JP2018087354A - Biodegradable resin composition and method for producing the same - Google Patents
Biodegradable resin composition and method for producing the same Download PDFInfo
- Publication number
- JP2018087354A JP2018087354A JP2018039026A JP2018039026A JP2018087354A JP 2018087354 A JP2018087354 A JP 2018087354A JP 2018039026 A JP2018039026 A JP 2018039026A JP 2018039026 A JP2018039026 A JP 2018039026A JP 2018087354 A JP2018087354 A JP 2018087354A
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- mass
- binder
- content
- flakes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 23
- 229920006167 biodegradable resin Polymers 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 229920000747 poly(lactic acid) Polymers 0.000 claims abstract description 59
- 239000004626 polylactic acid Substances 0.000 claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 54
- 239000011230 binding agent Substances 0.000 claims abstract description 50
- 239000000843 powder Substances 0.000 claims abstract description 47
- 229920002472 Starch Polymers 0.000 claims abstract description 20
- 235000019698 starch Nutrition 0.000 claims abstract description 20
- 239000008107 starch Substances 0.000 claims abstract description 20
- 229920002261 Corn starch Polymers 0.000 claims abstract description 10
- 239000008120 corn starch Substances 0.000 claims abstract description 10
- 235000001206 Amorphophallus rivieri Nutrition 0.000 claims abstract description 9
- 108010076119 Caseins Proteins 0.000 claims abstract description 9
- 108010068370 Glutens Proteins 0.000 claims abstract description 9
- 229920002752 Konjac Polymers 0.000 claims abstract description 9
- 108010073771 Soybean Proteins Proteins 0.000 claims abstract description 9
- 239000005018 casein Substances 0.000 claims abstract description 9
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 235000021240 caseins Nutrition 0.000 claims abstract description 9
- 235000021312 gluten Nutrition 0.000 claims abstract description 9
- 240000003183 Manihot esculenta Species 0.000 claims abstract description 8
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims abstract description 8
- 235000019710 soybean protein Nutrition 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 32
- 238000002156 mixing Methods 0.000 claims description 29
- 241000196324 Embryophyta Species 0.000 claims description 26
- 238000004898 kneading Methods 0.000 claims description 16
- 238000002360 preparation method Methods 0.000 claims description 10
- 244000247812 Amorphophallus rivieri Species 0.000 claims description 8
- 244000061456 Solanum tuberosum Species 0.000 claims description 8
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 8
- 235000010485 konjac Nutrition 0.000 claims description 8
- 239000000252 konjac Substances 0.000 claims description 8
- 229940001941 soy protein Drugs 0.000 claims description 7
- 238000006065 biodegradation reaction Methods 0.000 claims 1
- 229920003002 synthetic resin Polymers 0.000 abstract description 18
- 239000000057 synthetic resin Substances 0.000 abstract description 18
- 230000009467 reduction Effects 0.000 abstract description 7
- 239000005418 vegetable material Substances 0.000 abstract 3
- 235000002239 Dracunculus vulgaris Nutrition 0.000 abstract 1
- 235000000039 Opuntia compressa Nutrition 0.000 abstract 1
- 244000106264 Opuntia compressa Species 0.000 abstract 1
- 235000014829 Opuntia humifusa var. ammophila Nutrition 0.000 abstract 1
- 235000014830 Opuntia humifusa var. austrina Nutrition 0.000 abstract 1
- 235000013389 Opuntia humifusa var. humifusa Nutrition 0.000 abstract 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 54
- 235000017491 Bambusa tulda Nutrition 0.000 description 54
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 54
- 241001330002 Bambuseae Species 0.000 description 53
- 239000011425 bamboo Substances 0.000 description 53
- 238000000465 moulding Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 239000008188 pellet Substances 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- 239000003208 petroleum Substances 0.000 description 13
- 238000009826 distribution Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 239000002023 wood Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 102000011632 Caseins Human genes 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- -1 it may be firewood Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000010902 straw Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000010903 husk Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 239000004632 polycaprolactone Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000209128 Bambusa Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
本発明は,高い生分解性を保持し,価格の上昇を抑え,さらに石油製合成樹脂に匹敵する程度の高い機械的強度を有する成形品などの原料となる生分解性組成物及びこの組成物の製造方法に関する。 The present invention relates to a biodegradable composition used as a raw material for a molded article or the like that retains high biodegradability, suppresses an increase in price, and has a high mechanical strength comparable to petroleum synthetic resin. It relates to the manufacturing method.
現代社会において,合成樹脂からなる多種多様の成形体或いは成形品が広い分野で大量に使用されている。しかし,これらの成形品などは,その殆どが石油を原料とした合成樹脂製であって,これらが不要となって廃棄処分する場合に,例えば地中に埋めるとそれらはほぼ半永久にそのままの状態で地中に残存してしまい,また焼却するとダイオキシンなどの有害物質やCO2が発生してしまうなどとして,これらが環境破壊或いは人体への悪影響などの諸問題を誘発する。そのため,近年,このような諸問題を解決する方策の一つとして,自然環境下で分解される生分解性樹脂が提案されて,一部で実用化が試みられている。 In the modern society, a large variety of molded products or molded products made of synthetic resin are used in a wide range of fields. However, most of these molded products are made of synthetic resin made from petroleum. When they are no longer needed and disposed of, for example, when buried in the ground, they remain almost semi-permanent. in will remain in the ground, and as such when incinerating hazardous substances and CO 2, such as dioxins occur, they induce problems such as adverse effects on the environmental destruction or human body. Therefore, in recent years, biodegradable resins that can be decomposed in the natural environment have been proposed as one of the measures for solving such problems, and some of them have been put into practical use.
例えば特許文献1(特許第3793783号公報)には,多種の植物繊維材から,竹材を採用して,これを粉末にしたものを用いて成形した竹粉製プラスチック様成形体及びその製造方法が提案されている。この製造方法は,以下の(a)〜(b)工程を含んでいる。すなわち,(a)20重量%以下の水分含有量及び10メッシュパス以下或いは400メッシュパス以上の粒度を有する竹粉を準備する準備工程,(b)この竹粉を所定の成形型に充填し,80℃〜200℃の加熱温度及び20MPa以上の圧力で加圧する成形工程,及び(c)前記成形型内で冷却固化せしめて成形体とする冷却工程。 For example, Patent Document 1 (Japanese Patent No. 3793783) discloses a bamboo powder plastic-like molded body formed by using bamboo from various plant fiber materials and molding the bamboo into a powder, and a method for manufacturing the same. Proposed. This manufacturing method includes the following steps (a) to (b). That is, (a) a preparation step of preparing bamboo powder having a water content of 20% by weight or less and a particle size of 10 mesh pass or less or 400 mesh pass or more, (b) filling the bamboo powder in a predetermined mold, A molding step of pressing at a heating temperature of 80 ° C. to 200 ° C. and a pressure of 20 MPa or more, and (c) a cooling step of cooling and solidifying in the molding die to obtain a molded body.
この技術によれば,接着剤などを使用せずに竹粉のみでプラスチック様成形体の製造ができて,従来の木粉を利用した成形体に比べて十分に低温かつ低圧でプラスチック様成形体を得ることができる,とされている。 According to this technology, it is possible to produce a plastic-like molded body using only bamboo powder without using an adhesive, etc., and a plastic-like molded body at a sufficiently low temperature and low pressure compared to a molded body using conventional wood powder. It is said that can be obtained.
また,特許文献2(特許第4149887号公報)には,少量の生分解性樹脂と多量の植物系粉粒体を用いて製造した複合生分解性成形品が提案されている。この成形品は植物系材料60〜90重量%とヒドロキシカルボン酸系樹脂40〜10重量%(両者の合計は100重量%)とで構成されて,前記ヒドロキシカルボン酸系樹脂はポリ乳酸及びポリカプロラクトンからなり,これらのポリ乳酸/ポリカプロラクトンの重量比率は5/95〜95/5の範囲に設定されている。
この技術によれば,多量の植物系粉粒体に対して少量の生分解性樹脂を使用して,機械的物性や耐湿性に優れ,空気中で使用する際には機械的物性や耐湿性に優れ,生分解性,すなわち土中に放置すれば分解あるいは崩壊してしまう成形品を得ることができると,されている。
Patent Document 2 (Patent No. 4149987) proposes a composite biodegradable molded product produced using a small amount of biodegradable resin and a large amount of plant-based granular material. This molded article is composed of 60 to 90% by weight of plant-based material and 40 to 10% by weight of hydroxycarboxylic acid resin (total of both is 100% by weight). The hydroxycarboxylic acid resin is composed of polylactic acid and polycaprolactone. The weight ratio of these polylactic acid / polycaprolactone is set in the range of 5/95 to 95/5.
