[go: up one dir, main page]

JP2018044715A - Hot water storage type heat source cooling device - Google Patents

Hot water storage type heat source cooling device Download PDF

Info

Publication number
JP2018044715A
JP2018044715A JP2016179759A JP2016179759A JP2018044715A JP 2018044715 A JP2018044715 A JP 2018044715A JP 2016179759 A JP2016179759 A JP 2016179759A JP 2016179759 A JP2016179759 A JP 2016179759A JP 2018044715 A JP2018044715 A JP 2018044715A
Authority
JP
Japan
Prior art keywords
hot water
operation amount
heat
heat radiating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016179759A
Other languages
Japanese (ja)
Inventor
早川 秀樹
Hideki Hayakawa
秀樹 早川
理生 山木
Toshio Yamaki
理生 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016179759A priority Critical patent/JP2018044715A/en
Publication of JP2018044715A publication Critical patent/JP2018044715A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a heat source to be highly accurately and safely cooled with simple control.SOLUTION: In a hot water storage type heat source cooling device 10, heat radiation unit control means 9 is configured to: activate a heat radiation unit 2, based on a hot water temperature (Tin) of an outgoing path 4 for heat radiation; execute operation amount adjustment control of adjusting an operation amount of the heat radiation unit 2 to a maximum operation amount or an intermediate operation amount smaller than the maximum operation amount, based on a hot water temperature (Tout) of an outgoing path 5 for heating; and stop the heat radiation unit 2, based on the hot water temperature (Tin) of the outgoing path 4 for heat radiation.SELECTED DRAWING: Figure 1

Description

本発明は、循環ポンプと貯湯槽と放熱部と熱源部とを有する貯湯式熱源冷却装置に関する。   The present invention relates to a hot water storage type heat source cooling device having a circulation pump, a hot water storage tank, a heat radiating unit, and a heat source unit.

燃料電池等の熱源を水冷する冷却装置が知られている。特許文献1の装置では、燃料電池からラジエタまでの冷却液遅れ時間を考慮して高精度な温度制御が行われる。   A cooling device for cooling a heat source such as a fuel cell with water is known. In the device of Patent Document 1, highly accurate temperature control is performed in consideration of the coolant delay time from the fuel cell to the radiator.

詳しくは特許文献1の装置では、燃料電池発熱量予測手段は燃料電池の出力に基づいて発熱量を予測する。ポンプ制御手段は予測発熱量に基づいてポンプを制御する。冷却液ラジエタ到達遅れ演算手段は、冷却液が燃料電池からラジエタまで到達する遅れ時間を算出する。冷却液三方弁到達遅れ演算手段は、冷却液が燃料電池から三方弁まで到達する遅れ時間を算出する。ラジエタファン制御手段は、冷却液ラジエタ到達遅れ演算手段によって算出された遅れ時間に基づきラジエタファンを駆動する。三方弁制御手段は、冷却液三方弁到達遅れ演算手段によって算出された遅れ時間に基づき三方弁の開度を制御する。   Specifically, in the apparatus of Patent Document 1, the fuel cell heat generation amount prediction means predicts the heat generation amount based on the output of the fuel cell. The pump control means controls the pump based on the predicted heat generation amount. The coolant radiator arrival delay calculating means calculates a delay time for the coolant to reach the radiator from the fuel cell. The coolant three-way valve arrival delay calculating means calculates a delay time for the coolant to reach the three-way valve from the fuel cell. The radiator fan control means drives the radiator fan based on the delay time calculated by the coolant radiator arrival delay calculating means. The three-way valve control means controls the opening degree of the three-way valve based on the delay time calculated by the coolant three-way valve arrival delay calculating means.

特開2004−253213号公報JP 2004-253213 A

特許文献1の装置では、遅れ時間や無駄時間の設定、燃料電池の出力に基づく目標放熱量の算出、燃料電池入口冷却液温度による目標放熱量の補正、目標放熱量に対するラジエタファンの風量を求めるためのラジエタ特性マップ等が必要なため、制御が複雑であった。   In the apparatus of Patent Document 1, setting of delay time and dead time, calculation of target heat dissipation based on fuel cell output, correction of target heat dissipation based on fuel cell inlet coolant temperature, and air flow of the radiator fan with respect to the target heat dissipation are obtained. Therefore, the control is complicated because a radiator characteristic map or the like is required.

本発明は上述の課題に鑑みてなされたものであり、その目的は、簡単な制御により高精度で安全性の高い熱源冷却を実現することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to realize highly accurate and safe heat source cooling by simple control.

上記目的を達成するための貯湯式熱源冷却装置の特徴構成は、
湯水を循環する循環ポンプと、湯水を貯留する貯湯槽と、湯水からの放熱を行う放熱部と、湯水に熱を与えて加熱する熱源部と、
前記貯湯槽の下部の湯水を前記放熱部に供給する放熱往き路と、
前記放熱部を通流した湯水を前記熱源部に供給する加熱往き路と、
前記熱源部を通流した湯水を前記貯湯槽の上部に戻す加熱戻り路と、
前記放熱往き路の湯水温度を検出する放熱往き路温度検出手段と、
前記加熱往き路の湯水温度を検出する加熱往き路温度検出手段と、
前記放熱部の動作を制御する放熱部制御手段を備えた貯湯式熱源冷却装置であって、
前記放熱部制御手段は、
前記放熱往き路の湯水温度に基づいて、前記放熱部を起動し、
前記加熱往き路の湯水温度に基づいて、前記放熱部の動作量を最大動作量または最大動作量よりも小さい中間動作量に調整する動作量調整制御を実行し、
前記放熱往き路の湯水温度に基づいて、前記放熱部を停止する点にある。
The characteristic configuration of the hot water storage type heat source cooling device for achieving the above object is as follows:
A circulation pump for circulating hot water, a hot water storage tank for storing hot water, a heat radiating part for radiating heat from the hot water, a heat source part for applying heat to the hot water, and heating,
A heat release path for supplying hot water in the lower part of the hot water tank to the heat radiating section;
A heating outbound path for supplying hot water flowing through the heat radiating section to the heat source section;
A heating return path for returning hot water flowing through the heat source part to the upper part of the hot water storage tank;
A heat-dissipation path temperature detecting means for detecting the hot water temperature of the heat-dissipation path;
A heating outbound temperature detecting means for detecting a hot water temperature in the heating outbound path;
A hot water storage type heat source cooling device provided with a heat radiation part control means for controlling the operation of the heat radiation part,
The heat radiating part control means includes:
Based on the hot water temperature of the heat dissipation path, the heat dissipation unit is activated,
Based on the hot water temperature of the heating outbound path, the operation amount adjustment control for adjusting the operation amount of the heat radiating unit to the maximum operation amount or an intermediate operation amount smaller than the maximum operation amount is performed,
The heat dissipating part is stopped based on the hot water temperature of the heat dissipating path.

上記の特徴構成によれば、放熱部制御手段は、放熱往き路の湯水温度に基づいて、放熱部を起動し、加熱往き路の湯水温度に基づいて、放熱部の動作量を最大動作量または最大動作量よりも小さい中間動作量に調整する動作量調整制御を実行し、放熱往き路の湯水温度に基づいて、放熱部を停止するから、制御の態様において、放熱部の起動停止と動作量調整制御とが分離されているため、高精度な温度制御が簡単に実現でき好適である。   According to the above characteristic configuration, the heat radiating unit control means activates the heat radiating unit based on the hot water temperature of the heat radiating path, and sets the operation amount of the heat radiating unit to the maximum operating amount or based on the hot water temperature of the heating path. The operation amount adjustment control that adjusts to an intermediate operation amount that is smaller than the maximum operation amount is executed, and the heat dissipating part is stopped based on the hot water temperature of the heat dissipating path. Since the adjustment control is separated, high-precision temperature control can be easily realized, which is preferable.

本発明に係る貯湯式熱源冷却装置の別の特徴構成は、前記放熱部制御手段は、前記放熱往き路の湯水温度が所定の起動温度以上である場合に、前記放熱部を動作量が最大の状態で起動し、前記放熱往き路の湯水温度が、前記起動温度より低い停止温度以下を所定時間継続した場合に、前記放熱部を停止する点にある。   Another characteristic configuration of the hot water storage type heat source cooling device according to the present invention is that, when the hot water temperature of the heat release path is equal to or higher than a predetermined starting temperature, the heat radiating unit control means operates the heat radiating unit with a maximum operating amount. The heat radiating section is stopped when the hot water temperature in the heat dissipation path continues below a stop temperature lower than the start temperature for a predetermined time.

