されるべきである。その理由は、議論中の本発明の実施形態では、動的誤差は、好ましくは、無視できるほどであるからである。
好ましくは、慣性センサは、モーションシステムの一部に装着されており、モーションシステムは、位置測定システムのトランスデューサがそのモーションを変換するポイントに機械的に連結されており、機械的な連結は、十分に剛性があり、慣性センサを使用して作製される測定値の中の任意の動的誤差が位置測定システムの静的誤差と比較して小さくなることを確実にする。
移動可能な部材は、相対的に大きい範囲にわたって移動可能であることが可能であり、移動可能な部材の変位を測定するステップは、相対的に小さい範囲にわたって起こることが可能である。小さい範囲にわたる変位は、移動可能な部材の振動によって作り出され得る。振動は、機械的な連結に剛性が十分にあるということをシステムの機械的な周波数応答が確実にする周波数になっていることが可能である。
移動可能な部材の変位の測定は、振動の間に繰り返され、差分値は、繰り返される測定から平均化され得る。振動は、移動可能な部材の円形モーションによって作り出され得る。
好ましくはそれぞれの差分値は、固定された部材および移動可能な部材の複数の相対位置における変位に関して作り出され、差分値は、モーションシステムの静的誤差の誤差マップまたは誤差関数を形成するために使用される。小さい範囲にわたって移動可能な部材を変位させるステップ、および、その変位を測定するステップは、固定された部材および移動可能な部材の複数の異なる相対位置において繰り返され、それぞれの位置に関してそれぞれの差分値を作り出すことが可能である。
移動可能な部材の移動の相対的に大きい範囲にわたって位置測定システムを使用して行われる位置測定の累積的な誤差は、相対的に大きい範囲の中に存在する位置に関して、複数の前記差分値を積分することによって計算され得る。誤差マップまたは誤差関数が導き出されることが可能であり、それは、移動可能な部材の複数の位置のそれぞれに関して、それぞれの累積的な静的誤差を与える。
本明細書で議論されているような「誤差マップ」は、たとえば、その後の測定値の補正のための値のルックアップテーブルを含むことが可能である。
1または複数の慣性センサは、1または複数の加速度計を含むことが可能である。1または複数の加速度計によって測定される変位は、1または複数の加速度計出力を二重積分することによって得られ得る。較正に必要とされないときには、1または複数の慣性センサは、モーションシステムから除去可能であり、たとえば、それらはモジュールで提供され、モジュールは、モーションシステムに取り付けられ、また、モーションシステムから取り外され得る。
本発明のさらなる態様は、モーションシステムを使用する方法を含み、上記のような方法によって導き出される補正を適用することによって、静的誤差が補正される。また、本発明は、上記の方法のいずれかを実施するように構成されているモーションシステムを含む。
本発明の実施形態は、ここで、添付の図面を参照して例として説明されることとなる。
パラレルキネマティックを使用するモーションシステムを備える比較ゲージングマシンの作動パーツを示す図である。
シリアルキネマティックを使用するモーションシステムを備える座標測定機(CMM)を示す図である。
図1または図2のマシンのうちのいずれかの較正の間に使用するための慣性センサ構成体を示す図である。
図1または図2のマシンの較正の好適な方法の最初の部分のフローチャートである。
較正の間のマシンの移動の図式的な表現図である。
較正の間のマシンの可動範囲の中の位置を図示する図である。
較正方法のさらなる部分のフローチャートである。
本発明の代替的実施形態では、モーター付きのステージおよびゲージングマシンの一部を示す図である。
図1は、商標EQUATORの下で本出願人Renishaw plcによって販売されているような比較ゲージングマシンのパーツの説明図である。それは、パラレルキネマティックモーションシステムによって可動プラットフォーム32に接続されている固定されたプラットフォーム30を含む。本例では、パラレルキネマティックモーションシステムは、3つの支柱34を含み、3つの支柱34は、固定されたプラットフォームと可動プラットフォームとの間で並列に作用する。3つの支柱34は、3つのそれぞれのアクチュエータ36を通過しており、それらは、3つのそれぞれのアクチュエータ36によって、伸長および後退させられ得る。それぞれの支柱34の一方の端部は、ユニバーサルに枢動可能なジョイントによって、可動プラットフォーム32に装着されており、アクチュエータ36は、同様に、固定されたプラットフォーム30にユニバーサルに枢動可能に装着されている。
アクチュエータ36は、支柱を伸長および後退させるためのモーターと、それぞれの支柱34の伸長を測定するトランスデューサとをそれぞれ含む。それぞれのアクチュエータ36において、トランスデューサは、スケールおよびリードヘッドを含むエンコーダであることが可能であり、リードヘッドの出力のためのカウンターを備えている。それぞれのモーターおよびトランスデューサは、コントローラまたはコンピュータ8によって制御されるそれぞれのサーボループの一部を形成している。
また、パラレルキネマティックモーションシステムは、3つの受動的な回転防止デバイス38、39を含み、3つの受動的な回転防止デバイス38、39も、固定されたプラットフォームと可動プラットフォームとの間に並列に作用する。それぞれの回転防止デバイスは、リジッドプレート39を含み、リジッドプレート39は、固定されたプラットフォーム30および間隔を置いて配置された平行なロッド38の対にヒンジ接続されており、ロッド38の対は、リジッドプレート39と可動プラットフォーム32との間にユニバーサルに枢動可能に接続されている。回転防止デバイスは、すべての3つの回転自由度における移動に対して可動プラットフォーム32を制約するように協働する。したがって、可動プラットフォーム32は、3つの並進自由度X、Y、Zだけによって移動することが制約されている。支柱34の適当な伸長を要求することによって、コントローラ/コンピュータ8は、可動プラットフォームの任意の所望のX、Y、Z変位またはX、Y、Z位置決めを作り出すことが可能である。
そのようなパラレルキネマティックモーションシステムの動作の原理は、本出願人の特許文献5(McMurtryら)に説明されている。それは、(3つの伸長する支柱34を有する)三脚メカニズムの例である。たとえば、三脚または六脚パラレルキネマティックメカニズムを備える、他のモーションシステムが使用され得る。
総合すれば、3つのアクチュエータのトランスデューサは、位置測定システムを形成している。これは、コントローラまたはコンピュータ8の中の適当な計算によって、固定されたプラットフォーム30に対する可動プラットフォーム32のX、Y、Z位置を決定する。これらの計算は、当業者に知られている。しかし、位置測定システムによってそのように決定される位置は、静的誤差が生じやすい。マシンを使用してワークピースを測定する前に、これらの静的誤差に関して位置測定システムを較正するための方法が、下記に議論されている。