According to this technology, a small amount of biodegradable resin is used for a large amount of plant-based granule, and it is excellent in mechanical properties and moisture resistance. When used in air, mechanical properties and moisture resistance are excellent. It is said that it is excellent in biodegradability, that is, it is possible to obtain a molded product that decomposes or collapses when left in soil.
しかし,これらの特許文献1,2に記載された成形体(品)は,いずれも粒度が小さい,すなわち微粉末を用いて製造するもので,これらには種々の課題が潜在している。例えば特許文献1に記載された成形体は,竹粉は20重量%以下の水分含有量及び10メッシュパス以下或いは400メッシュパス以上にしたものを使用し,また,特許文献2に記載された成形品は,植物系材料は木粉,竹粉などの粉末でその粒度を20メッシュ以下,好ましくは50メッシュ以下,さらに好ましくは100メッシュ以下にしたものを使用したものである。
However, the molded articles (articles) described in
ところが,これらの竹粉や木粉などの粒度を上記メッシュパス或いはメッシュ値になるまで粉砕するには,それらの製造が困難でかつ面倒であると共に,微粉末にするためには,例えば竹材を使用する場合,竹そのもののみの利用にとどまり,枝,茎,葉は使用できない。また,それらの微粉末の取扱いが極めて難しく,扱い方によっては不慮の事故を誘発する恐れがあり,一方でまたこれらがコスト高を招来する原因となるなどの多くの課題が潜在している。すなわち,上記のような微粉末を製造するには高精度の粉砕機を必要とし,その粉砕に掛かる処理時間が多くなり,また竹材や木材などの植物系材料を粉砕機で粉砕する前工程に,これらの材料の乾燥処理が必須となり,所定の水分含有量以下に乾燥しなければ,通常,上記のような微粉末を製造できない。特許文献1の竹粉準備工程では,20重量%以下の水分含有量にしなければならないので,通常,生竹の含水水分量はほぼその倍程度であり,この倍程度の水分量を半分以下にしなければならないので,そのための乾燥装置及び乾燥処理が必要となり,相当の設備費及び処理費が掛かってしまうことになる。また,特許文献2の成形品の製造にあっても同様の課題が潜在している。
However, in order to pulverize the particle size of these bamboo powder and wood powder until the above mesh pass or mesh value is obtained, their production is difficult and troublesome. When used, it is limited to the use of bamboo itself, branches, stems and leaves cannot be used. In addition, it is extremely difficult to handle these fine powders, and depending on how they are handled, there is a risk of inadvertent accidents. On the other hand, there are many problems such as causing high costs. That is, in order to produce the fine powder as described above, a high-precision pulverizer is required, and the processing time required for the pulverization is increased. Therefore, it is essential to dry these materials, and usually the fine powder as described above cannot be produced unless it is dried below a predetermined water content. In the bamboo powder preparation process of Patent Document 1, the moisture content must be 20% by weight or less, so the moisture content of raw bamboo is usually about twice that, and this amount of moisture is reduced to half or less. Therefore, a drying apparatus and a drying process for that purpose are necessary, and considerable equipment costs and processing costs are required. In addition, similar problems exist in the manufacture of the molded article of
また,上記のような微粉末の扱いには,高温処理が必要となるので,成形に際して内部に水蒸気が滞留し易くなって,いわゆるパンク(破壊)が発生し,これがときに不慮の事故原因となることがあり,また成形不良を招くことも多くなる。その結果,現実的に上記のような微紛末を製造すること及びその扱いが極めて難しく,このような微粉末を用いた成形体(品)の製造は極めて困難となっている。なお,このパンクの発生原因は,未だ明確にされていないが所定の含水量とされた粉末を圧密して加熱加圧下で成形する際に,内部に発生する水蒸気が加圧下で成形体内部に滞留し,これが加熱によって小爆発して成形表面に露呈し,或いは内部の熱分解物を発生させることによるものと考えられる。 In addition, the handling of fine powders as described above requires high-temperature treatment, so that water vapor tends to stay inside during molding, and so-called puncture (breakage) occurs, which sometimes causes unexpected accidents. In addition, there are many cases where molding defects are caused. As a result, it is extremely difficult to actually manufacture and handle such fine powder as described above, and it is extremely difficult to manufacture a molded body (article) using such a fine powder. The cause of this puncture has not been clarified yet, but when the powder having a predetermined water content is compacted and molded under heat and pressure, the water vapor generated inside is compressed and formed inside the molded body under pressure. This may be due to stagnation, which may be caused by a small explosion due to heating and exposure to the molding surface, or by generating an internal thermal decomposition product.
したがって,特許文献1,2の成形体(品)は,いずれも高精度の粉砕機及び乾燥装置が必要となり,そのための設備費などが高価となり,成形体(品)のコスト高を招くことになる。なお,これらの成形体(品)を製造する際の微粉末の扱いに危険性が潜在しているので,そのための対策も必須となっている。
Therefore, the compacts (articles) of
また,特許文献2は,ポリ乳酸を使用しているが,このポリ乳酸と植物系材料とを直接結合させることが困難であって,これらの間の親和性ないしなじめ性が不足しがちになり,凝固状態においても結合力の不足を起して所望の機械的強度を得ることが難しくなっている。一方でまた,このポリ乳酸は結晶化が極めて遅く通常の成形条件では殆ど非結晶状態であり,ガラス転移温度60℃以上では形状維持が困難なほど軟化するなどの課題がある。
In addition,
以上から,特許文献1,2の成形体(品)は,いずれも製造には高精度の粉砕機及び乾燥装置などが必要となり,設備費及び処理費などが高騰し,これが製品コスト高の原因となって,これまでの石油製合成樹脂からなる成形体(品)との価格競争力が失われており,このような成形体(品)の実用化が試みられているものの未だ普及するまでに至っていない。
From the above, the compacts (articles) of
そこで,本発明者は,これらの課題のうち,まずコストの高騰は従来の粉末に換えてこれより粒度が大きくまたこれとは異なる範疇に分類されるフレーク(flake)を使用することにより高精度の粉砕機及び乾燥装置などを不要にしてコストの低減を図るとともに微粉末を扱う危険性を解消し,またこのようなフレークを用いても結合剤を使用することによってポリ乳酸との結合が堅固になり所望の機械的強度が得られること,さらにポリ乳酸が抱える課題はその含有量を所定量にすることにより解決できることなどを見出して本発明を完成するに至ったものである。 Therefore, the inventor of the present invention, among these problems, firstly, the increase in cost is achieved by using flakes having a particle size larger than that of the conventional powder and classified into a different category. This eliminates the need for a pulverizer and dryer, eliminates the risk of handling fine powders, and even with such flakes, the use of a binder ensures a strong bond with polylactic acid. As a result, the inventors have found that the desired mechanical strength can be obtained, and that the problems of polylactic acid can be solved by setting the content to a predetermined amount, thereby completing the present invention.
そこで,本発明の目的は,高い生分解性を保持し,石油製合成樹脂に匹敵する程度の高い機械的強度を有するとともに,さらなるコストの低減を図って,これまでの石油製合成樹脂との価格競争力を付けて商業化を実現した生分解性樹脂組成物及びこの樹脂組成物の製造方法並びに成形品を提供することにある。 Therefore, an object of the present invention is to maintain high biodegradability, have high mechanical strength comparable to that of petroleum synthetic resins, and further reduce cost, An object is to provide a biodegradable resin composition that has been commercialized with price competitiveness, a method for producing the resin composition, and a molded product.