上記の特徴構成によれば、放熱部制御手段は、放熱往き路の湯水温度が所定の起動温度以上である場合に、放熱部を動作量が最大の状態で起動し、放熱往き路の湯水温度が、起動温度より低い停止温度以下を所定時間継続した場合に、放熱部を停止するから、簡易な態様の制御によって放熱部を起動して冷却を行うことができ好適である。   According to the above characteristic configuration, when the hot water temperature in the heat dissipation path is equal to or higher than the predetermined start temperature, the heat dissipation section control means starts the heat dissipation section with the maximum operating amount, and the hot water temperature in the heat dissipation path However, since the heat dissipating part is stopped when the temperature below the stop temperature lower than the start temperature is continued for a predetermined time, it is preferable that the heat dissipating part can be started and cooled by the control in a simple manner.

本発明に係る貯湯式熱源冷却装置の別の特徴構成は、前記放熱部制御手段は、前記放熱部が起動している状態において、
前記動作量調整制御を実行していない状態で、かつ前記加熱往き路の湯水温度が所定の制御開始温度以下の場合に、前記動作量調整制御を開始し、
前記動作量調整制御を実行している状態で、かつ前記加熱往き路の湯水温度が、前記制御開始温度よりも高い温度である所定の制御停止温度以上の場合に、前記動作量調整制御の実行を停止して、前記放熱部の動作量を最大の状態にする点にある。
Another characteristic configuration of the hot water storage type heat source cooling device according to the present invention is that the heat radiating unit control means is in a state where the heat radiating unit is activated,
In a state where the operation amount adjustment control is not executed and the hot water temperature of the heating outbound path is equal to or lower than a predetermined control start temperature, the operation amount adjustment control is started.
Execution of the operation amount adjustment control when the operation amount adjustment control is being executed and the hot water temperature in the heating outbound path is equal to or higher than a predetermined control stop temperature that is higher than the control start temperature. Is stopped and the amount of operation of the heat radiating portion is maximized.

上記の特徴構成によれば、放熱部制御手段は、放熱部が起動している状態において、動作量調整制御を実行していない状態で、かつ加熱往き路の湯水温度が所定の制御開始温度以下の場合に、動作量調整制御を開始し、動作量調整制御を実行している状態で、かつ加熱往き路の湯水温度が、制御開始温度よりも高い温度である所定の制御停止温度以上の場合に、動作量調整制御の実行を停止して、放熱部の動作量を最大の状態にするから、簡易な態様の制御により動作量調整制御の開始と停止(放熱部の最大動作量での稼働)とを行うことができ、制御簡便化とフェイルセーフの実現とを両立でき更に好適である。   According to the above characteristic configuration, the heat radiating section control means is in a state where the operation amount adjustment control is not executed in a state where the heat radiating section is activated, and the hot water temperature in the heating forward path is equal to or lower than a predetermined control start temperature. In the case where the operation amount adjustment control is started and the operation amount adjustment control is being executed, and the hot water temperature in the heating forward path is equal to or higher than a predetermined control stop temperature that is higher than the control start temperature. In addition, since the operation amount adjustment control is stopped and the operation amount of the heat radiating unit is maximized, the operation amount adjustment control is started and stopped by the simple control (the operation of the heat dissipation unit at the maximum operation amount). It is possible to achieve both control simplification and fail-safe realization.

本発明に係る貯湯式熱源冷却装置の別の特徴構成は、前記放熱部制御手段は、前記動作量調整制御において、前記放熱部の動作量を、前回の動作量調整制御の期間における前記加熱往き路の湯水温度の平均値または最大値と、所定の目標温度との偏差に対して、所定の制御係数を乗じた値を、前回の動作量調整制御における動作量である前回動作量に加えた値へと調整する点にある。   Another characteristic configuration of the hot water storage type heat source cooling device according to the present invention is that, in the operation amount adjustment control, the heat dissipating unit control means sets the operation amount of the heat dissipating unit as the heating amount in the period of the previous operation amount adjustment control. A value obtained by multiplying the deviation between the average or maximum value of the hot / cold water temperature of the road and the predetermined target temperature by a predetermined control coefficient is added to the previous operation amount that is the operation amount in the previous operation amount adjustment control. The point is to adjust to the value.

上記の特徴構成によれば、放熱部制御手段は、動作量調整制御において、放熱部の動作量を、前回の動作量調整制御の期間における加熱往き路の湯水温度の平均値または最大値と、所定の目標温度との偏差に対して、所定の制御係数を乗じた値を、前回の動作量調整制御における動作量である前回動作量に加えた値へと調整するから、制御が高精度かつ簡単なものとなり更に好適である。   According to the above characteristic configuration, the heat radiating unit control means, in the operation amount adjustment control, the operation amount of the heat radiating unit, the average value or the maximum value of the hot water temperature of the heating outbound path during the previous operation amount adjustment control, A value obtained by multiplying the deviation from the predetermined target temperature by a predetermined control coefficient is adjusted to a value added to the previous operation amount that is the operation amount in the previous operation amount adjustment control. It is simple and more suitable.

本発明に係る貯湯式熱源冷却装置の別の特徴構成は、前記放熱部制御手段は、給水温度に基づいて前記制御係数の値を決定する点にある。   Another characteristic configuration of the hot water storage type heat source cooling device according to the present invention is that the heat radiating unit control means determines a value of the control coefficient based on a water supply temperature.

上記の特徴構成によれば、放熱部制御手段は、給水温度に基づいて制御係数の値を決定するから、簡易に測定できる給水温度によって、放熱部の冷却能力が高気温時に低下する分を簡易に補正でき、制御が更に高精度なものとなり好適である。   According to the above characteristic configuration, since the heat radiating unit control means determines the value of the control coefficient based on the feed water temperature, the amount by which the cooling capacity of the heat radiating unit decreases at a high temperature can be easily simplified by the feed water temperature that can be easily measured. Therefore, the control can be performed with higher accuracy, which is preferable.

本発明に係る貯湯式熱源冷却装置の別の特徴構成は、前記放熱部制御手段は、前回の動作量調整制御の期間における前記加熱往き路の湯水温度の平均値または最大値が設定されていない場合に、前記放熱部の動作量を前記給水温度に基づいて決定する点にある。   Another characteristic configuration of the hot water storage type heat source cooling device according to the present invention is that the heat radiating unit control means is not set with an average value or a maximum value of the hot water temperature in the heating outbound path during the previous operation amount adjustment control. In this case, the operating amount of the heat radiating unit is determined based on the water supply temperature.

上記の特徴構成によれば、放熱部制御手段は、前回の動作量調整制御の期間における加熱往き路の湯水温度の平均値または最大値が設定されていない場合に、放熱部の動作量を給水温度に基づいて決定するから、簡易に測定できる給水温度によって動作量を設定でき、制御がより簡易になり好適である。   According to the above characteristic configuration, the heat dissipating unit control means supplies the operation amount of the heat dissipating unit when the average or maximum value of the hot water temperature in the heating path in the previous operation amount adjustment control period is not set. Since it determines based on temperature, operation amount can be set with the feed water temperature which can be measured easily, and control becomes simpler and is suitable.

本発明に係る貯湯式熱源冷却装置の別の特徴構成は、前記放熱部制御手段は、前記動作量調整制御における放熱部の動作量の下限値を給水温度に基づいて決定する点にある。   Another characteristic configuration of the hot water storage type heat source cooling device according to the present invention is that the heat dissipating unit control means determines a lower limit value of an operation amount of the heat dissipating unit in the operation amount adjustment control based on a water supply temperature.

上記の特徴構成によれば、放熱部制御手段は、動作量調整制御における放熱部の動作量の下限値を給水温度に基づいて決定するから、簡易に測定できる給水温度に基づいて放熱部の動作量が過度に小さくなる事態を回避でき、制御簡便化とフェイルセーフの実現とを両立でき更に好適である。   According to the above characteristic configuration, the heat radiating unit control means determines the lower limit value of the operation amount of the heat radiating unit in the operation amount adjustment control based on the water supply temperature, so the operation of the heat radiating unit based on the water supply temperature that can be easily measured. It is possible to avoid a situation in which the amount becomes excessively small, and it is more preferable that both simplification of control and realization of fail safe can be achieved.

本発明に係る貯湯式熱源冷却装置の別の特徴構成は、前記放熱部は、湯水が通流する熱交換器と、前記熱交換器を空冷するラジエータファンとを有し、前記放熱部制御手段は、前記放熱部の動作量の調整を、前記ラジエータファンの回転数の制御、または前記ラジエータファンの駆動のデューティー比の制御により行う点にある。   Another feature of the hot water storage type heat source cooling device according to the present invention is that the heat radiating section includes a heat exchanger through which hot water flows and a radiator fan that air-cools the heat exchanger, and the heat radiating section control means. Is that the adjustment of the operation amount of the heat radiating unit is performed by controlling the rotation speed of the radiator fan or controlling the duty ratio of driving the radiator fan.