典型的に、ワークピースに接触する先端部22を備える偏向可能なスタイラス20を有するアナログプローブ16が、マシンの可動プラットフォーム32の上に装着されているが、他のタイプのプローブ(タッチトリガープローブを含む)も使用され得る。マシンは、ワークピースの特徴の測定を実施するために、テーブル12の上のワークピース14に対してプローブ16を移動させる。ワークピース表面の上のポイントのX、Y、Z位置は、アナログプローブ16の出力と併せて、サーボシステムの中のトランスデューサからの計算によって導き出される。これは、すべてコントローラ/コンピュータ8によって制御される。あるいは、タッチトリガープローブを用いた場合、プローブがワークピースの表面に接触したことを示す信号は、トランスデューサからの出力から計算されるX、Y、Z位置値をフリーズさせ、コンピュータは、ワークピース表面の座標の読み値を取り込む。望まれる場合には、通常の生産使用の間のゲージング動作に関して、ロボット(図示せず)などのような自動的手段が、少なくとも公称的には同じ位置および配向にある、プロダクションランからの一連の実質的に同一のワークピースのそれぞれをテーブルの上に置くことが可能である。
図2は、シリアルキネマティックモーションシステムを備える代替的な座標測定機(CMM)10を図示している。それは、固定されたテーブル112を含み、固定されたテーブル112の上には、測定されることとなるワークピース114が設置され得る。ワークピースに接触する先端部122を備える偏向可能なスタイラス120を有するアナログプローブ116が、マシンの可動クイル118の上に装着されているが、繰り返しになるが、他のタイプのプローブ(タッチトリガープローブを含む)も使用され得る。
クイル118およびプローブ116は、シリアルキネマティックモーションシステムを介して装着され、手動で、または、コントローラおよび/もしくはコンピュータ108によって制御されるX、Y、およびZ軸モーターの作用の下でのいずれかで、X、Y、およびZ方向に一緒に移動する。さまざまなシリアルキネマティックモーションシステムが知れられており、また、使用され得る。本例では、シリアルキネマティックシステムの直列に接続されている部材は、ブリッジ構造体124を含み、ブリッジ構造体124は、テーブル112の上でY軸方向に移動可能である。キャリッジ126は、ブリッジ124の上でX軸方向に移動可能である。そして、プローブ116を保持するクイル118は、キャリッジ126に対してZ軸方向に移動可能である。
テーブル112に対するブリッジ124のY軸モーションが、Y軸トランスデューサ128によって測定される。繰り返しになるが、これは、スケールおよびリードヘッドを含むエンコーダであることが可能であり、リードヘッドの出力のためのカウンターを備えている。同様のX軸トランスデューサおよびZ軸トランスデューサ(図示せず)が設けられ、ブリッジ124に対するキャリッジ126のX軸モーション、および、キャリッジ126に対するクイル118のZ軸モーションを測定する。トランスデューサ出力は、コンピュータまたはコントローラ108にフィードバックされる。それらは、クイルおよびプローブのX、Y、Z位置決めを制御するために、X、Y、およびZ軸モーターを備えるそれぞれのサーボフィードバックループの中で使用され得る。また、それらは、プローブスタイラス120の偏向を示すプローブ116からの信号と組み合させられ、スタイラス先端部122の位置を計算し、したがって、たとえば、プローブが表面の上方をスキャンしている間に、ワークピース114の表面を測定する。
X、Y、およびZ軸トランスデューサは、マシンのための位置測定システムを形成し、それは、図1に関して上記に説明されているように、静的誤差が生じやすい。繰り返しになるが、下記に説明されている方法が使用され、マシンを使用してワークピースを測定する前に、これらの静的誤差に関して位置測定システムを較正する。
使用時に、図1および図2のコントローラまたはコンピュータ8、108は、プローブ16、116がワークピース14、114の表面をスキャンすることを引き起こすプログラムを含有している。または、タッチトリガープローブに関して、それは、必要とされる検査動作に関して必要とされるワークピースのすべての寸法および形態を取り込むのに十分な複数の異なるポイントにおいて、それがワークピースの表面に接触することを引き起こす。また、このコントローラ/コンピュータは、下記に説明されることとなる較正方法を制御するプログラムを動作させるために使用され得る。
較正方法における使用に関して、図1は、慣性センサ構成体25がパラレルキネマティックマシンの可動プラットフォーム32の上に装着されているということを示している。慣性センサ構成体25は、可動プラットフォームの上に恒久的に設けられ得るが、好ましくは、それは、モジュールであり、モジュールは、一時的にそこに装着され、較正が完了したときに除去される。これは、同じ慣性センサモジュールが他のマシンを較正するために使用されることを可能にする。
図2は、慣性センサ構成体125が、シリアルキネマティックマシンの可動クイル118の上に同様に装着され得るということを示している。繰り返しになるが、それは、そこに恒久的に設けられ得るが、好ましくは、それは、そこに一時的に装着され、較正が完了したときに除去され、それが他のマシンの較正において使用され得るようになっている。
いずれのケースでも、プローブ16、116は、交換可能であり、慣性センサ構成体25、125は、その適切な場所に一時的に装着され得る。プローブ16、116は、下記に説明されている較正の間に必要とされない。
図3は、慣性センサ構成体25または125の例を示している。それは、3軸加速度計40を含み、3軸加速度計40は、3つの直交する軸方向X、Y、Zにおいて線形加速度Ax、Ay、Azを測定する。慣性センサの出力は、コントローラ/コンピュータ8、108に取り込まれる。下記に議論されているように、これらの出力は、X、Y、Z変位値を与えるために、離散的な信号処理回路またはコントローラ/コンピュータのいずれかの中で二重積分される。当然ながら、慣性センサの他の配置も可能である。たとえば、3軸加速度計40は、3つの単軸線形加速度計によって交換され得る。
より詳細に下記に議論されているように、慣性センサ構成体の場所は、マシンの構造体の堅固さに依存する。所与の精度要件に関して、選ばれる装着位置は、トランスデューサに十分に近い可動構造体の上の場所であるべきであり、マシンの位置測定システムのトランスデューサ(たとえば、エンコーダ)が可動構造体のモーションを変換するポイントに、それが剛性的に機械的に連結されているものとして考慮され得るようになっている。いくつかのケースでは、とりわけ、相対的に堅固さが低いシリアルキネマティックマシンでは、その代わりに、マシンのX、Y、Zモーションを測定するそれぞれのトランスデューサに関連付けられる場所に、1または複数の慣性センサ構成体を装着することが好適である可能性がある。図2は、ブリッジのY軸モーションを測定するトランスデューサ128に関連して、可動ブリッジ構造体124の上に装着された慣性センサ150を示している。同様の考慮事項が、XおよびZ軸トランスデューサに関連して設けられ得る慣性センサ構成体(図示せず)に当てはまる。
150などのような慣性センサ構成体は、1つの特定の移動の軸線に関連しており、それは、単純に、関係する移動の軸線に整合させられた単に1つの単軸線形加速度計を含む。これは、スケール誤差などのような静的誤差の較正を可能にすることとなる。しかし、この移動の軸線の他の静的誤差(他の2つの軸線に関連する真直度誤差を含む)を較正することが望まれる場合には、3軸加速度計構成体が設けられ得る。
測定されることとなる可動構造体の加速を可能にする任意のタイプの加速度計が使用され得る。1つの適切なタイプの加速度計は、微細加工されたシリコンから作製されている。別のものは、自由質量を支持する圧電性結晶を含む。また、キャパシタンス加速度計も使用され得る。
