[go: up one dir, main page]

JP2018114670A - Method for producing composite body of coated steel sheet and resin material - Google Patents

Method for producing composite body of coated steel sheet and resin material Download PDF

Info

Publication number
JP2018114670A
JP2018114670A JP2017006954A JP2017006954A JP2018114670A JP 2018114670 A JP2018114670 A JP 2018114670A JP 2017006954 A JP2017006954 A JP 2017006954A JP 2017006954 A JP2017006954 A JP 2017006954A JP 2018114670 A JP2018114670 A JP 2018114670A
Authority
JP
Japan
Prior art keywords
resin material
coated steel
steel plate
ultrasonic vibration
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017006954A
Other languages
Japanese (ja)
Inventor
直樹 武田
Naoki Takeda
直樹 武田
進之助 西島
Shinnosuke Nishijima
進之助 西島
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2017006954A priority Critical patent/JP2018114670A/en
Publication of JP2018114670A publication Critical patent/JP2018114670A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method capable of efficiently joining a coated steel sheet having a thermoplastic resin film and a resin material and capable of producing a composite of a metal material and the resin material having high strength.SOLUTION: An object to be bonded is prepared by stacking a coated steel plate having a thermoplastic resin film on at least a surface to be bonded and a resin material, and ultrasonic vibration is applied to the object to be bonded in a state where the object to be bonded is pressed. This is a method of manufacturing a composite body of a coated steel sheet and a resin material by joining the coated steel sheet and the resin material. The thermoplastic resin film has a total thickness of 1.0 μm or more and 10 μm or less. And an amplitude of the ultrasonic vibration is 20 μm or more and 40 μm or less, and the ultrasonic vibration is stopped, and then a tool for applying the ultrasonic vibration is held on the object to be bonded for 0.1 second or more.SELECTED DRAWING: Figure 4

Description

本発明は、塗装鋼板と樹脂材との複合体を製造する方法に関する。   The present invention relates to a method for producing a composite of a coated steel plate and a resin material.

近年、自動車業界においては、軽量化の要求に対応して樹脂の利用が進んでいる。樹脂材に置き換えるだけでなく、金属板と樹脂材との複合体も適用されている。そのため、当該複合体の製造において、金属板と樹脂材とを効率よく接合することが求められている。   In recent years, in the automobile industry, the use of resin is progressing in response to the demand for weight reduction. In addition to being replaced with a resin material, a composite of a metal plate and a resin material is also applied. Therefore, in the manufacture of the composite, it is required to join the metal plate and the resin material efficiently.

金属、樹脂という異種材料からなる2つの部材を接合する方法として、レーザ照射による接合方法が知られている。例えば、特許文献1は、接合部材の表面に微細な凹凸を形成し、レーザ光吸収率を高めることを提案している。特許文献2は、レーザを金属側から照射し、樹脂材を軟化または溶融させて接合する方法を提案している。   As a method for joining two members made of different materials such as metal and resin, a joining method by laser irradiation is known. For example, Patent Document 1 proposes to form fine irregularities on the surface of the joining member to increase the laser light absorption rate. Patent Document 2 proposes a method of joining by irradiating a laser from the metal side and softening or melting a resin material.

レーザ照射による接合方法以外に、超音波接合を利用した方法が知られている。特許文献3は、表面粗さRaを1μm以上に調整された熱可塑性樹脂皮膜を有する塗装鋼板同士を、押圧した状態で超音波加振し、超音波振動子の接触箇所で熱可塑性樹脂皮膜が局部的に昇温することにより、塗装鋼板同士を短時間で接合できると報告している。   Other than the joining method by laser irradiation, a method using ultrasonic joining is known. In Patent Document 3, the coated steel sheets having the thermoplastic resin film whose surface roughness Ra is adjusted to 1 μm or more are ultrasonically vibrated in a pressed state, and the thermoplastic resin film is formed at the contact point of the ultrasonic vibrator. It has been reported that coated steel sheets can be joined in a short time by raising the temperature locally.

特開2008−162288号公報JP 2008-162288 A 特開2010−76437号公報JP 2010-76437 A 特開2005−14549号公報JP 2005-14549 A

特許文献1、2のレーザ照射による接合方法は、レーザ透過性のない樹脂への適用が難しく、また、被接合材に対してレーザ吸収性を高めるための前処理を必要とする点に課題がある。   The bonding method by laser irradiation in Patent Documents 1 and 2 is difficult to apply to a resin having no laser transparency, and requires a pretreatment for increasing the laser absorbability of the material to be bonded. is there.

特許文献3は、熱可塑性樹脂皮膜を有する塗装鋼板の接合に関して、超音波接合法により塗装鋼板同士を接合する接合方法を提案している。しかし、得られた接合強度が十分に高いとはいえない。例えば、特許文献3の実施例によると、直径10mmの超音波振動子(ホーン)により得られた接合体は、その剪断強度が650Nであると記載されている。この剪断強度(N)を超音波振動子の接触面積(mm)で除すると、その単位面積当たりの剪断強度は、8MPa程度に換算される。当該剪断強度は、実用材料として十分なレベルでない。 Patent document 3 has proposed the joining method which joins the coated steel plates by the ultrasonic joining method regarding the joining of the coated steel plates which have a thermoplastic resin film. However, it cannot be said that the obtained bonding strength is sufficiently high. For example, according to an example of Patent Document 3, it is described that a bonded body obtained by an ultrasonic vibrator (horn) having a diameter of 10 mm has a shear strength of 650N. When this shear strength (N) is divided by the contact area (mm 2 ) of the ultrasonic transducer, the shear strength per unit area is converted to about 8 MPa. The shear strength is not sufficient as a practical material.

そのため、金属材と樹脂材とを効率よく接合できることに加えて、高強度の複合体を製造するのに適した接合方法が求められている。本発明は、熱可塑性樹脂皮膜を有する塗装鋼板と樹脂材とを用いて、効率よく接合できるとともに、高強度を有する、金属材と樹脂材との複合体を製造することができる製造方法を提供することを目的とする。   Therefore, in addition to being able to join the metal material and the resin material efficiently, a joining method suitable for manufacturing a high-strength composite is required. The present invention provides a production method capable of producing a composite of a metal material and a resin material having high strength while being able to be efficiently joined using a coated steel plate and a resin material having a thermoplastic resin film. The purpose is to do.