本発明は,以下の構成によって達成できる。すなわち,本発明の第1の態様における生分解性樹脂組成物は,植物系材料(A)と,結合剤(B)と,ポリ乳酸(C)とからなる生分解性樹脂組成物であって,前記植物系材料(A)の含有量は95〜51質量%,前記結合材(B)の含有量は17〜2質量%,前記ポリ乳酸(C)の含有量は35〜3質量%(これら(A)〜(C)の合計は100質量%)であり,かつ,前記結合剤(B)の含有量は前記ポリ乳酸(C)の含有量未満であり,前記結合剤(B)は,カゼイン,大豆蛋白,グルテン,コンニャクイモ粉末,澱粉,ドライスターチ,コーンスターチ,タピオカのうちの1または2以上の組合せからからなり,前記植物系材料(A)はフレーク状のものからなることを特徴とする。 The present invention can be achieved by the following configurations. That is, the biodegradable resin composition according to the first aspect of the present invention is a biodegradable resin composition comprising a plant material (A), a binder (B), and polylactic acid (C). The content of the plant material (A) is 95 to 51% by mass, the content of the binder (B) is 17 to 2% by mass, and the content of the polylactic acid (C) is 35 to 3% by mass ( The total of these (A) to (C) is 100% by mass), and the content of the binder (B) is less than the content of the polylactic acid (C), and the binder (B) is , Casein, soy protein, gluten, konjac potato powder, starch, dry starch, corn starch, or a combination of two or more of tapioca, and the plant material (A) is made of flakes And
さらに,第2の態様における生分解性樹脂組成物の製造方法は,植物系材料(A)を破砕してフレークにする材料準備工程と,前記フレーク(A)にされた植物系材料95〜51質量%に結合剤(B)17〜2質量%を混合する結合剤混合工程と,前記結合剤混合工程で混合した混合物に,ポリ乳酸(C)を35〜3質量%の範囲にあって,前記結合剤(B)の含有量未満(これら(A)〜(C)の合計は100質量%)の量を混入して混錬するポリ乳酸混練工程と,を含む生分解性樹脂組成物の製造方法であって,前記結合剤(B)として,カゼイン,大豆蛋白,グルテン,コンニャクイモ粉末,澱粉,ドライスターチ,コーンスターチ,タピオカのうちの1または2以上の組合せからからなるものと用いることを特徴とする。 Furthermore, the manufacturing method of the biodegradable resin composition in the second aspect includes a material preparation step for crushing the plant material (A) to make flakes, and the plant material 95 to 51 made into the flakes (A). In the binder mixing step of mixing 17 to 2% by mass of binder (B) with mass%, and in the mixture mixed in the binder mixing step, polylactic acid (C) is in the range of 35 to 3% by mass, A polylactic acid kneading step of mixing and kneading the amount of the binder (B) less than the content (the total of these (A) to (C) is 100% by mass), and a biodegradable resin composition A manufacturing method, wherein the binder (B) is composed of one or a combination of casein, soy protein, gluten, konjac potato powder, starch, dry starch, corn starch, tapioca. Features.
第1の態様の生分解性樹脂組成物によれば,高い生分解性を保持し,コストの上昇を抑えて低コスト化を実現し,さらに石油製合成樹脂と匹敵する程の高い機械的強度を有する成形体の原料となる生分解性組成物を提供できる。具体的には,結合剤(B)としてカゼイン,大豆蛋白,グルテン,コンニャクイモ粉末,澱粉,ドライスターチ,コーンスターチ,タピオカのうちの1または2以上の組合せからからなるものの適用により植物系材料(A)の増量が可能になるとともに,ポリ乳酸(C)との結合が堅固になり,石油製合成樹脂に匹敵する程の高い機械的強度が得られ,また,ポリ乳酸が抱える課題はこの量を所定量にすることにより解消できる。そして,特に特徴的なことは,低コスト化が実現できて,石油製合成樹脂との価格競争力が付くので,より広い分野での利用が可能になることである。 According to the biodegradable resin composition of the first aspect, high biodegradability is maintained, cost increase is suppressed, cost reduction is achieved, and mechanical strength is comparable to that of petroleum synthetic resin. The biodegradable composition used as the raw material of the molded object which has can be provided. Specifically, a plant-based material (A) by applying one or a combination of two or more of casein, soy protein, gluten, konjac potato powder, starch, dry starch, corn starch and tapioca as the binder (B). ) Can be increased, and the bond with polylactic acid (C) becomes firm, resulting in high mechanical strength comparable to that of petroleum synthetic resin. It can be solved by setting it to a predetermined amount. And what is particularly characteristic is that the cost can be reduced and the price competitiveness with the synthetic resin made of petroleum can be obtained, so that it can be used in a wider range of fields.
しかも,第1の態様の生分解性組成物によれば,従来技術の粉末を使用したときに生じる課題を解決できて,しかもデザイン性を向上させることができる。加えて,結合剤としてのカゼイン,大豆蛋白,グルテン,コンニャクイモ粉末,澱粉,ドライスターチ,コーンスターチ,タピオカは身近に存在しているもので,簡単かつ安価に入手できるため,より生分解性樹脂組成物の低コスト化を実現できる。 Moreover, according to the biodegradable composition of the first aspect, it is possible to solve the problems that occur when the powder of the prior art is used, and to improve the design. In addition, casein, soy protein, gluten, konjac potato powder, starch, dry starch, corn starch, and tapioca as binders are familiar and can be obtained easily and inexpensively, making them more biodegradable resin compositions. Cost reduction of goods can be realized.
さらに,第2の態様の生分解性樹脂組成物の製造方法によれば,高い生分解性を保持し,コストの上昇を抑えてコスト低減を実現しつつ,さらに石油製合成樹脂と匹敵する程度の高い機械的強度を有する成形体の原料となる生分解性組成物を製造できる。特に,コストの低減は,これまでの合成樹脂との価格競争力にも対抗できるものであり,この樹脂組成物は広い分野での利用が可能になる。 Furthermore, according to the method for producing the biodegradable resin composition of the second aspect, high biodegradability is maintained, cost increase is suppressed and cost reduction is realized, and further, comparable to petroleum synthetic resin. A biodegradable composition as a raw material for a molded article having high mechanical strength can be produced. In particular, the cost reduction can counter the price competitiveness with conventional synthetic resins, and this resin composition can be used in a wide range of fields.
具体的には,結合剤(B)としてカゼイン,大豆蛋白,グルテン,コンニャクイモ粉末,澱粉,ドライスターチ,コーンスターチ,タピオカのうちの1または2以上の組合せからからなるものを用いることにより植物系材料(A)の増量が可能になるとともに,ポリ乳酸(C)との結合が堅固になり,石油製合成樹脂に匹敵する程の高い機械的強度が得られる。なお,この結合剤(B)はポリ乳酸(C)の量より少なくしてあるのでポリ乳酸の減量にならず,その特性を損なうことがない。すなわち,ポリ乳酸が抱える課題はこの量を所定量にすることにより解消できる。そして,特に特徴的なことは,低コスト化が実現できて,石油製合成樹脂との価格競争力が付くので,多種多様な成形体乃至成形品が製造できるので,多様な分野での利用が可能になることである。 Specifically, a plant material is obtained by using one or a combination of two or more of casein, soy protein, gluten, konjac potato powder, starch, dry starch, corn starch and tapioca as the binder (B). The amount of (A) can be increased, and the bond with polylactic acid (C) becomes firm, and a high mechanical strength comparable to petroleum synthetic resin can be obtained. In addition, since this binder (B) is made smaller than the amount of polylactic acid (C), the amount of polylactic acid is not reduced, and its properties are not impaired. That is, the problem of polylactic acid can be solved by setting this amount to a predetermined amount. And, what is particularly characteristic is that cost reduction can be realized and price competitiveness with petroleum synthetic resin can be achieved, so that a wide variety of molded products or molded products can be manufactured. It is possible.
以下,図面を参照して本発明の実施形態を説明する。但し,以下の示す実施形態は,本発明の技術思想を具体化するための生分解性樹脂組成物などを例示するものであって本発明をこれらに特定するものではなく,特許請求の範囲に含まれるその他の実施形態のものにも等しく適用し得るものである。 Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment shown below exemplifies a biodegradable resin composition for embodying the technical idea of the present invention, and does not specify the present invention. It is equally applicable to the other embodiments included.
図1を参照して,本発明の実施形態に係る生分解性樹脂組成物の製造方法を説明する。
本発明の実施形態に係る生分解性樹脂組成物の製造方法は,以下の工程を含んでいる。
植物系材料(A)からなる所定サイズのフレークを準備する材料準備工程1,
フレークの所定量に所定量の結合剤(B)を混合する結合剤混合工程2,
混合物にポリ乳酸(C)を所定量の範囲にあって,結合剤(B)量未満の量(これら(A)〜(C)の合計は100質量%)を混入して混錬するポリ乳酸混練工程3,
混練物から任意形状の素材を成形する組成物成形工程4,及び工程で成形された組成物を用いて各種の成形品を作製する成形品作製工程5。
With reference to FIG. 1, the manufacturing method of the biodegradable resin composition which concerns on embodiment of this invention is demonstrated.
The manufacturing method of the biodegradable resin composition which concerns on embodiment of this invention includes the following processes.
Material preparation step 1 for preparing flakes of a predetermined size made of plant material (A)
Polylactic acid that is kneaded by mixing polylactic acid (C) into the mixture in a predetermined amount range and containing less than the amount of binder (B) (the total of these (A) to (C) is 100% by mass)
A
以下,個々の工程を順次詳述する。 Hereinafter, each process will be described in detail.