上記の特徴構成によれば、放熱部は、湯水が通流する熱交換器と、熱交換器を空冷するラジエータファンとを有し、放熱部制御手段は、放熱部の動作量の調整を、ラジエータファンの回転数の制御、またはラジエータファンの駆動のデューティー比の制御により行うから、簡易な構成および制御により放熱部による湯水からの放熱を実現でき好適である。   According to the above characteristic configuration, the heat radiating section has a heat exchanger through which hot water flows and a radiator fan that air-cools the heat exchanger, and the heat radiating section control means adjusts the operation amount of the heat radiating section. Since it is performed by controlling the rotation speed of the radiator fan or by controlling the duty ratio of driving the radiator fan, it is preferable that heat radiation from the hot water by the heat radiating section can be realized with a simple configuration and control.

本発明に係る貯湯式熱源冷却装置の別の特徴構成は、前記放熱部は、湯水が通流する熱交換器と、前記熱交換器を空冷するラジエータファンと、前記熱交換器をバイパスするバイパス路とを有し、前記放熱部制御手段は、前記放熱部の動作量の調整を、前記バイパス路への湯水の流量の制御により行う点にある。   Another feature of the hot water storage type heat source cooling device according to the present invention is that the heat dissipating part includes a heat exchanger through which hot water flows, a radiator fan that air-cools the heat exchanger, and a bypass that bypasses the heat exchanger. The heat radiating section control means is configured to adjust the operation amount of the heat radiating section by controlling the flow rate of hot water to the bypass path.

上記の特徴構成によれば、放熱部は、湯水が通流する熱交換器と、熱交換器を空冷するラジエータファンと、熱交換器をバイパスするバイパス路とを有し、放熱部制御手段は、放熱部の動作量の調整を、バイパス路への湯水の流量の制御により行うから、簡易な構成および制御により放熱部による湯水からの放熱を実現でき好適である。   According to said characteristic structure, a thermal radiation part has a heat exchanger with which hot water flows, a radiator fan which air-cools a heat exchanger, and a bypass passage which bypasses a heat exchanger, and a thermal radiation control means Since the adjustment of the operation amount of the heat radiating unit is performed by controlling the flow rate of hot water to the bypass passage, heat radiation from the hot water by the heat radiating unit can be realized with a simple configuration and control.

貯湯式熱源冷却装置の構成を示す概略図Schematic showing the configuration of the hot water storage heat source cooling device 貯湯式熱源冷却装置で行われる動作制御の概要を示すフローチャートThe flowchart which shows the outline of the operation control performed with the hot water storage type heat source cooling device 貯湯式熱源冷却装置で行われる動作量調整制御の概要を示すフローチャートThe flowchart which shows the outline | summary of the operation amount adjustment control performed with a hot water storage type heat source cooling device.

以下、本実施形態に係る貯湯式熱源冷却装置について図面を参照しながら説明する。図1に示すように、貯湯式熱源冷却装置10は、循環ポンプP、貯湯槽1、放熱部2、熱源部3、放熱往き路4、加熱往き路5、加熱戻り路6、第1温度センサ7(放熱往き路温度検出手段)、第2温度センサ8(加熱往き路温度検出手段)、および放熱部制御手段9を有する。放熱往き路4、加熱往き路5および加熱戻り路6が、貯湯槽1、放熱部2および熱源部3の間で、循環ポンプPにより、湯水を循環させる湯水循環路として機能する。   Hereinafter, the hot water storage type heat source cooling device according to the present embodiment will be described with reference to the drawings. As shown in FIG. 1, the hot water storage type heat source cooling device 10 includes a circulation pump P, a hot water storage tank 1, a heat radiating unit 2, a heat source unit 3, a heat radiating forward channel 4, a heating forward channel 5, a heating return channel 6, and a first temperature sensor. 7 (heat dissipation path temperature detecting means), a second temperature sensor 8 (heating outbound path temperature detecting means), and a heat dissipation section control means 9. The heat release path 4, the heating path 5 and the heating return path 6 function as a hot water circulation path for circulating hot water between the hot water storage tank 1, the heat radiation part 2 and the heat source part 3 by the circulation pump P.

貯湯槽1は、湯水を貯留する。放熱部2は、内部を通流する湯水からの放熱を行い、湯水を冷却する。熱源部3は、例えば燃料電池であり、内部を通流する湯水に対して熱を与えて、湯水の加熱を行う。   The hot water tank 1 stores hot water. The heat radiating unit 2 performs heat radiation from the hot water flowing through the inside, and cools the hot water. The heat source unit 3 is a fuel cell, for example, and heats the hot water by supplying heat to the hot water flowing inside.

放熱部2は、熱交換器2a、ラジエータファン2b、およびバイパス路2cを有する。熱交換器2aは、内部を通流する湯水と外部の空気とを熱交換させて、湯水を冷却する。   The heat radiating unit 2 includes a heat exchanger 2a, a radiator fan 2b, and a bypass path 2c. The heat exchanger 2a cools the hot water by exchanging heat between the hot water flowing inside and the outside air.

ラジエータファン2bは、図示しないモータにより駆動されて、空気を熱交換器2aに吹き付けて、熱交換器2aを空冷する。ラジエータファン2bの動作は、放熱部制御手段9により制御される。例えば、放熱部制御手段9は、ラジエータファン2bの回転数を制御して、これにより放熱部2の動作量を調整する。あるいは、放熱部制御手段9は、ラジエータファン2bの駆動のデューティー比を制御して、これにより放熱部2の動作量を調整する。   The radiator fan 2b is driven by a motor (not shown), blows air to the heat exchanger 2a, and cools the heat exchanger 2a. The operation of the radiator fan 2 b is controlled by the heat radiating unit control means 9. For example, the heat radiating unit control means 9 controls the rotational speed of the radiator fan 2b, thereby adjusting the operation amount of the heat radiating unit 2. Alternatively, the heat radiating unit control means 9 controls the duty ratio of driving of the radiator fan 2b, thereby adjusting the operation amount of the heat radiating unit 2.

バイパス路2cは、熱交換器2aの上流側(放熱往き路4)と下流側(加熱往き路5)とを接続して、熱交換器2aをバイパスする流路である。放熱部制御手段9は、バイパス路2cに設けられた流量調整弁(図示なし)を制御して、バイパス路2cを通流する湯水の流量を制御し、これにより放熱部2の動作量を調整する。   The bypass path 2c is a flow path that connects the upstream side (heat radiation path 4) and the downstream side (heating path 5) of the heat exchanger 2a to bypass the heat exchanger 2a. The heat radiating section control means 9 controls the flow rate adjustment valve (not shown) provided in the bypass path 2c to control the flow rate of hot water flowing through the bypass path 2c, thereby adjusting the operation amount of the heat radiating section 2. To do.

放熱往き路4は、貯湯槽1の下部と放熱部2の熱交換器2aとを接続しており、貯湯槽1の下部の湯水を放熱部2に供給する。加熱往き路5は、放熱部2の熱交換器2aと熱源部3とを接続しており、放熱部2を通流した湯水を熱源部3に供給する。加熱戻り路6は、熱源部3と貯湯槽1の上部とを接続しており、熱源部3を通流した湯水を貯湯槽1の上部に戻す。   The heat release path 4 connects the lower part of the hot water tank 1 and the heat exchanger 2 a of the heat radiator 2, and supplies hot water from the lower part of the hot water tank 1 to the heat radiator 2. The heating outgoing path 5 connects the heat exchanger 2 a of the heat radiating unit 2 and the heat source unit 3, and supplies hot water flowing through the heat radiating unit 2 to the heat source unit 3. The heating return path 6 connects the heat source part 3 and the upper part of the hot water tank 1, and returns the hot water flowing through the heat source part 3 to the upper part of the hot water tank 1.

第1温度センサ7(放熱往き路温度検出手段)は、放熱往き路4に配置された温度センサであり、放熱往き路4の湯水温度を検出して、放熱部制御手段9へ送信する。以下、第1温度センサ7が検出した放熱往き路4の湯水温度を「Tin」と表記する場合がある。   The first temperature sensor 7 (heat dissipation path temperature detecting means) is a temperature sensor arranged in the heat dissipation path 4, detects the hot water temperature of the heat dissipation path 4, and transmits it to the heat radiating section control means 9. Hereinafter, the hot / cold water temperature of the heat release path 4 detected by the first temperature sensor 7 may be referred to as “Tin”.