加速度計(または、他の慣性センサ)の生の出力を使用して測定されるような変位は、正確でない可能性がある。とりわけ、変位の測定は、静的なスケーリング誤差に悩まされる可能性がある。したがって、1つの好適な方法では、この測定された変位は、外部参照基準に対して直接的に較正される。これは、それがマシンの位置測定システムの静的誤差のその後の補正のために使用されるからである。加速度計データは、より正確な外部CMMの上で、たとえば、特許文献4(Naiら)に説明されている方法を使用して外部CMMの上で、較正され得る。または、それは、Swavik A.Spiewakによって非特許文献1に説明されているように較正され得る。
しかし、慣性センサのそのような直接的な較正の代替として、同じ効果がどのように間接的に実現され得るかということを後に説明する。
図4から図7は、慣性センサ構成体25、125が可動プラットフォーム32(図1)の上または可動クイル118(図2)の上に装着されている状態の、図1または図2のマシンの静的誤差の較正のための方法を図示している。慣性センサ構成体のこの装着位置は、マシンの構造体が、上記および下記に議論されているように、所望の測定精度に対して十分に剛性がある(堅固である)ということを仮定している。方法は、センサ150が個々の軸線X、Y、Zに関連付けられているときに、必要に応じて容易に修正され得る。
本発明による好適な較正方法は、慣性センサ構成体25、125が特定の距離dにわたってそれを変位させる移動を行うように、マシンが動かされるということを必要とする。次いで、この変位dは、較正されることとなる位置測定システム、および、慣性センサ構成体の両方によって測定され、それらの結果が比較される。
図4の中のステップ50に示されているように、および、図5に図式的に示されているように、コントローラ/コンピュータ8、108は、プラットフォーム32またはクイル118が、X−Y平面の中に位置Xi、Yj、Zkに中心がある小さい円形52を描くことを引き起こすようにプログラムされている。これは、事実上、X方向およびY方向の両方における振動であり、振幅(この例では、変位の大きさd)は、円形の直径に対応している。当然ながら、たとえば、個々の軸線X、Y、Zに関連付けられたセンサ150が使用される場合には、それぞれの方向における単純な振動が、その代わりに個別に使用され得る。好適ではないが、対応する距離dにわたる単純な線形変位が実施され、それは、変位のそれぞれの端部において開始および停止するということも想定される。
1つの方向(たとえば、X)における振動によって引き起こされる変位が下記で考慮されることとなる。Y方向における振動が、同様に扱われる。そのうえ、3次元の誤差マップを築き上げるために、プラットフォーム32またはクイル118がX−Z平面およびY−Z平面の中で同様の円形を描くことを引き起こすことによって、振動が繰り返され、位置Xi、Yj、Zkにおいて、それぞれの方向X、Y、Zに関して2セットの振動データを与え、それは、その後に、たとえば、下記に議論されている平均化ステップ68の間に、組み合わせられ得る。
ステップ54において、変位の大きさdに関する値(振動の振幅)が、位置測定システムの対応するトランスデューサ、たとえば、図2の中の128などのようなエンコーダによって測定され、または、アクチュエータ36(図1)の中のエンコーダから計算される。
また、変位の大きさdに関する値(振動の振幅)は、ステップ56および58において、慣性センサシステムによって同時に測定される。ステップ56において、プラットフォーム32またはクイル118の加速度が、加速度計40(3つの並進加速度Ax、Ay、Az)から決定される。次いで、加速度は、ステップ58において二重積分され、変位の大きさdを作り出す。また、ステップ58は、ハイパスフィルタリングなどのような、加速度信号の処理をさらに含み、ドリフトを除去することが可能である。
次いで、エンコーダ(位置測定システム)による変位dの測定および慣性センサによる変位dの測定が、ステップ70において比較される。これは、差分値を生み出し、差分値は、下記に議論されているように、X方向における変位dの距離にわたって、位置Xi、Yj、Zkにおける位置測定システムによる測定の中の静的誤差を表している。この差分値は、一時的に保存される。
1つのサイクルで十分である可能性があるが、ステップ50における振動(たとえば、円形移動52)が、好ましくは、複数のサイクルに関して繰り返される。これは、エンコーダ(ステップ54)による変位dの測定、および、慣性センサ(ステップ56、58)による変位dの測定が、複数回、たとえば、10回繰り返されることを可能にする。それぞれの繰り返しの際に、dの測定が比較され、差分値が一時的に保存される(ステップ70)。適切な数の繰り返しの後に、差分値が平均化され(ステップ68)、精度を改善する。
代替例として、エンコーダ(ステップ54)を用いた変位dの複数の測定が、別々に平均化され得る。同様に、慣性センサシステムを使用した複数の変位測定値d(ステップ56および58)が、別々に平均化される。次いで、2つの平均化された値が比較され、平均化された差分値を作り出す。
ステップ72において、位置Xi、Yj、Zkに関する誤差スケーリングファクタが、平均化された差分値から計算される。コントローラ/コンピュータ8、108が、それをテーブルの中に保存する。このスケーリングファクタは、位置Xi、Yj、Zkにおいて、変位dの単位距離当たりの誤差を表している。たとえば、dが10mmであり、差分値(dの中の誤差)が10μmである場合には、スケーリングファクタは、(10μm/10mm)=1μm/mmである。
上記に述べられているように、図4および図5に示されている手順は、X−Z平面およびY−Z平面の中の円形移動に関して、または、Y方向およびZ方向における振動に関して繰り返される。これは、位置Xi、Yj、Zkにおいて、方向X、Y、Zのそれぞれにおける誤差スケーリングファクタを与える。
次に、上記の手順が、マシンの3次元の可動範囲全体を通して、複数のさらなる位置Xi、Yj、Zkにおいて繰り返される。たとえば、これらの位置Xi、Yj、Zkは、図6に示されているような規則的な3次元のグリッドパターンで位置付けされ得る。グリッド間隔は、必ずしも、変位d(円形52の直径、または、振動の振幅)のサイズと同じである必要はない。たとえば、変位dは、10mmであることが可能であり、位置Xi、Yj、Zkのグリッド間隔は、25mmであることが可能である。ここで、コントローラ/コンピュータは、グリッドの中の位置Xi、Yj、ZkのそれぞれでのX、YおよびZ方向における誤差スケーリングファクタの保存されたテーブルを有している。
変位dのサイズ、および、位置Xi、Yj、Zkの間隔のサイズは、トレードオフの関係にあり、それは、当業者によって選択され得る。たとえば、変位dのサイズがより小さくなり(たとえば、1mmなど)、グリッド間隔がそれに対応してより小さくなる場合には、結果として生じる誤差情報の密度はより大きくなる。これは、誤差がマシンの可動範囲の中で位置ごとにかなり変化する場合には、より正確な結果を得ることができるということ意味している。しかし、データを作り出すために、より多くの時間が必要とされる。したがって、位置Xi、Yj、Zkの変位dおよび間隔のサイズのそのような低減は、誤差がそれほど変化しないことが予期される場合には、好適でない可能性がある。
