JP2019045272A - Nondestructive flow analysis method - Google Patents
Nondestructive flow analysis method Download PDFInfo
- Publication number
- JP2019045272A JP2019045272A JP2017167965A JP2017167965A JP2019045272A JP 2019045272 A JP2019045272 A JP 2019045272A JP 2017167965 A JP2017167965 A JP 2017167965A JP 2017167965 A JP2017167965 A JP 2017167965A JP 2019045272 A JP2019045272 A JP 2019045272A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- flow
- ray
- state
- air bubbles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000005206 flow analysis Methods 0.000 title 1
- 239000007788 liquid Substances 0.000 claims abstract description 91
- 230000004087 circulation Effects 0.000 claims abstract description 45
- 238000007689 inspection Methods 0.000 claims abstract description 16
- 239000008280 blood Substances 0.000 claims description 23
- 210000004369 blood Anatomy 0.000 claims description 23
- 239000012530 fluid Substances 0.000 claims description 14
- 239000007924 injection Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 230000001066 destructive effect Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 abstract 1
- 210000004072 lung Anatomy 0.000 description 17
- 230000017531 blood circulation Effects 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 9
- 239000012528 membrane Substances 0.000 description 8
- 239000002872 contrast media Substances 0.000 description 7
- 239000012510 hollow fiber Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000001706 oxygenating effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
【課題】液体の流動状態を検査し難い液体流通装置においても、液体、或いは気泡の流動状況を検査できる方法、手段を提供する。【解決手段】400kV以上の高出力X線CTにより、液体流通装置内の液体流動状態を検査する方法であって、液体流通装置に液体を循環させながら、液体流通装置内に気泡を混入させ、混入した気泡の液体流通装置内における流動、停滞状態を前記高出力X線CTで計測することにより、液体流通装置内における液体循環時の液体流動状態、或いは気泡の流動、停滞状態を検査する非破壊検査方法、及びその検査に使用する装置。【選択図】図1PROBLEM TO BE SOLVED: To provide a method and means capable of inspecting the flow state of a liquid or a bubble even in a liquid distribution device in which it is difficult to inspect the flow state of the liquid. SOLUTION: This is a method of inspecting a liquid flow state in a liquid flow device by a high output X-ray CT of 400 kV or more, in which air bubbles are mixed in the liquid flow device while circulating the liquid in the liquid flow device. By measuring the flow and stagnation state of the mixed bubbles in the liquid flow device with the high-power X-ray CT, the liquid flow state during liquid circulation in the liquid flow device, or the flow and stagnation state of the bubbles are inspected. Destructive inspection method and equipment used for the inspection. [Selection diagram] Fig. 1
Description
本発明は、流体が流通する装置内の液体流動状態を非破壊的に検査する方法、及びそのために使用する装置に関する。 The present invention relates to a method for nondestructively inspecting a fluid flow state in a device through which fluid flows, and a device used therefor.
体外血液循環やそのために必要な事前のプライミング処理を行う際、流通する液体の(体外循環)回路や体外血液循環における各構成要件(人工肺、貯血槽、血液フィルター、熱交換器、送液ポンプ)内の流動状態を調べ、解析することが、体外血液循環系の流動状態を改善し、前記各構成要件における偏流や停滞を抑止する上で効果をもたらしてきた。 When performing extracorporeal blood circulation and prior priming necessary for that, each component requirement in the (extracorporeal circulation) circuit of circulating fluid and extracorporeal blood circulation (artificial lung, blood storage tank, blood filter, heat exchanger, liquid delivery pump The examination and analysis of the flow state in the inside) has been effective in improving the flow state of the extracorporeal blood circulation system and suppressing the drift and stagnation in the respective constituent requirements.