本発明は、このような問題点を解消するために案出されたものであり、熱可塑性樹脂皮膜を有する塗装鋼板と樹脂材とを用いて超音波接合法で接合するとともに、接合する際に、熱可塑性樹脂皮膜の厚み、超音波振動の振幅および加圧保持時間などを制御することにより、高い剪断強度を有する複合体が得られる条件を見出して、本発明を完成するに至った。具体的には、本発明は、以下のものを提供する。   The present invention has been devised in order to solve such problems, and when joining by a ultrasonic joining method using a coated steel sheet and a resin material having a thermoplastic resin film, By controlling the thickness of the thermoplastic resin film, the amplitude of ultrasonic vibration, the pressure holding time, and the like, the inventors found the conditions for obtaining a composite having high shear strength, and completed the present invention. Specifically, the present invention provides the following.

(1)本発明は、少なくとも被接合面側に熱可塑性樹脂皮膜を有する塗装鋼板と樹脂材とを積み重ねた被接合体を作製し、前記被接合体を加圧した状態で、前記被接合体に超音波振動を付与して、前記塗装鋼板と前記樹脂材とを接合させて、塗装鋼板と樹脂材との複合体を製造する方法であって、前記熱可塑性樹脂皮膜の厚みが総計で1.0μm以上、10μm以下であり、
前記超音波振動の振幅が20μm以上、40μm以下であり、超音波振動を停止した後、超音波振動を付与する工具を前記被接合体に0.1秒以上保持させる、塗装鋼板と樹脂材との複合体の製造方法である。
(1) The present invention provides a bonded body in which a coated steel plate having a thermoplastic resin film on at least a bonded surface side and a resin material are stacked, and in a state where the bonded body is pressed, Is applied to the coated steel plate and the resin material to produce a composite of the coated steel plate and the resin material, the total thickness of the thermoplastic resin film being 1 0.0 μm or more and 10 μm or less,
A coated steel plate and a resin material, wherein the amplitude of the ultrasonic vibration is 20 μm or more and 40 μm or less, and after the ultrasonic vibration is stopped, a tool for applying the ultrasonic vibration is held on the joined body for 0.1 second or more. This is a method for producing the composite.

(2)本発明は、前記複合体は、単位面積当りの剪断引張強度が10MPa以上である、請求項1記載の塗装鋼板と樹脂材との複合体の製造方法である。 (2) The present invention is the method for producing a composite of a coated steel sheet and a resin material according to claim 1, wherein the composite has a shear tensile strength per unit area of 10 MPa or more.

本発明によれば、熱可塑性樹脂皮膜を有する塗装鋼板と樹脂材とを用いて、効率よく接合できる。さらに、高強度を有する、金属材と樹脂材との複合体を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can join efficiently using the coated steel plate and resin material which have a thermoplastic resin film. Furthermore, a composite of a metal material and a resin material having high strength can be manufactured.

実施例で用いた試験体を示す図である。It is a figure which shows the test body used in the Example. 実施例の超音波接合試験を説明するための図である。It is a figure for demonstrating the ultrasonic joining test of an Example. 剪断引張強度を測定する試験装置を模式的に示す図である。It is a figure which shows typically the test apparatus which measures shear tensile strength. 超音波の振幅に関する試験結果を示す図である。It is a figure which shows the test result regarding the amplitude of an ultrasonic wave. 超音波の振幅に関する別の試験結果を示す図である。It is a figure which shows another test result regarding the amplitude of an ultrasonic wave. 熱可塑性樹脂皮膜の膜厚に関する試験結果を示す図である。It is a figure which shows the test result regarding the film thickness of a thermoplastic resin film. 熱可塑性樹脂皮膜の膜厚に関する別の試験結果を示す図である。It is a figure which shows another test result regarding the film thickness of a thermoplastic resin film. 加振時間に関する試験結果を示す図である。It is a figure which shows the test result regarding an excitation time. ホーン保持時間に関する試験結果を示す図である。It is a figure which shows the test result regarding horn holding time. 加圧力に関する試験結果を示す図である。It is a figure which shows the test result regarding applied pressure. 超音波接合の原理を説明するための図である。It is a figure for demonstrating the principle of ultrasonic bonding.

本発明の実施形態について説明する。本発明は、以下の説明に限定されるものではない。   An embodiment of the present invention will be described. The present invention is not limited to the following description.

本実施形態の複合体の製造方法は、少なくとも被接合面側に熱可塑性樹脂皮膜を有する塗装鋼板と樹脂材とを積み重ねた被接合体を作製し、前記被接合体を加圧した状態で、前記被接合体に超音波振動を付与して、前記塗装鋼板と前記樹脂材とを接合させて、塗装鋼板と樹脂材との複合体を製造する方法である。   In the manufacturing method of the composite of the present embodiment, at least a coated steel plate having a thermoplastic resin film on the bonded surface side and a resin material are stacked, and the bonded body is pressed. This is a method for producing a composite of a coated steel plate and a resin material by applying ultrasonic vibration to the object to be joined and joining the painted steel plate and the resin material.