第2温度センサ8(加熱往き路温度検出手段)は、加熱往き路5に配置された温度センサであり、加熱往き路5の湯水温度を検出して、放熱部制御手段9へ送信する。以下、第2温度センサ8が検出した加熱往き路5の湯水温度を「Tout」と表記する場合がある。   The second temperature sensor 8 (heating forward path temperature detection means) is a temperature sensor arranged in the heating forward path 5, detects the hot water temperature of the heating forward path 5, and transmits it to the heat radiating section control means 9. Hereinafter, the hot and cold water temperature of the heating outbound path 5 detected by the second temperature sensor 8 may be referred to as “Tout”.

放熱部制御手段9は、第1温度センサ7および第2温度センサ8から放熱往き路4の湯水温度Tinおよび加熱往き路5の湯水温度Toutの送信を受け、TinおよびToutに基づいて放熱部2を制御する。詳しくは放熱部制御手段9は、放熱往き路4の湯水温度(Tin)に基づいて、放熱部2を起動停止し、加熱往き路5の湯水温度(Tout)に基づいて、放熱部2の動作量を最大動作量または最大動作量よりも小さい中間動作量に調整する動作量調整制御を実行する。なお実際には、放熱部制御手段9に対応するプログラムが図示しないROMや不揮発性メモリに記憶されており、それらプログラムをCPUにロードして実行することにより、放熱部制御手段9に対応するプロセスが実行される。   The heat radiating unit control means 9 receives the transmission of the hot water temperature Tin of the heat radiating path 4 and the hot water temperature Tout of the heating path 5 from the first temperature sensor 7 and the second temperature sensor 8, and based on the Tin and Tout, the heat radiating unit 2 To control. Specifically, the heat radiating section control means 9 starts and stops the heat radiating section 2 based on the hot water temperature (Tin) of the heat radiating path 4 and operates the heat radiating section 2 based on the hot water temperature (Tout) of the heating path 5. The operation amount adjustment control for adjusting the amount to the maximum operation amount or an intermediate operation amount smaller than the maximum operation amount is executed. Actually, a program corresponding to the heat radiating section control means 9 is stored in a ROM or a non-volatile memory (not shown), and the processes corresponding to the heat radiating section control means 9 are executed by loading them into the CPU. Is executed.

以下、放熱部制御手段9により貯湯式熱源冷却装置10で行われる動作制御について、図2のフローチャートを参照しながら説明する。   Hereinafter, the operation control performed in the hot water storage type heat source cooling device 10 by the heat radiating unit control means 9 will be described with reference to the flowchart of FIG.

動作制御がスタートすると、ステップ#201では、放熱部2が停止中か否かが判定される。放熱部2が停止中の場合(ステップ#201:Yes)、ステップ#202に進む。放熱部2が運転中の場合(ステップ#201:No)、ステップ#204に進む。   When the operation control is started, in step # 201, it is determined whether or not the heat radiating unit 2 is stopped. When the heat radiating unit 2 is stopped (step # 201: Yes), the process proceeds to step # 202. When the heat radiating unit 2 is in operation (step # 201: No), the process proceeds to step # 204.

ステップ#202では、放熱往き路4の湯水温度(Tin)が所定の起動温度以上であるか否かが判定される。起動温度は、放熱部2を起動するか否かを判断する基準の温度(例えば、40℃)であって、予め定められて放熱部制御手段9に記憶されている。Tinが起動温度以上である場合(ステップ#202:Yes)、ステップ#203へ進む。Tinが起動温度よりも小さい場合(ステップ#202:No)、エンドへ進む。   In Step # 202, it is determined whether or not the hot water temperature (Tin) of the heat release path 4 is equal to or higher than a predetermined activation temperature. The starting temperature is a reference temperature (for example, 40 ° C.) for determining whether to start the heat radiating unit 2, and is determined in advance and stored in the heat radiating unit control means 9. If Tin is equal to or higher than the starting temperature (step # 202: Yes), the process proceeds to step # 203. When Tin is smaller than the starting temperature (step # 202: No), the process proceeds to the end.

ステップ#203では、放熱部制御手段9が放熱部2を制御して、放熱部2を動作量最大で起動する。具体的には放熱部制御手段9が、放熱部2での湯水からの放熱が最大量となるように、放熱部2のラジエータファン2bを最大回転数で動作させ、放熱部2のバイパス路2cの湯水の流量を最少(例えば、ゼロ)に制御する。   In step # 203, the heat radiating part control means 9 controls the heat radiating part 2, and starts the heat radiating part 2 with the maximum operation amount. Specifically, the heat radiating unit control means 9 operates the radiator fan 2b of the heat radiating unit 2 at the maximum rotational speed so that the heat radiated from the hot water in the heat radiating unit 2 becomes the maximum amount, and the bypass path 2c of the heat radiating unit 2 The flow rate of hot water is controlled to a minimum (for example, zero).

すなわち貯湯式熱源冷却装置10では、放熱部制御手段9は、放熱往き路4の湯水温度(Tin)が所定の起動温度以上である場合に、放熱部2を動作量が最大の状態で起動する。Tinが起動温度以上である場合、貯湯槽1に貯留されている湯水の温度が比較的高いことになるから、放熱部2が起動されて最大の動作量で動作すると、放熱部2からの放熱が行われ湯水が冷却されて好適である。   That is, in the hot water storage type heat source cooling device 10, the heat radiating unit control means 9 activates the heat radiating unit 2 in a state where the operation amount is maximum when the hot water temperature (Tin) of the heat radiating forward path 4 is equal to or higher than a predetermined activation temperature. . When Tin is equal to or higher than the activation temperature, the temperature of the hot water stored in the hot water tank 1 is relatively high. Therefore, when the heat radiating unit 2 is activated and operates at the maximum operation amount, the heat radiated from the heat radiating unit 2 is obtained. Is performed, and the hot water is cooled.

ステップ#204では、放熱往き路4の湯水温度(Tin)が所定の停止温度以下を所定時間以上継続したか否かが判定される。停止温度と所定時間は、放熱部2を停止するか否かを判断するための基準の温度(例えば、38℃)と基準の時間(例えば、5分)であって、予め定められて放熱部制御手段9に記憶されている。なお停止温度は、上述の起動温度よりも低い温度である。   In step # 204, it is determined whether or not the hot water temperature (Tin) of the heat release path 4 has continued below a predetermined stop temperature for a predetermined time. The stop temperature and the predetermined time are a reference temperature (for example, 38 ° C.) and a reference time (for example, 5 minutes) for determining whether or not to stop the heat dissipating unit 2, and are determined in advance. It is stored in the control means 9. The stop temperature is a temperature lower than the above-described start temperature.

Tinが停止温度以下を所定時間以上継続した場合(ステップ#204:Yes)、ステップ#205へ進む。Tinが停止温度を所定時間以上継続しない場合(ステップ#204:No)、ステップ#206へ進む。   When Tin continues below the stop temperature for a predetermined time or longer (step # 204: Yes), the process proceeds to step # 205. If Tin does not continue the stop temperature for a predetermined time or longer (step # 204: No), the process proceeds to step # 206.

ステップ#205では、放熱部制御手段9が放熱部2を制御して、放熱部2を停止させる。具体的には放熱部制御手段9が、放熱部2での湯水からの放熱が停止するように、放熱部2のラジエータファン2bを停止させ、または放熱部2のバイパス路2cの湯水の流量を制御して熱交換器2aの湯水の流量を最少(例えば、ゼロ)に制御する。そしてエンドに進む。   In step # 205, the heat radiating part control means 9 controls the heat radiating part 2 and stops the heat radiating part 2. Specifically, the heat radiating unit control means 9 stops the radiator fan 2b of the heat radiating unit 2 so that the heat radiating from the hot water in the heat radiating unit 2 stops or the flow rate of hot water in the bypass path 2c of the heat radiating unit 2 is reduced. The flow rate of hot water in the heat exchanger 2a is controlled to a minimum (for example, zero). Then go to the end.

すなわち貯湯式熱源冷却装置10では、放熱部制御手段9は、放熱往き路4の湯水温度(Tin)が、起動温度(例えば、40℃)よりも低い所定の温度である停止温度(例えば、38℃)以下を所定時間(例えば、5分)以上継続した場合に、放熱部2を停止する。Tinが停止温度以下を所定時間以上継続した場合、貯湯槽1に貯留されている湯水の温度が比較的低いことになるから、放熱部2が停止されると、放熱部2からの放熱が止まり湯水の温度が上昇して好適である。   That is, in the hot water storage type heat source cooling device 10, the heat radiating section control means 9 is configured so that the hot water temperature (Tin) of the heat radiating forward path 4 is a predetermined temperature lower than the starting temperature (for example, 40 ° C.). C.) or less is continued for a predetermined time (for example, 5 minutes) or longer, the heat dissipating unit 2 is stopped. When Tin continues below the stop temperature for a predetermined time or more, the temperature of the hot water stored in the hot water tank 1 is relatively low. Therefore, when the heat dissipating part 2 is stopped, the heat dissipating from the heat dissipating part 2 stops. It is preferable because the temperature of the hot water rises.