しかし、特に体外血液循環系においては、流通する液や流路の物性、形状及び環境との相互作用や影響によって、流動状態が様々に変化し、測定や解析が容易では無かった。そのため、従来では体外血液循環における流動状態を評価したり、設計するに当たり、過去の経験、理論的扱いあるいは装置全体としての機能評価で対処することが多かった。即ち、従来の液体流通装置の評価・設計方法では、流通する液の粘度、密度、固形物と液体の混合状態などにより、流動特性、物質交換特性、熱交換特性などの各種特性が非線形性を伴うことが多く、実際の装置の機能を充分には評価・解析できず、改善すべき部分を特定できないことが多かった。 However, in the extracorporeal blood circulatory system, the flow state changes in various ways depending on the interaction or influence with the physical properties, the shape, and the environment of the flowing fluid or flow path, and measurement and analysis are not easy. Therefore, in the past, when evaluating or designing the flow state in the extracorporeal blood circulation, it was often dealt with by past experience, theoretical treatment, or functional evaluation as a whole device. That is, in the evaluation and design method of the conventional liquid circulation device, various characteristics such as flow characteristics, mass exchange characteristics, heat exchange characteristics and the like are nonlinear due to the viscosity, density, mixed state of solid and liquid, etc. In many cases, it was not possible to sufficiently evaluate and analyze the function of the actual device, and it was often impossible to identify the part to be improved.
そのため、特許文献1に示されるものでは、X線コンピュータ断層診断装置や磁気共鳴断層装置を使用し、粒子状造影剤の流路内の分布や状況を計測することにより、流体の流動状況を解析している。ただ、流動状態の調査対象が、透析器や人工肺等、中空糸膜では、造影剤の透過性が高く、膜を通過するため、通常の方法や手段では、流動状態を可視化することが困難であった。そのため、特許文献1では、造影剤を粒子状のもの、或いは高分子量のものを使用すること等により、中空糸膜における流動状態の可視化を改善している。 Therefore, in the system disclosed in Patent Document 1, the flow condition of the fluid is analyzed by measuring the distribution and the condition in the flow path of the particulate contrast agent using an X-ray computed tomography diagnostic apparatus and a magnetic resonance tomographic apparatus. doing. However, in the case of hollow fiber membranes such as a dialyzer and an artificial lung, the object of investigation of the flow state is high in permeability of the contrast agent and passes through the membrane, so it is difficult to visualize the flow state by ordinary methods and means Met. Therefore, in Patent Document 1, visualization of the flow state in the hollow fiber membrane is improved by using a particulate contrast agent or a high molecular weight contrast agent.
特許文献1に開示された例では、液体を流通する装置が、観察手段に馴染まない場合、例えば流路が金属製であったり、或いは熱交換器等のように、流路内に金属管が縦横に配置された構成要素を含んでいる場合、精度の良い流動状況の測定/解析が困難であった。例えば、通常の医療用のX線コンピュータ断層診断装置であれば、管電圧の出力は120kVであり、金属製多管式の熱交換器やその熱交換器を内蔵する人工肺の流動状況を調べようとした場合、その撮像に偽画像/障害陰影(アーチファクト)を生じ、精度の高い測定や解析は困難であった。
また、造影剤として、気泡を利用し、液体の流動状態を把握しようとしたが、半透膜から気泡が透過するため、観察の補助手段としての気泡は、好ましいものではなかった。
In the example disclosed in Patent Document 1, when the device for circulating the liquid is not compatible with the observation means, for example, the flow passage is made of metal, or a metal pipe is formed in the flow passage like a heat exchanger or the like. When including vertically and horizontally arranged components, accurate measurement / analysis of the flow condition was difficult. For example, in the case of a medical X-ray computed tomography diagnostic apparatus for ordinary medical use, the output of the tube voltage is 120 kV, and the flow condition of the artificial lung incorporating the heat exchanger made of metal multitubular type and the heat exchanger In such cases, false images / shadows (artifacts) occur in the imaging, and accurate measurement and analysis are difficult.
In addition, although air bubbles were used as a contrast agent to try to grasp the flow state of the liquid, air bubbles as a support means for observation were not preferable because air bubbles permeate from the semipermeable membrane.