ア 植物系材料(A)の準備工程1
植物系材料(A)は,特に限定されないが木材,竹材,籾殻,麻などである。以下,これらのうち竹材を使用した例について説明する。特に,竹材を採用すると,以下の利点がある。
竹は,従来,建築用資材,野菜栽培用資材,物干し竿や釣り竿などの材料に広く利用されていたが,近年,これらは合成樹脂製に置き換わってその需要が大幅に減少し,一方でまた,竹は強靭な生命力及び繁殖力があることから増殖をし続けて,里山が竹藪化し,他の植物の生育を妨げるとともに環境悪化を招いている。さらに,この竹の繁殖は,竹根が地表面の浅いところに張って,地中深く入り込まないので,豪雨などにより地表土砂崩れなどの自然災害を起す原因ともなっている。この状況下で,竹の利用を見つけ出すと,上記課題を解決できて,社会的意義が大きい。また,竹を採用すると,木などと比べて,緻密で機械的強度(静的強度及び衝撃強度)が優れ,リグニンの量が少ない(この量が多いと混練機に付着して機器メンテナンスが面倒で手間がかかる。)ので,機器メンテナンスの手間が軽減されて高強度の成形品を得ることができる。
Oh, preparation process 1 of plant material (A)
The plant material (A) is not particularly limited, but is wood, bamboo, rice husk, hemp or the like. Hereinafter, an example using bamboo will be described. In particular, the use of bamboo has the following advantages.
Bamboo has traditionally been widely used for building materials, vegetable cultivation materials, clothespins, fishing rods, and other materials. However, in recent years, these have been replaced by synthetic resins, and their demand has decreased significantly. , Bamboo continues to grow because of its strong vitality and fertility, and the satoyama has turned into bamboo, hindering the growth of other plants and causing environmental degradation. In addition, the propagation of this bamboo causes a natural disaster such as a landslide due to heavy rain, because the bamboo roots stretch over the shallow surface and do not penetrate deep into the ground. Under these circumstances, finding out the use of bamboo can solve the above problems and has great social significance. In addition, when bamboo is used, the mechanical strength (static strength and impact strength) is excellent and the amount of lignin is small compared to wood, etc. (if this amount is large, it adheres to the kneader and the equipment maintenance is troublesome). Therefore, it is possible to obtain a high-strength molded product by reducing the labor required for equipment maintenance.
本発明の実施形態は,上記の利点を有する竹を用いるが,この竹は,竹の種類が限定されるものではなく,全ての種類の竹が使用できる。これらの竹は,まるごとの竹,すなわち地下茎,茎,枝,葉(以下,これらを総称して竹材ともいう。)を含み,これらのいずれかの1つ或いは2つ以上を混ぜ合せて用いる。また,この竹だけでなく,笹材であってもよく,またこの笹材と竹材との混合物もよい。 The embodiment of the present invention uses bamboo having the above-mentioned advantages, but this bamboo is not limited to the type of bamboo, and all types of bamboo can be used. These bamboos include the whole bamboo, that is, underground stems, stems, branches, and leaves (hereinafter collectively referred to as bamboo materials), and one or more of these are used in combination. In addition to this bamboo, it may be firewood, or a mixture of this firewood and bamboo.
この竹材は破砕などによりフレーク(flake)にしたものを用いる。すなわち,竹材を破砕すると砕けて大量の破片或いは薄片などとなり,これらは概ね立方体,直方体,多角柱及び多角錐などに近似乃至これらが変形した立体形状のものとなる[以下,これらを総称してフレーク(flake)ともいう。]。このフレークをそのまま使用することもできるがサイズが大きいと組成物の製造或いは成形の際に流動性が悪くなって均一に分散されず,また他の材料との混合或いは混練も十分行えなく所望の成形体などを得ることが困難になり,一方でまた,小サイズにすると従来技術の粉末粒度に近づいて従来技術の課題が顕在化する恐れがあるので小さく過ぎることもできない。
そこで,このフレークは一辺が2〜5mm及び他の辺が5mm以下のサイズにしたものを使用するのが好ましい。また,このサイズのフレークは所定量内にあって,50質量%を超えるようにするのが好ましい。なお,これらのフレークサイズはJIS規格メッシュ(目数/インチ)で表すと,2〜5mmは8.60メッシュ(2000μm)〜3.85メッシュ(5000μm)の範囲となる。
This bamboo material is made into flakes by crushing or the like. In other words, when bamboo is crushed, it breaks into large pieces or thin pieces, which are roughly similar to cubes, rectangular parallelepipeds, polygonal cylinders, polygonal pyramids, etc. Also called flake. ]. These flakes can be used as they are, but if the size is large, the fluidity will deteriorate during the production or molding of the composition and it will not be uniformly dispersed, and it will not be sufficiently mixed or kneaded with other materials as desired. On the other hand, it becomes difficult to obtain a molded body, etc. On the other hand, if the size is reduced, it is close to the powder particle size of the prior art and the problems of the prior art may become obvious, so it cannot be too small.
Therefore, it is preferable to use flakes having a size of 2 to 5 mm on one side and 5 mm or less on the other side. Moreover, it is preferable that the flakes of this size are within a predetermined amount and exceed 50% by mass. When these flake sizes are expressed in JIS standard mesh (number of meshes / inch), 2 to 5 mm is in the range of 8.60 mesh (2000 μm) to 3.85 mesh (5000 μm).
このフレークは破砕機を用いて竹材を破砕して作成する。この破砕は上記サイズにするのであれば粗破砕で可能となるので,従来技術のような高精度の粉砕機は不要となる。これにより設備費及び処理費などを低減できる。また,破砕は竹の種類,部位などを分別することなく,まるごとを破砕機に投入して粗破砕するのがよい。すなわち,まるごとの竹,すなわち地下茎,茎,枝,葉などを一緒にして破砕する。この破砕によると,フレークは上記のサイズにあって2mm以下のもの,すなわち粉末も発生する。しかし,この粉末は廃棄することなく,所定の少量であれば上記サイズのフレークに混ぜて使用する。この混ぜ合せにより,大きいサイズのフレーク間の隙間を埋めることができて,形成の際に,金型の狭い隙間にも入り込んで,成形品のデザイン性をアップできる。このような粉末は,竹材の破砕のときに発生し,また,後工程の結合剤混合工程2及びポリ乳酸混練工程3においても個々のフレークが互いに擦りあっても発生する。
The flakes are made by crushing bamboo using a crusher. Since this crushing is possible by rough crushing if the size is as described above, a high-precision crusher as in the prior art becomes unnecessary. This can reduce equipment costs and processing costs. In addition, it is better to roughly crush by putting the whole into a crusher without separating the type and part of the bamboo. That is, the whole bamboo, that is, the underground stem, stem, branch, leaf, etc. are crushed together. According to this crushing, the flakes of the above size are 2 mm or less, that is, powder is also generated. However, this powder is not discarded, but is mixed with the above-mentioned size flakes if it is a predetermined small amount. By this mixing, gaps between large-sized flakes can be filled, and at the time of formation, the gaps in the mold can be entered, and the design of the molded product can be improved. Such powder is generated when the bamboo is crushed, and is also generated in the subsequent
しかし,このような粉末の量が多くなると,従来技術の粉末の課題が発生する恐れがあるので,上記サイズのフレークと粉末との比率はフレークが多くなるようにする一方で粉末を少なくする。この比率は最終工程において,フレークが50質量%を超え80質量%未満,粉末が質量50%以下にする。最も好ましいはフレーク80質量%対粉末20質量%である。これらの比率にすれば,前者の比率であっても従来技術の課題を回避でき,また,後者の比率であれば問題が発生することがない。また,フレークは5mm以上のものも少量であれば使用してもよい。また,これらの竹材は,特に乾燥せずに生材を使用してもよく,この生竹を使用した場合は,各工程,すなわち,材料準備工程1,結合剤混合工程2及びポリ乳酸混練工程3で摩擦熱によって乾燥される。
However, as the amount of such powder increases, the problems of the powders of the prior art may occur, so the ratio of flakes and powders of the above size increases the flakes while reducing the powders. In the final step, the ratio is such that the flake exceeds 50% by mass and less than 80% by mass, and the powder has a mass of 50% or less. Most preferred is 80 wt% flakes and 20 wt% powder. With these ratios, the problems of the prior art can be avoided even with the former ratio, and no problem occurs with the latter ratio. In addition, flakes of 5 mm or more may be used if they are in a small amount. In addition, these bamboo materials may be used without being dried, and when this bamboo is used, each process, that is, material preparation process 1,
したがって,この材料準備工程1では,特に乾燥装置を設置する必要がない。勿論,乾燥したものを材料から除外するものではなく,乾燥材を使用すれば,個々の工程における処理時間の短縮ができる。上記サイズのフレークは,篩で選別し,この篩を通過しなかったものは,再度,破砕機に投入して破砕する。 Therefore, in this material preparation step 1, it is not necessary to install a drying device. Of course, the dried material is not excluded from the material, and if a drying material is used, the processing time in each process can be shortened. The flakes of the above size are selected with a sieve, and those that do not pass through the sieve are put into a crusher again and crushed.