可動プラットフォーム32またはクイル118の上の慣性センサ構成体25、125の装着位置は、マシンの構造が所望の測定精度に関して十分に剛性があるということを仮定しているということが上記で述べられた。具体的には、位置測定システムのトランスデューサ(エンコーダ)がモーションを変換するポイントに、慣性センサ構成体が剛性的に連結されているものとして考慮され得るように、および、慣性センサが動的誤差によって相対的に影響を受けないように、装着位置が(所望の測定精度に関して)選ばれることが好ましい。すなわち、補正されることとなる位置測定システムの静的誤差と比較して、任意の動的誤差が小さくなるようになっている。したがって、慣性センサは、位置測定システムトランスデューサと同じ変位を生じやすい。実際に、相対的に小さい変位dにわたって、慣性センサは、マシンの位置測定システムのエンコーダよりも正確な静的位置の測定を提供することが可能である。したがって、図4のステップ70および68において作り出される差分値は、マシンの位置測定システムの静的誤差の測定値である。したがって、慣性センサは、位置測定システムの静的誤差を較正するために使用され得る。
慣性センサとトランスデューサとの間の機械的な連結に剛性が十分にあるかどうかということを考慮する際に、マシン構造体の堅固さは、その振動の固有モードおよび固有周波数、マシンコンポーネントが較正の間に移動させられる速度、ならびに、較正の精度要件に関連して考慮されるべきである。図2のシリアルキネマティックシステムなどのような、相対的に堅固さが低い構造体を備えるときでも、システムの較正が低い速度および加速度で起こる場合には(構造体の振動の固有周波数に対して低い周波数に対応する)、構造体は十分に堅固であると考慮され得る。次いで、較正の間にクイル118において経験される動的誤差は、補正されることとなる静的誤差よりも小さくなり得る。それらは、好ましくは、静的誤差と比較されると無視できるほどに小さい。したがって、慣性センサは、それぞれのX、Y、およびZ軸トランスデューサ128に関連して、150において個別にというよりもむしろ、125においてクイルの上に一緒に装着され得る。
必要とされる剛性の程度は、図1に見られるようなパラレルキネマティックマシンの自然の特性であるということが認識されることとなる。図2のようなシリアルキネマティックマシンのケースでは、それは、マシンの構造に依存する。いくつかのCMMは、十分に剛性がない可能性があるが、より巨大な剛性のあるコンポーネントを備える直列に接続されているマシン(たとえば、工作機械など)は、十分に剛性がある可能性がある。
マシンに剛性が十分にない場合に、本発明は、依然として、場所150において装着されている慣性センサとともに使用され、それらは、トランスデューサ150がY軸モーションを変換するポイントに、十分な剛性で連結されている。
次に、誤差マップを作り出すことが望まれ、誤差マップは、任意の原点Oに対して任意の所与の位置Xi、Yj、Zkにおいて位置測定システムによって行われた測定の中の静的誤差を与える。図6に見られるように、マシンがグリッドの中の原点Oから任意の所与の位置へ移動するときに、これは、複数の中間位置Xi、Yj、Zkを通って3次元に移動することを必要とする。これらの中間位置のそれぞれを通って移動することは、グリッドの間隔に応じて、方向X、Y、Zのそれぞれにおける対応する中間変位を必要とする。それぞれの中間位置において、その中間変位にわたって発生するローカルのX、Y、Z静的誤差を計算できる。これは、方向X、Y、およびZにおける中間変位に、対応するX、YおよびZスケーリング誤差ファクタを掛けることによって行われ、この対応するX、YおよびZスケーリング誤差ファクタは、コントローラ/コンピュータが、対応する中間位置Xi、Yj、Zkに関してステップ72において以前に保存したものである。
したがって、誤差マップを構築するために、コントローラ/コンピュータ8、108は、図7に示されているルーチンを実施する。3つの入れ子になったループ74、98;76、96;および78、94は、Xο、Yο、ZοからXn、Yn、Znへ、マシンの可動範囲のグリッドの中のすべてのポイントXi、Yj、Zkを通ってステップを踏む。(これは、グリッドが規則的な(nxnxnの)立方体であることを仮定している。入れ子になったループは、不規則的な直方体グリッドに関して容易に拡張され得る。)
マシンの可動範囲の中のすべての位置Xi、Yj、Zkに関して、コンピュータは、3次元の累積的な静的誤差値を計算する。それは、原点Oと現在の位置Xi、Yj、Zkとの間のすべての中間位置における変位の中のすべての中間静的誤差値を加算することによって、これを行う。
マシンの可動範囲の中のすべての位置Xi、Yj、Zkに関して、コンピュータは、3次元の累積的な静的誤差値を計算する。それは、原点Oと現在の位置Xi、Yj、Zkとの間のすべての中間位置における変位の中のすべての中間静的誤差値を加算することによって、これを行う。
ステップ80は、グリッド間隔に、対応する保存されているX、YおよびZスケーリングファクタを掛けることによって、Xi、Yj、Zkにおいて、X、Y、およびZ方向におけるローカルの誤差を計算する。ステップ82において、ローカルのX誤差値は、X方向に先行する位置Xi-1、Yj、Zkに関する累積的な静的誤差値にそれを加えることによって、累積的な静的誤差値に統合される。結果は、ステップ84において、位置Xi、Yj、Zkに関する新しい累積的な誤差値として保存される。このプロセスは、ステップ86、88において、および、ステップ90、92において繰り返され、Y方向およびZ方向において先行する位置Xi、Yj-1、Zkおよび位置Xi、Yj、Zk-1から、Xi、Yj、ZkにおけるY補正値およびZ補正値をそれぞれ作り出す。プロセスは、ループの中で繰り返され、グリッドの中のすべての位置に関して、および、図6の中に見られるすべての他の中間位置Xi、Yj、Zkに関して、X、Y、およびZ補正値を得る。
これは、誤差マップを与え、それは、マシンの可動範囲の中の任意の位置Xi、Yj、Zkにおける位置測定システム(エンコーダ)による測定の静的誤差に関するX、Y、Z補正値を含む。補正値は、ルックアップテーブルの中に保存され得る。ワークピースを測定するためのマシンの通常の使用の間に、これらの補正が、行われる測定に適用される。
必要である場合には、慣性センサを使用して測定されるような変位は、外部参照基準に対して、静的誤差に関して直接的に較正され得るということが上記に説明された。しかし、そのような直接的な較正に対するより単純な代替例として、以下の間接的な方法が代わりに使用され得る。
マシンの位置測定システムによる変位測定における静的誤差は、典型的に、マシンの可動範囲の中で場所ごとに変化することとなる。しかし、慣性センサを使用して行われる変位測定における任意の静的誤差は、繰り返し可能であり、場所ごとに変化しないということを仮定することが可能である。その結果、補正されていない場合には、慣性センサ測定値の中の静的誤差が、X、Y、およびZに関する一定の乗数として単純に現れる可能性がある。これらの乗数は、ステップ70および68(図4)において作り出される差分値、ステップ72において計算される誤差スケーリングファクタ、および、図7において作り出される誤差マップの中の補正値に影響を与える。
慣性センサ測定値のこれらの静的誤差を補正するために、ゲージブロックもしくはリングゲージなどのような、較正された参照基準または参照球が、マシンのテーブル12、112の上に設置される。それは、寸法X、Y、Zのそれぞれにおいて、プローブ16、116を使用して測定される。適切には、これは、誤差マップが図7において作り出された後に行われる。参照基準のX、Y、Z測定値は、誤差マップを使用して補正され、次いで、公知の較正された参照基準のX、Y、Z寸法と比較される。これは、適当なX、Y、Z乗数を与える。誤差マップの中のすべての補正値が、対応する乗数によって補正されるか、または、誤差マップによる補正の後のすべてのその後の測定値に乗数が適用されるか、のいずれかである。