(超音波接合方法)
一般に、超音波接合は、接触面に圧力を加えて振動させることにより、界面に存在する吸着分子や酸化層などの不活性層を超音波による摩擦で除去し、更に金属新生面同士を直接接触させた状態で摩擦による昇温がなされるため、界面で成分が拡散し接合できる方法である。図11の(a)に示すように、2枚の被接合材21,22を重ねて、超音波接合装置の工具23,24で挟持される。下側に位置する下板22には、超音波接合装置の工具24(アンビル)で支持される。上側に位置する上板21には、超音波振動する工具23(ホーン)を配置する。図11の(b)に示すように、接合する際は、上板21および下板22を加圧手段26(図示なし)により加圧しながら、上板21に接触したホーン23から超音波振動が接合箇所へ伝達される。超音波振動が開始されると、図11の(c)に示すように、ホーン23が左右に振動し、そのホーン23の動きに伴って反力27が発生し、当該反力17により接合箇所で摩擦が起きる。この摩擦の発熱によって加熱域25が形成され、被接合材同士の接触界面で拡散やアンカー効果が発生することで接合される。このように所定時間で超音波振動が付与された後、上板21と下板22は、接合される。本実施形態は、上板21が塗装鋼板であり、下板22が樹脂材である。
(Ultrasonic bonding method)
In general, ultrasonic bonding removes inactive layers such as adsorbed molecules and oxide layers present at the interface by friction by ultrasonic waves by applying pressure to the contact surfaces and vibrating them, and then bringing the new metal surfaces into direct contact with each other. In this state, the temperature is raised by friction, so that the components can diffuse and join at the interface. As shown in FIG. 11 (a), the two materials 21 and 22 are overlapped and sandwiched between the tools 23 and 24 of the ultrasonic bonding apparatus. The lower plate 22 positioned on the lower side is supported by a tool 24 (anvil) of an ultrasonic bonding apparatus. On the upper plate 21 positioned on the upper side, a tool 23 (horn) that vibrates ultrasonically is disposed. As shown in FIG. 11B, when joining, ultrasonic vibration is generated from the horn 23 in contact with the upper plate 21 while the upper plate 21 and the lower plate 22 are pressed by the pressurizing means 26 (not shown). It is transmitted to the joint. When the ultrasonic vibration is started, as shown in FIG. 11C, the horn 23 vibrates left and right, and a reaction force 27 is generated along with the movement of the horn 23. Friction occurs. The heating region 25 is formed by the heat generated by the friction, and the joining is performed by the diffusion and the anchor effect occurring at the contact interface between the materials to be joined. In this way, after the ultrasonic vibration is applied for a predetermined time, the upper plate 21 and the lower plate 22 are joined. In the present embodiment, the upper plate 21 is a coated steel plate, and the lower plate 22 is a resin material.

(塗装鋼板)
本実施形態で使用される塗装鋼板は、下地鋼板の表面の片面または両面に熱可塑性樹脂皮膜が設けられている。熱可塑性樹脂皮膜には、ポリビニルアルコール、ポリビニルブチラール、ポリビニルアセタール、ポリ酢酸ビニル、ポリ塩化ビニル、ポリビニルピロリドン、ポリスチレン等のビニル系樹脂、ポリメチル(メタ)クリレート、ポリブチル(メタ)クリレート、ポリアクリルアミド、ポリアクリロニトリル等のアクリレート樹脂、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリアミド樹脂、尿素樹脂、ポリカプロラクタン樹脂、ポリアリレート樹脂、ポリスルホン樹脂、シリコーンポリエステル樹脂、エポキシ樹脂等の熱可塑性樹脂を適用できる。
(Painted steel plate)
The coated steel sheet used in the present embodiment is provided with a thermoplastic resin film on one or both surfaces of the surface of the base steel sheet. Thermoplastic resin coatings include polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, polyvinyl acetate, polyvinyl chloride, polyvinyl pyrrolidone, polystyrene and other vinyl resins, polymethyl (meth) acrylate, polybutyl (meth) acrylate, polyacrylamide, polyacrylamide Acrylate resins such as acrylonitrile, polyolefin resins such as polypropylene and polyethylene, polyester resins, polycarbonate resins, polyurethane resins, polyamide resins, urea resins, polycaprolactan resins, polyarylate resins, polysulfone resins, silicone polyester resins, epoxy resins, etc. A thermoplastic resin can be applied.

熱可塑性樹脂皮膜の膜厚は、総計で1.0μm以上、10μm以下であると好ましい。この総計は、両面に当該皮膜を有する塗装鋼板であれば、両面の皮膜の厚みを総計したものに該当する。片面に当該皮膜を有する塗装鋼板であれば、片面の皮膜の厚みに該当する。熱可塑性樹脂皮膜の膜厚の総計が10μmを超えると、樹脂材との間で形成される接合部の強度が低減し、十分な剪断引張強度を有する複合体が得られない。他方、当該膜厚の総計は、過度に小さいと、鋼板表面において被覆されていない領域が存在し、樹脂材との間で良好な接合部を形成できない可能性がある。そのため、当該膜厚の総計は、1.0μm以上、10μm以下が好ましい。両面の熱可塑性樹脂皮膜を有する塗装鋼板は、片面の膜厚が0.5μm以上であると好ましい。   The total thickness of the thermoplastic resin film is preferably 1.0 μm or more and 10 μm or less. If this total is a coated steel sheet having the coating on both sides, this total corresponds to the total thickness of the coating on both sides. If it is a coated steel plate having the coating on one side, it corresponds to the thickness of the coating on one side. When the total film thickness of the thermoplastic resin film exceeds 10 μm, the strength of the joint formed with the resin material is reduced, and a composite having sufficient shear tensile strength cannot be obtained. On the other hand, if the total film thickness is excessively small, there is a region that is not covered on the surface of the steel sheet, and there is a possibility that a good joint cannot be formed with the resin material. Therefore, the total thickness is preferably 1.0 μm or more and 10 μm or less. A coated steel sheet having a thermoplastic resin film on both sides preferably has a film thickness on one side of 0.5 μm or more.

(樹脂材)
本実施形態で使用される樹脂材は、ポリブチレンテレフタラート樹脂、ポリアミド樹脂、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂等の樹脂を適用できる。樹脂材の厚みは、その用途に応じて適宜選択すればよい。例えば、厚みが0.3〜10mmの樹脂材を適用できる。
(Resin material)
As the resin material used in the present embodiment, a resin such as a polybutylene terephthalate resin, a polyamide resin, a polypropylene resin, or a polyphenylene sulfide resin can be applied. What is necessary is just to select the thickness of the resin material suitably according to the use. For example, a resin material having a thickness of 0.3 to 10 mm can be applied.