イ 結合剤(B)の混合工程2
この混合工程2では,前工程で準備したフレークの所定量に,所定量の混合剤を混合する。フレークは95〜51質量%の範囲にあって,これに17質量%以下(但し,下限量は2質量%とし,この量が前記範囲の質量%内にあって後記のポリ乳酸の質量%を超えない量。)の結合剤を混合する。すなわち,この混合量が多くなると,流動性が悪くなって生産性が低化するので,ポリ乳酸の量を超えないようにする。
In this mixing
結合剤は,カゼイン,大豆蛋白,グルテン等の植物性蛋白質,コンニャクイモ粉末,澱粉,リグニン,マツヤニ,タンニン,ドライスターチ,コーンスターチ,タビオカ等が有効である。これはすべて身近に存在しているもので,簡単かつ格安に入手できる。 As the binder, vegetable proteins such as casein, soy protein, gluten, konjac potato powder, starch, lignin, matsuyani, tannin, dry starch, corn starch, tabioca and the like are effective. These are all familiar and can be obtained easily and cheaply.
この結合剤は,混合機を用いて,撹拌しながら混合する。なお,この混合は破砕機内でフレークをさらに破砕しながら行ってもよい。この混合工程2では,温度管理が重要となる。すなわち,混合/破砕の際に,個々のフレークが互いに摩擦しあって熱が発生し,この熱によって水分が減少し,一方で吸着ガスが放出されてフレークが昇温する。このとき昇温が高温になると,フレークが焦げて品質が低下し,また低すぎると水分や吸着ガスの放出不足等による結合力の低下を招くので,適切な温度管理が必須となる。そこで,破砕機の破砕槽は油等によるジャケット付きにするとよい。なお,適切な昇温範囲は140〜220℃,望ましくは150〜180℃である。
一方でまた水分調整も必要となる。この混合物は,所定の水分量になるまで撹拌/破砕する。撹拌/破砕処理後の水分は7%以下,望ましくは5%以下である。伐採直後の竹材は水分が多いので,破砕処理時間を延長して水分調整を行う。この混合工程2で,結合剤がフレークの破砕面に粉状または溶融状態で付着する。この結合剤の混合により,次工程において,フレークとポリ乳酸との結合力を高めるとともに偏在を抑制できる。
This binder is mixed with stirring using a mixer. This mixing may be performed while further crushing the flakes in a crusher. In this mixing
On the other hand, moisture adjustment is also necessary. This mixture is agitated / crushed until a predetermined amount of water is obtained. The water content after the stirring / crushing treatment is 7% or less, desirably 5% or less. Bamboo wood just after cutting has a lot of moisture, so adjust the moisture by extending the crushing time. In this mixing
具体的には,この結合剤の混合により,フレークの混入比率の上昇を可能にし,竹材の高強度を十分引出すことが可能になる。すなわち,竹材は木材などと比べて,緻密で機械的強度が優れているので,フレークの樹脂組成物もこの特性を備えたものになる筈である。しかし,このフレークは,均等な分散がし難く部分的な分布差,つまり偏在が発生し,この偏在から成形体などの破壊が生じてしまい,竹材の高強度特性を十分活かしきれない。また,この竹材の混入比率を上げた場合,さらに偏在が顕著となり,ペレットすら正常に得られないか,得られたとしても破砕し易いものとなるが,これらが解消できる。特に,結合剤(B)の適用により植物系材料(A)の増量が可能になるとともに,ポリ乳酸との結合を堅固にして,石油製合成樹脂と匹敵する程の高い機械的強度が得られ,これにより石油製合成樹脂との価格競争力が付きより広い分野での利用が可能になる。 Specifically, the mixing of the binder makes it possible to increase the mixing ratio of flakes and to sufficiently extract the high strength of bamboo. In other words, since bamboo is denser and superior in mechanical strength than wood and the like, the resin composition of flakes should have this characteristic. However, this flake is difficult to disperse evenly, and a partial distribution difference, that is, uneven distribution occurs, resulting in destruction of the molded body and the like, and the high strength characteristics of bamboo cannot be fully utilized. Further, when the mixing ratio of this bamboo is increased, uneven distribution becomes more prominent, and even pellets cannot be obtained normally, or even if they are obtained, they are easily crushed, but these can be eliminated. In particular, the application of the binder (B) makes it possible to increase the amount of the plant-based material (A) and to firmly bind the polylactic acid, so that a mechanical strength comparable to that of a petroleum synthetic resin can be obtained. , This makes it possible to use in a wider range of fields with price competitiveness with petroleum synthetic resin.
ウ ポリ乳酸の混練工程3
このポリ乳酸混練工程3では,前工程で生成した混合物に35質量%以下(但し,下限量は3質量%にし,この範囲にあって前記結合剤の質量%を超える量。)を添加して混練する。ポリ乳酸(C)は植物起源の素材から合成されたバイオプラスチックの一つで,環境中の水分により加水分解を受け低分子化され,微生物などにより最終的に二酸化炭素と水に分解される。なお,このポリ乳酸は微生物によって最終的に二酸化炭素へ分解されて大気中に放出されるが,植物は大気中の二酸化炭素を吸収してデンプンを合成しているため,トータルで見て地球温暖化の原因とされる二酸化炭素の量を増やすことがない。この性質は一般に「カーボンニュートラル」といわれている。しかし,一方でまた,このポリ乳酸は,結晶化が極めて遅く通常の成形条件では殆ど非結晶状態であり,ガラス転移温度60℃以上では形状維持が困難なほど軟化するなどの課題がある。
C. Polylactic
In this polylactic
このような特性を有するポリ乳酸を混合物に加えて混練する。この混練物は互いに平行に近接配置して自転する一対のロール間で多数回繰り返して圧展するのが好ましい。具体的には,混練物をロール入口部で強い粘性流動を伴う高圧加圧とロール出口部での圧力開放サイクルを多数回繰り返して圧展する。これにより,フレークの破砕面から水分やその他の吸着ガスが放出されて,このガスがポリ乳酸へ移行拡散されて表面が浄化され,これによりポリ乳酸や結合剤との親和,なじみが改善され,ポリ乳酸とフレークとの結合力強化が達成され,さらに,混練物が多数回近接されたロール間で薄い膜状に圧展されることで,偏在発生が抑制される。また,ポリ乳酸と混合物間の温度差等に起因して生じる粘度斑,つまり高粘度部分も低粘度部分も平等の厚みに圧展して偏在の発生が抑止される。なお,混練物は,ロール間で薄く押圧される過程で,金属などの圧延と類似の状態となるが,ロール出口側ではロール表面に付着したままロールの回転により再び入口側に至るため,圧延の用語は不適当で圧展とした。この混練方法により,フレークの混入比率を上昇した場合も偏在の発生を抑制し,ペレットを始めとする高強度の成形体を得ることができる。 Polylactic acid having such characteristics is added to the mixture and kneaded. The kneaded material is preferably repeatedly spread many times between a pair of rolls that rotate in close proximity to each other in parallel. Specifically, the kneaded material is expanded by repeating high-pressure pressurization with strong viscous flow at the roll inlet and a pressure release cycle at the roll outlet many times. As a result, moisture and other adsorbed gases are released from the fracture surface of the flakes, this gas is transferred and diffused into polylactic acid, and the surface is purified, thereby improving the affinity and familiarity with polylactic acid and binders. Strengthening the bonding strength between polylactic acid and flakes is achieved, and furthermore, the kneaded product is spread into a thin film between rolls that have been approached many times, thereby suppressing the occurrence of uneven distribution. In addition, viscosity unevenness caused by a temperature difference between the polylactic acid and the mixture, that is, the high-viscosity part and the low-viscosity part are spread to an equal thickness, and the occurrence of uneven distribution is suppressed. The kneaded material is in a state of being pressed thinly between the rolls, and is in a state similar to rolling metal, etc., but the roll exit side remains attached to the roll surface and reaches the inlet side again due to the rotation of the roll. The term was improper and unfolding. By this kneading method, even when the mixing ratio of flakes is increased, the occurrence of uneven distribution can be suppressed and a high-strength molded body such as pellets can be obtained.