その代わりに、ステップ68、70において差分値を補正すること、または、ステップ72において適当な乗数によって誤差スケーリングファクタを補正することが可能であることとなる。
補正値の誤差マップの代替例として、コンピュータは、その代わりに、位置Xi、Yj、Zkにおいてワークピースの測定が行われるときにはいつでも、補正値を導き出すために使用される誤差関数のセットを構築することが可能である。誤差関数は、たとえば、フーリエ係数として保存され得る。
慣性センサ構成体は、ワークピースを測定するためのマシンの通常の使用の間には必要とされない。したがって、それは、モジュールの中に収容され、それは、較正の後にマシンから除去され、それは、他のマシンを較正するときにも使用され得る。
本発明の上記の実施形態は、モーター付きのマシンに関連して説明されており、モーター付きのマシンの移動は、コンピュータまたはコントローラによってプログラムおよび制御され得る。図8は、手動で操作されるマシンによる使用に関して、代替的実施形態を示している。例として、図1と同様のパラレルキネマティックマシン210の一部が示されており、それは、プラットフォーム232と、伸長可能なおよび後退可能な支柱234とを有している。しかし、この手動マシンは、モーターを有しておらず、アクチュエータ36が、それぞれの支柱の伸長を測定するために、単にトランスデューサ(図示せず)によって交換されている。通常使用時に、測定プローブまたは他のツール(図示せず)が、プラットフォーム232にフィットさせられる。たとえば、図2のようなシリアルマシン、または、直列に接続されている回転ジョイントを有する座標測定関節アームなどの、他の手動マシンも使用され得る。
使用の前に、較正が、たとえば、プローブまたはツールが除去された状態で、上記と同じ様式で実施される。ロッド200が、モーター付きのステージ204の可動パーツ202にプラットフォーム232を一時的に接続する。パーツ202は、ステージ204に接続されているコンピュータ208の制御の下で、X、Y、およびZ方向に移動可能である。次いで、ステージ204は、コンピュータ208の制御の下で、プラットフォーム232をX、Y、およびZ方向に引っ張ることが可能である。
慣性センサ構成体206が、ステージの可動パーツ202の上に設けられている(または、それは、プラットフォーム232に一時的にフィットさせられ得る)。それは、図1および図2の中の慣性センサ構成体25、125と同様である。コンピュータ208は、上記のように較正を実施するようにプログラムされており、慣性センサ構成体208の出力を使用して作製された変位測定値を、手動マシン210のトランスデューサを使用して作製された測定値と比較する。誤差マップまたは誤差関数が、上記に説明されているものと同様の様式で、マシンの静的誤差を補正するように発生させられる。
Claims (23)
- モーションシステムの中の静的誤差を較正する方法であって、前記システムは、
相対的に固定された部材および相対的に移動可能な部材と、
前記固定された部材に対する前記移動可能な部材の位置を決定するための位置測定システムであって、前記決定は、静的誤差が生じやすい、位置測定システムと
を含み、
前記方法は、
1または複数の慣性センサを提供するステップであって、前記1または複数の慣性センサは、前記移動可能な部材とともに移動するように、および、前記移動可能な部材の変位を測定するように配置されている、ステップと、
前記固定された部材に対する前記移動可能な部材の変位を引き起こすステップと、
前記1または複数の慣性センサを使用して前記変位に関連する値を決定するステップと、
前記位置測定システムを使用して前記変位に関連する値を決定するステップと、
前記位置測定システムを使用して決定されるような前記変位に関連する前記値を、前記1または複数の慣性センサを使用して決定されるような前記変位に関連する前記値と比較するステップと
を含み、
前記比較は、前記位置測定システムの1または複数の静的誤差のその後の補正において使用するための差分値を作り出すことを特徴とする方法。 - 前記1または複数の慣性センサを使用して決定された前記変位に関連する前記値は、前記位置測定システムよりも静的誤差が生じにくいことを特徴とする請求項1に記載の静的誤差を較正する方法。
- 前記1または複数の慣性センサを使用して決定されるような前記変位に関連する前記値は、前記モーションシステムの外部にある参照基準に対して較正されることを特徴とする請求項1または請求項2に記載の静的誤差を較正する方法。
- 前記方法は、前記モーションシステムの上の参照基準の測定によって、前記1または複数の慣性センサを使用して決定されるような前記変位に関連する前記値の中の静的誤差を補正するステップを含むことを特徴とする請求項1または請求項2に記載の静的誤差を較正する方法。
- 前記慣性センサの測定値の中の任意の動的誤差は、前記位置測定システムの前記静的誤差と比較して小さいことを特徴とする請求項1乃至4のいずれか一項に記載の静的誤差を較正する方法。
- 前記慣性センサは、前記モーションシステムの一部に装着されており、前記モーションシステムは、前記位置測定システムのトランスデューサがそのモーションを変換するポイントに機械的に連結されており、前記機械的な連結は、十分に剛性があり、前記慣性センサを使用して作製される前記測定値の中の任意の動的誤差が前記位置測定システムの前記静的誤差と比較して小さくなることを確実にすることを特徴とする請求項5に記載の静的誤差を較正する方法。
- 前記較正の間の前記移動可能な部材の前記変位は、前記機械的な連結に剛性が十分にあるということを前記システムの機械的な周波数応答が確実にする周波数での振動であることを特徴とする請求項6に記載の静的誤差を較正する方法。
- 前記1または複数の慣性センサは、1または複数の加速度計を含むことを特徴とする請求項1乃至7のいずれか一項に記載の静的誤差を較正する方法。
- 前記1または複数の加速度計によって決定される前記変位の量は、1または複数の加速度計出力を二重積分することによって得られることを特徴とする請求項8に記載の静的誤差を較正する方法。
- 前記移動可能な部材は、相対的に大きい範囲にわたって移動可能であり、前記移動可能な部材の前記変位に関連する前記値を決定する前記ステップは、相対的に小さい範囲にわたって起こることを特徴とする請求項1乃至9のいずれか一項に記載の静的誤差を較正する方法。
- 前記小さい範囲にわたる前記変位は、前記移動可能な部材の振動によって作り出されることを特徴とする請求項10に記載の静的誤差を較正する方法。
- 前記移動可能な部材の前記変位に関連する前記値の前記決定は、前記振動の間に繰り返され、前記差分値は、前記繰り返された決定から平均化されることを特徴とする請求項11に記載の静的誤差を較正する方法。
- 前記振動は、前記移動可能な部材の円形モーションによって作り出されることを特徴とする請求項7、請求項11、または請求項12に記載の静的誤差を較正する方法。
- それぞれの前記差分値は、前記固定された部材および移動可能な部材の複数の相対位置における変位に関して作り出され、前記差分値は、前記モーションシステムの前記静的誤差の誤差マップまたは誤差関数を形成するために使用されることを特徴とする請求項1乃至13のいずれか一項に記載の静的誤差を較正する方法。