本発明では、液体の流動状態を把握する上で、気泡の流動/停滞状態に着目した。例えば、人工心肺等の体外血液循環においては、気泡の除去は必要不可欠な処理であるが、流路の形状や素材の親水性等、様々な要因により、気泡の停滞や付着が生じてしまう。通常、体外血液循環の前に行う生理食塩水等によるプライミング処理により、中空糸膜や金属製管に付着する気泡を除去するのであるが、人工肺や熱交換器の流路形状や性状により、気泡除去が困難なものもある。従って、体外血液循環系を構成する各構成要件においては、気泡が停滞せず、流動し易い流路形状や性状が望ましい。特に、人工肺や熱交換器等のように、気泡が付着、停滞し易い構成要件では、設計する段階で、模擬的に気泡の流動/停滞状態を把握する測定手段や方法が有れば、有効なものとなる。
また、気泡が流動し易い流路形状、性状であれば、液体の流通に関しても、関連性があり、気泡の流動/停滞状態を調べることで、液体の流通状態も推定し、把握できる利点もある。
In the present invention, in order to grasp the flow state of the liquid, attention was paid to the flow / stagnation state of the bubbles. For example, in extracorporeal blood circulation such as artificial heart and lung, removal of air bubbles is an indispensable process, but stagnation and adhesion of air bubbles occur due to various factors such as the shape of the flow path and the hydrophilicity of the material. Usually, air bubbles attached to hollow fiber membranes and metal tubes are removed by priming treatment with physiological saline or the like performed before extracorporeal blood circulation, but depending on the flow path shape and properties of the artificial lung and heat exchanger, Some bubbles are difficult to remove. Therefore, in each component which comprises an extracorporeal blood circulatory system, a bubble shape does not stagnate, but the flow-path shape and property which are easy to flow are desirable. In particular, in a configuration requirement that air bubbles are easily attached and stagnate, such as an artificial lung and a heat exchanger, if there is a measuring means or method for grasping the flow / sustained state of air bubbles at the design stage, It becomes effective.
In addition, if the flow path shape and properties in which the bubbles are easy to flow, there is relevance as to the flow of the liquid, and by examining the flow / stagnation state of the bubbles, the flow state of the liquid can be estimated and grasped. is there.
そのため、本発明では、液体の流動状態を計測/解析し難い液体流通装置(例えば金属製の装置であったり、金属製の構成要素を含む装置)においても、液体、或いは気泡の流動状況を把握できる方法、手段を提供することが、1つの目的であり、さらに液体の流動している際の、各構成要素に偏在する気泡の状態を計測/解析することによって、各構成要件における気泡の流動性(除去性)、或いは液体の流動状況を把握し、それを基に、気泡除去性の良い構成要件、或いは望ましい液体の流動性を有する構成要件を設計することが、さらなる目的である。 Therefore, in the present invention, even in a liquid circulation apparatus (for example, an apparatus made of a metal or an apparatus including a metal component) which is difficult to measure / analyze the flow state of the liquid, the flow state of the liquid or bubbles is grasped It is an object of the present invention to provide a method and means that can be used, and the flow of air bubbles in each component by measuring / analyzing the state of air bubbles localized in each component when the liquid is flowing. It is a further object to grasp the nature (removability) or the flow condition of the liquid, and based on that, design the configuration requirement having the good bubble removal property or the desired fluidity of the liquid.
本発明は、400kV以上の高出力X線CTにより、液体流通装置内の液体流動状態を検査する方法であって、液体流通装置に液体を循環させながら、液体流通装置内に気泡を混入させ、混入した気泡の液体流通装置内における流動、停滞状態を前記高出力X線CTで計測することにより、液体流通装置内における液体循環時の液体流動状態、或いは気泡の流動、停滞状態を検査できる非破壊検査方法に関する。 The present invention is a method of inspecting a liquid flow state in a liquid circulation device by high-output X-ray CT of 400 kV or more, in which air bubbles are mixed in the liquid circulation device while circulating the liquid in the liquid circulation device. By measuring the flow and stagnation state of the mixed bubbles in the liquid circulation device by the high-power X-ray CT, it is possible to inspect the liquid flow state at the time of liquid circulation in the liquid circulation device or the flow and stagnation state of the bubbles. It relates to a destructive inspection method.
また、本発明は、液体流通装置と送液ポンプとを血液回路で、(液体が)流通可能となるように接続し、液体流通装置と送液ポンプと血液回路を含む液体流通系全体が(外部とは流通できないように)閉鎖系に形成されてなり、液体流通装置のいずれか、或いは血液回路の特定の箇所に、気体若しくは気泡を上記液体流通系に注入できる気体注入手段を設け、液体流通装置内をX線が透過でき、且つ透過したX線を検出できるように配置したX線出力装置、及び(X線)検出器からなる400kV以上の高出力X線CT装置によって、液体流通時における液体流通装置内の気泡の流通、停滞状態を検査できる非破壊検査用装置に関する。 Further, according to the present invention, the liquid circulation device and the liquid transfer pump are connected in a blood circuit so as to be able to flow (liquid), and the entire liquid circulation system including the liquid circulation device, the liquid transfer pump and the blood circuit A liquid injection device is provided which is formed in a closed system so that it can not flow outside, and which can inject gas or air bubbles into the liquid circulation system at any part of the liquid circulation apparatus or at a specific location of the blood circuit, At the time of liquid circulation by a high-power X-ray CT system of 400 kV or more consisting of an X-ray output device arranged to transmit X-rays in the circulation device and detect X-rays transmitted and an (X-ray) detector The present invention relates to an apparatus for nondestructive inspection capable of inspecting the circulation and stagnation of air bubbles in a liquid circulation apparatus in
本発明において、流通する液体に造影剤を混入する方法を採用すると、流動状況がより判別し易くなるため、好ましい。 In the present invention, it is preferable to adopt a method in which a contrast agent is mixed into the fluid to be distributed, since the flow condition can be more easily determined.
また、本発明において、気泡を液体流通系で循環させることにより、偏在する気泡の位置や状態だけでなく、人工肺や熱交換器等で補捉される気泡の量や位置が把握できる。即ち、人工肺や熱交換器に近接させたフィルター、或いは中空糸膜でトラップされた気泡量や場所を検査できる。或いは中空糸膜を気泡が透過することで、流通装置内の気泡を除去でき、その除去量や何処で気泡が効果的に除去されているのかを把握することによって、より有用な設計や改良が可能となる。 Further, in the present invention, by circulating the air bubbles in the liquid flow system, not only the position and state of the unevenly distributed air bubbles but also the amount and position of air bubbles captured by the artificial lung, heat exchanger or the like can be grasped. That is, it is possible to inspect the amount and location of air bubbles trapped by a filter or hollow fiber membrane brought close to an artificial lung or a heat exchanger. Alternatively, air bubbles can permeate the hollow fiber membrane to remove air bubbles in the circulation device, and by grasping the amount of removal and where the air bubbles are effectively removed, more useful design and improvement It becomes possible.
本発明によれば、X線を透過し難い金属製材料を含む液体流通装置における液体の流動状況、或いは液体流通装置内に流通、停滞する気泡の状態を精度良く検査することができる。即ち、液体停止時ではなく、液体循環時における液体流通装置内の液流状況や気泡の分布状態を検査できるため、体外血液循環の際の液、または気泡の流通、停滞の挙動が再現し易く、臨床で使用する装置の設計を行う際に有利なものとなる。 According to the present invention, it is possible to inspect with high accuracy the flow condition of liquid in a liquid circulation device containing a metal material that is hard to transmit X-rays, or the state of air bubbles flowing or stagnating in the liquid circulation device. That is, since it is possible to inspect the liquid flow condition and the bubble distribution state in the liquid circulation device at the liquid circulation time, not at the liquid stop time, it is easy to reproduce the flow or stagnation behavior of the liquid or air bubble in the extracorporeal blood circulation. This is advantageous when designing a device for clinical use.
以下、本発明の好ましい各実施形態について、図面を参照しながら説明する。図1は、本発明の方法、装置を使用して、液体流通装置〔熱交換器及び血液フィルターを近接させた人工肺〕内に存在する気泡の流動、停滞状況を検査するために使用した非破壊検査用装置の概略図である。熱交換器1B及び血液フィルター1Cを近接させた人工肺1Aは、血液回路2によって、送液ポンプ4、貯血槽3等の体外血液循環系の各構成要件と液流通可能に接続されている。この実施形態(検査装置9)において、各構成要件や液体流通装置1、血液回路2は、外部から液や気体の混入や流出が起こらないように、閉鎖系に形成されている。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the flow and stagnation of air bubbles present in a liquid flow apparatus (an artificial lung in which a heat exchanger and a blood filter are brought into proximity) using the method and apparatus of the present invention. It is the schematic of the apparatus for destructive inspection. The artificial lung 1A in which the heat exchanger 1B and the blood filter 1C are brought close to each other is connected by the blood circuit 2 so as to be in fluid communication with each component of the extracorporeal blood circulatory system such as the fluid sending pump 4 and the blood reservoir 3 and the like. In this embodiment (inspection apparatus 9), the respective constituent requirements, the liquid circulation apparatus 1, and the blood circuit 2 are formed in a closed system so that mixing or outflow of liquid or gas does not occur from the outside.