また,ポリ乳酸が抱える課題は,フレーク量を多くすることによって抑制できる。すなわち,フレーク含有量が50質量%を超えるようにすると,フレーク相互間の平均距離が縮小され,ポリ乳酸の耐熱性が低いことによる粘性変形ないし流動や垂れ等形状保持能力の低下が抑制され,また,相対的にポリ乳酸成分量が少なくなるので,ポリ乳酸が抱える耐熱性の課題は限定されたものとなる。 Moreover, the problem which polylactic acid has can be suppressed by increasing the amount of flakes. That is, when the flake content exceeds 50% by mass, the average distance between the flakes is reduced, and the decrease in shape retention ability such as viscous deformation or flow and sagging due to the low heat resistance of polylactic acid is suppressed. In addition, since the amount of polylactic acid component is relatively small, the heat resistance problem of polylactic acid is limited.
エ 着色剤の添加
この竹製生分解樹脂組成物は,フレークの条件及び混入比率などによって,赤褐色になりまた経年変色する。これを回避するために,着色剤として無機質や有機質の種々の色彩の顔料を混入し,また必要により展色剤と共に錬り合わせた塗料により着色することができる。また,フレークをポリ乳酸などとの混練前に,望ましくは粗破砕後の段階で染色することもできる。着色剤の他,発泡剤,ゴム粉末など,種々の機能改善剤を添加することができ,これらの添加物を混入する場合,ポリ乳酸,結合剤と竹の混合物を添加後の混練過程とするのがよい。
D. Addition of colorant This biodegradable resin composition made of bamboo becomes reddish brown and changes over time depending on the flake conditions and mixing ratio. In order to avoid this, pigments of various colors such as inorganic and organic colors can be mixed as the colorant, and if necessary, the paint can be colored with a paint kneaded with the color extender. Further, the flakes can be dyed before kneading with polylactic acid or the like, preferably at a stage after coarse crushing. Various function improvers such as foaming agent and rubber powder can be added in addition to the colorant. When these additives are mixed, the mixture of polylactic acid, binder and bamboo is used as a kneading process after the addition. It is good.
オ 組成物成形工程4
前工程3で生成した混練物を成形機により,任意形状,例えばペレットの成形物を作製する。また,この工程において,直接,成形品を作製してもよい。これらの成形物及び成形品は,フレーク(A)95〜51質量%と結合剤(B)17〜2質量%及びポリ乳酸(C)35〜3質量%(これら(A)〜(C)の合計は100質量%)とからなり,一辺が2〜5mmであって他の辺が5mm以下のフレークを主成分とし,結合剤(B)の質量%はポリ乳酸(C)の質量%未満となる。
The kneaded product generated in the
カ 成形品作製工程5
この工程5では,前工程4で作製した形成物(ペレット)を用い,成形機,例えば押出成形機,射出成形機などを用いて,任意の成形品,例えば,家具材,建築材,また自動車,家電用品,情報通信機器などの内装材,さらに外装材,ハウジング材,さらにまた植木鉢,柵,筏,育苗ポットなどの農業・水産業・園芸用品,さらにまたゴルフティ,浮き,屋外用椅子やテーブルなどのレジャー用品,さらにまたフィルム,シート,トレイなどの使い捨て用品などを作製する。また,使用する設備は,特別なものを必要とせず,従来の押出成形機,射出成形機などで対応でき,なおかつ使用する金型も従来の合成樹脂用金型で対応できる。
Molded
In this
(実施例及び比較例)
以下,本発明の実施例を比較例と対比して説明する。この実施例では,フレークは竹材のみ,及びこの竹材と笹材とをミックスしたものを用いている。
表1は実施例1〜14及び比較例21〜23の各原料の配合比(質量%)とペレットの成形性を示している。但し,竹材及び笹材の配合比はその水分が5%に減少すると仮定した値である。また,まるごととは笹材は葉と茎の全部,竹材は地下茎,茎,枝,葉の全部をそれぞれ粗破砕したものを意味する(地下茎は全体の5%分を配合した)。
(Examples and Comparative Examples)
Examples of the present invention will be described below in comparison with comparative examples. In this embodiment, the flake is made of only bamboo material and a mixture of this bamboo material and straw material.
Table 1 shows the blending ratio (mass%) of each raw material of Examples 1 to 14 and Comparative Examples 21 to 23 and the moldability of the pellets. However, the mixing ratio of bamboo and straw is a value that assumes that the water content is reduced to 5%. Marugoto means that all the leaves and stems are made of bamboo, and that all the underground stems, stems, branches and leaves are roughly crushed (bamboo is mixed with 5% of the whole).
実施例及び比較例はいずれもフレーク(サイズ2〜3mm程度。)の水分比率を測定し,水分が5%となったと仮定したときの分量を結合剤とともに破砕・ミキサー装置に投入した。使用した破砕・ミキサー装置は,垂直ポット型槽の底部に2段の高速回転羽根を有し,槽の底,外周,肩部に保温層と加熱用ジャケットを有するものである。
代表例として,No.5の状況を以下に示す。水分16.8%のマダケの茎のフレーク21.7Kgと,コーンスターチ(結合剤)1.58Kgを破砕・ミキサー装置に投入し,処理時間はイ.19.5分,ロ.20.2分,ハ.22分間それぞれ破砕,混合処理した。処理後の温度は,イ.146℃,ロ.149℃,ハ.153℃であり,いずれも水分5%以下であった。
In both Examples and Comparative Examples, the moisture ratio of flakes (size: about 2 to 3 mm) was measured, and the amount when the moisture was assumed to be 5% was added to the crushing / mixer device together with the binder. The crushing / mixing apparatus used has two stages of high-speed rotating blades at the bottom of the vertical pot type tank, and has a heat insulating layer and a heating jacket at the bottom, outer periphery and shoulder of the tank.
As a representative example, the situation of No. 5 is shown below. 21.7 kg of flakes of mushroom stem with a moisture content of 16.8% and 1.58 kg of corn starch (binder) were put into a crushing / mixer device, and the treatment times were 19.5 minutes, 20.2 minutes, C. Each was crushed and mixed for 22 minutes. The temperatures after the treatment were a. 146 ° C., b. 149 ° C., and c.
次に,上記のフレークと結合剤との混合物に,ポリ乳酸を混練したときの状況を説明する。先ず,使用した混練機について述べる。
図2は混練機の概略平面図である。共に加温用ジャケットを有する一対のロールのうち,一方のロール10は表面に浅い多数の軸方向溝bと,浅い多数のスパイラル溝aを有する。他方のロール20は,実施例及び比較例ではスパイラル溝aを有するロールとした。これらのロールは微小隙間を以って水平に配置され,その対向部分が下向きとなる方向に駆動回転する。被混練物のうち,ポリ乳酸は二本のロールの左方部分cの上方に設けた図示しないホッパーを経て粉末状で供給する。一方の被混練物である混合物は二本のロールの軸方向中央部dの上方に設けられた図示しないホッパーを経て供給する。
Next, the situation when polylactic acid is kneaded into the mixture of the flakes and the binder will be described. First, the used kneader will be described.
FIG. 2 is a schematic plan view of the kneader. Of the pair of rolls each having a heating jacket, one
被混練物は二つのロール間の谷状部で上部ではバンク(塊状溜)を形成しつつ,下部の微小隙間で圧展された後,ロール面に付着したまま,ロール回転により再びバンクに混入されることを多数回繰り返されつつ,スパイラル溝aの作用により軸方向右側に移動する。軸方向右側端部には一方のロール10とその右端部で表面どうしを圧接しあって設けられ,半径方向に多数の小孔が穿設されたリング状の造粒ロール30の小孔から内径側に押し出され,スクレーパーにより寸断されてペレットとなる。
The material to be kneaded forms a bank (bulk pool) at the upper part at the valley part between the two rolls, and after being squeezed by a minute gap at the lower part, it remains on the roll surface and is mixed into the bank again by roll rotation. While being repeated many times, the spiral groove a moves to the right in the axial direction. At the right end in the axial direction, one
図2のc部上方に設けられたホッパーに投入された粉末状ポリ乳酸は,二本のロール間で圧展を繰り返しつつ圧縮されて粉末粒子間に随伴された空気を排出しつつ,スパイラル溝aの作用により右側に送られ,両ロールの加温ジャケットからの熱及び混練動力に起因して発生する熱とにより昇温溶融し,ロールの長さ方向中央部に達する。ロール中央部dに達した溶融ポリ乳酸は,連続的に送り移動しつつd部上方に設けられた図示しないホッパーを経て,同期的運転された前述の粉砕・ミキサー装置から供給される混合物を,連続的に互いに同一温度(極力)で添加され,圧展を繰り返されつつ混練混合される。
その結果ポリ乳酸は,混合物と,偏在を防止されつつ緊密な結合を達成され,ついには造粒ロールでペレットに成形される。
The powdered polylactic acid charged into the hopper provided above the portion c in FIG. 2 is compressed while repeating the compression between the two rolls, and the air accompanying the powder particles is discharged while the spiral groove. It is sent to the right side by the action of a, heated and melted by the heat from the heating jackets of both rolls and the heat generated by the kneading power, and reaches the center in the length direction of the rolls. The molten polylactic acid that has reached the central part d of the roll passes through a hopper (not shown) provided above the part d while continuously feeding and moving, and the mixture supplied from the above-mentioned pulverization / mixer device that is operated synchronously, They are continuously added at the same temperature (as much as possible) and kneaded and mixed while repeating the expansion.