ステップ#206では、動作量調整制御が停止中か否かが判定される。ここで動作量調整制御とは、放熱部2の動作量を最大動作量または最大動作量よりも小さい中間動作量に調整する制御であり、放熱部2における湯水からの放熱の量を中間的な量へと調整する制御である。本実施形態では、加熱往き路5の湯水温度(Tout)に基づいて、動作量調整制御の開始(ステップ#208)および停止(ステップ#210)が行われる。動作量調整制御における放熱部2の動作量の決定の手法については後述する。   In step # 206, it is determined whether or not the operation amount adjustment control is stopped. Here, the operation amount adjustment control is control for adjusting the operation amount of the heat radiating unit 2 to the maximum operation amount or an intermediate operation amount smaller than the maximum operation amount, and the amount of heat radiation from the hot water in the heat radiating unit 2 is intermediate. It is control to adjust to the quantity. In the present embodiment, the operation amount adjustment control is started (step # 208) and stopped (step # 210) based on the hot water temperature (Tout) of the heating outbound path 5. A method of determining the operation amount of the heat radiation unit 2 in the operation amount adjustment control will be described later.

動作量調整制御が停止中の場合(ステップ#206:Yes)、ステップ#207へ進む。動作量調整制御が実行中の場合(ステップ#206:No)、ステップ#209へ進む。   When the operation amount adjustment control is stopped (step # 206: Yes), the process proceeds to step # 207. When the operation amount adjustment control is being executed (step # 206: No), the process proceeds to step # 209.

ステップ#207では、加熱往き路5の湯水温度(Tout)が上述の制御開始温度以下であるか否かが判定される。制御開始温度は、動作量調整制御を開始するか否かを判断するための基準の温度(例えば、36℃)であって、予め定められて放熱部制御手段9に記憶されている。Toutが制御開始温度以下である場合(ステップ#207:Yes)、ステップ#208へ進む。Toutが制御開始温度よりも大きい場合(ステップ#207:No)、エンドに進む。   In Step # 207, it is determined whether or not the hot water temperature (Tout) of the heating outbound path 5 is equal to or lower than the above-described control start temperature. The control start temperature is a reference temperature (for example, 36 ° C.) for determining whether to start the operation amount adjustment control, and is determined in advance and stored in the heat radiating unit control means 9. When Tout is equal to or lower than the control start temperature (step # 207: Yes), the process proceeds to step # 208. When Tout is larger than the control start temperature (step # 207: No), the process proceeds to the end.

ステップ#208では、放熱部制御手段9により動作量調整制御が開始され、その後エンドへ進む。   In step # 208, the operation amount adjustment control is started by the heat radiating unit control means 9, and then the process proceeds to the end.

すなわち貯湯式熱源冷却装置10では、放熱部制御手段9は、動作量調整制御を実行していない状態(停止中)で、かつ加熱往き路5の湯水温度(Tout)が所定の制御開始温度以下の場合に、動作量調整制御を開始する。Toutが制御開始温度以下である場合、放熱部2から流出する湯水の温度が比較的低いことになるから、放熱部2での湯水からの放熱を適切なものとして湯水の温度を調節すべく、放熱部制御手段9が動作量調整制御を開始する。   That is, in the hot water storage type heat source cooling device 10, the heat radiating section control means 9 is in a state where the operation amount adjustment control is not being executed (stopped), and the hot water temperature (Tout) of the heating path 5 is equal to or lower than a predetermined control start temperature. In this case, the operation amount adjustment control is started. When Tout is equal to or lower than the control start temperature, the temperature of the hot water flowing out from the heat radiating unit 2 is relatively low. Therefore, in order to adjust the temperature of the hot water with appropriate heat dissipation from the hot water in the heat radiating unit 2, The heat radiating part control means 9 starts the operation amount adjustment control.

ステップ#209では、加熱往き路5の湯水温度(Tout)が制御停止温度以上であるか否かが判定される。制御停止温度は、動作量調整制御を停止するか否かを判断するための基準の温度(例えば、40℃)であって、予め定められて放熱部制御手段9に記憶されている。なお制御停止温度は、上述の制御開始温度よりも高い温度である。   In Step # 209, it is determined whether or not the hot water temperature (Tout) of the heating outbound path 5 is equal to or higher than the control stop temperature. The control stop temperature is a reference temperature (for example, 40 ° C.) for determining whether or not to stop the operation amount adjustment control, and is determined in advance and stored in the heat radiating unit control means 9. The control stop temperature is a temperature higher than the above-described control start temperature.

Toutが制御停止温度以上である場合(ステップ#209:Yes)、ステップ#210へ進む。Toutが制御停止温度よりも小さい場合(ステップ#209:No)、エンドへ進む。   When Tout is equal to or higher than the control stop temperature (step # 209: Yes), the process proceeds to step # 210. When Tout is smaller than the control stop temperature (step # 209: No), the process proceeds to the end.

ステップ#210では、放熱部制御手段9により動作量調整制御が停止され、Tmaxを所定値(例えば、43℃)に変更する。Tmaxは、後述する動作量調整制御において放熱部2の動作量の決定に用いるパラメータであり、前回の動作量調整制御の期間における加熱往き路の湯水温度(Tout)の最大値である。Tmaxが大きいほど、次回の動作量調整制御での放熱部2の動作量が大きくなる。ステップ#210でTmaxが所定値、特に制御停止温度(例えば、40℃)よりも大きい温度(例えば、43℃)に変更されることで、次回の動作量調整制御での放熱部2の動作量が大きくなり、熱源部3の冷却が適切に行われる様になる。   In step # 210, the operation amount adjustment control is stopped by the heat radiating unit control means 9, and Tmax is changed to a predetermined value (for example, 43 ° C.). Tmax is a parameter used to determine the operation amount of the heat dissipating unit 2 in the operation amount adjustment control described later, and is the maximum value of the hot water temperature (Tout) in the heating outbound path during the previous operation amount adjustment control. The larger the Tmax, the larger the operation amount of the heat radiating unit 2 in the next operation amount adjustment control. In step # 210, Tmax is changed to a predetermined value, particularly a temperature (for example, 43 ° C.) higher than the control stop temperature (for example, 40 ° C.), so that the operation amount of the heat radiating unit 2 in the next operation amount adjustment control. As a result, the heat source unit 3 is appropriately cooled.

ステップ#211では、放熱部制御手段9が放熱部2を制御して、放熱部2の動作量を最大動作量に変更する。具体的には放熱部制御手段9が、放熱部2での湯水からの放熱が最大量となるように、放熱部2のラジエータファン2bを最大回転数で動作させ、放熱部2のバイパス路2cの湯水の流量を最少(例えば、ゼロ)に制御する。その後、エンドへ進む。   In step # 211, the heat radiating unit control means 9 controls the heat radiating unit 2 to change the operation amount of the heat radiating unit 2 to the maximum operation amount. Specifically, the heat radiating unit control means 9 operates the radiator fan 2b of the heat radiating unit 2 at the maximum rotational speed so that the heat radiated from the hot water in the heat radiating unit 2 becomes the maximum amount, and the bypass path 2c of the heat radiating unit 2 The flow rate of hot water is controlled to a minimum (for example, zero). Then go to the end.

すなわち貯湯式熱源冷却装置10では、放熱部制御手段9は、動作量調整制御を実行している状態で、かつ加熱往き路5の湯水温度(Tout)が、制御開始温度(例えば、36℃)よりも高い温度である所定の制御停止温度(例えば、40℃)以上の場合に、動作量調整制御の実行を停止して、放熱部2の動作量を最大の状態にする。Toutが制御停止温度以上である場合、放熱部2から流出する湯水の温度が比較的高く、放熱部2での冷却が不足していることになる。そこで放熱部2の動作量を最大の状態にすると、放熱部2から流出する湯水の温度が低下し、熱源部3の冷却が適切に行われるので好適である。   That is, in the hot water storage type heat source cooling device 10, the heat radiating unit control means 9 is in a state where the operation amount adjustment control is being executed, and the hot water temperature (Tout) of the heating outbound path 5 is the control start temperature (for example, 36 ° C.). When the temperature is equal to or higher than a predetermined control stop temperature (for example, 40 ° C.), the operation amount adjustment control is stopped and the operation amount of the heat radiating unit 2 is maximized. When Tout is equal to or higher than the control stop temperature, the temperature of the hot water flowing out from the heat radiating unit 2 is relatively high, and cooling in the heat radiating unit 2 is insufficient. Therefore, it is preferable to maximize the amount of operation of the heat radiating unit 2 because the temperature of the hot water flowing out from the heat radiating unit 2 is lowered and the heat source unit 3 is appropriately cooled.

次に、放熱部制御手段9により貯湯式熱源冷却装置10で行われる動作量調整制御について、図3のフローチャートを参照しながら説明する。なお動作量調整制御とは、上述の通り、放熱部2の動作量を最大動作量または最大動作量よりも小さい中間動作量に調整する制御であり、放熱部2における湯水からの放熱の量を中間的な量へと調整する制御である。   Next, the operation amount adjustment control performed in the hot water storage type heat source cooling device 10 by the heat radiating unit control means 9 will be described with reference to the flowchart of FIG. The operation amount adjustment control is control for adjusting the operation amount of the heat dissipating unit 2 to the maximum operation amount or an intermediate operation amount smaller than the maximum operation amount as described above, and the amount of heat radiation from the hot water in the heat dissipating unit 2 is adjusted. This control is adjusted to an intermediate amount.

動作量調整制御がスタートすると、ステップ#301では、Tmaxの値がゼロであるか否かが判定される。ここでTmaxは、前回行った動作量調整制御の期間における、加熱往き路の湯水温度(Tout)の最大値である。貯湯式熱源冷却装置10を起動した際、すなわち動作量調整制御を未だ行っていない状態では、Tmaxの値はゼロに設定される。そして動作量調整制御を行う度に、放熱部制御手段9は、その期間における加熱往き路の湯水温度(Tout)の最大値をTmaxの値として更新記憶する。詳しくは、後述するステップ#305(放熱部2の動作量の変更)を行った後、20分経過時点からの10分間におけるToutの最大値が、Tmaxの値として更新記憶される。すなわち、放熱部2が定常状態になった際のToutの値がTmaxとして記憶される。またTmaxは、上述したステップ#210において所定値に変更される場合がある。   When the operation amount adjustment control starts, in step # 301, it is determined whether or not the value of Tmax is zero. Here, Tmax is the maximum value of the hot water temperature (Tout) in the heating outbound path during the period of the operation amount adjustment control performed last time. When the hot water storage type heat source cooling device 10 is started, that is, in a state where the operation amount adjustment control is not yet performed, the value of Tmax is set to zero. Each time the operation amount adjustment control is performed, the heat radiating section control means 9 updates and stores the maximum value of the hot water temperature (Tout) of the heating outbound path during that period as the value of Tmax. Specifically, after performing step # 305 (changing the amount of operation of the heat dissipating unit 2) described later, the maximum value of Tout for 10 minutes after the lapse of 20 minutes is updated and stored as the value of Tmax. That is, the value of Tout when the heat radiating unit 2 is in a steady state is stored as Tmax. Tmax may be changed to a predetermined value in step # 210 described above.

Tmax≠0である場合(ステップ#301:Yes)、ステップ#302に進む。Tmax≠0でない場合(ステップ#301:No)、ステップ#303に進む。   If Tmax ≠ 0 (step # 301: Yes), the process proceeds to step # 302. When Tmax is not 0 (step # 301: No), the process proceeds to step # 303.

ステップ#302では、放熱部制御手段9が、放熱部2の動作量を、前回の動作量調整制御における動作量(前回動作量)、およびTmaxの値に基づいて設定する。詳しくは、動作量を次の式に基づいて設定する。なお動作量および前回動作量は、放熱部2の最大動作量に対するパーセンテージで表される。

動作量=前回動作量+制御係数×(Tmax−目標温度) 式(1)
In step # 302, the heat radiating unit control means 9 sets the operation amount of the heat radiating unit 2 based on the operation amount (previous operation amount) in the previous operation amount adjustment control and the value of Tmax. Specifically, the operation amount is set based on the following equation. The operation amount and the previous operation amount are expressed as a percentage with respect to the maximum operation amount of the heat radiating unit 2.

Operation amount = previous operation amount + control coefficient × (Tmax−target temperature) Equation (1)

ここで制御係数とは、測定された給水温度の1/5の値が、放熱部制御手段9により設定される。なお給水温度とは、上水道からの貯湯式熱源冷却装置10へ供給される水の温度であり、外気温と連動して気温・季節・気候等に応じて変動する。例えば、給水温度が10℃の場合、制御係数の値は2となる。   Here, the control coefficient is set by the heat radiating unit control means 9 to a value that is 1/5 of the measured feed water temperature. The water supply temperature is the temperature of water supplied from the water supply to the hot water storage type heat source cooling device 10 and fluctuates according to the temperature, season, climate, etc. in conjunction with the outside temperature. For example, when the feed water temperature is 10 ° C., the value of the control coefficient is 2.

給水温度が低いほど、制御係数は小さくなるが、これは本実施形態に係る放熱部2が熱交換器2aとラジエータファン2bとを有して構成される空冷式であることによる。給水温度が低いと、空気の温度も低くなり、動作量を僅かに補正した場合でも放熱部2での放熱量は大きく変化する。よって、制御係数は小さい方が望ましい。逆に給水温度が高いと空気の温度も高くなり、動作量を大きく補正しないと放熱部2での放熱量を調整できない。よって、制御係数は大きい方が望ましい。したがって、制御係数は外気温、あるいは給水温度に対して正の相関をもって変化するよう構成することが好ましい。   The lower the feed water temperature, the smaller the control coefficient. This is because the heat dissipating unit 2 according to the present embodiment is an air-cooled type that includes the heat exchanger 2a and the radiator fan 2b. When the feed water temperature is low, the temperature of the air also becomes low, and even when the operation amount is slightly corrected, the heat dissipation amount in the heat radiating unit 2 changes greatly. Therefore, a smaller control coefficient is desirable. Conversely, if the feed water temperature is high, the temperature of the air also increases, and the amount of heat released by the heat radiating unit 2 cannot be adjusted unless the amount of operation is greatly corrected. Therefore, a larger control coefficient is desirable. Therefore, the control coefficient is preferably configured to change with a positive correlation with the outside air temperature or the feed water temperature.

目標温度とは、放熱部2から流出する湯水の温度の目標値(例えば、38℃)であって、冷却する熱源部3に応じて予め定められ、放熱部制御手段9に記憶されている。   The target temperature is a target value (for example, 38 ° C.) of the temperature of hot water flowing out from the heat radiating unit 2, is determined in advance according to the heat source unit 3 to be cooled, and is stored in the heat radiating unit control means 9.

例えば、前回の動作量調整制御におけるTmaxの値が38℃であり、目標値と同じであった場合、上掲の式(1)の右辺第2項はゼロとなり、今回の動作量は、前回動作量と同じになる。すなわち、前回の動作量調整制御は適切に行われ、Toutが目標値に一致したため、今回の動作量調整制御も同じ動作量で行われる。   For example, if the value of Tmax in the previous operation amount adjustment control is 38 ° C. and is the same as the target value, the second term on the right side of the above equation (1) is zero, and the current operation amount is It becomes the same as the movement amount. That is, the previous operation amount adjustment control is appropriately performed, and Tout matches the target value, so that the current operation amount adjustment control is also performed with the same operation amount.

例えば、前回の動作量調整制御におけるTmaxの値が41℃であった場合、式(1)の右辺は2×(41℃−38℃)=6となり、前回動作量に対して6ポイント加えた値が、今回の動作量として設定される。例えば、前回動作量が39%であった場合は、今回の動作量が45%に設定される。これにより、前回の動作量調整制御よりも大きな動作量で放熱部2が動作して、湯水からの放熱の量が大きくなり、Toutが目標値に近づくので好適である。   For example, when the value of Tmax in the previous operation amount adjustment control is 41 ° C., the right side of Equation (1) is 2 × (41 ° C.−38 ° C.) = 6, and 6 points are added to the previous operation amount. A value is set as the current operation amount. For example, when the previous operation amount is 39%, the current operation amount is set to 45%. Thereby, the heat radiation part 2 operates with an operation amount larger than the previous operation amount adjustment control, the amount of heat radiation from the hot water is increased, and Tout approaches the target value, which is preferable.

すなわち貯湯式熱源冷却装置10では、放熱部制御手段9は、動作量調整制御において、放熱部2の動作量を、前回の動作量調整制御の期間における加熱往き路5の湯水温度(Tout)の最大値(Tmax)と、所定の目標温度との偏差に対して、所定の制御係数を乗じた値を、前回の動作量調整制御における動作量である前回動作量に加えた値へと調整する。   That is, in the hot water storage type heat source cooling device 10, the heat radiating unit control means 9 determines the operation amount of the heat radiating unit 2 in the operation amount adjustment control by the hot water temperature (Tout) of the heating outbound path 5 during the previous operation amount adjustment control. A value obtained by multiplying a deviation between the maximum value (Tmax) and a predetermined target temperature by a predetermined control coefficient is adjusted to a value added to the previous operation amount that is the operation amount in the previous operation amount adjustment control. .

ステップ#302で放熱部2の動作量が設定されると、ステップ#304に進む。   When the operation amount of the heat radiation unit 2 is set in step # 302, the process proceeds to step # 304.

ステップ#303では、放熱部制御手段9は、放熱部2の動作量を給水温度に基づいて設定する。Tmaxの値がゼロの場合、上掲の式(1)に基づいて動作量を決定することは妥当でないため、給水温度に基づいて設定する。例えば、給水温度が10℃未満の場合、放熱部2の動作量を50%に設定する。給水温度が10℃以上30℃未満の場合、放熱部2の動作量を75%に設定する。給水温度が30℃以上の場合、放熱部2の動作量を100%に設定する。放熱部2の動作量が設定されると、ステップ#304に進む。   In step # 303, the heat radiating unit control means 9 sets the operation amount of the heat radiating unit 2 based on the water supply temperature. When the value of Tmax is zero, it is not appropriate to determine the operation amount based on the above-described equation (1), and therefore it is set based on the feed water temperature. For example, when the feed water temperature is less than 10 ° C., the operation amount of the heat radiating unit 2 is set to 50%. When the feed water temperature is 10 ° C. or higher and lower than 30 ° C., the operation amount of the heat radiating unit 2 is set to 75%. When the feed water temperature is 30 ° C. or higher, the operation amount of the heat radiating unit 2 is set to 100%. When the operation amount of the heat radiation unit 2 is set, the process proceeds to step # 304.

すなわち貯湯式熱源冷却装置10では、放熱部制御手段9は、前回の動作量調整制御の期間における加熱往き路5の湯水温度(Tout)の最大値(Tmax)が設定されていない場合に、放熱部2の動作量を給水温度に基づいて決定する。   That is, in the hot water storage type heat source cooling device 10, the heat radiating unit control means 9 radiates heat when the maximum value (Tmax) of the hot water temperature (Tout) of the heating forward path 5 in the previous operation amount adjustment control period is not set. The operation amount of the unit 2 is determined based on the feed water temperature.

ステップ#304では、放熱部制御手段9は、放熱部2の動作量が下限値以上となるように、設定された動作量に対して補正を行う。下限値は、例えば給水温度に応じて決定される。例えば、給水温度が10℃未満の場合、下限値を10%に設定する。給水温度が10℃以上30℃未満の場合、下限値を30%に設定する。給水温度が30℃以上の場合、下限値を50%に設定する。放熱部制御手段9は、設定されている動作量と下限値とを比較して、動作量が下限値より小さい場合には、動作量を補正して、下限値以上の値に変更する。そしてステップ#305に進む。   In step # 304, the heat radiating unit control means 9 corrects the set operation amount so that the operation amount of the heat radiating unit 2 is equal to or higher than the lower limit value. The lower limit value is determined according to the feed water temperature, for example. For example, when the feed water temperature is less than 10 ° C., the lower limit value is set to 10%. When the feed water temperature is 10 ° C. or higher and lower than 30 ° C., the lower limit value is set to 30%. When the feed water temperature is 30 ° C. or higher, the lower limit value is set to 50%. The heat radiating unit control means 9 compares the set operation amount with the lower limit value, and if the operation amount is smaller than the lower limit value, corrects the operation amount and changes it to a value equal to or higher than the lower limit value. Then, the process proceeds to step # 305.

すなわち貯湯式熱源冷却装置10では、放熱部制御手段9は、動作量調整制御における放熱部2の動作量の下限値を給水温度に基づいて決定する。   That is, in the hot water storage type heat source cooling device 10, the heat radiating unit control means 9 determines the lower limit value of the operation amount of the heat radiating unit 2 in the operation amount adjustment control based on the feed water temperature.

ステップ#305では、放熱部制御手段9は、放熱部2の動作量を、上述のステップにて設定された動作量へと変更する。そしてエンドへ進む。   In step # 305, the heat radiating unit control means 9 changes the operation amount of the heat radiating unit 2 to the operation amount set in the above step. Then go to the end.

(他の実施形態)
(1)上述の実施形態では、Tmaxは、前回行った動作量調整制御の期間における、加熱往き路の湯水温度(Tout)の最大値としたが、これを変更して、Tmaxを前回行った動作量調整制御の期間における、加熱往き路の湯水温度(Tout)の平均値としてもよい。
(Other embodiments)
(1) In the above-described embodiment, Tmax is the maximum value of the hot water temperature (Tout) of the heating path in the period of the operation amount adjustment control performed last time, but this was changed and Tmax was performed last time. It is good also as an average value of the hot water temperature (Tout) of a heating going path in the period of operation amount adjustment control.

(2)上述の実施形態では、放熱部制御手段9による放熱部2の動作量の調整は、ラジエータファン2bの回転制御と、バイパス路2cの流量制御とを行う例を説明したが、どちらか一方のみとする構成も可能である。また、ラジエータファン2bの回転制御の代わりに、ラジエータファン2bの駆動のデューティー比の制御を行なうことも可能である。 (2) In the above-described embodiment, the adjustment of the operation amount of the heat radiating unit 2 by the heat radiating unit control means 9 has been described as an example in which the rotation control of the radiator fan 2b and the flow rate control of the bypass passage 2c are performed. A configuration with only one is also possible. Moreover, it is also possible to control the duty ratio of driving of the radiator fan 2b instead of the rotation control of the radiator fan 2b.

(3)上述の実施形態では、放熱部2がバイパス路2cを有して構成したが、バイパス路2cを有さない構成も可能である。 (3) In the above-described embodiment, the heat radiating unit 2 has the bypass path 2c, but a configuration without the bypass path 2c is also possible.

なお上述の実施形態(他の実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   Note that the configurations disclosed in the above-described embodiments (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments unless there is a contradiction. The embodiments disclosed in this specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

P :循環ポンプ
1 :貯湯槽
2 :放熱部
2a :熱交換器
2b :ラジエータファン
2c :バイパス路
3 :熱源部
4 :放熱往き路
5 :加熱往き路
6 :加熱戻り路
7 :第1温度センサ(放熱往き路温度検出手段)
8 :第2温度センサ(加熱往き路温度検出手段)
9 :放熱部制御手段
10 :貯湯式熱源冷却装置
P: Circulation pump 1: Hot water tank 2: Heat radiating section 2a: Heat exchanger 2b: Radiator fan 2c: Bypass path 3: Heat source section 4: Heat radiating path 5: Heating path 6: Heating return path 7: First temperature sensor (Temperature detection means for heat dissipation)
8: 2nd temperature sensor (heating outgoing path temperature detection means)
9: Heat radiating section control means 10: Hot water storage type heat source cooling device

Claims (9)

湯水を循環する循環ポンプと、湯水を貯留する貯湯槽と、湯水からの放熱を行う放熱部と、湯水に熱を与えて加熱する熱源部と、
前記貯湯槽の下部の湯水を前記放熱部に供給する放熱往き路と、
前記放熱部を通流した湯水を前記熱源部に供給する加熱往き路と、
前記熱源部を通流した湯水を前記貯湯槽の上部に戻す加熱戻り路と、
前記放熱往き路の湯水温度を検出する放熱往き路温度検出手段と、
前記加熱往き路の湯水温度を検出する加熱往き路温度検出手段と、
前記放熱部の動作を制御する放熱部制御手段を備えた貯湯式熱源冷却装置であって、
前記放熱部制御手段は、
前記放熱往き路の湯水温度に基づいて、前記放熱部を起動し、
前記加熱往き路の湯水温度に基づいて、前記放熱部の動作量を最大動作量または最大動作量よりも小さい中間動作量に調整する動作量調整制御を実行し、
前記放熱往き路の湯水温度に基づいて、前記放熱部を停止する貯湯式熱源冷却装置。
A circulation pump for circulating hot water, a hot water storage tank for storing hot water, a heat radiating part for radiating heat from the hot water, a heat source part for applying heat to the hot water, and heating,
A heat release path for supplying hot water in the lower part of the hot water tank to the heat radiating section;
A heating outbound path for supplying hot water flowing through the heat radiating section to the heat source section;
A heating return path for returning hot water flowing through the heat source part to the upper part of the hot water storage tank;
A heat-dissipation path temperature detecting means for detecting the hot water temperature of the heat-dissipation path;
A heating outbound temperature detecting means for detecting a hot water temperature in the heating outbound path;
A hot water storage type heat source cooling device provided with a heat radiation part control means for controlling the operation of the heat radiation part,
The heat radiating part control means includes:
Based on the hot water temperature of the heat dissipation path, the heat dissipation unit is activated,
Based on the hot water temperature of the heating outbound path, the operation amount adjustment control for adjusting the operation amount of the heat radiating unit to the maximum operation amount or an intermediate operation amount smaller than the maximum operation amount is performed,
A hot water storage type heat source cooling device that stops the heat radiating unit based on a hot water temperature in the heat radiation path.
前記放熱部制御手段は、
前記放熱往き路の湯水温度が所定の起動温度以上である場合に、前記放熱部を動作量が最大の状態で起動し、
前記放熱往き路の湯水温度が、前記起動温度より低い停止温度以下を所定時間継続した場合に、前記放熱部を停止する請求項1に記載の貯湯式熱源冷却装置。
The heat radiating part control means includes:
When the hot water temperature of the heat release path is equal to or higher than a predetermined start temperature, the heat dissipating part is started in a state where the operation amount is maximum,
The hot water storage type heat source cooling device according to claim 1, wherein the heat radiating unit is stopped when a hot water temperature in the heat radiating path continues below a stop temperature lower than the start temperature for a predetermined time.
前記放熱部制御手段は、前記放熱部が起動している状態において、
前記動作量調整制御を実行していない状態で、かつ前記加熱往き路の湯水温度が所定の制御開始温度以下の場合に、前記動作量調整制御を開始し、
前記動作量調整制御を実行している状態で、かつ前記加熱往き路の湯水温度が、前記制御開始温度よりも高い温度である所定の制御停止温度以上の場合に、前記動作量調整制御の実行を停止して、前記放熱部の動作量を最大の状態にする請求項1または2に記載の貯湯式熱源冷却装置。
In the state where the heat radiating unit is activated, the heat radiating unit control means
In a state where the operation amount adjustment control is not executed and the hot water temperature of the heating outbound path is equal to or lower than a predetermined control start temperature, the operation amount adjustment control is started.
Execution of the operation amount adjustment control when the operation amount adjustment control is being executed and the hot water temperature in the heating outbound path is equal to or higher than a predetermined control stop temperature that is higher than the control start temperature. The hot water storage type heat source cooling device according to claim 1 or 2, wherein the operation amount of the heat radiating portion is stopped to a maximum state.
前記放熱部制御手段は、前記動作量調整制御において、
前記放熱部の動作量を、前回の動作量調整制御の期間における前記加熱往き路の湯水温度の平均値または最大値と、所定の目標温度との偏差に対して、所定の制御係数を乗じた値を、前回の動作量調整制御における動作量である前回動作量に加えた値へと調整する、請求項1から3のいずれか1項に記載の貯湯式熱源冷却装置。
In the operation amount adjustment control, the heat radiating unit control means
The amount of operation of the heat radiating unit is multiplied by a predetermined control coefficient for the deviation between the average value or maximum value of the hot water temperature of the heating outbound path and the predetermined target temperature in the period of the previous operation amount adjustment control. The hot water storage type heat source cooling device according to any one of claims 1 to 3, wherein the value is adjusted to a value added to a previous operation amount that is an operation amount in the previous operation amount adjustment control.
前記放熱部制御手段は、給水温度に基づいて前記制御係数の値を決定する請求項4に記載の貯湯式熱源冷却装置。   The hot water storage type heat source cooling device according to claim 4, wherein the heat radiating unit control means determines a value of the control coefficient based on a water supply temperature. 前記放熱部制御手段は、前回の動作量調整制御の期間における前記加熱往き路の湯水温度の平均値または最大値が設定されていない場合に、前記放熱部の動作量を前記給水温度に基づいて決定する請求項4または5に記載の貯湯式熱源冷却装置。   The heat radiating unit control means determines the operation amount of the heat radiating unit based on the water supply temperature when the average value or the maximum value of the hot water temperature of the heating outbound path in the period of the previous operation amount adjustment control is not set. The hot water storage type heat source cooling device according to claim 4 or 5 to be determined. 前記放熱部制御手段は、前記動作量調整制御における動作量の下限値を給水温度に基づいて決定する請求項1から6のいずれか1項に記載の貯湯式熱源冷却装置。   The hot water storage type heat source cooling device according to any one of claims 1 to 6, wherein the heat radiating unit control means determines a lower limit value of an operation amount in the operation amount adjustment control based on a water supply temperature. 前記放熱部は、湯水が通流する熱交換器と、前記熱交換器を空冷するラジエータファンとを有し、
前記放熱部制御手段は、前記放熱部の動作量の調整を、前記ラジエータファンの回転数の制御、または前記ラジエータファンの駆動のデューティー比の制御により行う請求項1から7のいずれか1項に記載の貯湯式熱源冷却装置。
The heat radiating section includes a heat exchanger through which hot water flows and a radiator fan that air-cools the heat exchanger.
The heat radiating unit control means adjusts the operation amount of the heat radiating unit by controlling the number of revolutions of the radiator fan or controlling the duty ratio of driving the radiator fan. The hot water storage type heat source cooling device described.
前記放熱部は、湯水が通流する熱交換器と、前記熱交換器を空冷するラジエータファンと、前記熱交換器をバイパスするバイパス路とを有し、
前記放熱部制御手段は、前記放熱部の動作量の調整を、前記バイパス路への湯水の流量の制御により行う請求項1から7のいずれか1項に記載の貯湯式熱源冷却装置。
The heat dissipating unit includes a heat exchanger through which hot water flows, a radiator fan that air-cools the heat exchanger, and a bypass that bypasses the heat exchanger,
The hot water storage type heat source cooling device according to any one of claims 1 to 7, wherein the heat radiating unit control means adjusts an operation amount of the heat radiating unit by controlling a flow rate of hot water to the bypass passage.
JP2016179759A 2016-09-14 2016-09-14 Hot water storage type heat source cooling device Pending JP2018044715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179759A JP2018044715A (en) 2016-09-14 2016-09-14 Hot water storage type heat source cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179759A JP2018044715A (en) 2016-09-14 2016-09-14 Hot water storage type heat source cooling device

Publications (1)

Publication Number Publication Date
JP2018044715A true JP2018044715A (en) 2018-03-22

Family

ID=61694704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179759A Pending JP2018044715A (en) 2016-09-14 2016-09-14 Hot water storage type heat source cooling device

Country Status (1)

Country Link
JP (1) JP2018044715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018918A (en) * 2019-07-19 2021-02-15 京セラ株式会社 Fuel cell device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018918A (en) * 2019-07-19 2021-02-15 京セラ株式会社 Fuel cell device
JP7347981B2 (en) 2019-07-19 2023-09-20 京セラ株式会社 fuel cell device

Similar Documents

Publication Publication Date Title
JP4860746B2 (en) Engine cooling system
US10132227B2 (en) Cooling device for internal combustion engine
JP3932277B2 (en) Control method of electronic control thermostat
US8342142B2 (en) Cooling apparatus and cooling method for internal combustion engine
JP6241435B2 (en) Internal combustion engine temperature control device
US11148655B2 (en) Temperature control apparatus of vehicle
US10316731B2 (en) Method and system for controlling coolant circulating in engine
JP2015094264A (en) Engine cooling control device
JP2010190142A (en) Cooling device for internal combustion engine
JP2007257976A (en) Fuel cell system
JP2017212093A (en) Cooling system
KR20250088595A (en) Thermal management control method, thermal management control device and vehicle
JP5582053B2 (en) Heat pump hot water heater
JP2018044715A (en) Hot water storage type heat source cooling device
JP2011190769A (en) Device for control of internal combustion engine
US20130239912A1 (en) Cooling Apparatus of Internal Combustion Engine for Vehicle
JP2004303446A (en) Fuel cell system
JP5442521B2 (en) Heat pump type hot water heater
JP7471247B2 (en) Fluid circulation heating system
JP4788097B2 (en) Fuel cell system
WO2016189741A1 (en) Vehicular air-conditioning system
JP5434054B2 (en) Fuel cell system
WO2017159496A1 (en) Liquid heater
JP2009030822A (en) Flow control valve and flow control method
WO2023026871A1 (en) Heating control device and control program, fluid heating unit, heating cycle device, and vehicle air conditioning device comprising same