血液回路、或いは各構成要件の適当な箇所に、気体注入手段を設け、その注入手段のポート(非表示)から、シリンジ等を使用して、一定量の気体を閉鎖系の検査装置に注入する。注入された気体は、気泡となって、注入手段のポート図番から、流れていき、人工肺1Aの中空糸隙間や熱交換器1Bの金属管付近、血液フィルター1C付近で停滞する。 A gas injection means is provided at an appropriate position in the blood circuit or each component, and a certain amount of gas is injected into a closed-system inspection device using a syringe or the like from a port (not shown) of the injection means. . The injected gas becomes air bubbles and flows from the port number of the injection means, and stagnates near the hollow fiber gap of the oxygenating lung 1A or near the metal pipe of the heat exchanger 1B and near the blood filter 1C.
本発明の非破壊検査用装置は、上述したような血液回路2と液体流通装置1を閉鎖的に液流通可能に接合した液流通系と、液を流通するための送液ポンプ4及びそのポンプを駆動するための送液ポンプ駆動装置6と、液体流通装置に存在する気泡の流動、停滞状況を計測するための高出力X線CT装置5を含む。図2に示したように、高出力X線CT装置は、例えば、人工肺や熱交換器内の気泡が流通、停滞する箇所をX線が透過できるように配置したX線管球5A、そして透過したX線を検出できる検出器5B等から構成される。さらに、送液ポンプ駆動装置と液体流通装置の間にX線の影響を遮る遮蔽板7を設けることが望ましい。ここで、X線CTの出力としては、通常医療で使用される120kVでは、精度の良い検査ができないため、400kV以上のものが望ましい。本実施例では、X線CT装置として、東芝製のTOSCANER−2450twinを使用した。 The apparatus for nondestructive inspection of the present invention comprises a liquid distribution system in which the blood circuit 2 and the liquid distribution apparatus 1 as described above are joined so as to allow liquid to flow in a closed manner, a liquid feed pump 4 for circulating liquid, and its pump And a high-power X-ray CT apparatus 5 for measuring the flow and stagnation of air bubbles present in the liquid circulation apparatus. As shown in FIG. 2, the high-power X-ray CT apparatus is, for example, an X-ray tube 5A disposed so as to allow X-rays to pass through portions where air bubbles in the artificial lung and heat exchanger flow and stagnate. It is comprised from the detector 5B etc. which can detect the transmitted X ray. Furthermore, it is desirable to provide a shielding plate 7 for blocking the influence of X-rays between the liquid feed pump drive device and the liquid circulation device. Here, as an output of the X-ray CT, since the inspection with high accuracy can not be performed at 120 kV which is usually used in medical care, the output of 400 kV or more is desirable. In this embodiment, TOSCANER-2450twin manufactured by Toshiba was used as an X-ray CT apparatus.
図2に示すように、X線CT内に液体流通装置と、それ以外の体外血液循環系の各構成要件と送液ポンプ駆動装置とを分け、フレーム(非表示)を構築し、各構成要件と送液ポンプ駆動装置をフレームで固定する。液体流通装置(被写体)をフレーム等で固定することで、液体流通装置を回転させ、全方向からX線CTで測定する際でも、被写体が可動することなく、その結果、正確な情報を得ることが可能となる。また、図2に示すように遮蔽板7を設けることにより、液体流通装置以外へのX線の影響を低減することができる。 As shown in FIG. 2, the X-ray CT separates the liquid circulation device, the other components of the extracorporeal blood circulation system and the liquid feed pump driving device, and a frame (not shown) is constructed, and the respective components are required. Secure the feed pump drive with a frame. By fixing the liquid circulation device (object) with a frame or the like, the liquid circulation device is rotated, and even when measurement is performed by X-ray CT from all directions, the object does not move, and as a result, accurate information can be obtained. Is possible. Further, by providing the shielding plate 7 as shown in FIG. 2, the influence of X-rays on other than the liquid circulation device can be reduced.
本実施例では、閉鎖系の検査装置内をRO水でプライミングし、検査を実施したが、これに限らず、検査する液体流通装置の特性に応じ、造影剤を粒子状のもの、或いは高分子量のもの等を選択しても良い。 In the present embodiment, the inside of the closed-system inspection device is primed with RO water and the inspection is performed, but the invention is not limited thereto, and the contrast agent may be in the form of particles or high molecular weight according to the characteristics of the liquid circulation device to be inspected. You may select one or the like.
流通する装置内の灌流量は、特に指定はなく、本実施例では一般的な成人の体外血液循環量の5L/minであったが、本発明の装置を使用する事で、必要に応じて、製品の使用流量で流通することができる。 The amount of perfusion in the circulating device is not particularly specified, and in this example was 5 L / min of the general extracorporeal blood circulation in adults, but it is possible to use the device of the present invention as needed. , Can be distributed at the product flow rate.
図2に示すように、ターンテーブル8を回転することで、X線CTで全方向からの液体流通装置のX線透過率を多チャンネル検出器で測定し、被写体内の線減弱係数と空間的分析を算出し、画像として表示することができる。本実施例では、検出器で得られた撮影エリアを画像サイズ2048×2048で分解し、ボクセルを作成した。ボクセルは単位体積中の物質の割合によってCT画像の色が変化する。例えば、サンプルが多い場合は白色に、空気が多い場合は黒色に解析される。また、積層方向のX線幅1mmが1枚の画像に相当する。 As shown in FIG. 2, by rotating the turntable 8, the X-ray transmittance of the liquid circulating apparatus from all directions is measured by the multi-channel detector by X-ray CT, and the radiation attenuation coefficient in the subject and the spatial The analysis can be calculated and displayed as an image. In this embodiment, the imaging area obtained by the detector is decomposed into image sizes of 2048 × 2048 to create voxels. Voxels change the color of a CT image according to the proportion of material in a unit volume. For example, it is analyzed as white when there are many samples, and as black when there are many air. In addition, an X line width of 1 mm in the stacking direction corresponds to one image.
図3の画像解析10Aにより、熱交換器の血液流路外周部11に気泡(黒色点)の停滞が見られ、円筒形状の血液流路内において、外周部ほど偏流を生じていることが定性的に明らかとなった。 According to the image analysis 10A of FIG. 3, stagnation of air bubbles (black points) is observed in the blood channel outer peripheral portion 11 of the heat exchanger, and it is qualitative that in the cylindrical blood flow channel It became clear.
さらに解析画像10Bにおいて、人工肺内部に気泡が認められず、中空糸膜が100%の面積で機能していることが観察できた。 Furthermore, in the analysis image 10B, no air bubbles were observed inside the artificial lung, and it could be observed that the hollow fiber membrane was functioning with an area of 100%.
1A 液体流通装置(人工肺)
1B 液体流通装置(熱交換器)
1C 液体流通装置(血液フィルター)
2 血液回路
3 貯血槽
4 送液ポンプ
5 高出力X線CT装置
5A X線管球
5B 検出器
6 送液ポンプ駆動装置
7 遮蔽板
8 ターンテーブル
9 検査装置
10A 解析画像(熱交換器)
10B 解析画像(人工肺)
11 血液流路外周部
1A Liquid circulation device (artificial lung)
1B Liquid circulation device (heat exchanger)
1C Liquid circulation device (blood filter)
Reference Signs List 2 blood circuit 3 blood storage tank 4 liquid feeding pump 5 high power X-ray CT apparatus 5A X-ray tube 5B detector 6 liquid feeding pump driving apparatus 7 shielding plate 8 turn table 9 inspection apparatus 10A analysis image (heat exchanger)
10B Analysis image (artificial lung)
11 blood flow channel outer periphery
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017167965A JP2019045272A (en) | 2017-08-31 | 2017-08-31 | Nondestructive flow analysis method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017167965A JP2019045272A (en) | 2017-08-31 | 2017-08-31 | Nondestructive flow analysis method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2019045272A true JP2019045272A (en) | 2019-03-22 |
Family
ID=65812798
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017167965A Pending JP2019045272A (en) | 2017-08-31 | 2017-08-31 | Nondestructive flow analysis method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2019045272A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003121389A (en) * | 2001-10-15 | 2003-04-23 | Tokyo Electric Power Co Inc:The | Estimation method of water-cement ratio of concrete |
| JP2004053552A (en) * | 2002-07-24 | 2004-02-19 | Toray Ind Inc | Nondestructive inspection method of liquid fluidization state in liquid flowing device |
| JP2013164352A (en) * | 2012-02-10 | 2013-08-22 | Central Research Institute Of Electric Power Industry | Visualization method and visualization device for moving object |
| KR101300269B1 (en) * | 2012-07-06 | 2013-08-23 | 이비테크(주) | 3d computed tomography |
| JP2016500446A (en) * | 2012-12-24 | 2016-01-12 | ジーイー センシング アンド インスペクション テクノロジーズ ゲ−エムベーハー | System and method for automatically testing and / or measuring a plurality of substantially identical parts with x-rays |
| JP2016511516A (en) * | 2013-03-15 | 2016-04-14 | ニコン・メトロロジー・エヌヴェ | X-ray source, high voltage generator, electron beam gun, rotating target assembly, rotating target, and rotating vacuum seal |
-
2017
- 2017-08-31 JP JP2017167965A patent/JP2019045272A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003121389A (en) * | 2001-10-15 | 2003-04-23 | Tokyo Electric Power Co Inc:The | Estimation method of water-cement ratio of concrete |
| JP2004053552A (en) * | 2002-07-24 | 2004-02-19 | Toray Ind Inc | Nondestructive inspection method of liquid fluidization state in liquid flowing device |
| JP2013164352A (en) * | 2012-02-10 | 2013-08-22 | Central Research Institute Of Electric Power Industry | Visualization method and visualization device for moving object |
| KR101300269B1 (en) * | 2012-07-06 | 2013-08-23 | 이비테크(주) | 3d computed tomography |
| JP2016500446A (en) * | 2012-12-24 | 2016-01-12 | ジーイー センシング アンド インスペクション テクノロジーズ ゲ−エムベーハー | System and method for automatically testing and / or measuring a plurality of substantially identical parts with x-rays |
| JP2016511516A (en) * | 2013-03-15 | 2016-04-14 | ニコン・メトロロジー・エヌヴェ | X-ray source, high voltage generator, electron beam gun, rotating target assembly, rotating target, and rotating vacuum seal |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Quiros-Gonzalez et al. | Optoacoustics delineates murine breast cancer models displaying angiogenesis and vascular mimicry | |
| JP5022223B2 (en) | Medical imaging system, dispensing system and computer program for evaluating a patient's renal function prior to dispensing a contrast agent as part of a medical imaging procedure | |
| US10898088B2 (en) | Method and system for image processing of intravascular hemodynamics | |
| US9990863B2 (en) | Perfusion phantom device | |
| Leng et al. | Dual-energy CT for quantification of urinary stone composition in mixed stones: a phantom study | |
| JP2015178962A (en) | Blood test apparatus and blood test method | |
| JP4656008B2 (en) | Nuclear medicine diagnostic equipment | |
| DE102017202869A1 (en) | A treatment device and method for operating a treatment device for cleaning and / or disinfecting a medical instrument | |
| Freed et al. | Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast‐enhanced MRI | |
| Summerlin et al. | Radiation dose reduction opportunities in vascular imaging | |
| Chauvie et al. | A review on the use of imaging biomarkers in oncology clinical trials: quality assurance strategies for technical validation | |
| Lee et al. | Feasibility study of portable multi-energy computed tomography with photon-counting detector for preclinical and clinical applications | |
| Hackstein et al. | Contrast media clearance in a single kidney measured on multiphasic helical CT: results in 50 patients without acute renal disorder | |
| Wood et al. | Initial testing of a 3D printed perfusion phantom using digital subtraction angiography | |
| JP2019045272A (en) | Nondestructive flow analysis method | |
| Capuani et al. | Nuclear magnetic resonance microimaging for the qualitative assessment of root canal treatment: An ex vivo preliminary study | |
| CN108403092A (en) | Quantifying blood loss based on computed tomography | |
| Kaesler et al. | In-vitro visualization of thrombus growth in artificial lungs using real-time X-ray imaging: a feasibility study | |
| Hackett et al. | A methodological approach for quantifying and characterizing the stability of agitated saline contrast: implications for quantifying intrapulmonary shunt | |
| Koirala et al. | Mathematical models for blood flow quantification in dialysis access using angiography: A comparative study | |
| Sidi et al. | Evaluation of the computed tomography number for water, field uniformity, image noise and contrast resolutions in Kano Metropolis, Nigeria | |
| Healy | Optimization of MARS scanners for material imaging of biological samples. | |
| Weerakoon et al. | Characterization of flow distribution in the blood compartment of hollow fiber hemodialyzers with contrast-enhanced spin echo magnetic resonance imaging | |
| McDermott et al. | Shaken or stirred? The inconsistencies of manual contrast media dilution in endovascular interventions | |
| Sakai et al. | Nondestructive evaluation of blood flow in a dialyzer using X-ray computed tomography |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200729 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210414 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210420 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210615 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211130 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220524 |