As a result, polylactic acid achieves a close bond with the mixture while preventing uneven distribution, and is finally formed into pellets with a granulation roll.
前記の実施例No.5で述べたイ,ロ,ハの各テストの混練時の状況は,ロール10,30間の隙間は,0.5mmとし,ロール10の入口側;140〜150℃,出側;110℃,ロール20間は,入口側,出口側ともロール10よりやや低目にして両ロール温度を種々に変化させた。その結果,イ,ロ,ハとも各温度に変化した際にも偏在が認められない良好なペレットを得ることができた。
表1の実施例No.5以外の各例は,配合比,結合剤の種類が違う以外は,No.5とほぼ同条件で,結合剤の添加,さらなる破砕,ポリ乳酸との混練及びペレットの成形へと処理を進めた。実施例の各例はいずれも偏在のない正常なペレットが得られた。
実施例No.12は,着色剤としてカーボンブラックを5%添加したものであり,真っ黒のペレットが得られた。そして掌中で揉んでも掌が黒くなることはなかった。
実施例13は製品の比重低下の試みとしてゼオライトを5%添加したもので,比重低下が確認できた。
実施例14は製品の衝撃強さ改善の試みとしてゴム粉末を5%添加した物で,その効果が見られた。本発明では上記3点のみならず機能向上のため,種々の添加物の添加が可能である。
The situation at the time of kneading of each test of A, B, and C described in Example No. 5 described above is that the gap between the
Each example other than Example No. 5 in Table 1 is the same as No. 5 except that the blending ratio and the type of binder are different. Addition of binder, further crushing, kneading with polylactic acid and pellets The process proceeded to molding. In each example, normal pellets with no uneven distribution were obtained.
In Example No. 12, 5% of carbon black was added as a colorant, and black pellets were obtained. And even if you rub in the palm, the palm never turned black.
In Example 13, 5% of zeolite was added as an attempt to reduce the specific gravity of the product, and a decrease in specific gravity was confirmed.
Example 14 was an addition of 5% rubber powder as an attempt to improve the impact strength of the product, and the effect was seen. In the present invention, not only the above three points but also various additives can be added to improve the function.
比較例No.21は,竹材過多のため正常なペレットが得られなかった。比較例No.22はペレットとしての形状は保持できたが,縦断面観察の結果,偏在が認められた。比較例No.23はペレットとしては正常であった。 In Comparative Example No. 21, normal pellets could not be obtained due to excessive bamboo material. Comparative Example No. 22 was able to retain the shape as a pellet, but as a result of longitudinal section observation, uneven distribution was observed. Comparative Example No. 23 was normal as a pellet.
前記の試料で製造されたペレットを用いダンベル試験方及びシャルピー衝撃試験方を射出整形機により作製した。成形温度は170℃,金型温度は40℃とした。
表2にNo.5(ロ)及びNo.3の結果をポリプロピレン樹脂(以下,PPという。)のそれぞれの値と比較して示す。
表2から,引っ張り強さでNo.5(ロ)は一般型PPにやや劣るが,耐衝撃型PPに対しては優に凌駕すること,No.3は耐衝撃型PPを凌駕することが分かる。
また,曲げ強さにおいては,No.5(ロ),No.3とも耐衝撃型PPを凌駕することが分かる。
以上からこれらの組成物はPPに匹敵する高い機械的強度を有するといえる。比較例No.22及びNo.23の各ペレットを用いてNo.5及びNo.3と同条件で引っ張り試験方を作製して試験した結果,いずれもポリ乳酸のみで作製・試験による値を超えることはなかった。
A dumbbell test method and a Charpy impact test method were prepared by an injection shaping machine using the pellets manufactured from the above samples. The molding temperature was 170 ° C and the mold temperature was 40 ° C.
Table 2 shows the results of No. 5 (B) and No. 3 in comparison with the respective values of polypropylene resin (hereinafter referred to as PP).
From Table 2, tensile strength No. 5 (b) is slightly inferior to general PP, but it is superior to impact resistant PP, and No. 3 is superior to impact resistant PP. I understand.
In addition, in terms of bending strength, it can be seen that both No. 5 (b) and No. 3 outperform the impact resistant PP.
From the above, it can be said that these compositions have high mechanical strength comparable to PP. As a result of producing and testing a tensile test method under the same conditions as No. 5 and No. 3 using the pellets of Comparative Examples No. 22 and No. 23, both exceeded the values obtained by the production / test only with polylactic acid. It never happened.
以上,竹材を用いた生分解性組成物の製造方法及び成形品を説明したが,これらはまた他の材料,すなわち木材,籾殻など或いはこれらを組合せた材料を用いた場合も同様の生分解性組成物の製造方法及び成形品となる。 The method for producing a biodegradable composition using bamboo and the molded product have been described above. However, these are also the same biodegradable when other materials are used, that is, wood, rice husks, or a combination of these materials. It becomes the manufacturing method and molded article of a composition.
本発明の生分解性組成物及び成形品は,いずれもほぼ全量植物由来の原料によるものであるから,カーボンニュートラルとなり,地球に優しく,PPに匹敵する機械的強度と優れた生産性を兼備する。最も重要なことは,さらなる低コスト化が実現できて,これにより石油製合成樹脂との価格競争力が付きより広い分野での利用が可能になる。 Since the biodegradable composition and the molded product of the present invention are all made from plant-derived raw materials, they are carbon neutral, earth-friendly, and have both mechanical strength comparable to PP and excellent productivity. . Most importantly, further cost reduction can be realized, which makes it possible to use in a wider range of fields with price competitiveness with petroleum synthetic resin.
1 材料準備工程
2 混合工程
3 混練工程
4 組成物成形工程
5 製品作製工程
10,20 混練ロール
30 造粒ロール
a スパイラル溝
b 軸方向溝
c ポリ乳酸を供給するホッパーの位置
d 竹・笹由来材と結合剤の混合物を供給したホッパーの位置
DESCRIPTION OF SYMBOLS 1
a spiral groove
b Axial groove
c Position of hopper supplying polylactic acid
d Location of the hopper that supplied the mixture of bamboo and straw derived material and binder
Claims (2)
前記植物系材料(A)の含有量は95〜51質量%,前記結合材(B)の含有量は17〜2質量%,前記ポリ乳酸(C)の含有量は35〜3質量%(これら(A)〜(C)の合計は100質量%)であり,かつ,前記結合剤(B)の含有量は前記ポリ乳酸(C)の含有量未満であり,
前記結合剤(B)は,カゼイン,大豆蛋白,グルテン,コンニャクイモ粉末,澱粉,ドライスターチ,コーンスターチ,タピオカのうちの1または2以上の組合せからからなり,
前記植物系材料(A)はフレーク状のものからなることを特徴とする生分解性樹脂組成物。 A biodegradable resin composition comprising a plant material (A), a binder (B), and polylactic acid (C),
The content of the plant material (A) is 95 to 51% by mass, the content of the binder (B) is 17 to 2% by mass, and the content of the polylactic acid (C) is 35 to 3% by mass (these (A) to (C) total is 100% by mass), and the content of the binder (B) is less than the content of the polylactic acid (C),
The binder (B) comprises one or a combination of casein, soy protein, gluten, konjac potato powder, starch, dry starch, corn starch, tapioca,
The biodegradable resin composition characterized in that the plant material (A) is made of flakes.