- 小さい範囲にわたって前記移動可能な部材を変位させる前記ステップ、および、その変位に関連する前記値を決定する前記ステップは、前記固定された部材および移動可能な部材の複数の異なる相対位置において繰り返され、それぞれの位置に関してそれぞれの差分値を作り出すことを特徴とする請求項10乃至13のいずれか一項に記載の静的誤差を較正する方法。
- 前記移動可能な部材の移動の相対的に大きい範囲にわたって前記位置測定システムを使用して行われる位置測定の累積的な誤差は、前記相対的に大きい範囲の中に存在する位置に関して、複数の前記差分値を積分することによって計算されることを特徴とする請求項15に記載の静的誤差を較正する方法。
- 誤差マップまたは誤差関数が導き出され、前記移動可能な部材の複数の位置のそれぞれに関して、それぞれの累積的な誤差を与えることを特徴とする請求項16に記載の静的誤差を較正する方法。
- モーションシステムを使用する方法であって、前記システムが、相対的に固定された部材と、相対的に移動可能な部材と、前記固定された部材に対して前記移動可能な部材の位置を決定するための位置測定システムを含み、前記決定は静的誤差が生じやすい、方法において、
前記位置測定システムを使用して、前記固定された部材に対する前記移動可能な部材の前記位置を決定するステップと、
請求項1乃至17のいずれか一項に記載の静的誤差を較正する方法によって得られる差分値または誤差マップもしくは誤差関数から導き出される補正を適用することによって、前記移動可能な部材の前記決定された位置の静的誤差を補正するステップと
を含むことを特徴とするモーションシステムを使用する方法。 - 相対的に固定された部材と、相対的に移動可能な部材と、前記固定された部材に対する前記移動可能な部材の位置を決定するための位置測定システムとを含むモーションシステムであって、前記決定は、静的誤差が生じやすく、
前記システムは、請求項1乃至17のいずれか一項に記載の静的誤差を較正する方法を実施するように構成されているコントローラまたはコンピュータをさらに含むことを特徴とするモーションシステム。 - 相対的に固定された部材と、相対的に移動可能な部材と、前記固定された部材に対する前記移動可能な部材の位置を決定するための位置測定システムとを含むモーションシステムであって、前記決定は、静的誤差が生じやすく、
前記システムは、コントローラまたはコンピュータをさらに含み、前記コントローラまたはコンピュータの中には、請求項1乃至17のいずれか一項に記載の静的誤差を較正する方法によって得られる差分値または誤差マップもしくは誤差関数が保存され、および/または、前記コントローラまたはコンピュータは、請求項18に記載の使用する方法を実施するように構成されていることを特徴とするモーションシステム。 - 前記慣性センサは、前記移動可能な部材から除去可能であることを特徴とする請求項19または請求項20に記載のモーションシステム。
- 前記移動可能な部材は、パラレルキネマティック構造体によって、前記固定された部材に接続されていることを特徴とする請求項19乃至21のいずれか一項に記載のモーションシステム。
- 前記モーションシステムは、ワークピースを測定するためのプローブを含み、前記プローブは、前記移動可能な部材に装着されていることを特徴とする請求項19乃至22のいずれか一項に記載のモーションシステム。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB1321594.2A GB201321594D0 (en) | 2013-12-06 | 2013-12-06 | Calibration of motion systems |
| GB1321594.2 | 2013-12-06 | ||
| PCT/GB2014/053620 WO2015082935A1 (en) | 2013-12-06 | 2014-12-05 | Calibrating the position of motion systems by using inertial sensors |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2017503157A true JP2017503157A (ja) | 2017-01-26 |
Family
ID=50000301
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2016536952A Pending JP2017503157A (ja) | 2013-12-06 | 2014-12-05 | 慣性センサを使用することでモーションシステムの位置を較正すること |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20160298959A1 (ja) |
| EP (1) | EP3077764A1 (ja) |
| JP (1) | JP2017503157A (ja) |
| CN (1) | CN105960571A (ja) |
| GB (1) | GB201321594D0 (ja) |
| WO (1) | WO2015082935A1 (ja) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2020175501A (ja) * | 2019-04-22 | 2020-10-29 | コン チュン チン ミー コン イエ クー フェン ユー シェン コン スー | ウォータージェット加工システム |
| JP2022537590A (ja) * | 2019-08-22 | 2022-08-26 | エムウントハー インプロセス メステクニク ゲーエムベーハー | 機械の移動軸の速度を較正するための装置 |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106796095B (zh) * | 2014-09-02 | 2021-05-28 | 瑞尼斯豪公司 | 操作坐标测量设备的方法、坐标测量设备和计算机程序 |
| CN109070469B (zh) * | 2016-05-12 | 2021-01-08 | 惠普发展公司,有限责任合伙企业 | 校准方法和构建单元 |
| EP3327524B1 (en) | 2016-11-29 | 2023-04-05 | GF Machining Solutions AG | Kinematic calibration |
| DE102017114713A1 (de) * | 2017-06-30 | 2019-01-03 | Hexagon Metrology Gmbh | Koordinatenmessgerät zur Koordinatenmessung von Werkstücken sowie Verfahren zur Koordinatenmessung an Werkstücken auf einem Koordinatenmessgerät |
| US10962166B1 (en) * | 2017-08-10 | 2021-03-30 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Hexapod pose knowledge improvement by joint location calibration with individual strut length differential measurements |
| GB2568459B (en) | 2017-10-13 | 2020-03-18 | Renishaw Plc | Coordinate positioning machine |
| EP3502611B1 (en) | 2017-12-21 | 2023-08-16 | Hexagon Technology Center GmbH | Machine geometry monitoring |
| CN108761430B (zh) * | 2018-04-12 | 2021-07-20 | 江苏大学 | 一种超声波雷达标定装置及方法 |
| CN109813307A (zh) * | 2019-02-26 | 2019-05-28 | 大连海事大学 | 一种无人船多传感器数据融合的导航系统及其设计方法 |
| GB2582972B (en) * | 2019-04-12 | 2021-07-14 | Renishaw Plc | Coordinate positioning machine |
| CN110231010B (zh) * | 2019-04-26 | 2021-07-13 | 合肥工业大学 | 一种基于Delta并联机构的三坐标测量机及测量方法 |
| IT201900012681A1 (it) | 2019-07-23 | 2021-01-23 | Parpas S P A | Metodo di funzionamento di una macchina utensile a controllo numerico e dispositivo di rilevamento per implementare tale metodo |
| TWI754888B (zh) * | 2020-01-21 | 2022-02-11 | 財團法人工業技術研究院 | 校準方法及校準系統 |
| CN111272199B (zh) * | 2020-03-23 | 2022-09-27 | 北京爱笔科技有限公司 | 一种imu的安装误差角的标定方法及装置 |
| CN114526755B (zh) * | 2021-12-17 | 2024-04-02 | 中国计量科学研究院 | 一种基于惯性测量单元的并联运动平台直线轴校准方法 |
| GB2632400A (en) * | 2023-07-31 | 2025-02-12 | Renishaw Plc | Coordinate positioning machine |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03501052A (ja) * | 1987-11-19 | 1991-03-07 | ブラウン・アンド・シャープ・マニュファクチュアリング・カンパニー | 座標測定機用校正システム |
| JPH10507271A (ja) * | 1995-03-03 | 1998-07-14 | ハネウエル・インコーポレーテッド | 工作機械の高精度較正を行うための装置及び方法 |
| US6587802B1 (en) * | 1998-09-17 | 2003-07-01 | Dr. Johannes Heidenhain Gmbh | Calibration device for a parallel kinematic manipulator |
| JP2009526211A (ja) * | 2006-02-10 | 2009-07-16 | エルケーティー・ゲーエムベーハー | 取扱装置の工具の動きを追跡するための装置及び方法 |
| JP2009534198A (ja) * | 2006-04-21 | 2009-09-24 | レニショウ パブリック リミテッド カンパニー | 誤差補正の方法 |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4819195A (en) * | 1987-01-20 | 1989-04-04 | The Warner & Swasey Company | Method for calibrating a coordinate measuring machine and the like and system therefor |
| US6535794B1 (en) * | 1993-02-23 | 2003-03-18 | Faro Technologoies Inc. | Method of generating an error map for calibration of a robot or multi-axis machining center |
| US5492440A (en) * | 1993-05-18 | 1996-02-20 | U.S. Philips Corporation | Apparatus for movement of an object |
| IT1303170B1 (it) * | 1998-07-10 | 2000-10-30 | Fidia Spa | Procedimento e sistema per la realizzazione della compensazione deglierrori statici su macchine utensili a controllo numerico |
| GB0016533D0 (en) * | 2000-07-06 | 2000-08-23 | Renishaw Plc | Method of and apparatus for correction of coordinate measurement errors due to vibrations in coordinate measuring machines (cmms) |
| GB0326532D0 (en) * | 2003-11-13 | 2003-12-17 | Renishaw Plc | Method of error compensation |
| GB2425840A (en) * | 2005-04-13 | 2006-11-08 | Renishaw Plc | Error correction of workpiece measurements |
| GB0703423D0 (en) * | 2007-02-22 | 2007-04-04 | Renishaw Plc | Calibration method and apparatus |
| US7640674B2 (en) * | 2008-05-05 | 2010-01-05 | Hexagon Metrology, Inc. | Systems and methods for calibrating a portable coordinate measurement machine |
| US7905027B2 (en) * | 2009-07-01 | 2011-03-15 | Hexagon Metrology, Inc. | Method and apparatus for probe tip diameter calibration |
| DE102009049534A1 (de) * | 2009-10-06 | 2011-04-07 | Carl Zeiss Industrielle Messtechnik Gmbh | Koordinatenmessgerät mit Lageänderungssensoren |
| DE102012222250A1 (de) * | 2011-12-08 | 2013-06-13 | Martin Knauer | Koordinatenmessvorrichtung, Verfahren zum Betreiben einer Koordinatenmessvorrichtung und Computerprogrammprodukt |
-
2013
- 2013-12-06 GB GBGB1321594.2A patent/GB201321594D0/en not_active Ceased
-
2014
- 2014-12-05 EP EP14809694.4A patent/EP3077764A1/en not_active Withdrawn
- 2014-12-05 JP JP2016536952A patent/JP2017503157A/ja active Pending
- 2014-12-05 WO PCT/GB2014/053620 patent/WO2015082935A1/en active Application Filing
- 2014-12-05 CN CN201480074783.6A patent/CN105960571A/zh active Pending
- 2014-12-05 US US15/100,869 patent/US20160298959A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03501052A (ja) * | 1987-11-19 | 1991-03-07 | ブラウン・アンド・シャープ・マニュファクチュアリング・カンパニー | 座標測定機用校正システム |
| JPH10507271A (ja) * | 1995-03-03 | 1998-07-14 | ハネウエル・インコーポレーテッド | 工作機械の高精度較正を行うための装置及び方法 |
| US6587802B1 (en) * | 1998-09-17 | 2003-07-01 | Dr. Johannes Heidenhain Gmbh | Calibration device for a parallel kinematic manipulator |
| JP2009526211A (ja) * | 2006-02-10 | 2009-07-16 | エルケーティー・ゲーエムベーハー | 取扱装置の工具の動きを追跡するための装置及び方法 |
| JP2009534198A (ja) * | 2006-04-21 | 2009-09-24 | レニショウ パブリック リミテッド カンパニー | 誤差補正の方法 |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2020175501A (ja) * | 2019-04-22 | 2020-10-29 | コン チュン チン ミー コン イエ クー フェン ユー シェン コン スー | ウォータージェット加工システム |
| JP2022537590A (ja) * | 2019-08-22 | 2022-08-26 | エムウントハー インプロセス メステクニク ゲーエムベーハー | 機械の移動軸の速度を較正するための装置 |
| JP7213395B2 (ja) | 2019-08-22 | 2023-01-26 | エムウントハー インプロセス メステクニク ゲーエムベーハー | 機械の移動軸の速度を較正するための装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20160298959A1 (en) | 2016-10-13 |
| CN105960571A (zh) | 2016-09-21 |
| EP3077764A1 (en) | 2016-10-12 |
| GB201321594D0 (en) | 2014-01-22 |
| WO2015082935A1 (en) | 2015-06-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2017503157A (ja) | 慣性センサを使用することでモーションシステムの位置を較正すること | |
| US10942020B2 (en) | System for determining a state of a tool positioning machine | |
| JP6189921B2 (ja) | 工作物を検査するための方法および装置 | |
| CN108351203B (zh) | 提供精确坐标测量的方法、独立基准模块和坐标测量机 | |
| EP2703775B1 (en) | Shape measuring machine and method of correcting shape measurement error | |
| US9797700B2 (en) | Variable modelling of a measuring device | |
| EP2013571B1 (en) | Method of error correction | |
| US7464481B2 (en) | Measuring apparatus, method of measuring surface texture and computer readable medium having program for measuring surface texture | |
| US7286949B2 (en) | Method of error correction | |
| US9097504B2 (en) | Shape measuring machine and method of correcting shape measurement error | |
| JP6254451B2 (ja) | 形状測定装置及び形状測定誤差の補正方法 | |
| CN100460814C (zh) | 使用机器测量制品的方法和设备 | |
| CN106796095B (zh) | 操作坐标测量设备的方法、坐标测量设备和计算机程序 | |
| CN105606014A (zh) | 一种电感扫描测头的测试装置及测试方法 | |
| Desai et al. | Reverse engineering: A review & evaluation of contact based systems | |
| JP5858673B2 (ja) | 位置計測装置、光学部品の製造方法、及び型の製造方法 | |
| JP2019158385A (ja) | 測定装置 | |
| Ran et al. | Articulated arm length calibration for cantilever coordinate measuring machine | |
| JP2021092432A (ja) | 三次元測定機 | |
| Kilikeviciene et al. | Arturas Kilikevicius1, Audrius Cereska2, Rimas Maskeliunas3, Antanas Fursenko4 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171018 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180802 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180807 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190312 |