(被接合体)
被接合体は、塗装鋼板と樹脂材とを積み重ねて構成される。塗装鋼板としては、片面または両面に熱可塑性樹脂皮膜を配された樹脂被覆鋼板が用いられる。そして、塗装鋼板と樹脂材との積み重ねは、塗装鋼板と樹脂材との接合面において塗装鋼板の熱可塑性樹脂皮膜が樹脂材と接触するように行われる。超音波振動を付与すると、当該熱可塑性樹脂皮膜と樹脂材との間で接合部を形成することにより、塗装鋼板と樹脂材とが接合して、金属材と樹脂材とからなる複合体が得られる。
(Substrate to be joined)
A to-be-joined body is comprised by stacking a coated steel plate and a resin material. As the coated steel sheet, a resin-coated steel sheet in which a thermoplastic resin film is arranged on one side or both sides is used. Then, stacking of the coated steel plate and the resin material is performed so that the thermoplastic resin film of the coated steel plate is in contact with the resin material at the joint surface between the coated steel plate and the resin material. When ultrasonic vibration is applied, by forming a joint between the thermoplastic resin film and the resin material, the coated steel plate and the resin material are joined to obtain a composite composed of the metal material and the resin material. It is done.

(超音波振動の振幅)
本実施形態では、塗装鋼板に付与される超音波振動の振幅は、20μm以上、40μm以下の範囲が好ましい。20μm未満であると、熱可塑性樹脂皮膜と樹脂材との摩擦が十分に起きず、接合強度が良好な接合部を形成できない。他方、40μmを超えると、一度接合したとしても過度の振動付与によって接合箇所が破壊されるため、接合強度が良好な接合部を形成できない恐れがある。
(Amplitude of ultrasonic vibration)
In the present embodiment, the amplitude of ultrasonic vibration applied to the coated steel sheet is preferably in the range of 20 μm or more and 40 μm or less. When the thickness is less than 20 μm, friction between the thermoplastic resin film and the resin material does not sufficiently occur, and a bonded portion with good bonding strength cannot be formed. On the other hand, if it exceeds 40 μm, even if it is once joined, the joint location is destroyed by the application of excessive vibration, so that there is a possibility that a joint with good joint strength cannot be formed.

(超音波振動の加振時間)
本実施形態では、加振時間は、振幅、加圧力、塗装鋼板の膜厚などの条件に応じて、適宜選択できる。加振時間が過少であると、十分な摩擦熱が得られないので、接合強度が不足する。加振時間が過大であると、一時接合されても振動により離れる。そのため、適した範囲で加振することが好ましく、例えば、0.2〜0.6秒の範囲を挙げることができる。
(Excitation time of ultrasonic vibration)
In the present embodiment, the excitation time can be appropriately selected according to conditions such as amplitude, pressure, and film thickness of the coated steel sheet. If the vibration time is too short, sufficient frictional heat cannot be obtained, so that the bonding strength is insufficient. If the excitation time is excessive, it will be separated by vibration even if it is temporarily joined. Therefore, it is preferable to vibrate in a suitable range, for example, a range of 0.2 to 0.6 seconds can be mentioned.

(ホーン保持時間)
本実施形態では、加振を停止した後、超音波振動を発生する工具(ホーン)を押圧した状態を0.1秒以上で保持することが好ましい。加振停止と同時に押圧状態を解除すると、接合部の冷却時に緻密な組織を形成できないので、十分な接合強度が得られない。
(Horn holding time)
In this embodiment, it is preferable to hold the state in which the tool (horn) that generates ultrasonic vibrations is pressed for 0.1 second or longer after the vibration is stopped. If the pressed state is released at the same time as the vibration is stopped, a dense structure cannot be formed when the joint is cooled, so that sufficient joint strength cannot be obtained.

(超音波振動の加圧力)
本実施形態では、振動開始時の加圧力を増大することにより、接合強度を高めることがきる。他方、加圧力を増大させると、付加装置に負担が掛かり、また、被接合体の表面にホーンが食い込んで圧痕を残存させるから、外観を損ねる。そのため、過度の加圧は好ましくない。
(Pressure force of ultrasonic vibration)
In the present embodiment, the bonding strength can be increased by increasing the applied pressure at the start of vibration. On the other hand, if the applied pressure is increased, a load is applied to the additional device, and the horn bites into the surface of the joined body to leave indentations, so that the appearance is impaired. Therefore, excessive pressurization is not preferable.

(超音波振動の振動数)
本実施形態では、付与する超音波の振動数は、20kHz程度が好ましい。
(Frequency of ultrasonic vibration)
In this embodiment, the frequency of the applied ultrasonic wave is preferably about 20 kHz.

(剪断引張強度)
本実施形態では、複合体が単位面積当りの剪断引張強度が10MPa以上であると好ましい。本明細書では、当該剪断引張強度(単位:Pa)は、剪断引張試験で得られたピーク荷重(単位:N)を、超音波振動を発生する工具(ホーン)が被接合体に接触する面積(mm)で除して、その単位面積当たりの剪断強度として算出された数値を意味する。また、本明細書では、当該剪断引張強度を、「接合強度」ということもある。金属材と樹脂材との複合体は、その剪断引張強度が10MPa以上であると、軽量化を求められる多くの用途で使用に適する。
(Shear tensile strength)
In this embodiment, it is preferable that the composite has a shear tensile strength per unit area of 10 MPa or more. In the present specification, the shear tensile strength (unit: Pa) is the peak load (unit: N) obtained in the shear tensile test, and the area where the tool (horn) that generates ultrasonic vibration contacts the workpiece. By dividing by (mm 2 ), it means a numerical value calculated as the shear strength per unit area. In the present specification, the shear tensile strength is sometimes referred to as “joining strength”. When the composite of the metal material and the resin material has a shear tensile strength of 10 MPa or more, it is suitable for use in many applications that require weight reduction.

本発明の実施例について説明する。本発明は、以下の説明に限定されるものではない。   Examples of the present invention will be described. The present invention is not limited to the following description.

図1に示すような試験体を作製した。試験体は、塗装鋼板1と樹脂材4を積み重ねたものである。塗装鋼板1は、板厚0.6mmの鋼板2の両面に熱可塑性樹脂皮膜3を設けたもので、ポリウレタン皮膜を設けたものと、ポリプロピレン皮膜を設けたものの2種類を用意した。樹脂材4は、厚み3mmの板形状であって、PA6(ポリアミド6)とPP(ポリプロピレン)からなるものを用意した。これらの塗装鋼板1と樹脂材4は、それぞれ長さ75mm×幅25mmに切断し、図1に示すように、両者が長手方向に20mmの部分で重なるように積み重ねた。   A test body as shown in FIG. 1 was produced. The test body is obtained by stacking the coated steel plate 1 and the resin material 4. The coated steel plate 1 was prepared by providing a thermoplastic resin film 3 on both surfaces of a steel plate 2 having a thickness of 0.6 mm, and two types were prepared: a polyurethane film and a polypropylene film. The resin material 4 has a plate shape with a thickness of 3 mm and is prepared of PA6 (polyamide 6) and PP (polypropylene). The coated steel plate 1 and the resin material 4 were cut into a length of 75 mm and a width of 25 mm, respectively, and stacked so that they overlap each other at a portion of 20 mm in the longitudinal direction as shown in FIG.

塗装鋼板と樹脂材との組み合わせは、表1に示すとおりである。   The combinations of the coated steel plate and the resin material are as shown in Table 1.

Figure 2018114670
Figure 2018114670

試験体1、試験体2における両面の熱可塑性樹脂皮膜の膜厚(μm)を表2に示す。   Table 2 shows the film thicknesses (μm) of the thermoplastic resin films on both surfaces of the test body 1 and the test body 2.

Figure 2018114670
Figure 2018114670

試験体の超音波接合は、図2に示すように、塗装鋼板1をホーン5側に位置するように配置して超音波接合試験を行った。試験体をホーン5とアンビル6の間に挟んで加圧し、超音波振動を加えた。ホーン5が左右に振動する。ホーンの動きに伴って発生した反力により、熱可塑性樹脂皮膜3と樹脂材4との接触面において摩擦発熱が生じて、接合界面の温度上昇を引き起こす。その加熱によって熱可塑性樹脂皮膜3と樹脂材4とが局所的に溶け合い、接合が行われる。   As shown in FIG. 2, the ultrasonic bonding of the test body was performed by placing the coated steel sheet 1 so as to be positioned on the horn 5 side. The test body was sandwiched between the horn 5 and the anvil 6 and pressurized, and ultrasonic vibration was applied. The horn 5 vibrates left and right. Due to the reaction force generated with the movement of the horn, frictional heat is generated at the contact surface between the thermoplastic resin film 3 and the resin material 4 and the temperature at the joining interface is increased. By the heating, the thermoplastic resin film 3 and the resin material 4 are locally melted and joined.

試験体がホーン5と接触する接触部は、塗装鋼板1と樹脂材4とが重なる部分のほぼ中央に位置し、長手方向に沿って、長さが約5mm、幅が約10mm(面積が約50mm)の矩形領域に相当した。 The contact portion where the test body comes into contact with the horn 5 is located approximately at the center of the portion where the coated steel plate 1 and the resin material 4 overlap, and the length is about 5 mm and the width is about 10 mm (the area is about 10 mm). Corresponding to a rectangular area of 50 mm 2 ).

超音波接合試験は、周波数20kHzの超音波振動を加えた。超音波の振幅は、10〜60μmの間で変化させ、超音波の加振は、0.1〜1.0秒(s)の範囲内で継続した後、ホーンを0〜5sの範囲で保持させた。振動開始時の加圧力は、200〜600Nの範囲で変化させた。   In the ultrasonic bonding test, ultrasonic vibration having a frequency of 20 kHz was applied. The amplitude of the ultrasonic wave is changed between 10 to 60 μm, and the ultrasonic vibration is continued within the range of 0.1 to 1.0 second (s), and then the horn is held within the range of 0 to 5 s. I let you. The applied pressure at the start of vibration was changed in the range of 200 to 600N.

(接合強度)
接合された試験体は、図3に示す引張試験装置によって剪断引張試験が行われた。引張速度を5mm/minで行い、試験体が破断するピーク荷重を求めた。試験体は、塗装鋼板1側を上側治具9で固定され、樹脂材4側を下側治具10で固定された。塗装鋼板1は、接合部と反対側の一端が上側治具9から突出するように固定し、当該突出した一端を上側つかみ部7で把持した。樹脂材4は、その全体を下側治具10で固定し、下側つかみ部8で把持した。これにより、樹脂材4が下側つかみ部8で潰されるのを防止できる。引張試験装置に試験体を取り付ける際は、引張荷重の中心軸と塗装鋼板の板厚中心軸とがほぼ一致するように試験体を把持した。試験体の接合部の面積は、ホーンの接触面積に対応すると考えられることから、試験体の剪断引張強度の指標として、引張試験により求めたピーク荷重(N)をホーンの接触面積(50mm)で除した数値を用いて、これを試験体の接合強度(MPa)とした。
(Joint strength)
The bonded specimens were subjected to a shear tensile test using a tensile test apparatus shown in FIG. The tensile load was performed at 5 mm / min, and the peak load at which the specimen was broken was determined. The test body was fixed on the coated steel plate 1 side by the upper jig 9 and fixed on the resin material 4 side by the lower jig 10. The coated steel plate 1 was fixed so that one end on the opposite side of the joint portion protruded from the upper jig 9, and the protruding one end was gripped by the upper grip portion 7. The entire resin material 4 was fixed by the lower jig 10 and held by the lower grip 8. Thereby, it can prevent that the resin material 4 is crushed by the lower side grip part 8. FIG. When the test specimen was attached to the tensile test apparatus, the test specimen was gripped so that the central axis of the tensile load and the central axis of the coated steel plate were approximately the same. Since the area of the joint portion of the test specimen is considered to correspond to the contact area of the horn, the peak load (N) obtained by the tensile test is used as an index of the shear tensile strength of the test specimen, and the horn contact area (50 mm 2 ). This was used as the bonding strength (MPa) of the test specimen.

実施例1:振幅、膜厚に関する試験)
超音波振動の振幅と熱可塑性樹脂皮膜の膜厚とが接合強度に及ぼす影響を調べた。所定の膜厚の試験体を用いて、所定の振幅で超音波振動を付与した。加圧力が400Nに達した際に、周波数20kHzの超音波振動を加えて、超音波加振を0.3秒(s)で継続した。超音波加振を停止した後は、ホーンを0.1sで保持した。その試験結果を図4、図5に示す。図4は、試験体1を用いた試験結果であり、図5は、試験体2を用いた試験結果である。
( Example 1 : Test on amplitude and film thickness)
The influence of ultrasonic vibration amplitude and thermoplastic film thickness on bonding strength was investigated. Using a specimen having a predetermined film thickness, ultrasonic vibration was applied with a predetermined amplitude. When the applied pressure reached 400 N, ultrasonic vibration with a frequency of 20 kHz was applied, and ultrasonic vibration was continued for 0.3 seconds (s). After the ultrasonic vibration was stopped, the horn was held at 0.1 s. The test results are shown in FIGS. FIG. 4 shows a test result using the test body 1, and FIG. 5 shows a test result using the test body 2.

超音波振動の特性は、振動媒体の種類によって異なり、振動媒体の境界では反射が生じるため、振動エネルギーが減衰する。本実施形態に係る塗装鋼板と樹脂材とを積み重ねた被接合体は、熱可塑性樹脂皮膜が鋼板の両面に備えた塗装鋼板である場合は、熱可塑性樹脂皮膜/鋼板/熱可塑性樹脂皮膜/樹脂材のように3つの界面で超音波振動が減衰する。当該皮膜が鋼板の片面に備えた塗装鋼板である場合は、鋼板/熱可塑性樹脂皮膜/樹脂材のように2つの界面で超音波振動が減衰する。そのため、塗装鋼板の熱可塑性樹脂皮膜が超音波振動に影響すると考えられる。そこで、実施例1は、熱可塑性樹脂皮膜の膜厚の総計により評価した。図4、図5に示すように、熱可塑性樹脂皮膜が総計の1.0μm以上、10μm以下の厚みを有する試験体は、20μm以上、40μm以下の振幅内において10MPa以上の接合強度が得られた。振幅を50μm以上に増大させると、接合強度が低下した。これは、一度接合された部分が過大な振幅によって破壊されたことによると推測される。また、表2に示すように、熱可塑性樹脂皮膜の膜厚は、片面が0.5μm以上であると、10MPa以上の接合強度を達成するのに好ましいことが確認された。   The characteristics of ultrasonic vibration vary depending on the type of vibration medium, and reflection occurs at the boundary of the vibration medium, so that vibration energy is attenuated. In the case where the joined body in which the coated steel plate and the resin material according to the present embodiment are stacked is a coated steel plate in which the thermoplastic resin film is provided on both surfaces of the steel plate, thermoplastic resin film / steel plate / thermoplastic resin film / resin. The ultrasonic vibration is attenuated at three interfaces like a material. When the coating is a coated steel plate provided on one side of the steel plate, the ultrasonic vibration is attenuated at the two interfaces such as steel plate / thermoplastic resin coating / resin material. Therefore, it is thought that the thermoplastic resin film of the coated steel plate affects ultrasonic vibration. Therefore, Example 1 was evaluated based on the total film thickness of the thermoplastic resin film. As shown in FIGS. 4 and 5, the test specimen having the total thickness of the thermoplastic resin film of 1.0 μm or more and 10 μm or less has a bonding strength of 10 MPa or more within an amplitude of 20 μm or more and 40 μm or less. . When the amplitude was increased to 50 μm or more, the bonding strength decreased. This is presumed to be due to the fact that the once joined portion was destroyed by an excessive amplitude. Moreover, as shown in Table 2, it was confirmed that the film thickness of the thermoplastic resin film is preferable to achieve a bonding strength of 10 MPa or more when one side is 0.5 μm or more.

次に、図4、図5の振幅20μm、30μm、40μmの試験結果について、横軸に膜厚にしたグラフを図6、図7に示す。図6、図7に示すように、膜厚の総計が小さくなるにしたがい、接合強度は、上昇して、1.0μm付近でピークを示し、1.0μm未満では急減する傾向を示した。その一方で、膜厚の総計が10mmを超えると、10MPaを下回る接合強度を示した。このような傾向を示す理由は、解明されていない。鋼板の表面は、一般的に微小な凹凸状を有しているため、被覆される熱可塑性樹脂皮膜が過度に薄くなると、鋼板表面の凸部に被覆されない領域が存在し、その領域が樹脂体との接合に寄与しないため、接合強度が低下したと推測される。他方で、熱可塑性樹脂皮膜の膜厚が過度に大きくなると、超音波振動が減衰し、塗装鋼板と樹脂材との接合部において十分な摩擦が得られないこと、また、接合部の位置が鋼板から離れるため、鋼板との接着性による寄与が低減することが推測される。   Next, with respect to the test results with amplitudes of 20 μm, 30 μm, and 40 μm in FIGS. As shown in FIGS. 6 and 7, as the total film thickness became smaller, the bonding strength increased and showed a peak near 1.0 μm and a tendency to rapidly decrease below 1.0 μm. On the other hand, when the total thickness exceeded 10 mm, the bonding strength was less than 10 MPa. The reason for this tendency has not been elucidated. Since the surface of the steel sheet generally has minute irregularities, when the thermoplastic resin film to be coated becomes excessively thin, there is a region that is not covered with the convex portion on the surface of the steel plate, and this region is a resin body. It is presumed that the bonding strength has decreased because it does not contribute to the bonding. On the other hand, if the film thickness of the thermoplastic resin film becomes excessively large, the ultrasonic vibration is attenuated, and sufficient friction cannot be obtained at the joint between the coated steel plate and the resin material. Therefore, it is estimated that the contribution due to the adhesiveness with the steel sheet is reduced.

実施例2:加振時間に関する試験)
次に、加振時間による影響を調べた。試験体1の膜厚総計4.1μmのもの、試験体2の膜厚総計4.0μmのものを用いた。振動開始時の加圧力が400Nであり、周波数20kHz、振幅30μmの超音波振動を加えた。超音波停止後にホーンを0.1sで保持した。加振時間(s)は、0.1s、0.3s、0.6s、0.8s、1.0sで行った。試験結果を図8に示す。加振時間が0.2〜0.6sの範囲で、接合強度10MPa以上の複合体が得られた。
( Example 2 : Test on excitation time)
Next, the effect of the excitation time was examined. The specimen 1 having a total film thickness of 4.1 μm and the specimen 2 having a total film thickness of 4.0 μm were used. The applied pressure at the start of vibration was 400 N, and ultrasonic vibration with a frequency of 20 kHz and an amplitude of 30 μm was applied. The horn was held at 0.1 s after stopping the ultrasonic wave. The excitation time (s) was 0.1 s, 0.3 s, 0.6 s, 0.8 s, and 1.0 s. The test results are shown in FIG. A composite having a bonding strength of 10 MPa or more was obtained with an excitation time in the range of 0.2 to 0.6 s.

実施例3:ホーン保持時間に関する試験)
次に、超音波の加振を停止した後、ホーンを保持する時間(ホーン保持時間)による影響を調べた。実施例2と同様の試験体1、2を用いて、振動開始時の加圧力が400Nであり、周波数20kHz、振幅30μmの超音波振動を加えて、加振を0.3sで継続した。超音波停止後のホーン保持時間(s)を、0s(保持しない)、0.1s、0.5s、1.0s、3.0s、5.0sで行った、その試験結果を図9に示す。ホーンの保持がないときは、接合強度が低下し、0.1s以上のホーン保持により、10MPa以上の接合強度が得られた。加振を停止した後においてもホーンを保持し、接合部を加圧することにより、接合強度の向上効果を確認できた。0.1sを越えて保持しても、接合強度は、ほぼ一定であった。
( Example 3 : Test on horn retention time)
Next, after stopping the excitation of ultrasonic waves, the influence of the time for holding the horn (horn holding time) was examined. Using the same test bodies 1 and 2 as in Example 2, the applied pressure at the start of vibration was 400 N, ultrasonic vibration having a frequency of 20 kHz and an amplitude of 30 μm was applied, and the excitation was continued for 0.3 s. The horn holding time (s) after the ultrasonic wave was stopped was 0 s (not held), 0.1 s, 0.5 s, 1.0 s, 3.0 s, and 5.0 s. The test results are shown in FIG. . When the horn was not held, the bonding strength was reduced, and a bonding strength of 10 MPa or more was obtained by holding the horn for 0.1 s or more. Even after the vibration was stopped, the effect of improving the bonding strength could be confirmed by holding the horn and pressurizing the bonded portion. Even if it was held for more than 0.1 s, the bonding strength was almost constant.

実施例4:振動開始時の加圧力に関する試験)
次に、振動開始時の加圧力による影響を調べた。実施例2と同様の試験体1、2を用いて、周波数20kHz、振幅30μmの超音波振動を加えて、加振を0.3sで継続し、超音波停止後のホーン保持時間を0.1sとした。振動開始時の加圧力(N)を、200N、400N、600Nで行った。その試験結果を図10に示す。加圧力が増大するにともない、接合強度が増大した。接合部分において溶融接合した後に冷却されて凝固する過程で、加圧力が大きいほど、緻密な接合組織が形成されることにより、接合強度が増大したものと考えられる。
( Example 4 : Test on applied pressure at the start of vibration)
Next, the influence of the applied pressure at the start of vibration was examined. Using test specimens 1 and 2 similar to those in Example 2, ultrasonic vibration having a frequency of 20 kHz and an amplitude of 30 μm was applied, and the vibration was continued for 0.3 s, and the horn holding time after the ultrasonic was stopped was 0.1 s. It was. The applied pressure (N) at the start of vibration was 200N, 400N, and 600N. The test results are shown in FIG. As the applied pressure increased, the bonding strength increased. In the process of being cooled and solidified after being melt-bonded at the bonded portion, it is considered that the greater the applied pressure, the denser the bonded structure is formed, thereby increasing the bonding strength.

以上のことから、本発明に係る複合体の製造方法は、塗装鋼板と樹脂材とを効率よく接合できる方法を提供し、さらに、樹脂材主体の複合体において、従来よりも高強度の接合強度を有する複合体を提供する点で、有用な効果を奏する。   From the above, the method for producing a composite according to the present invention provides a method capable of efficiently joining a coated steel plate and a resin material. Further, in a composite mainly composed of a resin material, the joint strength of the composite material is higher than before. The present invention has a useful effect in providing a composite having

1 塗装鋼板
2 鋼板
3 熱可塑性樹脂皮膜
4 樹脂材
5 ホーン
6 アンビル
7 上側つかみ部
8 下側つかみ部
9 上側治具
10 下側治具
21 上板
22 下板
23 ホーン
24 アンビル
25 加熱域
26 加圧手段
27 反力
DESCRIPTION OF SYMBOLS 1 Painted steel plate 2 Steel plate 3 Thermoplastic resin film 4 Resin material 5 Horn 6 Anvil 7 Upper grip part 8 Lower grip part 9 Upper jig 10 Lower jig 21 Upper board 22 Lower board 23 Horn 24 Anvil 25 Heating area 26 Addition Pressure means 27 Reaction force

Claims (2)

少なくとも被接合面側に熱可塑性樹脂皮膜を有する塗装鋼板と樹脂材とを積み重ねた被接合体を作製し、前記被接合体を加圧した状態で、前記被接合体に超音波振動を付与して、前記塗装鋼板と前記樹脂材とを接合させて、塗装鋼板と樹脂材との複合体を製造する方法であって、
前記熱可塑性樹脂皮膜の厚みが総計で1.0μm以上、10μm以下であり、
前記超音波振動の振幅が20μm以上、40μm以下であり、
超音波振動を停止した後、超音波振動を付与する工具を前記被接合体に0.1秒以上保持させる、塗装鋼板と樹脂材との複合体の製造方法。
A bonded body in which at least a coated steel plate having a thermoplastic resin film on the bonded surface side and a resin material are stacked is manufactured, and ultrasonic vibration is applied to the bonded body in a state where the bonded body is pressurized. A method of manufacturing the composite of the coated steel plate and the resin material by joining the painted steel plate and the resin material,
The total thickness of the thermoplastic resin film is 1.0 μm or more and 10 μm or less,
The amplitude of the ultrasonic vibration is 20 μm or more and 40 μm or less,
A method for producing a composite of a coated steel plate and a resin material, wherein after the ultrasonic vibration is stopped, a tool for applying the ultrasonic vibration is held on the joined body for 0.1 second or more.
前記複合体は、単位面積当りの剪断引張強度が10MPa以上である、請求項1記載の塗装鋼板と樹脂材との複合体の製造方法。   The method for producing a composite of a coated steel sheet and a resin material according to claim 1, wherein the composite has a shear tensile strength per unit area of 10 MPa or more.
JP2017006954A 2017-01-18 2017-01-18 Method for producing composite body of coated steel sheet and resin material Pending JP2018114670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006954A JP2018114670A (en) 2017-01-18 2017-01-18 Method for producing composite body of coated steel sheet and resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006954A JP2018114670A (en) 2017-01-18 2017-01-18 Method for producing composite body of coated steel sheet and resin material

Publications (1)

Publication Number Publication Date
JP2018114670A true JP2018114670A (en) 2018-07-26

Family

ID=62983306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006954A Pending JP2018114670A (en) 2017-01-18 2017-01-18 Method for producing composite body of coated steel sheet and resin material

Country Status (1)

Country Link
JP (1) JP2018114670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104287A (en) * 2018-12-26 2020-07-09 日鉄日新製鋼株式会社 Method for manufacturing composite of coated metal matrix material and resin material
JP2024035025A (en) * 2022-08-31 2024-03-13 晶呈科技股▲分▼有限公司 Die package joining and transfer method
JP7693136B1 (en) * 2024-02-15 2025-06-16 三菱電機株式会社 Bonded body, semiconductor device, method for manufacturing bonded body, and method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224974A (en) * 2010-03-30 2011-11-10 Sumitomo Chemical Co Ltd Method of manufacturing metal-resin composite
WO2014030417A1 (en) * 2012-08-24 2014-02-27 ソニー株式会社 Structure
WO2014112506A1 (en) * 2013-01-18 2014-07-24 日本軽金属株式会社 Process for producing metal-resin bonded object, and metal-resin bonded object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224974A (en) * 2010-03-30 2011-11-10 Sumitomo Chemical Co Ltd Method of manufacturing metal-resin composite
WO2014030417A1 (en) * 2012-08-24 2014-02-27 ソニー株式会社 Structure
WO2014112506A1 (en) * 2013-01-18 2014-07-24 日本軽金属株式会社 Process for producing metal-resin bonded object, and metal-resin bonded object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104287A (en) * 2018-12-26 2020-07-09 日鉄日新製鋼株式会社 Method for manufacturing composite of coated metal matrix material and resin material
JP7156009B2 (en) 2018-12-26 2022-10-19 日本製鉄株式会社 Manufacturing method of composite of coated metal material and resin material
JP2024035025A (en) * 2022-08-31 2024-03-13 晶呈科技股▲分▼有限公司 Die package joining and transfer method
JP7475735B2 (en) 2022-08-31 2024-04-30 晶呈科技股▲分▼有限公司 Method for joining and transferring die packages
JP7693136B1 (en) * 2024-02-15 2025-06-16 三菱電機株式会社 Bonded body, semiconductor device, method for manufacturing bonded body, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US10639744B2 (en) Method of laser joining of dissimilar materials with ultrasonic aid
US8905291B2 (en) Coulomb damping features using ultrasonic welding
JP7262830B2 (en) Method for fastening a second object to a first object
JP2000516873A (en) Simultaneous amplitude and force profile control during ultrasonic welding of thermoplastic workpieces
US20110220292A1 (en) System for enhancing sonotrode performance in ultrasonic additive manufacturing applications
CN107498879A (en) Ultrasonic welding of thermoplastic composites
JP2015509850A (en) Method of welding parts using low thermal conductivity tool and vibration welder with high mechanical properties and corresponding vibration welder
JP2018114670A (en) Method for producing composite body of coated steel sheet and resin material
US10723096B2 (en) Method for producing packaging, and packaging machine
US9399332B2 (en) Ultrasonic joining method and ultrasonic joining device
CN107428090B (en) The joint method of metal, resin component and carbon-fiber reinforced resins component
CN113518708B (en) Method and apparatus for joining paper materials
JP6673634B2 (en) Ultrasonic bonding method
JP7156009B2 (en) Manufacturing method of composite of coated metal material and resin material
WO2020067191A1 (en) Ultrasonic bonding method
CN105984120A (en) Resin joined body, method of producing resin joined body, and vehicular structural body
JP7705218B2 (en) LAMINATE AND METHOD FOR MANUFACTURING LAMINATE
JP6868885B2 (en) Joining device, joining method using it, and manufacturing method of joined body
JP2020019046A (en) Joining method, joining device and structure
EP3523113A1 (en) Method of activating adhesives
JP2019509921A (en) Ultrasonic welding apparatus and ultrasonic welding method for different types of floor materials
JP4064111B2 (en) Ultrasonic pressure welding method
JP5879582B2 (en) Ultrasonic vibration welding apparatus and ultrasonic vibration welding apparatus
JP2022073690A (en) Ultrasonic bonding method
JP6842755B2 (en) Multi-layer foil metal joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210202