前記フレーク(A)にされた植物系材料95〜51質量%に結合剤(B)17〜2質量%を混合する結合剤混合工程と,
前記結合剤混合工程で混合した混合物に,ポリ乳酸(C)を35〜3質量%の範囲にあって,前記結合剤(B)の含有量未満(これら(A)〜(C)の合計は100質量%)の量を混入して混錬するポリ乳酸混練工程と,
を含む生分解性樹脂組成物の製造方法であって,
前記結合剤(B)として,カゼイン,大豆蛋白,グルテン,コンニャクイモ粉末,澱粉,ドライスターチ,コーンスターチ,タピオカのうちの1または2以上の組合せからからなるものを用いることを特徴とする,生分解性樹脂組成物の製造方法。 A material preparation step for crushing plant material (A) into flakes;
A binder mixing step of mixing the binder (B) 17-2% by mass with 95-51% by mass of the plant-based material made into the flakes (A);
In the mixture mixed in the binder mixing step, polylactic acid (C) is in the range of 35 to 3% by mass, and is less than the content of the binder (B) (the total of these (A) to (C) is A polylactic acid kneading step in which an amount of 100% by mass) is mixed and kneaded;
A method for producing a biodegradable resin composition comprising
Biodegradation characterized by using one or a combination of two or more of casein, soybean protein, gluten, konjac potato powder, starch, dry starch, corn starch, tapioca as the binder (B) For producing a conductive resin composition.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018039026A JP6539368B2 (en) | 2018-03-05 | 2018-03-05 | Biodegradable resin composition and method for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018039026A JP6539368B2 (en) | 2018-03-05 | 2018-03-05 | Biodegradable resin composition and method for producing the same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013249574A Division JP6311294B2 (en) | 2013-11-15 | 2013-11-15 | Biodegradable resin composition, method for producing the resin composition, and molded article |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019106774A Division JP6731139B2 (en) | 2019-06-07 | 2019-06-07 | Biodegradable resin composition and method for producing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2018087354A true JP2018087354A (en) | 2018-06-07 |
| JP6539368B2 JP6539368B2 (en) | 2019-07-03 |
Family
ID=62494274
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018039026A Active JP6539368B2 (en) | 2018-03-05 | 2018-03-05 | Biodegradable resin composition and method for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6539368B2 (en) |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH1036550A (en) * | 1996-07-24 | 1998-02-10 | Sangyo Gijutsu Kenkyusho:Kk | Production of biodegradable cushioning material |
| JP2000239440A (en) * | 1999-02-23 | 2000-09-05 | Nippon Shokuhin Kako Co Ltd | Composition of starch-based biodegradable resin / wastepaper composite and molded product thereof |
| JP2001299121A (en) * | 2000-04-26 | 2001-10-30 | Shimadzu Corp | Bedding substitute made of biodegradable polymer material |
| JP2002371187A (en) * | 2001-06-14 | 2002-12-26 | Sanmeito:Kk | Method for producing biodegradable plastic molded product |
| JP2003147213A (en) * | 2001-11-12 | 2003-05-21 | Mitsubishi Rayon Co Ltd | Thermoplastic resin composition and molded article using the same |
| JP2004018681A (en) * | 2002-06-17 | 2004-01-22 | National Institute Of Advanced Industrial & Technology | Biodegradable polylactic acid resin composition |
| JP2004143438A (en) * | 2002-10-03 | 2004-05-20 | Daicel Chem Ind Ltd | Composite biodegradable molded product |
| JP2006117768A (en) * | 2004-10-20 | 2006-05-11 | Toray Ind Inc | Resin composition and molded article comprising the same |
| WO2010004717A1 (en) * | 2008-07-07 | 2010-01-14 | パナソニック株式会社 | Speaker diaphragm, speaker, electronic device and mobile device using the speaker |
| JP2010284300A (en) * | 2009-06-11 | 2010-12-24 | Uchida Plastic:Kk | Method for manufacturing chopstick formed of plant fiber-reinforced polylactic acid |
| CN103059527A (en) * | 2012-05-08 | 2013-04-24 | 纪永明 | Polylactic acid plant fiber composite decomposable material |
| JP2013224394A (en) * | 2012-04-19 | 2013-10-31 | Nihon Peparon Kk | Biodegradable resin composite composition |
-
2018
- 2018-03-05 JP JP2018039026A patent/JP6539368B2/en active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH1036550A (en) * | 1996-07-24 | 1998-02-10 | Sangyo Gijutsu Kenkyusho:Kk | Production of biodegradable cushioning material |
| JP2000239440A (en) * | 1999-02-23 | 2000-09-05 | Nippon Shokuhin Kako Co Ltd | Composition of starch-based biodegradable resin / wastepaper composite and molded product thereof |
| JP2001299121A (en) * | 2000-04-26 | 2001-10-30 | Shimadzu Corp | Bedding substitute made of biodegradable polymer material |
| JP2002371187A (en) * | 2001-06-14 | 2002-12-26 | Sanmeito:Kk | Method for producing biodegradable plastic molded product |
| JP2003147213A (en) * | 2001-11-12 | 2003-05-21 | Mitsubishi Rayon Co Ltd | Thermoplastic resin composition and molded article using the same |
| JP2004018681A (en) * | 2002-06-17 | 2004-01-22 | National Institute Of Advanced Industrial & Technology | Biodegradable polylactic acid resin composition |
| JP2004143438A (en) * | 2002-10-03 | 2004-05-20 | Daicel Chem Ind Ltd | Composite biodegradable molded product |
| JP2006117768A (en) * | 2004-10-20 | 2006-05-11 | Toray Ind Inc | Resin composition and molded article comprising the same |
| WO2010004717A1 (en) * | 2008-07-07 | 2010-01-14 | パナソニック株式会社 | Speaker diaphragm, speaker, electronic device and mobile device using the speaker |
| JP2010284300A (en) * | 2009-06-11 | 2010-12-24 | Uchida Plastic:Kk | Method for manufacturing chopstick formed of plant fiber-reinforced polylactic acid |
| JP2013224394A (en) * | 2012-04-19 | 2013-10-31 | Nihon Peparon Kk | Biodegradable resin composite composition |
| CN103059527A (en) * | 2012-05-08 | 2013-04-24 | 纪永明 | Polylactic acid plant fiber composite decomposable material |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6539368B2 (en) | 2019-07-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101386709A (en) | Wood-plastic composite material and preparation method thereof | |
| CN101712804B (en) | Plant fiber composition, composite material and its preparation method and application | |
| WO2007073039A1 (en) | Natural binder for binding natural powder and manufacturing method thereof | |
| CN102702577A (en) | Degradable rubber and plastic film with plant peel and shell, fiber, plant powder as raw materials and preparation method thereof | |
| CN102850743A (en) | Biodegradable material, and preparation method and application thereof | |
| KR20160046590A (en) | Manufacturing method of wpc | |
| CN106589650A (en) | Fine-performance plastic material and preparation method thereof | |
| JP6311294B2 (en) | Biodegradable resin composition, method for producing the resin composition, and molded article | |
| CN107033567A (en) | Peanut shell powder filled polypropylene lactic acid composite material and preparation method thereof | |
| DE19637565A1 (en) | Process for producing compostable moldings and pellets from a compostable mixture of components therefor | |
| CN102786807A (en) | Straw base composite material and preparation method thereof | |
| EP0770105A1 (en) | Method of manufacturing compostable mouldings mainly from plant matter and pellets for this purpose | |
| JP6731139B2 (en) | Biodegradable resin composition and method for producing the same | |
| JP2018087354A (en) | Biodegradable resin composition and method for producing the same | |
| CN107383909A (en) | A kind of preparation method for the biological packing material that can be degraded certainly | |
| KR100758646B1 (en) | Manufacturing method of dough, plate material and molded products for producing biodegradable molded products | |
| CN105419368A (en) | Production method of delicate fragrance type plastic board material | |
| WO2004018555A1 (en) | Biodegradable resin composition | |
| CN108314903A (en) | A kind of 3D printing red acid branch wood modeling composite wire and preparation method thereof | |
| KR20240038654A (en) | Fillers for polymer compositions derived from citrus processing and/or pressing waste | |
| KR20110080568A (en) | Manufacturing method of synthetic wood and synthetic wood | |
| KR100979734B1 (en) | Biodegradable material composition and manufacturing method of the same, the manufacturing method of container using the biodegradable material composition | |
| CN107189475A (en) | A kind of biological packing material that can be degraded certainly | |
| CN102838878B (en) | Microcrystal puffing straw composite powder molding product and preparation method thereof | |
| CN107141832B (en) | A kind of environment-friendly flower pot and its production method prepared jointly by utilizing multiple biomass |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180308 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181212 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181220 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190212 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190513 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190607 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6539368 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |